1
0
mirror of https://github.com/henrydcase/nobs.git synced 2024-11-25 00:21:29 +00:00
nobs/drbg/internal/aes/generic.go
Jacob Appelbaum 20fffc2f35
add basic support for ppc64le, riscv64 (#48)
This change set modifies build metadata to add support for ppc64le
(POWER9) and riscv64 (RISC-V).  The arm64 and amd64 assembler
implementations are architecture specific and do not support ppc64le or
riscv64. On ppc64le or riscv64 a generic implementation is chosen.  The
drbg/internal/aes/cipher_noasm.go file was written by @mixmasala and
myself.

The csidh and sidh tests are extremely slow (>30m) on RISC-V using the
sifive,u54-mc (HiFive Unleashed) development board. The test timeout is
set to infinity on RISC-V by the top level Makefile as at least one test
does not finish within the default 10 minutes on RISC-V. On RISC-V the
csidh test finishes after around 30 minutes, the sidh test finishes
after around 71 minutes.

These changes were tested with amd64 (Intel Core i7), arm64 (Raspberry
Pi 4b), ppc64le (Talos POWER9, PowerNV T2P9D01 REV 1.00), and riscv64
(HighFive Unleashed, rv64imafdc,sifive,u54-mc).

The kernel versions of those systems follows:

Linux rpi4 5.13.0-1009-raspi #10-Ubuntu SMP PREEMPT Mon Oct 25 13:58:43
UTC 2021 aarch64 aarch64 aarch64 GNU/Linux

Linux i7 5.8.0-63-generic #71-Ubuntu SMP Tue Jul 13 15:59:12 UTC 2021
x86_64 x86_64 x86_64 GNU/Linux

Linux power9 5.11.0-34-generic #36-Ubuntu SMP Thu Aug 26 19:19:54 UTC
2021 ppc64le ppc64le ppc64le GNU/Linux

Linux risc-v-unleashed-000 5.11.0-1022-generic #23~20.04.1-Ubuntu SMP
Thu Oct 21 10:16:27 UTC 2021 riscv64 riscv64 riscv64 GNU/Linux
2023-03-13 23:12:45 +00:00

184 lines
6.5 KiB
Go

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build noasm amd64 arm64 ppc64le riscv64
// This Go implementation is derived in part from the reference
// ANSI C implementation, which carries the following notice:
//
// rijndael-alg-fst.c
//
// @version 3.0 (December 2000)
//
// Optimised ANSI C code for the Rijndael cipher (now AES)
//
// @author Vincent Rijmen <vincent.rijmen@esat.kuleuven.ac.be>
// @author Antoon Bosselaers <antoon.bosselaers@esat.kuleuven.ac.be>
// @author Paulo Barreto <paulo.barreto@terra.com.br>
//
// This code is hereby placed in the public domain.
//
// THIS SOFTWARE IS PROVIDED BY THE AUTHORS ''AS IS'' AND ANY EXPRESS
// OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
// BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
// WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
// OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
// EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// See FIPS 197 for specification, and see Daemen and Rijmen's Rijndael submission
// for implementation details.
// https://csrc.nist.gov/csrc/media/publications/fips/197/final/documents/fips-197.pdf
// https://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf
package aes
import (
"encoding/binary"
)
// Encrypt one block from src into dst, using the expanded key xk.
func encryptBlockGo(xk []uint32, dst, src []byte) {
_ = src[15] // early bounds check
s0 := binary.BigEndian.Uint32(src[0:4])
s1 := binary.BigEndian.Uint32(src[4:8])
s2 := binary.BigEndian.Uint32(src[8:12])
s3 := binary.BigEndian.Uint32(src[12:16])
// First round just XORs input with key.
s0 ^= xk[0]
s1 ^= xk[1]
s2 ^= xk[2]
s3 ^= xk[3]
// Middle rounds shuffle using tables.
// Number of rounds is set by length of expanded key.
nr := len(xk)/4 - 2 // - 2: one above, one more below
k := 4
var t0, t1, t2, t3 uint32
for r := 0; r < nr; r++ {
t0 = xk[k+0] ^ te0[uint8(s0>>24)] ^ te1[uint8(s1>>16)] ^ te2[uint8(s2>>8)] ^ te3[uint8(s3)]
t1 = xk[k+1] ^ te0[uint8(s1>>24)] ^ te1[uint8(s2>>16)] ^ te2[uint8(s3>>8)] ^ te3[uint8(s0)]
t2 = xk[k+2] ^ te0[uint8(s2>>24)] ^ te1[uint8(s3>>16)] ^ te2[uint8(s0>>8)] ^ te3[uint8(s1)]
t3 = xk[k+3] ^ te0[uint8(s3>>24)] ^ te1[uint8(s0>>16)] ^ te2[uint8(s1>>8)] ^ te3[uint8(s2)]
k += 4
s0, s1, s2, s3 = t0, t1, t2, t3
}
// Last round uses s-box directly and XORs to produce output.
s0 = uint32(sbox0[t0>>24])<<24 | uint32(sbox0[t1>>16&0xff])<<16 | uint32(sbox0[t2>>8&0xff])<<8 | uint32(sbox0[t3&0xff])
s1 = uint32(sbox0[t1>>24])<<24 | uint32(sbox0[t2>>16&0xff])<<16 | uint32(sbox0[t3>>8&0xff])<<8 | uint32(sbox0[t0&0xff])
s2 = uint32(sbox0[t2>>24])<<24 | uint32(sbox0[t3>>16&0xff])<<16 | uint32(sbox0[t0>>8&0xff])<<8 | uint32(sbox0[t1&0xff])
s3 = uint32(sbox0[t3>>24])<<24 | uint32(sbox0[t0>>16&0xff])<<16 | uint32(sbox0[t1>>8&0xff])<<8 | uint32(sbox0[t2&0xff])
s0 ^= xk[k+0]
s1 ^= xk[k+1]
s2 ^= xk[k+2]
s3 ^= xk[k+3]
_ = dst[15] // early bounds check
binary.BigEndian.PutUint32(dst[0:4], s0)
binary.BigEndian.PutUint32(dst[4:8], s1)
binary.BigEndian.PutUint32(dst[8:12], s2)
binary.BigEndian.PutUint32(dst[12:16], s3)
}
// Decrypt one block from src into dst, using the expanded key xk.
func decryptBlockGo(xk []uint32, dst, src []byte) {
_ = src[15] // early bounds check
s0 := binary.BigEndian.Uint32(src[0:4])
s1 := binary.BigEndian.Uint32(src[4:8])
s2 := binary.BigEndian.Uint32(src[8:12])
s3 := binary.BigEndian.Uint32(src[12:16])
// First round just XORs input with key.
s0 ^= xk[0]
s1 ^= xk[1]
s2 ^= xk[2]
s3 ^= xk[3]
// Middle rounds shuffle using tables.
// Number of rounds is set by length of expanded key.
nr := len(xk)/4 - 2 // - 2: one above, one more below
k := 4
var t0, t1, t2, t3 uint32
for r := 0; r < nr; r++ {
t0 = xk[k+0] ^ td0[uint8(s0>>24)] ^ td1[uint8(s3>>16)] ^ td2[uint8(s2>>8)] ^ td3[uint8(s1)]
t1 = xk[k+1] ^ td0[uint8(s1>>24)] ^ td1[uint8(s0>>16)] ^ td2[uint8(s3>>8)] ^ td3[uint8(s2)]
t2 = xk[k+2] ^ td0[uint8(s2>>24)] ^ td1[uint8(s1>>16)] ^ td2[uint8(s0>>8)] ^ td3[uint8(s3)]
t3 = xk[k+3] ^ td0[uint8(s3>>24)] ^ td1[uint8(s2>>16)] ^ td2[uint8(s1>>8)] ^ td3[uint8(s0)]
k += 4
s0, s1, s2, s3 = t0, t1, t2, t3
}
// Last round uses s-box directly and XORs to produce output.
s0 = uint32(sbox1[t0>>24])<<24 | uint32(sbox1[t3>>16&0xff])<<16 | uint32(sbox1[t2>>8&0xff])<<8 | uint32(sbox1[t1&0xff])
s1 = uint32(sbox1[t1>>24])<<24 | uint32(sbox1[t0>>16&0xff])<<16 | uint32(sbox1[t3>>8&0xff])<<8 | uint32(sbox1[t2&0xff])
s2 = uint32(sbox1[t2>>24])<<24 | uint32(sbox1[t1>>16&0xff])<<16 | uint32(sbox1[t0>>8&0xff])<<8 | uint32(sbox1[t3&0xff])
s3 = uint32(sbox1[t3>>24])<<24 | uint32(sbox1[t2>>16&0xff])<<16 | uint32(sbox1[t1>>8&0xff])<<8 | uint32(sbox1[t0&0xff])
s0 ^= xk[k+0]
s1 ^= xk[k+1]
s2 ^= xk[k+2]
s3 ^= xk[k+3]
_ = dst[15] // early bounds check
binary.BigEndian.PutUint32(dst[0:4], s0)
binary.BigEndian.PutUint32(dst[4:8], s1)
binary.BigEndian.PutUint32(dst[8:12], s2)
binary.BigEndian.PutUint32(dst[12:16], s3)
}
// Apply sbox0 to each byte in w.
func subw(w uint32) uint32 {
return uint32(sbox0[w>>24])<<24 |
uint32(sbox0[w>>16&0xff])<<16 |
uint32(sbox0[w>>8&0xff])<<8 |
uint32(sbox0[w&0xff])
}
// Rotate
func rotw(w uint32) uint32 { return w<<8 | w>>24 }
// Key expansion algorithm. See FIPS-197, Figure 11.
// Their rcon[i] is our powx[i-1] << 24.
func expandKeyGo(key []byte, enc, dec []uint32) {
// Encryption key setup.
var i int
nk := len(key) / 4
for i = 0; i < nk; i++ {
enc[i] = binary.BigEndian.Uint32(key[4*i:])
}
for ; i < len(enc); i++ {
t := enc[i-1]
if i%nk == 0 {
t = subw(rotw(t)) ^ (uint32(powx[i/nk-1]) << 24)
} else if nk > 6 && i%nk == 4 {
t = subw(t)
}
enc[i] = enc[i-nk] ^ t
}
// Derive decryption key from encryption key.
// Reverse the 4-word round key sets from enc to produce dec.
// All sets but the first and last get the MixColumn transform applied.
if dec == nil {
return
}
n := len(enc)
for i := 0; i < n; i += 4 {
ei := n - i - 4
for j := 0; j < 4; j++ {
x := enc[ei+j]
if i > 0 && i+4 < n {
x = td0[sbox0[x>>24]] ^ td1[sbox0[x>>16&0xff]] ^ td2[sbox0[x>>8&0xff]] ^ td3[sbox0[x&0xff]]
}
dec[i+j] = x
}
}
}