pqc/crypto_kem/frodokem640shake/clean/util.c

265 lines
9.0 KiB
C
Raw Permalink Normal View History

/********************************************************************************************
* FrodoKEM: Learning with Errors Key Encapsulation
*
* Abstract: additional functions for FrodoKEM
*********************************************************************************************/
#include <stdint.h>
#include <string.h>
#include "api.h"
#include "common.h"
#include "params.h"
2020-09-15 17:42:47 +01:00
static inline uint8_t min(uint8_t x, uint8_t y) {
2020-09-15 22:23:57 +01:00
if (x < y) {
return x;
}
return y;
2020-09-15 17:42:47 +01:00
}
uint16_t PQCLEAN_FRODOKEM640SHAKE_CLEAN_LE_TO_UINT16(uint16_t n) {
return (((uint8_t *) &n)[0] | (((uint8_t *) &n)[1] << 8));
2019-04-01 02:44:36 +01:00
}
uint16_t PQCLEAN_FRODOKEM640SHAKE_CLEAN_UINT16_TO_LE(uint16_t n) {
2019-04-01 02:44:36 +01:00
uint16_t y;
uint8_t *z = (uint8_t *) &y;
z[0] = n & 0xFF;
z[1] = (n & 0xFF00) >> 8;
return y;
}
2019-03-22 03:27:16 +00:00
void PQCLEAN_FRODOKEM640SHAKE_CLEAN_mul_bs(uint16_t *out, const uint16_t *b, const uint16_t *s) {
// Multiply by s on the right
// Inputs: b (N_BAR x N), s (N x N_BAR)
// Output: out = b*s (N_BAR x N_BAR)
int i, j, k;
for (i = 0; i < PARAMS_NBAR; i++) {
for (j = 0; j < PARAMS_NBAR; j++) {
2019-03-22 03:27:16 +00:00
out[i * PARAMS_NBAR + j] = 0;
for (k = 0; k < PARAMS_N; k++) {
out[i * PARAMS_NBAR + j] += (uint16_t)(b[i * PARAMS_N + k] * (uint32_t)s[j * PARAMS_N + k]);
}
2019-03-22 03:27:16 +00:00
out[i * PARAMS_NBAR + j] = (uint32_t)(out[i * PARAMS_NBAR + j]) & ((1 << PARAMS_LOGQ) - 1);
}
}
}
2019-03-22 03:27:16 +00:00
void PQCLEAN_FRODOKEM640SHAKE_CLEAN_mul_add_sb_plus_e(uint16_t *out, const uint16_t *b, const uint16_t *s, const uint16_t *e) {
// Multiply by s on the left
// Inputs: b (N x N_BAR), s (N_BAR x N), e (N_BAR x N_BAR)
// Output: out = s*b + e (N_BAR x N_BAR)
int i, j, k;
for (k = 0; k < PARAMS_NBAR; k++) {
for (i = 0; i < PARAMS_NBAR; i++) {
2019-03-22 03:27:16 +00:00
out[k * PARAMS_NBAR + i] = e[k * PARAMS_NBAR + i];
for (j = 0; j < PARAMS_N; j++) {
2020-11-18 16:56:21 +00:00
out[k * PARAMS_NBAR + i] += (uint16_t)(s[k * PARAMS_N + j] * (uint32_t)b[j * PARAMS_NBAR + i]);
}
2019-03-22 03:27:16 +00:00
out[k * PARAMS_NBAR + i] = (uint32_t)(out[k * PARAMS_NBAR + i]) & ((1 << PARAMS_LOGQ) - 1);
}
}
}
2019-03-22 03:27:16 +00:00
void PQCLEAN_FRODOKEM640SHAKE_CLEAN_add(uint16_t *out, const uint16_t *a, const uint16_t *b) {
// Add a and b
// Inputs: a, b (N_BAR x N_BAR)
// Output: c = a + b
for (size_t i = 0; i < (PARAMS_NBAR * PARAMS_NBAR); i++) {
2019-03-22 03:27:16 +00:00
out[i] = (a[i] + b[i]) & ((1 << PARAMS_LOGQ) - 1);
}
}
2019-03-22 03:27:16 +00:00
void PQCLEAN_FRODOKEM640SHAKE_CLEAN_sub(uint16_t *out, const uint16_t *a, const uint16_t *b) {
// Subtract a and b
// Inputs: a, b (N_BAR x N_BAR)
// Output: c = a - b
for (size_t i = 0; i < (PARAMS_NBAR * PARAMS_NBAR); i++) {
2019-03-22 03:27:16 +00:00
out[i] = (a[i] - b[i]) & ((1 << PARAMS_LOGQ) - 1);
}
}
2019-03-22 03:27:16 +00:00
void PQCLEAN_FRODOKEM640SHAKE_CLEAN_key_encode(uint16_t *out, const uint16_t *in) {
// Encoding
unsigned int i, j, npieces_word = 8;
2019-03-22 03:27:16 +00:00
unsigned int nwords = (PARAMS_NBAR * PARAMS_NBAR) / 8;
uint64_t temp, mask = ((uint64_t)1 << PARAMS_EXTRACTED_BITS) - 1;
2019-03-22 03:27:16 +00:00
uint16_t *pos = out;
for (i = 0; i < nwords; i++) {
temp = 0;
2019-03-22 03:27:16 +00:00
for (j = 0; j < PARAMS_EXTRACTED_BITS; j++) {
temp |= ((uint64_t)((uint8_t *)in)[i * PARAMS_EXTRACTED_BITS + j]) << (8 * j);
}
for (j = 0; j < npieces_word; j++) {
*pos = (uint16_t)((temp & mask) << (PARAMS_LOGQ - PARAMS_EXTRACTED_BITS));
temp >>= PARAMS_EXTRACTED_BITS;
pos++;
}
}
}
2019-03-22 03:27:16 +00:00
void PQCLEAN_FRODOKEM640SHAKE_CLEAN_key_decode(uint16_t *out, const uint16_t *in) {
// Decoding
unsigned int i, j, index = 0, npieces_word = 8;
unsigned int nwords = (PARAMS_NBAR * PARAMS_NBAR) / 8;
2019-03-22 03:27:16 +00:00
uint16_t temp, maskex = ((uint16_t)1 << PARAMS_EXTRACTED_BITS) - 1, maskq = ((uint16_t)1 << PARAMS_LOGQ) - 1;
uint8_t *pos = (uint8_t *)out;
uint64_t templong;
for (i = 0; i < nwords; i++) {
templong = 0;
for (j = 0; j < npieces_word; j++) { // temp = floor(in*2^{-11}+0.5)
temp = ((in[index] & maskq) + (1 << (PARAMS_LOGQ - PARAMS_EXTRACTED_BITS - 1))) >> (PARAMS_LOGQ - PARAMS_EXTRACTED_BITS);
templong |= ((uint64_t)(temp & maskex)) << (PARAMS_EXTRACTED_BITS * j);
index++;
}
2019-03-22 03:27:16 +00:00
for (j = 0; j < PARAMS_EXTRACTED_BITS; j++) {
pos[i * PARAMS_EXTRACTED_BITS + j] = (templong >> (8 * j)) & 0xFF;
}
}
}
void PQCLEAN_FRODOKEM640SHAKE_CLEAN_pack(uint8_t *out, size_t outlen, const uint16_t *in, size_t inlen, uint8_t lsb) {
2019-03-22 03:27:16 +00:00
// Pack the input uint16 vector into a char output vector, copying lsb bits from each input element.
// If inlen * lsb / 8 > outlen, only outlen * 8 bits are copied.
memset(out, 0, outlen);
size_t i = 0; // whole bytes already filled in
size_t j = 0; // whole uint16_t already copied
uint16_t w = 0; // the leftover, not yet copied
uint8_t bits = 0; // the number of lsb in w
while (i < outlen && (j < inlen || ((j == inlen) && (bits > 0)))) {
/*
in: | | |********|********|
^
j
w : | ****|
^
bits
out:|**|**|**|**|**|**|**|**|* |
^^
ib
*/
uint8_t b = 0; // bits in out[i] already filled in
while (b < 8) {
int nbits = min(8 - b, bits);
uint16_t mask = (1 << nbits) - 1;
uint8_t t = (uint8_t) ((w >> (bits - nbits)) & mask); // the bits to copy from w to out
out[i] = out[i] + (t << (8 - b - nbits));
b += (uint8_t) nbits;
bits -= (uint8_t) nbits;
w &= ~(mask << bits); // not strictly necessary; mostly for debugging
if (bits == 0) {
if (j < inlen) {
w = in[j];
bits = lsb;
j++;
} else {
break; // the input vector is exhausted
}
}
}
if (b == 8) { // out[i] is filled in
i++;
}
}
}
void PQCLEAN_FRODOKEM640SHAKE_CLEAN_unpack(uint16_t *out, size_t outlen, const uint8_t *in, size_t inlen, uint8_t lsb) {
2019-03-22 03:27:16 +00:00
// Unpack the input char vector into a uint16_t output vector, copying lsb bits
// for each output element from input. outlen must be at least ceil(inlen * 8 / lsb).
memset(out, 0, outlen * sizeof(uint16_t));
size_t i = 0; // whole uint16_t already filled in
size_t j = 0; // whole bytes already copied
uint8_t w = 0; // the leftover, not yet copied
uint8_t bits = 0; // the number of lsb bits of w
while (i < outlen && (j < inlen || ((j == inlen) && (bits > 0)))) {
/*
in: | | | | | | |**|**|...
^
j
w : | *|
^
bits
out:| *****| *****| *** | |...
^ ^
i b
*/
uint8_t b = 0; // bits in out[i] already filled in
while (b < lsb) {
int nbits = min(lsb - b, bits);
uint16_t mask = (1 << nbits) - 1;
uint8_t t = (w >> (bits - nbits)) & mask; // the bits to copy from w to out
out[i] = out[i] + (t << (lsb - b - nbits));
b += (uint8_t) nbits;
bits -= (uint8_t) nbits;
w &= ~(mask << bits); // not strictly necessary; mostly for debugging
if (bits == 0) {
if (j < inlen) {
w = in[j];
bits = 8;
j++;
} else {
break; // the input vector is exhausted
}
}
}
if (b == lsb) { // out[i] is filled in
i++;
}
}
}
int8_t PQCLEAN_FRODOKEM640SHAKE_CLEAN_ct_verify(const uint16_t *a, const uint16_t *b, size_t len) {
// Compare two arrays in constant time.
// Returns 0 if the byte arrays are equal, -1 otherwise.
uint16_t r = 0;
for (size_t i = 0; i < len; i++) {
r |= a[i] ^ b[i];
}
r = (-(int16_t)(r >> 1) | -(int16_t)(r & 1)) >> (8 * sizeof(uint16_t) -1);
return (int8_t)r;
}
void PQCLEAN_FRODOKEM640SHAKE_CLEAN_ct_select(uint8_t *r, const uint8_t *a, const uint8_t *b, size_t len, int8_t selector) {
// Select one of the two input arrays to be moved to r
// If (selector == 0) then load r with a, else if (selector == -1) load r with b
for (size_t i = 0; i < len; i++) {
r[i] = (~selector & a[i]) | (selector & b[i]);
}
}
2019-03-22 03:27:16 +00:00
void PQCLEAN_FRODOKEM640SHAKE_CLEAN_clear_bytes(uint8_t *mem, size_t n) {
// Clear 8-bit bytes from memory. "n" indicates the number of bytes to be zeroed.
// This function uses the volatile type qualifier to inform the compiler not to optimize out the memory clearing.
volatile uint8_t *v = mem;
for (size_t i = 0; i < n; i++) {
v[i] = 0;
}
}