pqc/crypto_sign/rainbowIa-cyclic/clean/rainbow.c

175 lines
6.6 KiB
C
Raw Normal View History

2019-06-18 10:28:41 +01:00
/// @file rainbow.c
/// @brief The standard implementations for functions in rainbow.h
///
#include "rainbow.h"
2019-07-24 09:15:48 +01:00
#include "blas.h"
2019-06-18 10:28:41 +01:00
#include "rainbow_blas.h"
#include "rainbow_config.h"
#include "rainbow_keypair.h"
#include "utils_hash.h"
#include "utils_prng.h"
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
2019-07-24 09:15:48 +01:00
#define MAX_ATTEMPT_FRMAT 128
#define _MAX_O ((_O1 > _O2) ? _O1 : _O2)
#define _MAX_O_BYTE ((_O1_BYTE > _O2_BYTE) ? _O1_BYTE : _O2_BYTE)
2019-06-18 10:28:41 +01:00
2019-07-24 09:15:48 +01:00
int PQCLEAN_RAINBOWIACYCLIC_CLEAN_rainbow_sign(uint8_t *signature, const sk_t *sk, const uint8_t *_digest) {
2019-06-18 10:28:41 +01:00
uint8_t mat_l1[_O1 * _O1_BYTE];
uint8_t mat_l2[_O2 * _O2_BYTE];
uint8_t mat_buffer[2 * _MAX_O * _MAX_O_BYTE];
// setup PRNG
prng_t prng_sign;
uint8_t prng_preseed[LEN_SKSEED + _HASH_LEN];
2019-07-24 09:15:48 +01:00
memcpy(prng_preseed, sk->sk_seed, LEN_SKSEED);
memcpy(prng_preseed + LEN_SKSEED, _digest, _HASH_LEN); // prng_preseed = sk_seed || digest
2019-06-18 10:28:41 +01:00
uint8_t prng_seed[_HASH_LEN];
2019-07-24 09:15:48 +01:00
PQCLEAN_RAINBOWIACYCLIC_CLEAN_hash_msg(prng_seed, _HASH_LEN, prng_preseed, _HASH_LEN + LEN_SKSEED);
PQCLEAN_RAINBOWIACYCLIC_CLEAN_prng_set(&prng_sign, prng_seed, _HASH_LEN); // seed = H( sk_seed || digest )
2019-06-18 10:28:41 +01:00
for (unsigned i = 0; i < LEN_SKSEED + _HASH_LEN; i++) {
2019-07-24 09:15:48 +01:00
prng_preseed[i] ^= prng_preseed[i]; // clean
2019-06-18 10:28:41 +01:00
}
for (unsigned i = 0; i < _HASH_LEN; i++) {
2019-07-24 09:15:48 +01:00
prng_seed[i] ^= prng_seed[i]; // clean
2019-06-18 10:28:41 +01:00
}
// roll vinegars.
uint8_t vinegar[_V1_BYTE];
unsigned n_attempt = 0;
unsigned l1_succ = 0;
2019-07-24 09:15:48 +01:00
while (!l1_succ) {
if (MAX_ATTEMPT_FRMAT <= n_attempt) {
2019-06-18 10:28:41 +01:00
break;
}
2019-07-24 09:15:48 +01:00
PQCLEAN_RAINBOWIACYCLIC_CLEAN_prng_gen(&prng_sign, vinegar, _V1_BYTE); // generating vinegars
gfmat_prod(mat_l1, sk->l1_F2, _O1 * _O1_BYTE, _V1, vinegar); // generating the linear equations for layer 1
l1_succ = gfmat_inv(mat_l1, mat_l1, _O1, mat_buffer); // check if the linear equation solvable
n_attempt++;
2019-06-18 10:28:41 +01:00
}
// Given the vinegars, pre-compute variables needed for layer 2
uint8_t r_l1_F1[_O1_BYTE] = {0};
uint8_t r_l2_F1[_O2_BYTE] = {0};
2019-07-24 09:15:48 +01:00
batch_quad_trimat_eval(r_l1_F1, sk->l1_F1, vinegar, _V1, _O1_BYTE);
batch_quad_trimat_eval(r_l2_F1, sk->l2_F1, vinegar, _V1, _O2_BYTE);
uint8_t mat_l2_F3[_O2 * _O2_BYTE];
2019-06-18 10:28:41 +01:00
uint8_t mat_l2_F2[_O1 * _O2_BYTE];
2019-07-24 09:15:48 +01:00
gfmat_prod(mat_l2_F3, sk->l2_F3, _O2 * _O2_BYTE, _V1, vinegar);
gfmat_prod(mat_l2_F2, sk->l2_F2, _O1 * _O2_BYTE, _V1, vinegar);
2019-06-18 10:28:41 +01:00
// Some local variables.
uint8_t _z[_PUB_M_BYTE];
uint8_t y[_PUB_M_BYTE];
uint8_t *x_v1 = vinegar;
uint8_t x_o1[_O1_BYTE];
uint8_t x_o2[_O1_BYTE];
uint8_t digest_salt[_HASH_LEN + _SALT_BYTE];
2019-07-24 09:15:48 +01:00
memcpy(digest_salt, _digest, _HASH_LEN);
2019-06-18 10:28:41 +01:00
uint8_t *salt = digest_salt + _HASH_LEN;
2019-07-24 09:15:48 +01:00
uint8_t temp_o[_MAX_O_BYTE + 32] = {0};
2019-06-18 10:28:41 +01:00
unsigned succ = 0;
2019-07-24 09:15:48 +01:00
while (!succ) {
if (MAX_ATTEMPT_FRMAT <= n_attempt) {
2019-06-18 10:28:41 +01:00
break;
}
// The computation: H(digest||salt) --> z --S--> y --C-map--> x --T--> w
2019-07-24 09:15:48 +01:00
PQCLEAN_RAINBOWIACYCLIC_CLEAN_prng_gen(&prng_sign, salt, _SALT_BYTE); // roll the salt
PQCLEAN_RAINBOWIACYCLIC_CLEAN_hash_msg(_z, _PUB_M_BYTE, digest_salt, _HASH_LEN + _SALT_BYTE); // H(digest||salt)
2019-06-18 10:28:41 +01:00
// y = S^-1 * z
2019-07-24 09:15:48 +01:00
memcpy(y, _z, _PUB_M_BYTE); // identity part of S
2019-06-18 10:28:41 +01:00
gfmat_prod(temp_o, sk->s1, _O1_BYTE, _O2, _z + _O1_BYTE);
gf256v_add(y, temp_o, _O1_BYTE);
// Central Map:
// layer 1: calculate x_o1
2019-07-24 09:15:48 +01:00
memcpy(temp_o, r_l1_F1, _O1_BYTE);
gf256v_add(temp_o, y, _O1_BYTE);
gfmat_prod(x_o1, mat_l1, _O1_BYTE, _O1, temp_o);
2019-06-18 10:28:41 +01:00
// layer 2: calculate x_o2
2019-07-24 09:15:48 +01:00
PQCLEAN_RAINBOWIACYCLIC_CLEAN_gf256v_set_zero(temp_o, _O2_BYTE);
gfmat_prod(temp_o, mat_l2_F2, _O2_BYTE, _O1, x_o1); // F2
batch_quad_trimat_eval(mat_l2, sk->l2_F5, x_o1, _O1, _O2_BYTE); // F5
gf256v_add(temp_o, mat_l2, _O2_BYTE);
gf256v_add(temp_o, r_l2_F1, _O2_BYTE); // F1
gf256v_add(temp_o, y + _O1_BYTE, _O2_BYTE);
2019-06-18 10:28:41 +01:00
// generate the linear equations of the 2nd layer
2019-07-24 09:15:48 +01:00
gfmat_prod(mat_l2, sk->l2_F6, _O2 * _O2_BYTE, _O1, x_o1); // F6
gf256v_add(mat_l2, mat_l2_F3, _O2 * _O2_BYTE); // F3
succ = gfmat_inv(mat_l2, mat_l2, _O2, mat_buffer);
gfmat_prod(x_o2, mat_l2, _O2_BYTE, _O2, temp_o); // solve l2 eqs
2019-06-18 10:28:41 +01:00
2019-07-24 09:15:48 +01:00
n_attempt++;
2019-06-18 10:28:41 +01:00
};
// w = T^-1 * y
uint8_t w[_PUB_N_BYTE];
// identity part of T.
2019-07-24 09:15:48 +01:00
memcpy(w, x_v1, _V1_BYTE);
memcpy(w + _V1_BYTE, x_o1, _O1_BYTE);
memcpy(w + _V2_BYTE, x_o2, _O2_BYTE);
2019-06-18 10:28:41 +01:00
// Computing the t1 part.
2019-07-24 09:15:48 +01:00
gfmat_prod(y, sk->t1, _V1_BYTE, _O1, x_o1);
gf256v_add(w, y, _V1_BYTE);
2019-06-18 10:28:41 +01:00
// Computing the t4 part.
2019-07-24 09:15:48 +01:00
gfmat_prod(y, sk->t4, _V1_BYTE, _O2, x_o2);
gf256v_add(w, y, _V1_BYTE);
2019-06-18 10:28:41 +01:00
// Computing the t3 part.
2019-07-24 09:15:48 +01:00
gfmat_prod(y, sk->t3, _O1_BYTE, _O2, x_o2);
gf256v_add(w + _V1_BYTE, y, _O1_BYTE);
2019-06-18 10:28:41 +01:00
2019-07-24 09:15:48 +01:00
memset(signature, 0, _SIGNATURE_BYTE); // set the output 0
2019-06-18 10:28:41 +01:00
// clean
2019-07-24 09:15:48 +01:00
memset(&prng_sign, 0, sizeof(prng_t));
memset(vinegar, 0, _V1_BYTE);
memset(r_l1_F1, 0, _O1_BYTE);
memset(r_l2_F1, 0, _O2_BYTE);
memset(_z, 0, _PUB_M_BYTE);
memset(y, 0, _PUB_M_BYTE);
memset(x_o1, 0, _O1_BYTE);
memset(x_o2, 0, _O2_BYTE);
memset(temp_o, 0, sizeof(temp_o));
2019-06-18 10:28:41 +01:00
// return: copy w and salt to the signature.
2019-07-24 09:15:48 +01:00
if (MAX_ATTEMPT_FRMAT <= n_attempt) {
2019-06-18 10:28:41 +01:00
return -1;
}
2019-07-24 09:15:48 +01:00
gf256v_add(signature, w, _PUB_N_BYTE);
gf256v_add(signature + _PUB_N_BYTE, salt, _SALT_BYTE);
2019-06-18 10:28:41 +01:00
return 0;
}
2019-07-24 09:15:48 +01:00
int PQCLEAN_RAINBOWIACYCLIC_CLEAN_rainbow_verify(const uint8_t *digest, const uint8_t *signature, const pk_t *pk) {
2019-06-18 10:28:41 +01:00
unsigned char digest_ck[_PUB_M_BYTE];
// public_map( digest_ck , pk , signature ); Evaluating the quadratic public polynomials.
2019-07-24 09:15:48 +01:00
batch_quad_trimat_eval(digest_ck, pk->pk, signature, _PUB_N, _PUB_M_BYTE);
2019-06-18 10:28:41 +01:00
unsigned char correct[_PUB_M_BYTE];
unsigned char digest_salt[_HASH_LEN + _SALT_BYTE];
2019-07-24 09:15:48 +01:00
memcpy(digest_salt, digest, _HASH_LEN);
memcpy(digest_salt + _HASH_LEN, signature + _PUB_N_BYTE, _SALT_BYTE);
PQCLEAN_RAINBOWIACYCLIC_CLEAN_hash_msg(correct, _PUB_M_BYTE, digest_salt, _HASH_LEN + _SALT_BYTE); // H( digest || salt )
2019-06-18 10:28:41 +01:00
// check consistancy.
unsigned char cc = 0;
for (unsigned i = 0; i < _PUB_M_BYTE; i++) {
cc |= (digest_ck[i] ^ correct[i]);
}
return (0 == cc) ? 0 : -1;
}
2019-06-21 13:22:17 +01:00
2019-07-24 09:15:48 +01:00
int PQCLEAN_RAINBOWIACYCLIC_CLEAN_rainbow_verify_cyclic(const uint8_t *digest, const uint8_t *signature, const cpk_t *_pk) {
unsigned char pk[sizeof(pk_t) + 32];
PQCLEAN_RAINBOWIACYCLIC_CLEAN_cpk_to_pk((pk_t *)pk, _pk); // generating classic public key.
return PQCLEAN_RAINBOWIACYCLIC_CLEAN_rainbow_verify(digest, signature, (pk_t *)pk);
2019-06-18 10:28:41 +01:00
}