pqc/test/crypto_kem/functest.c

217 lines
6.8 KiB
C
Raw Normal View History

#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include "api.h"
#include "randombytes.h"
#define NTESTS 10
const uint8_t canary[8] = {
0x01, 0x23, 0x45, 0x67, 0x89, 0xAB, 0xCD, 0xEF
};
/* allocate a bit more for all keys and messages and
* make sure it is not touched by the implementations.
*/
static void write_canary(uint8_t *d) {
for (int i = 0; i < 8; i++) {
d[i] = canary[i];
}
}
static int check_canary(const uint8_t *d) {
for (int i = 0; i < 8; i++) {
if (d[i] != canary[i]) {
return -1;
}
2019-01-16 10:02:32 +00:00
}
2019-01-16 12:52:53 +00:00
return 0;
}
2019-01-22 16:37:58 +00:00
// https://stackoverflow.com/a/1489985/1711232
#define PASTER(x, y) x##_##y
#define EVALUATOR(x, y) PASTER(x, y)
#define NAMESPACE(fun) EVALUATOR(PQCLEAN_NAMESPACE, fun)
2019-03-19 13:28:15 +00:00
#define CRYPTO_BYTES NAMESPACE(CRYPTO_BYTES)
#define CRYPTO_PUBLICKEYBYTES NAMESPACE(CRYPTO_PUBLICKEYBYTES)
#define CRYPTO_SECRETKEYBYTES NAMESPACE(CRYPTO_SECRETKEYBYTES)
#define CRYPTO_CIPHERTEXTBYTES NAMESPACE(CRYPTO_CIPHERTEXTBYTES)
#define CRYPTO_ALGNAME NAMESPACE(CRYPTO_ALGNAME)
2019-01-22 16:37:58 +00:00
#define crypto_kem_keypair NAMESPACE(crypto_kem_keypair)
#define crypto_kem_enc NAMESPACE(crypto_kem_enc)
#define crypto_kem_dec NAMESPACE(crypto_kem_dec)
#define RETURNS_ZERO(f) \
if ((f) != 0) { \
puts(#f " returned non-zero returncode"); \
return -1; \
2019-01-23 12:09:18 +00:00
}
#define DEFER(x) x
#define NAMESPACE_CHECK DEFER(NAMESPACE(API_H))
static int test_keys(void) {
2019-02-27 15:28:20 +00:00
/*
* This is most likely going to be aligned by the compiler.
* 16 extra bytes for canary
* 1 extra byte for unalignment
*/
uint8_t key_a_aligned[CRYPTO_BYTES + 16 + 1];
uint8_t key_b_aligned[CRYPTO_BYTES + 16 + 1];
uint8_t pk_aligned[CRYPTO_PUBLICKEYBYTES + 16 + 1];
uint8_t sendb_aligned[CRYPTO_CIPHERTEXTBYTES + 16 + 1];
uint8_t sk_a_aligned[CRYPTO_SECRETKEYBYTES + 16 + 1];
2019-02-27 15:28:20 +00:00
/*
* Make sure all pointers are odd.
* This ensures that the implementation does not assume anything about the
* data alignment. For example this would catch if an implementation
* directly uses these pointers to load into vector registers using movdqa.
*/
uint8_t *key_a = (uint8_t *) ((uintptr_t) key_a_aligned|(uintptr_t) 1);
uint8_t *key_b = (uint8_t *) ((uintptr_t) key_b_aligned|(uintptr_t) 1);
uint8_t *pk = (uint8_t *) ((uintptr_t) pk_aligned|(uintptr_t) 1);
uint8_t *sendb = (uint8_t *) ((uintptr_t) sendb_aligned|(uintptr_t) 1);
uint8_t *sk_a = (uint8_t *) ((uintptr_t) sk_a_aligned|(uintptr_t) 1);
2019-02-27 15:28:20 +00:00
/*
* Write 8 byte canary before and after the actual memory regions.
* This is used to validate that the implementation does not assume
* anything about the placement of data in memory
* (e.g., assuming that the pk is always behind the sk)
*/
2019-01-16 10:02:32 +00:00
write_canary(key_a);
2019-02-27 15:28:20 +00:00
write_canary(key_a + CRYPTO_BYTES + 8);
2019-01-16 10:02:32 +00:00
write_canary(key_b);
2019-02-27 15:28:20 +00:00
write_canary(key_b + CRYPTO_BYTES + 8);
2019-01-16 10:02:32 +00:00
write_canary(pk);
2019-02-27 15:28:20 +00:00
write_canary(pk + CRYPTO_PUBLICKEYBYTES + 8);
2019-01-16 10:02:32 +00:00
write_canary(sendb);
2019-02-27 15:28:20 +00:00
write_canary(sendb + CRYPTO_CIPHERTEXTBYTES + 8);
2019-01-16 10:02:32 +00:00
write_canary(sk_a);
2019-02-27 15:28:20 +00:00
write_canary(sk_a + CRYPTO_SECRETKEYBYTES + 8);
2019-01-16 10:02:32 +00:00
int i;
for (i = 0; i < NTESTS; i++) {
// Alice generates a public key
2019-01-23 12:09:18 +00:00
RETURNS_ZERO(crypto_kem_keypair(pk + 8, sk_a + 8));
2019-01-16 10:02:32 +00:00
// Bob derives a secret key and creates a response
2019-01-23 12:09:18 +00:00
RETURNS_ZERO(crypto_kem_enc(sendb + 8, key_b + 8, pk + 8));
2019-01-16 10:02:32 +00:00
// Alice uses Bobs response to get her secret key
2019-01-23 12:09:18 +00:00
RETURNS_ZERO(crypto_kem_dec(key_a + 8, sendb + 8, sk_a + 8));
2019-01-16 10:02:32 +00:00
if (memcmp(key_a + 8, key_b + 8, CRYPTO_BYTES) != 0) {
printf("ERROR KEYS\n");
2019-01-23 12:09:18 +00:00
return -1;
2019-01-16 12:02:35 +00:00
}
2019-01-23 12:09:18 +00:00
2019-02-27 15:28:20 +00:00
// Validate that the implementation did not touch the canary
if (check_canary(key_a) || check_canary(key_a + CRYPTO_BYTES + 8) ||
check_canary(key_b) || check_canary(key_b + CRYPTO_BYTES + 8 ) ||
check_canary(pk) || check_canary(pk + CRYPTO_PUBLICKEYBYTES + 8 ) ||
check_canary(sendb) || check_canary(sendb + CRYPTO_CIPHERTEXTBYTES + 8 ) ||
check_canary(sk_a) || check_canary(sk_a + CRYPTO_SECRETKEYBYTES + 8 )) {
2019-01-16 10:02:32 +00:00
printf("ERROR canary overwritten\n");
2019-01-23 12:09:18 +00:00
return -1;
2019-01-16 10:02:32 +00:00
}
}
2019-01-16 10:02:32 +00:00
return 0;
}
static int test_invalid_sk_a(void) {
uint8_t sk_a[CRYPTO_SECRETKEYBYTES];
uint8_t key_a[CRYPTO_BYTES], key_b[CRYPTO_BYTES];
uint8_t pk[CRYPTO_PUBLICKEYBYTES];
uint8_t sendb[CRYPTO_CIPHERTEXTBYTES];
2019-01-16 10:02:32 +00:00
int i;
2019-01-23 12:09:18 +00:00
int returncode;
2019-01-16 10:02:32 +00:00
for (i = 0; i < NTESTS; i++) {
// Alice generates a public key
2019-01-23 12:09:18 +00:00
RETURNS_ZERO(crypto_kem_keypair(pk, sk_a));
2019-01-16 10:02:32 +00:00
// Bob derives a secret key and creates a response
2019-01-23 12:09:18 +00:00
RETURNS_ZERO(crypto_kem_enc(sendb, key_b, pk));
2019-01-16 10:02:32 +00:00
// Replace secret key with random values
randombytes(sk_a, CRYPTO_SECRETKEYBYTES);
2019-01-16 10:02:32 +00:00
// Alice uses Bobs response to get her secret key
if ((returncode = crypto_kem_dec(key_a, sendb, sk_a)) > 0) {
printf("ERROR failing crypto_kem_dec returned %d instead of "
"negative or zero code\n",
returncode);
2019-01-23 12:09:18 +00:00
return -1;
}
2019-01-16 10:02:32 +00:00
if (!memcmp(key_a, key_b, CRYPTO_BYTES)) {
printf("ERROR invalid sk_a\n");
2019-01-16 12:02:35 +00:00
return 1;
2019-01-16 10:02:32 +00:00
}
}
2019-01-16 10:02:32 +00:00
return 0;
}
static int test_invalid_ciphertext(void) {
uint8_t sk_a[CRYPTO_SECRETKEYBYTES];
uint8_t key_a[CRYPTO_BYTES], key_b[CRYPTO_BYTES];
uint8_t pk[CRYPTO_PUBLICKEYBYTES];
uint8_t sendb[CRYPTO_CIPHERTEXTBYTES];
2019-01-16 10:02:32 +00:00
int i;
size_t pos;
2019-01-23 12:09:18 +00:00
int returncode;
2019-01-16 10:02:32 +00:00
for (i = 0; i < NTESTS; i++) {
randombytes((uint8_t *)&pos, sizeof(size_t));
2019-01-16 10:02:32 +00:00
// Alice generates a public key
2019-01-23 12:09:18 +00:00
RETURNS_ZERO(crypto_kem_keypair(pk, sk_a));
2019-01-16 10:02:32 +00:00
// Bob derives a secret key and creates a response
2019-01-23 12:09:18 +00:00
RETURNS_ZERO(crypto_kem_enc(sendb, key_b, pk));
2019-01-16 10:02:32 +00:00
// Change some byte in the ciphertext (i.e., encapsulated key)
sendb[pos % CRYPTO_CIPHERTEXTBYTES] ^= 23;
2019-01-16 10:02:32 +00:00
// Alice uses Bobs response to get her secret key
if ((returncode = crypto_kem_dec(key_a, sendb, sk_a)) > 0) {
printf("ERROR crypto_kem_dec should either fail (negative "
"returncode) or succeed (return 0) but returned %d\n",
returncode);
2019-01-23 12:09:18 +00:00
return -1;
}
2019-01-16 10:02:32 +00:00
if (!memcmp(key_a, key_b, CRYPTO_BYTES)) {
printf("ERROR invalid ciphertext\n");
2019-01-16 12:02:35 +00:00
return 1;
2019-01-16 10:02:32 +00:00
}
}
2019-01-16 10:02:32 +00:00
return 0;
}
int main(void) {
// these two will trigger compiler errors
2019-03-19 13:28:15 +00:00
puts(CRYPTO_ALGNAME);
NAMESPACE_CHECK;
2019-01-16 12:02:35 +00:00
int result = 0;
result += test_keys();
result += test_invalid_sk_a();
result += test_invalid_ciphertext();
2019-01-16 12:02:35 +00:00
if (result != 0) {
puts("Errors occurred");
}
return result;
}