356 lines
9.4 KiB
C
356 lines
9.4 KiB
C
|
/*
|
||
|
This file is for public-key generation
|
||
|
*/
|
||
|
|
||
|
#include "pk_gen.h"
|
||
|
|
||
|
#include "benes.h"
|
||
|
#include "controlbits.h"
|
||
|
#include "fft.h"
|
||
|
#include "params.h"
|
||
|
#include "util.h"
|
||
|
|
||
|
#include <stdint.h>
|
||
|
|
||
|
#define min(a, b) (((a) < (b)) ? (a) : (b))
|
||
|
|
||
|
static void de_bitslicing(uint64_t *out, vec256 in[][GFBITS]) {
|
||
|
int i, j, r;
|
||
|
uint64_t u = 0;
|
||
|
|
||
|
for (i = 0; i < (1 << GFBITS); i++) {
|
||
|
out[i] = 0 ;
|
||
|
}
|
||
|
|
||
|
for (i = 0; i < 32; i++) {
|
||
|
for (j = GFBITS - 1; j >= 0; j--) {
|
||
|
u = vec256_extract(in[i][j], 0);
|
||
|
for (r = 0; r < 64; r++) {
|
||
|
out[i * 256 + 0 * 64 + r] <<= 1;
|
||
|
out[i * 256 + 0 * 64 + r] |= (u >> r) & 1;
|
||
|
}
|
||
|
u = vec256_extract(in[i][j], 1);
|
||
|
for (r = 0; r < 64; r++) {
|
||
|
out[i * 256 + 1 * 64 + r] <<= 1;
|
||
|
out[i * 256 + 1 * 64 + r] |= (u >> r) & 1;
|
||
|
}
|
||
|
u = vec256_extract(in[i][j], 2);
|
||
|
for (r = 0; r < 64; r++) {
|
||
|
out[i * 256 + 2 * 64 + r] <<= 1;
|
||
|
out[i * 256 + 2 * 64 + r] |= (u >> r) & 1;
|
||
|
}
|
||
|
u = vec256_extract(in[i][j], 3);
|
||
|
for (r = 0; r < 64; r++) {
|
||
|
out[i * 256 + 3 * 64 + r] <<= 1;
|
||
|
out[i * 256 + 3 * 64 + r] |= (u >> r) & 1;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void to_bitslicing_2x(vec256 out0[][GFBITS], vec256 out1[][GFBITS], const uint64_t *in) {
|
||
|
int i, j, k, r;
|
||
|
uint64_t u[4];
|
||
|
|
||
|
for (i = 0; i < 32; i++) {
|
||
|
for (j = GFBITS - 1; j >= 0; j--) {
|
||
|
for (k = 0; k < 4; k++) {
|
||
|
for (r = 63; r >= 0; r--) {
|
||
|
u[k] <<= 1;
|
||
|
u[k] |= (in[i * 256 + k * 64 + r] >> (j + GFBITS)) & 1;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
out1[i][j] = vec256_set4x(u[0], u[1], u[2], u[3]);
|
||
|
}
|
||
|
|
||
|
for (j = GFBITS - 1; j >= 0; j--) {
|
||
|
for (k = 0; k < 4; k++) {
|
||
|
for (r = 63; r >= 0; r--) {
|
||
|
u[k] <<= 1;
|
||
|
u[k] |= (in[i * 256 + k * 64 + r] >> j) & 1;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
out0[i][GFBITS - 1 - j] = vec256_set4x(u[0], u[1], u[2], u[3]);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void transpose_64x64(uint64_t *out, const uint64_t *in) {
|
||
|
int i, j, s, d;
|
||
|
|
||
|
uint64_t x, y;
|
||
|
uint64_t masks[6][2] = {
|
||
|
{0x5555555555555555, 0xAAAAAAAAAAAAAAAA},
|
||
|
{0x3333333333333333, 0xCCCCCCCCCCCCCCCC},
|
||
|
{0x0F0F0F0F0F0F0F0F, 0xF0F0F0F0F0F0F0F0},
|
||
|
{0x00FF00FF00FF00FF, 0xFF00FF00FF00FF00},
|
||
|
{0x0000FFFF0000FFFF, 0xFFFF0000FFFF0000},
|
||
|
{0x00000000FFFFFFFF, 0xFFFFFFFF00000000}
|
||
|
};
|
||
|
|
||
|
for (i = 0; i < 64; i++) {
|
||
|
out[i] = in[i];
|
||
|
}
|
||
|
|
||
|
for (d = 5; d >= 0; d--) {
|
||
|
s = 1 << d;
|
||
|
|
||
|
for (i = 0; i < 64; i += s * 2) {
|
||
|
for (j = i; j < i + s; j++) {
|
||
|
x = (out[j] & masks[d][0]) | ((out[j + s] & masks[d][0]) << s);
|
||
|
y = ((out[j] & masks[d][1]) >> s) | (out[j + s] & masks[d][1]);
|
||
|
|
||
|
out[j + 0] = x;
|
||
|
out[j + s] = y;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* return number of trailing zeros of the non-zero input in */
|
||
|
static inline int ctz(uint64_t in) {
|
||
|
return (int)_tzcnt_u64(in);
|
||
|
}
|
||
|
|
||
|
static inline uint64_t same_mask(uint16_t x, uint16_t y) {
|
||
|
uint64_t mask;
|
||
|
|
||
|
mask = x ^ y;
|
||
|
mask -= 1;
|
||
|
mask >>= 63;
|
||
|
mask = -mask;
|
||
|
|
||
|
return mask;
|
||
|
}
|
||
|
|
||
|
static int mov_columns(uint64_t mat[][ 128 ], uint32_t *perm) {
|
||
|
int i, j, k, s, block_idx, row;
|
||
|
uint64_t buf[64], ctz_list[32], t, d, mask;
|
||
|
|
||
|
row = GFBITS * SYS_T - 32;
|
||
|
block_idx = row / 64;
|
||
|
|
||
|
// extract the 32x64 matrix
|
||
|
|
||
|
for (i = 0; i < 32; i++) {
|
||
|
buf[i] = (mat[ row + i ][ block_idx + 0 ] >> 32) |
|
||
|
(mat[ row + i ][ block_idx + 1 ] << 32);
|
||
|
}
|
||
|
|
||
|
// compute the column indices of pivots by Gaussian elimination.
|
||
|
// the indices are stored in ctz_list
|
||
|
|
||
|
for (i = 0; i < 32; i++) {
|
||
|
t = buf[i];
|
||
|
for (j = i + 1; j < 32; j++) {
|
||
|
t |= buf[j];
|
||
|
}
|
||
|
|
||
|
if (t == 0) {
|
||
|
return -1; // return if buf is not full rank
|
||
|
}
|
||
|
|
||
|
ctz_list[i] = s = ctz(t);
|
||
|
|
||
|
for (j = i + 1; j < 32; j++) {
|
||
|
mask = (buf[i] >> s) & 1;
|
||
|
mask -= 1;
|
||
|
buf[i] ^= buf[j] & mask;
|
||
|
}
|
||
|
for (j = 0; j < i; j++) {
|
||
|
mask = (buf[j] >> s) & 1;
|
||
|
mask = -mask;
|
||
|
buf[j] ^= buf[i] & mask;
|
||
|
}
|
||
|
for (j = i + 1; j < 32; j++) {
|
||
|
mask = (buf[j] >> s) & 1;
|
||
|
mask = -mask;
|
||
|
buf[j] ^= buf[i] & mask;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// updating permutation
|
||
|
|
||
|
for (j = 0; j < 32; j++) {
|
||
|
for (k = j + 1; k < 64; k++) {
|
||
|
d = perm[ row + j ] ^ perm[ row + k ];
|
||
|
d &= same_mask(k, ctz_list[j]);
|
||
|
perm[ row + j ] ^= d;
|
||
|
perm[ row + k ] ^= d;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// moving columns of mat according to the column indices of pivots
|
||
|
|
||
|
for (i = 0; i < GFBITS * SYS_T; i += 64) {
|
||
|
|
||
|
for (j = 0; j < min(64, GFBITS * SYS_T - i); j++) {
|
||
|
buf[j] = (mat[ i + j ][ block_idx + 0 ] >> 32) |
|
||
|
(mat[ i + j ][ block_idx + 1 ] << 32);
|
||
|
}
|
||
|
|
||
|
transpose_64x64(buf, buf);
|
||
|
|
||
|
for (j = 0; j < 32; j++) {
|
||
|
for (k = j + 1; k < 64; k++) {
|
||
|
d = buf[ j ] ^ buf[ k ];
|
||
|
d &= same_mask(k, ctz_list[j]);
|
||
|
buf[ j ] ^= d;
|
||
|
buf[ k ] ^= d;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
transpose_64x64(buf, buf);
|
||
|
|
||
|
for (j = 0; j < min(64, GFBITS * SYS_T - i); j++) {
|
||
|
mat[ i + j ][ block_idx + 0 ] = (mat[ i + j ][ block_idx + 0 ] & 0x00000000FFFFFFFF) | (buf[j] << 32);
|
||
|
mat[ i + j ][ block_idx + 1 ] = (mat[ i + j ][ block_idx + 1 ] & 0xFFFFFFFF00000000) | (buf[j] >> 32);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
|
||
|
#define NBLOCKS2_H ((SYS_N + 255) / 256)
|
||
|
#define NBLOCKS1_I ((GFBITS * SYS_T + 63) / 64)
|
||
|
int PQCLEAN_MCELIECE8192128F_AVX_pk_gen(unsigned char *pk, uint32_t *perm, const unsigned char *sk) {
|
||
|
int i, j, k;
|
||
|
int row, c;
|
||
|
|
||
|
uint64_t mat[ GFBITS * SYS_T ][ 128 ];
|
||
|
|
||
|
uint64_t mask;
|
||
|
|
||
|
vec128 sk_int[ GFBITS ];
|
||
|
|
||
|
vec256 consts[ 32 ][ GFBITS ];
|
||
|
vec256 eval[ 32 ][ GFBITS ];
|
||
|
vec256 prod[ 32 ][ GFBITS ];
|
||
|
vec256 tmp[ GFBITS ];
|
||
|
|
||
|
uint64_t list[1 << GFBITS];
|
||
|
|
||
|
// compute the inverses
|
||
|
|
||
|
PQCLEAN_MCELIECE8192128F_AVX_irr_load(sk_int, sk);
|
||
|
|
||
|
PQCLEAN_MCELIECE8192128F_AVX_fft(eval, sk_int);
|
||
|
|
||
|
vec256_copy(prod[0], eval[0]);
|
||
|
|
||
|
for (i = 1; i < 32; i++) {
|
||
|
vec256_mul(prod[i], prod[i - 1], eval[i]);
|
||
|
}
|
||
|
|
||
|
PQCLEAN_MCELIECE8192128F_AVX_vec256_inv(tmp, prod[31]);
|
||
|
|
||
|
for (i = 30; i >= 0; i--) {
|
||
|
vec256_mul(prod[i + 1], prod[i], tmp);
|
||
|
vec256_mul(tmp, tmp, eval[i + 1]);
|
||
|
}
|
||
|
|
||
|
vec256_copy(prod[0], tmp);
|
||
|
|
||
|
// fill matrix
|
||
|
|
||
|
de_bitslicing(list, prod);
|
||
|
|
||
|
for (i = 0; i < (1 << GFBITS); i++) {
|
||
|
list[i] <<= GFBITS;
|
||
|
list[i] |= i;
|
||
|
list[i] |= ((uint64_t) perm[i]) << 31;
|
||
|
}
|
||
|
|
||
|
PQCLEAN_MCELIECE8192128F_AVX_sort_63b(1 << GFBITS, list);
|
||
|
|
||
|
to_bitslicing_2x(consts, prod, list);
|
||
|
|
||
|
for (i = 0; i < (1 << GFBITS); i++) {
|
||
|
perm[i] = list[i] & GFMASK;
|
||
|
}
|
||
|
|
||
|
for (j = 0; j < NBLOCKS2_H; j++) {
|
||
|
for (k = 0; k < GFBITS; k++) {
|
||
|
mat[ k ][ 4 * j + 0 ] = vec256_extract(prod[ j ][ k ], 0);
|
||
|
mat[ k ][ 4 * j + 1 ] = vec256_extract(prod[ j ][ k ], 1);
|
||
|
mat[ k ][ 4 * j + 2 ] = vec256_extract(prod[ j ][ k ], 2);
|
||
|
mat[ k ][ 4 * j + 3 ] = vec256_extract(prod[ j ][ k ], 3);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
for (i = 1; i < SYS_T; i++) {
|
||
|
for (j = 0; j < NBLOCKS2_H; j++) {
|
||
|
vec256_mul(prod[j], prod[j], consts[j]);
|
||
|
|
||
|
for (k = 0; k < GFBITS; k++) {
|
||
|
mat[ i * GFBITS + k ][ 4 * j + 0 ] = vec256_extract(prod[ j ][ k ], 0);
|
||
|
mat[ i * GFBITS + k ][ 4 * j + 1 ] = vec256_extract(prod[ j ][ k ], 1);
|
||
|
mat[ i * GFBITS + k ][ 4 * j + 2 ] = vec256_extract(prod[ j ][ k ], 2);
|
||
|
mat[ i * GFBITS + k ][ 4 * j + 3 ] = vec256_extract(prod[ j ][ k ], 3);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// gaussian elimination
|
||
|
|
||
|
for (i = 0; i < (GFBITS * SYS_T) / 64; i++) {
|
||
|
for (j = 0; j < 64; j++) {
|
||
|
row = i * 64 + j;
|
||
|
|
||
|
if (row == GFBITS * SYS_T - 32) {
|
||
|
if (mov_columns(mat, perm)) {
|
||
|
return -1;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
for (k = row + 1; k < PK_NROWS; k++) {
|
||
|
mask = mat[ row ][ i ] >> j;
|
||
|
mask &= 1;
|
||
|
mask -= 1;
|
||
|
|
||
|
for (c = 0; c < 128; c++) {
|
||
|
mat[ row ][ c ] ^= mat[ k ][ c ] & mask;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if ( ((mat[ row ][ i ] >> j) & 1) == 0 ) { // return if not systematic
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
for (k = 0; k < row; k++) {
|
||
|
mask = mat[ k ][ i ] >> j;
|
||
|
mask &= 1;
|
||
|
mask = -mask;
|
||
|
|
||
|
for (c = 0; c < 128; c++) {
|
||
|
mat[ k ][ c ] ^= mat[ row ][ c ] & mask;
|
||
|
}
|
||
|
}
|
||
|
for (k = row + 1; k < GFBITS * SYS_T; k++) {
|
||
|
mask = mat[ k ][ i ] >> j;
|
||
|
mask &= 1;
|
||
|
mask = -mask;
|
||
|
|
||
|
for (c = 0; c < 128; c++) {
|
||
|
mat[ k ][ c ] ^= mat[ row ][ c ] & mask;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
for (i = 0; i < GFBITS * SYS_T; i++) {
|
||
|
for (j = NBLOCKS1_I; j < 128; j++) {
|
||
|
PQCLEAN_MCELIECE8192128F_AVX_store8(pk, mat[i][j]);
|
||
|
pk += 8;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
//
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|