pqc/crypto_kem/mceliece6960119f/clean/pk_gen.c

327 lines
8.2 KiB
C
Raw Normal View History

/*
This file is for public-key generation
*/
#include <assert.h>
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include "controlbits.h"
#include "benes.h"
#include "params.h"
#include "pk_gen.h"
#include "root.h"
#include "util.h"
#define min(a, b) (((a) < (b)) ? (a) : (b))
static void transpose_64x64(uint64_t *out, const uint64_t *in) {
int i, j, s, d;
uint64_t x, y;
uint64_t masks[6][2] = {
{0x5555555555555555, 0xAAAAAAAAAAAAAAAA},
{0x3333333333333333, 0xCCCCCCCCCCCCCCCC},
{0x0F0F0F0F0F0F0F0F, 0xF0F0F0F0F0F0F0F0},
{0x00FF00FF00FF00FF, 0xFF00FF00FF00FF00},
{0x0000FFFF0000FFFF, 0xFFFF0000FFFF0000},
{0x00000000FFFFFFFF, 0xFFFFFFFF00000000}
};
for (i = 0; i < 64; i++) {
out[i] = in[i];
}
for (d = 5; d >= 0; d--) {
s = 1 << d;
for (i = 0; i < 64; i += s * 2) {
for (j = i; j < i + s; j++) {
x = (out[j] & masks[d][0]) | ((out[j + s] & masks[d][0]) << s);
y = ((out[j] & masks[d][1]) >> s) | (out[j + s] & masks[d][1]);
out[j + 0] = x;
out[j + s] = y;
}
}
}
}
/* return number of trailing zeros of the non-zero input in */
static inline int ctz(uint64_t in) {
int i, b, m = 0, r = 0;
for (i = 0; i < 64; i++) {
b = (int)(in >> i) & 1;
m |= b;
r += (m ^ 1) & (b ^ 1);
}
return r;
}
static inline uint64_t same_mask(uint16_t x, uint16_t y) {
uint64_t mask;
mask = x ^ y;
mask -= 1;
mask >>= 63;
mask = -mask;
return mask;
}
static int mov_columns(uint8_t mat[][ SYS_N / 8 ], uint32_t *perm) {
int i, j, k, s, block_idx, row, tail;
uint64_t buf[64], ctz_list[32], t, d, mask;
unsigned char tmp[9];
row = GFBITS * SYS_T - 32;
block_idx = row / 8;
tail = row % 8;
// extract the 32x64 matrix
for (i = 0; i < 32; i++) {
for (j = 0; j < 9; j++) {
tmp[j] = mat[ row + i ][ block_idx + j ];
}
for (j = 0; j < 8; j++) {
tmp[j] = (tmp[j] >> tail) | (tmp[j + 1] << (8 - tail));
}
buf[i] = PQCLEAN_MCELIECE6960119F_CLEAN_load8( tmp );
}
// compute the column indices of pivots by Gaussian elimination.
// the indices are stored in ctz_list
for (i = 0; i < 32; i++) {
t = buf[i];
for (j = i + 1; j < 32; j++) {
t |= buf[j];
}
if (t == 0) {
return -1; // return if buf is not full rank
}
ctz_list[i] = s = ctz(t);
for (j = i + 1; j < 32; j++) {
mask = (buf[i] >> s) & 1;
mask -= 1;
buf[i] ^= buf[j] & mask;
}
for (j = 0; j < i; j++) {
mask = (buf[j] >> s) & 1;
mask = -mask;
buf[j] ^= buf[i] & mask;
}
for (j = i + 1; j < 32; j++) {
mask = (buf[j] >> s) & 1;
mask = -mask;
buf[j] ^= buf[i] & mask;
}
}
// updating permutation
for (j = 0; j < 32; j++) {
for (k = j + 1; k < 64; k++) {
d = perm[ row + j ] ^ perm[ row + k ];
d &= same_mask((uint16_t)k, (uint16_t)ctz_list[j]);
perm[ row + j ] ^= d;
perm[ row + k ] ^= d;
}
}
// moving columns of mat according to the column indices of pivots
for (i = 0; i < GFBITS * SYS_T; i += 64) {
for (j = 0; j < min(64, GFBITS * SYS_T - i); j++) {
for (k = 0; k < 9; k++) {
tmp[k] = mat[ i + j ][ block_idx + k ];
}
for (k = 0; k < 8; k++) {
tmp[k] = (tmp[k] >> tail) | (tmp[k + 1] << (8 - tail));
}
buf[j] = PQCLEAN_MCELIECE6960119F_CLEAN_load8( tmp );
}
transpose_64x64(buf, buf);
for (j = 0; j < 32; j++) {
for (k = j + 1; k < 64; k++) {
d = buf[ j ] ^ buf[ k ];
d &= same_mask((uint16_t)k, (uint16_t)ctz_list[j]);
buf[ j ] ^= d;
buf[ k ] ^= d;
}
}
transpose_64x64(buf, buf);
for (j = 0; j < min(64, GFBITS * SYS_T - i); j++) {
PQCLEAN_MCELIECE6960119F_CLEAN_store8( tmp, buf[j] );
mat[ i + j ][ block_idx + 8 ] = (mat[ i + j ][ block_idx + 8 ] >> tail << tail) | (tmp[7] >> (8 - tail));
mat[ i + j ][ block_idx + 0 ] = (tmp[0] << tail) | (mat[ i + j ][ block_idx ] << (8 - tail) >> (8 - tail));
for (k = 7; k >= 1; k--) {
mat[ i + j ][ block_idx + k ] = (tmp[k] << tail) | (tmp[k - 1] >> (8 - tail));
}
}
}
return 0;
}
/* input: secret key sk */
/* output: public key pk */
int PQCLEAN_MCELIECE6960119F_CLEAN_pk_gen(uint8_t *pk, uint32_t *perm, const uint8_t *sk) {
unsigned char *pk_ptr = pk;
int i, j, k;
int row, c, tail;
uint64_t buf[ 1 << GFBITS ];
unsigned char mat[ GFBITS * SYS_T ][ SYS_N / 8 ];
unsigned char mask;
unsigned char b;
gf g[ SYS_T + 1 ]; // Goppa polynomial
gf L[ SYS_N ]; // support
gf inv[ SYS_N ];
//
g[ SYS_T ] = 1;
for (i = 0; i < SYS_T; i++) {
g[i] = PQCLEAN_MCELIECE6960119F_CLEAN_load2(sk);
g[i] &= GFMASK;
sk += 2;
}
for (i = 0; i < (1 << GFBITS); i++) {
buf[i] = perm[i];
buf[i] <<= 31;
buf[i] |= i;
}
PQCLEAN_MCELIECE6960119F_CLEAN_sort_63b(1 << GFBITS, buf);
for (i = 0; i < (1 << GFBITS); i++) {
perm[i] = buf[i] & GFMASK;
}
for (i = 0; i < SYS_N; i++) {
L[i] = PQCLEAN_MCELIECE6960119F_CLEAN_bitrev((gf)perm[i]);
}
// filling the matrix
PQCLEAN_MCELIECE6960119F_CLEAN_root(inv, g, L);
for (i = 0; i < SYS_N; i++) {
inv[i] = PQCLEAN_MCELIECE6960119F_CLEAN_gf_inv(inv[i]);
}
for (i = 0; i < PK_NROWS; i++) {
for (j = 0; j < SYS_N / 8; j++) {
mat[i][j] = 0;
}
}
for (i = 0; i < SYS_T; i++) {
for (j = 0; j < SYS_N; j += 8) {
for (k = 0; k < GFBITS; k++) {
b = (inv[j + 7] >> k) & 1;
b <<= 1;
b |= (inv[j + 6] >> k) & 1;
b <<= 1;
b |= (inv[j + 5] >> k) & 1;
b <<= 1;
b |= (inv[j + 4] >> k) & 1;
b <<= 1;
b |= (inv[j + 3] >> k) & 1;
b <<= 1;
b |= (inv[j + 2] >> k) & 1;
b <<= 1;
b |= (inv[j + 1] >> k) & 1;
b <<= 1;
b |= (inv[j + 0] >> k) & 1;
mat[ i * GFBITS + k ][ j / 8 ] = b;
}
}
for (j = 0; j < SYS_N; j++) {
inv[j] = PQCLEAN_MCELIECE6960119F_CLEAN_gf_mul(inv[j], L[j]);
}
}
// gaussian elimination
for (i = 0; i < (GFBITS * SYS_T + 7) / 8; i++) {
for (j = 0; j < 8; j++) {
row = i * 8 + j;
if (row >= GFBITS * SYS_T) {
break;
}
if (row == GFBITS * SYS_T - 32) {
if (mov_columns(mat, perm)) {
return -1;
}
}
for (k = row + 1; k < GFBITS * SYS_T; k++) {
mask = mat[ row ][ i ] ^ mat[ k ][ i ];
mask >>= j;
mask &= 1;
mask = -mask;
for (c = 0; c < SYS_N / 8; c++) {
mat[ row ][ c ] ^= mat[ k ][ c ] & mask;
}
}
if ( ((mat[ row ][ i ] >> j) & 1) == 0 ) { // return if not systematic
return -1;
}
for (k = 0; k < GFBITS * SYS_T; k++) {
if (k != row) {
mask = mat[ k ][ i ] >> j;
mask &= 1;
mask = -mask;
for (c = 0; c < SYS_N / 8; c++) {
mat[ k ][ c ] ^= mat[ row ][ c ] & mask;
}
}
}
}
}
tail = (GFBITS * SYS_T) % 8;
for (i = 0; i < GFBITS * SYS_T; i++) {
for (j = (GFBITS * SYS_T - 1) / 8; j < SYS_N / 8 - 1; j++) {
*pk_ptr++ = (mat[i][j] >> tail) | (mat[i][j + 1] << (8 - tail));
}
*pk_ptr++ = (mat[i][j] >> tail);
}
return 0;
}