@@ -0,0 +1,17 @@ | |||
name: FireSaber | |||
type: kem | |||
claimed-nist-level: 5 | |||
claimed-security: IND-CCA2 | |||
length-public-key: 1312 | |||
length-ciphertext: 1472 | |||
length-secret-key: 3040 | |||
length-shared-secret: 32 | |||
nistkat-sha256: 937d9b2e139112e13d4093a6afe715deff476e4d578208b9e8e1809de43835cd | |||
principal-submitters: | |||
- Jan-Pieter D'Anvers | |||
- Angshuman Karmakar | |||
- Sujoy Sinha Roy | |||
- Frederik Vercauteren | |||
implementations: | |||
- name: clean | |||
version: https://github.com/KULeuven-COSIC/SABER/commit/14ede83f1ff3bcc41f0464543542366c68b55871 |
@@ -0,0 +1,8 @@ | |||
---------------------------------------------------------------------------------------- | |||
SABER_v1.1 | |||
Public domain | |||
Authors: Jan-Pieter D'Anvers, Angshuman Karmakar, Sujoy Sinha Roy, | |||
Frederik Vercauteren | |||
---------------------------------------------------------------------------------------- |
@@ -0,0 +1,19 @@ | |||
# This Makefile can be used with GNU Make or BSD Make | |||
LIB=libfiresaber_clean.a | |||
HEADERS=api.h cbd.h poly.h poly_mul.h SABER_indcpa.h SABER_params.h verify.h pack_unpack.h | |||
OBJECTS=cbd.o kem.o pack_unpack.o poly.o poly_mul.o SABER_indcpa.o verify.o | |||
CFLAGS=-O3 -Wall -Wextra -Wpedantic -Werror -Wmissing-prototypes -Wredundant-decls -std=c99 -I../../../common $(EXTRAFLAGS) | |||
all: $(LIB) | |||
%.o: %.c $(HEADERS) | |||
$(CC) $(CFLAGS) -c -o $@ $< | |||
$(LIB): $(OBJECTS) | |||
$(AR) -r $@ $(OBJECTS) | |||
clean: | |||
$(RM) $(OBJECTS) | |||
$(RM) $(LIB) |
@@ -0,0 +1,19 @@ | |||
# This Makefile can be used with Microsoft Visual Studio's nmake using the command: | |||
# nmake /f Makefile.Microsoft_nmake | |||
LIBRARY=libfiresaber_clean.lib | |||
OBJECTS=cbd.obj kem.obj pack_unpack.obj poly.obj poly_mul.obj SABER_indcpa.obj verify.obj | |||
CFLAGS=/nologo /I ..\..\..\common /W4 /WX | |||
all: $(LIBRARY) | |||
# Make sure objects are recompiled if headers change. | |||
$(OBJECTS): *.h | |||
$(LIBRARY): $(OBJECTS) | |||
LIB.EXE /NOLOGO /WX /OUT:$@ $** | |||
clean: | |||
-DEL $(OBJECTS) | |||
-DEL $(LIBRARY) |
@@ -0,0 +1,298 @@ | |||
#include "SABER_indcpa.h" | |||
#include "SABER_params.h" | |||
#include "fips202.h" | |||
#include "pack_unpack.h" | |||
#include "poly.h" | |||
#include "poly_mul.h" | |||
#include "randombytes.h" | |||
#include <stdint.h> | |||
#include <string.h> | |||
/*----------------------------------------------------------------------------------- | |||
This routine generates a=[Matrix K x K] of 256-coefficient polynomials | |||
-------------------------------------------------------------------------------------*/ | |||
#define h1 4 //2^(EQ-EP-1) | |||
#define h2 ( (1<<(SABER_EP-2)) - (1<<(SABER_EP-SABER_ET-1)) + (1<<(SABER_EQ-SABER_EP-1)) ) | |||
static void InnerProd(uint16_t pkcl[SABER_K][SABER_N], uint16_t skpv[SABER_K][SABER_N], uint16_t mod, uint16_t res[SABER_N]); | |||
static void MatrixVectorMul(polyvec *a, uint16_t skpv[SABER_K][SABER_N], uint16_t res[SABER_K][SABER_N], uint16_t mod, int16_t transpose); | |||
static void POL2MSG(const uint16_t *message_dec_unpacked, unsigned char *message_dec); | |||
static void GenMatrix(polyvec *a, const unsigned char *seed) { | |||
unsigned char buf[SABER_K * SABER_K * (13 * SABER_N / 8)]; | |||
uint16_t temp_ar[SABER_N]; | |||
int i, j, k; | |||
uint16_t mod = (SABER_Q - 1); | |||
shake128(buf, sizeof(buf), seed, SABER_SEEDBYTES); | |||
for (i = 0; i < SABER_K; i++) { | |||
for (j = 0; j < SABER_K; j++) { | |||
PQCLEAN_FIRESABER_CLEAN_BS2POL(buf + (i * SABER_K + j) * (13 * SABER_N / 8), temp_ar); | |||
for (k = 0; k < SABER_N; k++) { | |||
a[i].vec[j].coeffs[k] = (temp_ar[k])& mod ; | |||
} | |||
} | |||
} | |||
} | |||
void PQCLEAN_FIRESABER_CLEAN_indcpa_kem_keypair(unsigned char *pk, unsigned char *sk) { | |||
polyvec a[SABER_K]; | |||
uint16_t skpv[SABER_K][SABER_N]; | |||
unsigned char seed[SABER_SEEDBYTES]; | |||
unsigned char noiseseed[SABER_COINBYTES]; | |||
int32_t i, j; | |||
uint16_t mod_q = SABER_Q - 1; | |||
uint16_t res[SABER_K][SABER_N]; | |||
randombytes(seed, SABER_SEEDBYTES); | |||
// for not revealing system RNG state | |||
shake128(seed, SABER_SEEDBYTES, seed, SABER_SEEDBYTES); | |||
randombytes(noiseseed, SABER_COINBYTES); | |||
GenMatrix(a, seed); //sample matrix A | |||
// generate secret from constant-time binomial distribution | |||
PQCLEAN_FIRESABER_CLEAN_GenSecret(skpv, noiseseed); | |||
// do the matrix vector multiplication and rounding | |||
for (i = 0; i < SABER_K; i++) { | |||
for (j = 0; j < SABER_N; j++) { | |||
res[i][j] = 0; | |||
} | |||
} | |||
MatrixVectorMul(a, skpv, res, SABER_Q - 1, 1); | |||
// now rounding | |||
for (i = 0; i < SABER_K; i++) { | |||
for (j = 0; j < SABER_N; j++) { | |||
// shift right 3 bits | |||
res[i][j] = (res[i][j] + h1) & (mod_q); | |||
res[i][j] = (res[i][j] >> (SABER_EQ - SABER_EP)); | |||
} | |||
} | |||
// unload and pack sk=3 x (256 coefficients of 14 bits) | |||
PQCLEAN_FIRESABER_CLEAN_POLVEC2BS(sk, skpv, SABER_Q); | |||
// unload and pack pk=256 bits seed and 3 x (256 coefficients of 11 bits) | |||
// load the public-key coefficients | |||
PQCLEAN_FIRESABER_CLEAN_POLVEC2BS(pk, res, SABER_P); | |||
// now load the seedbytes in PK. Easy since seed bytes are kept in byte format. | |||
for (i = 0; i < SABER_SEEDBYTES; i++) { | |||
pk[SABER_POLYVECCOMPRESSEDBYTES + i] = seed[i]; | |||
} | |||
} | |||
void PQCLEAN_FIRESABER_CLEAN_indcpa_kem_enc(const unsigned char *message_received, unsigned char *noiseseed, const unsigned char *pk, unsigned char *ciphertext) { | |||
uint32_t i, j, k; | |||
polyvec a[SABER_K]; | |||
unsigned char seed[SABER_SEEDBYTES]; | |||
// public key of received by the client | |||
uint16_t pkcl[SABER_K][SABER_N]; | |||
uint16_t skpv1[SABER_K][SABER_N]; | |||
uint16_t message[SABER_KEYBYTES * 8]; | |||
uint16_t res[SABER_K][SABER_N]; | |||
uint16_t mod_p = SABER_P - 1; | |||
uint16_t mod_q = SABER_Q - 1; | |||
uint16_t vprime[SABER_N]; | |||
unsigned char msk_c[SABER_SCALEBYTES_KEM]; | |||
// extract the seedbytes from Public Key. | |||
for (i = 0; i < SABER_SEEDBYTES; i++) { | |||
seed[i] = pk[ SABER_POLYVECCOMPRESSEDBYTES + i]; | |||
} | |||
GenMatrix(a, seed); | |||
// generate secret from constant-time binomial distribution | |||
PQCLEAN_FIRESABER_CLEAN_GenSecret(skpv1, noiseseed); | |||
// matrix-vector multiplication and rounding | |||
for (i = 0; i < SABER_K; i++) { | |||
for (j = 0; j < SABER_N; j++) { | |||
res[i][j] = 0; | |||
} | |||
} | |||
MatrixVectorMul(a, skpv1, res, SABER_Q - 1, 0); | |||
// now rounding | |||
//shift right 3 bits | |||
for (i = 0; i < SABER_K; i++) { | |||
for (j = 0; j < SABER_N; j++) { | |||
res[i][j] = ( res[i][j] + h1 ) & mod_q; | |||
res[i][j] = (res[i][j] >> (SABER_EQ - SABER_EP) ); | |||
} | |||
} | |||
PQCLEAN_FIRESABER_CLEAN_POLVEC2BS(ciphertext, res, SABER_P); | |||
// ************client matrix-vector multiplication ends************ | |||
// now calculate the v' | |||
// unpack the public_key | |||
// pkcl is the b in the protocol | |||
PQCLEAN_FIRESABER_CLEAN_BS2POLVEC(pk, pkcl, SABER_P); | |||
for (i = 0; i < SABER_N; i++) { | |||
vprime[i] = 0; | |||
} | |||
for (i = 0; i < SABER_K; i++) { | |||
for (j = 0; j < SABER_N; j++) { | |||
skpv1[i][j] = skpv1[i][j] & (mod_p); | |||
} | |||
} | |||
// vector-vector scalar multiplication with mod p | |||
InnerProd(pkcl, skpv1, mod_p, vprime); | |||
// addition of h1 to vprime | |||
for (i = 0; i < SABER_N; i++) { | |||
vprime[i] = vprime[i] + h1; | |||
} | |||
// unpack message_received; | |||
for (j = 0; j < SABER_KEYBYTES; j++) { | |||
for (i = 0; i < 8; i++) { | |||
message[8 * j + i] = ((message_received[j] >> i) & 0x01); | |||
} | |||
} | |||
// message encoding | |||
for (i = 0; i < SABER_N; i++) { | |||
message[i] = (message[i] << (SABER_EP - 1)); | |||
} | |||
for (k = 0; k < SABER_N; k++) { | |||
vprime[k] = ( (vprime[k] - message[k]) & (mod_p) ) >> (SABER_EP - SABER_ET); | |||
} | |||
PQCLEAN_FIRESABER_CLEAN_pack_6bit(msk_c, vprime); | |||
for (j = 0; j < SABER_SCALEBYTES_KEM; j++) { | |||
ciphertext[SABER_POLYVECCOMPRESSEDBYTES + j] = msk_c[j]; | |||
} | |||
} | |||
void PQCLEAN_FIRESABER_CLEAN_indcpa_kem_dec(const unsigned char *sk, const unsigned char *ciphertext, unsigned char message_dec[]) { | |||
uint32_t i, j; | |||
// secret key of the server | |||
uint16_t sksv[SABER_K][SABER_N]; | |||
uint16_t pksv[SABER_K][SABER_N]; | |||
uint8_t scale_ar[SABER_SCALEBYTES_KEM]; | |||
uint16_t mod_p = SABER_P - 1; | |||
uint16_t v[SABER_N]; | |||
uint16_t op[SABER_N]; | |||
// sksv is the secret-key | |||
PQCLEAN_FIRESABER_CLEAN_BS2POLVEC(sk, sksv, SABER_Q); | |||
// pksv is the ciphertext | |||
PQCLEAN_FIRESABER_CLEAN_BS2POLVEC(ciphertext, pksv, SABER_P); | |||
// vector-vector scalar multiplication with mod p | |||
for (i = 0; i < SABER_N; i++) { | |||
v[i] = 0; | |||
} | |||
for (i = 0; i < SABER_K; i++) { | |||
for (j = 0; j < SABER_N; j++) { | |||
sksv[i][j] = sksv[i][j] & (mod_p); | |||
} | |||
} | |||
InnerProd(pksv, sksv, mod_p, v); | |||
//Extraction | |||
for (i = 0; i < SABER_SCALEBYTES_KEM; i++) { | |||
scale_ar[i] = ciphertext[SABER_POLYVECCOMPRESSEDBYTES + i]; | |||
} | |||
PQCLEAN_FIRESABER_CLEAN_un_pack6bit(scale_ar, op); | |||
//addition of h1 | |||
for (i = 0; i < SABER_N; i++) { | |||
v[i] = ( ( v[i] + h2 - (op[i] << (SABER_EP - SABER_ET)) ) & (mod_p) ) >> (SABER_EP - 1); | |||
} | |||
// pack decrypted message | |||
POL2MSG(v, message_dec); | |||
} | |||
static void MatrixVectorMul(polyvec *a, uint16_t skpv[SABER_K][SABER_N], uint16_t res[SABER_K][SABER_N], uint16_t mod, int16_t transpose) { | |||
uint16_t acc[SABER_N]; | |||
int32_t i, j, k; | |||
if (transpose == 1) { | |||
for (i = 0; i < SABER_K; i++) { | |||
for (j = 0; j < SABER_K; j++) { | |||
PQCLEAN_FIRESABER_CLEAN_pol_mul((uint16_t *)&a[j].vec[i], skpv[j], acc, SABER_Q, SABER_N); | |||
for (k = 0; k < SABER_N; k++) { | |||
res[i][k] = res[i][k] + acc[k]; | |||
//reduction mod p | |||
res[i][k] = (res[i][k] & mod); | |||
//clear the accumulator | |||
acc[k] = 0; | |||
} | |||
} | |||
} | |||
} else { | |||
for (i = 0; i < SABER_K; i++) { | |||
for (j = 0; j < SABER_K; j++) { | |||
PQCLEAN_FIRESABER_CLEAN_pol_mul((uint16_t *)&a[i].vec[j], skpv[j], acc, SABER_Q, SABER_N); | |||
for (k = 0; k < SABER_N; k++) { | |||
res[i][k] = res[i][k] + acc[k]; | |||
// reduction | |||
res[i][k] = res[i][k] & mod; | |||
// clear the accumulator | |||
acc[k] = 0; | |||
} | |||
} | |||
} | |||
} | |||
} | |||
static void POL2MSG(const uint16_t *message_dec_unpacked, unsigned char *message_dec) { | |||
int32_t i, j; | |||
for (j = 0; j < SABER_KEYBYTES; j++) { | |||
message_dec[j] = 0; | |||
for (i = 0; i < 8; i++) { | |||
message_dec[j] = message_dec[j] | (uint8_t) (message_dec_unpacked[j * 8 + i] << i); | |||
} | |||
} | |||
} | |||
static void InnerProd(uint16_t pkcl[SABER_K][SABER_N], uint16_t skpv[SABER_K][SABER_N], uint16_t mod, uint16_t res[SABER_N]) { | |||
uint32_t j, k; | |||
uint16_t acc[SABER_N]; | |||
// vector-vector scalar multiplication with mod p | |||
for (j = 0; j < SABER_K; j++) { | |||
PQCLEAN_FIRESABER_CLEAN_pol_mul(pkcl[j], skpv[j], acc, SABER_P, SABER_N); | |||
for (k = 0; k < SABER_N; k++) { | |||
res[k] = res[k] + acc[k]; | |||
// reduction | |||
res[k] = res[k] & mod; | |||
// clear the accumulator | |||
acc[k] = 0; | |||
} | |||
} | |||
} |
@@ -0,0 +1,9 @@ | |||
#ifndef INDCPA_H | |||
#define INDCPA_H | |||
void PQCLEAN_FIRESABER_CLEAN_indcpa_kem_keypair(unsigned char *pk, unsigned char *sk); | |||
void PQCLEAN_FIRESABER_CLEAN_indcpa_kem_enc(const unsigned char *message, unsigned char *noiseseed, const unsigned char *pk, unsigned char *ciphertext); | |||
void PQCLEAN_FIRESABER_CLEAN_indcpa_kem_dec(const unsigned char *sk, const unsigned char *ciphertext, unsigned char *message_dec); | |||
#endif | |||
@@ -0,0 +1,49 @@ | |||
#ifndef PARAMS_H | |||
#define PARAMS_H | |||
#include "api.h" | |||
#define SABER_K 4 | |||
#define SABER_MU 6 | |||
#define SABER_ET 6 | |||
#define SABER_EQ 13 | |||
#define SABER_EP 10 | |||
#define SABER_N 256 | |||
#define SABER_Q 8192 | |||
#define SABER_P 1024 | |||
#define SABER_SEEDBYTES 32 | |||
#define SABER_NOISESEEDBYTES 32 | |||
#define SABER_COINBYTES 32 | |||
#define SABER_KEYBYTES 32 | |||
#define SABER_HASHBYTES 32 | |||
#define SABER_POLYBYTES 416 //13*256/8 | |||
#define SABER_POLYVECBYTES (SABER_K * SABER_POLYBYTES) | |||
#define SABER_POLYVECCOMPRESSEDBYTES (SABER_K * 320) //10*256/8 NOTE : changed till here due to parameter adaptation | |||
#define SABER_CIPHERTEXTBYTES (SABER_POLYVECCOMPRESSEDBYTES) | |||
#define SABER_SCALEBYTES (SABER_DELTA*SABER_N/8) | |||
#define SABER_SCALEBYTES_KEM ((SABER_ET)*SABER_N/8) | |||
#define SABER_INDCPA_PUBLICKEYBYTES (SABER_POLYVECCOMPRESSEDBYTES + SABER_SEEDBYTES) | |||
#define SABER_INDCPA_SECRETKEYBYTES (SABER_POLYVECBYTES) | |||
#define SABER_PUBLICKEYBYTES (SABER_INDCPA_PUBLICKEYBYTES) | |||
#define SABER_SECRETKEYBYTES (SABER_INDCPA_SECRETKEYBYTES + SABER_INDCPA_PUBLICKEYBYTES + SABER_HASHBYTES + SABER_KEYBYTES) | |||
#define SABER_BYTES_CCA_DEC (SABER_POLYVECCOMPRESSEDBYTES + SABER_SCALEBYTES_KEM) /* Second part is for Targhi-Unruh */ | |||
#endif | |||
@@ -0,0 +1,14 @@ | |||
#ifndef PQCLEAN_FIRESABER_CLEAN_API_H | |||
#define PQCLEAN_FIRESABER_CLEAN_API_H | |||
#define PQCLEAN_FIRESABER_CLEAN_CRYPTO_ALGNAME "FireSaber" | |||
#define PQCLEAN_FIRESABER_CLEAN_CRYPTO_SECRETKEYBYTES 3040 | |||
#define PQCLEAN_FIRESABER_CLEAN_CRYPTO_PUBLICKEYBYTES (4*320+32) | |||
#define PQCLEAN_FIRESABER_CLEAN_CRYPTO_BYTES 32 | |||
#define PQCLEAN_FIRESABER_CLEAN_CRYPTO_CIPHERTEXTBYTES 1472 | |||
int PQCLEAN_FIRESABER_CLEAN_crypto_kem_keypair(unsigned char *pk, unsigned char *sk); | |||
int PQCLEAN_FIRESABER_CLEAN_crypto_kem_enc(unsigned char *ct, unsigned char *ss, const unsigned char *pk); | |||
int PQCLEAN_FIRESABER_CLEAN_crypto_kem_dec(unsigned char *ss, const unsigned char *ct, const unsigned char *sk); | |||
#endif /* api_h */ |
@@ -0,0 +1,52 @@ | |||
/*--------------------------------------------------------------------- | |||
This file has been adapted from the implementation | |||
(available at, Public Domain https://github.com/pq-crystals/kyber) | |||
of "CRYSTALS – Kyber: a CCA-secure module-lattice-based KEM" | |||
by : Joppe Bos, Leo Ducas, Eike Kiltz, Tancrede Lepoint, | |||
Vadim Lyubashevsky, John M. Schanck, Peter Schwabe & Damien stehle | |||
----------------------------------------------------------------------*/ | |||
#include "SABER_params.h" | |||
#include "api.h" | |||
#include "cbd.h" | |||
#include <stdint.h> | |||
static uint64_t load_littleendian(const unsigned char *x, int bytes) { | |||
int i; | |||
uint64_t r = x[0]; | |||
for (i = 1; i < bytes; i++) { | |||
r |= (uint64_t)x[i] << (8 * i); | |||
} | |||
return r; | |||
} | |||
void PQCLEAN_FIRESABER_CLEAN_cbd(uint16_t *r, const unsigned char *buf) { | |||
uint16_t Qmod_minus1 = SABER_Q - 1; | |||
uint32_t t, d, a[4], b[4]; | |||
int i, j; | |||
for (i = 0; i < SABER_N / 4; i++) { | |||
t = (uint32_t) load_littleendian(buf + 3 * i, 3); | |||
d = 0; | |||
for (j = 0; j < 3; j++) { | |||
d += (t >> j) & 0x249249; | |||
} | |||
a[0] = d & 0x7; | |||
b[0] = (d >> 3) & 0x7; | |||
a[1] = (d >> 6) & 0x7; | |||
b[1] = (d >> 9) & 0x7; | |||
a[2] = (d >> 12) & 0x7; | |||
b[2] = (d >> 15) & 0x7; | |||
a[3] = (d >> 18) & 0x7; | |||
b[3] = (d >> 21); | |||
r[4 * i + 0] = (uint16_t)(a[0] - b[0]) & Qmod_minus1; | |||
r[4 * i + 1] = (uint16_t)(a[1] - b[1]) & Qmod_minus1; | |||
r[4 * i + 2] = (uint16_t)(a[2] - b[2]) & Qmod_minus1; | |||
r[4 * i + 3] = (uint16_t)(a[3] - b[3]) & Qmod_minus1; | |||
} | |||
} |
@@ -0,0 +1,17 @@ | |||
#ifndef CBD_H | |||
#define CBD_H | |||
/*--------------------------------------------------------------------- | |||
This file has been adapted from the implementation | |||
(available at, Public Domain https://github.com/pq-crystals/kyber) | |||
of "CRYSTALS – Kyber: a CCA-secure module-lattice-based KEM" | |||
by : Joppe Bos, Leo Ducas, Eike Kiltz, Tancrede Lepoint, | |||
Vadim Lyubashevsky, John M. Schanck, Peter Schwabe & Damien stehle | |||
----------------------------------------------------------------------*/ | |||
#include "poly.h" | |||
#include <stdint.h> | |||
void PQCLEAN_FIRESABER_CLEAN_cbd(uint16_t *r, const unsigned char *buf); | |||
#endif |
@@ -0,0 +1,96 @@ | |||
#include "SABER_indcpa.h" | |||
#include "SABER_params.h" | |||
#include "fips202.h" | |||
#include "randombytes.h" | |||
#include "verify.h" | |||
#include <stdint.h> | |||
#include <stdio.h> | |||
#include <string.h> | |||
int PQCLEAN_FIRESABER_CLEAN_crypto_kem_keypair(unsigned char *pk, unsigned char *sk) { | |||
int i; | |||
// sk[0:SABER_INDCPA_SECRETKEYBYTES-1] <-- sk | |||
PQCLEAN_FIRESABER_CLEAN_indcpa_kem_keypair(pk, sk); | |||
// sk[SABER_INDCPA_SECRETKEYBYTES:SABER_INDCPA_SECRETKEYBYTES+SABER_INDCPA_SECRETKEYBYTES-1] <-- pk | |||
for (i = 0; i < SABER_INDCPA_PUBLICKEYBYTES; i++) { | |||
sk[i + SABER_INDCPA_SECRETKEYBYTES] = pk[i]; | |||
} | |||
// Then hash(pk) is appended. | |||
sha3_256(sk + SABER_SECRETKEYBYTES - 64, pk, SABER_INDCPA_PUBLICKEYBYTES); | |||
// Remaining part of sk contains a pseudo-random number. | |||
// This is output when check in crypto_kem_dec() fails. | |||
randombytes(sk + SABER_SECRETKEYBYTES - SABER_KEYBYTES, SABER_KEYBYTES ); | |||
return (0); | |||
} | |||
int PQCLEAN_FIRESABER_CLEAN_crypto_kem_enc(unsigned char *ct, unsigned char *ss, const unsigned char *pk) { | |||
// Will contain key, coins | |||
unsigned char kr[64]; | |||
unsigned char buf[64]; | |||
randombytes(buf, 32); | |||
// BUF[0:31] <-- random message (will be used as the key for client) Note: hash doesnot release system RNG output | |||
sha3_256(buf, buf, 32); | |||
// BUF[32:63] <-- Hash(public key); Multitarget countermeasure for coins + contributory KEM | |||
sha3_256(buf + 32, pk, SABER_INDCPA_PUBLICKEYBYTES); | |||
// kr[0:63] <-- Hash(buf[0:63]); | |||
sha3_512(kr, buf, 64); | |||
// K^ <-- kr[0:31] | |||
// noiseseed (r) <-- kr[32:63]; | |||
// buf[0:31] contains message; kr[32:63] contains randomness r; | |||
PQCLEAN_FIRESABER_CLEAN_indcpa_kem_enc(buf, kr + 32, pk, ct); | |||
sha3_256(kr + 32, ct, SABER_BYTES_CCA_DEC); | |||
// hash concatenation of pre-k and h(c) to k | |||
sha3_256(ss, kr, 64); | |||
return (0); | |||
} | |||
int PQCLEAN_FIRESABER_CLEAN_crypto_kem_dec(unsigned char *ss, const unsigned char *ct, const unsigned char *sk) { | |||
int i; | |||
unsigned char fail; | |||
unsigned char cmp[SABER_BYTES_CCA_DEC]; | |||
unsigned char buf[64]; | |||
// Will contain key, coins | |||
unsigned char kr[64]; | |||
const unsigned char *pk = sk + SABER_INDCPA_SECRETKEYBYTES; | |||
// buf[0:31] <-- message | |||
PQCLEAN_FIRESABER_CLEAN_indcpa_kem_dec(sk, ct, buf); | |||
// Multitarget countermeasure for coins + contributory KEM | |||
// Save hash by storing h(pk) in sk | |||
for (i = 0; i < 32; i++) { | |||
buf[32 + i] = sk[SABER_SECRETKEYBYTES - 64 + i]; | |||
} | |||
sha3_512(kr, buf, 64); | |||
PQCLEAN_FIRESABER_CLEAN_indcpa_kem_enc(buf, kr + 32, pk, cmp); | |||
fail = PQCLEAN_FIRESABER_CLEAN_verify(ct, cmp, SABER_BYTES_CCA_DEC); | |||
// overwrite coins in kr with h(c) | |||
sha3_256(kr + 32, ct, SABER_BYTES_CCA_DEC); | |||
PQCLEAN_FIRESABER_CLEAN_cmov(kr, sk + SABER_SECRETKEYBYTES - SABER_KEYBYTES, SABER_KEYBYTES, fail); | |||
// hash concatenation of pre-k and h(c) to k | |||
sha3_256(ss, kr, 64); | |||
return (0); | |||
} |
@@ -0,0 +1,254 @@ | |||
#include "pack_unpack.h" | |||
void PQCLEAN_FIRESABER_CLEAN_pack_3bit(uint8_t *bytes, const uint16_t *data) { | |||
uint32_t j; | |||
uint32_t offset_data, offset_byte; | |||
for (j = 0; j < SABER_N / 8; j++) { | |||
offset_byte = 3 * j; | |||
offset_data = 8 * j; | |||
bytes[offset_byte + 0] = (data[offset_data + 0] & 0x7) | | |||
((data[offset_data + 1] & 0x7) << 3) | | |||
((data[offset_data + 2] & 0x3) << 6); | |||
bytes[offset_byte + 1] = ((data[offset_data + 2] >> 2 ) & 0x01) | | |||
((data[offset_data + 3] & 0x7) << 1) | | |||
((data[offset_data + 4] & 0x7) << 4) | | |||
(((data[offset_data + 5]) & 0x01) << 7); | |||
bytes[offset_byte + 2] = ((data[offset_data + 5] >> 1 ) & 0x03) | | |||
((data[offset_data + 6] & 0x7) << 2) | | |||
((data[offset_data + 7] & 0x7) << 5); | |||
} | |||
} | |||
void PQCLEAN_FIRESABER_CLEAN_un_pack3bit(const uint8_t *bytes, uint16_t *data) { | |||
uint32_t j; | |||
uint32_t offset_data, offset_byte; | |||
for (j = 0; j < SABER_N / 8; j++) { | |||
offset_byte = 3 * j; | |||
offset_data = 8 * j; | |||
data[offset_data + 0] = (bytes[offset_byte + 0]) & 0x07; | |||
data[offset_data + 1] = ((bytes[offset_byte + 0]) >> 3 ) & 0x07; | |||
data[offset_data + 2] = (((bytes[offset_byte + 0]) >> 6 ) & 0x03) | | |||
(((bytes[offset_byte + 1]) & 0x01) << 2); | |||
data[offset_data + 3] = ((bytes[offset_byte + 1]) >> 1 ) & 0x07; | |||
data[offset_data + 4] = ((bytes[offset_byte + 1]) >> 4 ) & 0x07; | |||
data[offset_data + 5] = (((bytes[offset_byte + 1]) >> 7 ) & 0x01) | | |||
(((bytes[offset_byte + 2]) & 0x03) << 1); | |||
data[offset_data + 6] = ((bytes[offset_byte + 2] >> 2) & 0x07); | |||
data[offset_data + 7] = ((bytes[offset_byte + 2] >> 5) & 0x07); | |||
} | |||
} | |||
void PQCLEAN_FIRESABER_CLEAN_pack_4bit(uint8_t *bytes, const uint16_t *data) { | |||
uint32_t j; | |||
uint32_t offset_data; | |||
for (j = 0; j < SABER_N / 2; j++) { | |||
offset_data = 2 * j; | |||
bytes[j] = (data[offset_data] & 0x0f) | | |||
((data[offset_data + 1] & 0x0f) << 4); | |||
} | |||
} | |||
void PQCLEAN_FIRESABER_CLEAN_un_pack4bit(const unsigned char *bytes, uint16_t *ar) { | |||
uint32_t j; | |||
uint32_t offset_data; | |||
for (j = 0; j < SABER_N / 2; j++) { | |||
offset_data = 2 * j; | |||
ar[offset_data] = bytes[j] & 0x0f; | |||
ar[offset_data + 1] = (bytes[j] >> 4) & 0x0f; | |||
} | |||
} | |||
void PQCLEAN_FIRESABER_CLEAN_pack_6bit(uint8_t *bytes, const uint16_t *data) { | |||
uint32_t j; | |||
uint32_t offset_data, offset_byte; | |||
for (j = 0; j < SABER_N / 4; j++) { | |||
offset_byte = 3 * j; | |||
offset_data = 4 * j; | |||
bytes[offset_byte + 0] = (data[offset_data + 0] & 0x3f) | | |||
((data[offset_data + 1] & 0x03) << 6); | |||
bytes[offset_byte + 1] = ((data[offset_data + 1] >> 2) & 0x0f) | | |||
((data[offset_data + 2] & 0x0f) << 4); | |||
bytes[offset_byte + 2] = ((data[offset_data + 2] >> 4) & 0x03) | | |||
((data[offset_data + 3] & 0x3f) << 2); | |||
} | |||
} | |||
void PQCLEAN_FIRESABER_CLEAN_un_pack6bit(const unsigned char *bytes, uint16_t *data) { | |||
uint32_t j; | |||
uint32_t offset_data, offset_byte; | |||
for (j = 0; j < SABER_N / 4; j++) { | |||
offset_byte = 3 * j; | |||
offset_data = 4 * j; | |||
data[offset_data + 0] = bytes[offset_byte + 0] & 0x3f; | |||
data[offset_data + 1] = ((bytes[offset_byte + 0] >> 6) & 0x03) | | |||
((bytes[offset_byte + 1] & 0x0f) << 2); | |||
data[offset_data + 2] = ((bytes[offset_byte + 1] & 0xff) >> 4) | | |||
((bytes[offset_byte + 2] & 0x03) << 4); | |||
data[offset_data + 3] = ((bytes[offset_byte + 2] & 0xff) >> 2); | |||
} | |||
} | |||
static void POLVECp2BS(uint8_t *bytes, uint16_t data[SABER_K][SABER_N]) { | |||
uint32_t i, j; | |||
uint32_t offset_data, offset_byte, offset_byte1; | |||
for (i = 0; i < SABER_K; i++) { | |||
offset_byte1 = i * (SABER_N * 10) / 8; | |||
for (j = 0; j < SABER_N / 4; j++) { | |||
offset_byte = offset_byte1 + 5 * j; | |||
offset_data = 4 * j; | |||
bytes[offset_byte + 0] = (data[i][offset_data + 0] & (0xff)); | |||
bytes[offset_byte + 1] = ((data[i][offset_data + 0] >> 8) & 0x03) | | |||
((data[i][offset_data + 1] & 0x3f) << 2); | |||
bytes[offset_byte + 2] = ((data[i][offset_data + 1] >> 6) & 0x0f) | | |||
((data[i][offset_data + 2] & 0x0f) << 4); | |||
bytes[offset_byte + 3] = ((data[i][offset_data + 2] >> 4) & 0x3f) | | |||
((data[i][offset_data + 3] & 0x03) << 6); | |||
bytes[offset_byte + 4] = ((data[i][offset_data + 3] >> 2) & 0xff); | |||
} | |||
} | |||
} | |||
static void BS2POLVECp(const unsigned char *bytes, uint16_t data[SABER_K][SABER_N]) { | |||
uint32_t i, j; | |||
uint32_t offset_data, offset_byte, offset_byte1; | |||
for (i = 0; i < SABER_K; i++) { | |||
offset_byte1 = i * (SABER_N * 10) / 8; | |||
for (j = 0; j < SABER_N / 4; j++) { | |||
offset_byte = offset_byte1 + 5 * j; | |||
offset_data = 4 * j; | |||
data[i][offset_data + 0] = (bytes[offset_byte + 0] & (0xff)) | | |||
((bytes[offset_byte + 1] & 0x03) << 8); | |||
data[i][offset_data + 1] = ((bytes[offset_byte + 1] >> 2) & (0x3f)) | | |||
((bytes[offset_byte + 2] & 0x0f) << 6); | |||
data[i][offset_data + 2] = ((bytes[offset_byte + 2] >> 4) & (0x0f)) | | |||
((bytes[offset_byte + 3] & 0x3f) << 4); | |||
data[i][offset_data + 3] = ((bytes[offset_byte + 3] >> 6) & (0x03)) | | |||
((bytes[offset_byte + 4] & 0xff) << 2); | |||
} | |||
} | |||
} | |||
static void POLVECq2BS(uint8_t *bytes, uint16_t data[SABER_K][SABER_N]) { | |||
uint32_t i, j; | |||
uint32_t offset_data, offset_byte, offset_byte1; | |||
for (i = 0; i < SABER_K; i++) { | |||
offset_byte1 = i * (SABER_N * 13) / 8; | |||
for (j = 0; j < SABER_N / 8; j++) { | |||
offset_byte = offset_byte1 + 13 * j; | |||
offset_data = 8 * j; | |||
bytes[offset_byte + 0] = (data[i][offset_data + 0] & (0xff)); | |||
bytes[offset_byte + 1] = ((data[i][offset_data + 0] >> 8) & 0x1f) | | |||
((data[i][offset_data + 1] & 0x07) << 5); | |||
bytes[offset_byte + 2] = ((data[i][offset_data + 1] >> 3) & 0xff); | |||
bytes[offset_byte + 3] = ((data[i][offset_data + 1] >> 11) & 0x03) | | |||
((data[i][offset_data + 2] & 0x3f) << 2); | |||
bytes[offset_byte + 4] = ((data[i][offset_data + 2] >> 6) & 0x7f) | | |||
((data[i][offset_data + 3] & 0x01) << 7); | |||
bytes[offset_byte + 5] = ((data[i][offset_data + 3] >> 1) & 0xff); | |||
bytes[offset_byte + 6] = ((data[i][offset_data + 3] >> 9) & 0x0f) | | |||
((data[i][offset_data + 4] & 0x0f) << 4); | |||
bytes[offset_byte + 7] = ((data[i][offset_data + 4] >> 4) & 0xff); | |||
bytes[offset_byte + 8] = ((data[i][offset_data + 4] >> 12) & 0x01) | | |||
((data[i][offset_data + 5] & 0x7f) << 1); | |||
bytes[offset_byte + 9] = ((data[i][offset_data + 5] >> 7) & 0x3f) | | |||
((data[i][offset_data + 6] & 0x03) << 6); | |||
bytes[offset_byte + 10] = ((data[i][offset_data + 6] >> 2) & 0xff); | |||
bytes[offset_byte + 11] = ((data[i][offset_data + 6] >> 10) & 0x07) | | |||
((data[i][offset_data + 7] & 0x1f) << 3); | |||
bytes[offset_byte + 12] = ((data[i][offset_data + 7] >> 5) & 0xff); | |||
} | |||
} | |||
} | |||
static void BS2POLVECq(const unsigned char *bytes, uint16_t data[SABER_K][SABER_N]) { | |||
uint32_t i, j; | |||
uint32_t offset_data, offset_byte, offset_byte1; | |||
for (i = 0; i < SABER_K; i++) { | |||
offset_byte1 = i * (SABER_N * 13) / 8; | |||
for (j = 0; j < SABER_N / 8; j++) { | |||
offset_byte = offset_byte1 + 13 * j; | |||
offset_data = 8 * j; | |||
data[i][offset_data + 0] = (bytes[offset_byte + 0] & (0xff)) | | |||
((bytes[offset_byte + 1] & 0x1f) << 8); | |||
data[i][offset_data + 1] = (bytes[offset_byte + 1] >> 5 & (0x07)) | | |||
((bytes[offset_byte + 2] & 0xff) << 3) | | |||
((bytes[offset_byte + 3] & 0x03) << 11); | |||
data[i][offset_data + 2] = (bytes[offset_byte + 3] >> 2 & (0x3f)) | | |||
((bytes[offset_byte + 4] & 0x7f) << 6); | |||
data[i][offset_data + 3] = (bytes[offset_byte + 4] >> 7 & (0x01)) | | |||
((bytes[offset_byte + 5] & 0xff) << 1) | | |||
((bytes[offset_byte + 6] & 0x0f) << 9); | |||
data[i][offset_data + 4] = (bytes[offset_byte + 6] >> 4 & (0x0f)) | | |||
((bytes[offset_byte + 7] & 0xff) << 4) | | |||
((bytes[offset_byte + 8] & 0x01) << 12); | |||
data[i][offset_data + 5] = (bytes[offset_byte + 8] >> 1 & (0x7f)) | | |||
((bytes[offset_byte + 9] & 0x3f) << 7); | |||
data[i][offset_data + 6] = (bytes[offset_byte + 9] >> 6 & (0x03)) | | |||
((bytes[offset_byte + 10] & 0xff) << 2) | | |||
((bytes[offset_byte + 11] & 0x07) << 10); | |||
data[i][offset_data + 7] = (bytes[offset_byte + 11] >> 3 & (0x1f)) | | |||
((bytes[offset_byte + 12] & 0xff) << 5); | |||
} | |||
} | |||
} | |||
//only BS2POLq no BS2POLp | |||
void PQCLEAN_FIRESABER_CLEAN_BS2POL(const unsigned char *bytes, uint16_t data[SABER_N]) { | |||
uint32_t j; | |||
uint32_t offset_data, offset_byte; | |||
for (j = 0; j < SABER_N / 8; j++) { | |||
offset_byte = 13 * j; | |||
offset_data = 8 * j; | |||
data[offset_data + 0] = (bytes[offset_byte + 0] & (0xff)) | | |||
((bytes[offset_byte + 1] & 0x1f) << 8); | |||
data[offset_data + 1] = (bytes[offset_byte + 1] >> 5 & (0x07)) | | |||
((bytes[offset_byte + 2] & 0xff) << 3) | | |||
((bytes[offset_byte + 3] & 0x03) << 11); | |||
data[offset_data + 2] = (bytes[offset_byte + 3] >> 2 & (0x3f)) | | |||
((bytes[offset_byte + 4] & 0x7f) << 6); | |||
data[offset_data + 3] = (bytes[offset_byte + 4] >> 7 & (0x01)) | | |||
((bytes[offset_byte + 5] & 0xff) << 1) | | |||
((bytes[offset_byte + 6] & 0x0f) << 9); | |||
data[offset_data + 4] = (bytes[offset_byte + 6] >> 4 & (0x0f)) | | |||
((bytes[offset_byte + 7] & 0xff) << 4) | | |||
((bytes[offset_byte + 8] & 0x01) << 12); | |||
data[offset_data + 5] = (bytes[offset_byte + 8] >> 1 & (0x7f)) | | |||
((bytes[offset_byte + 9] & 0x3f) << 7); | |||
data[offset_data + 6] = (bytes[offset_byte + 9] >> 6 & (0x03)) | | |||
((bytes[offset_byte + 10] & 0xff) << 2) | | |||
((bytes[offset_byte + 11] & 0x07) << 10); | |||
data[offset_data + 7] = (bytes[offset_byte + 11] >> 3 & (0x1f)) | | |||
((bytes[offset_byte + 12] & 0xff) << 5); | |||
} | |||
} | |||
void PQCLEAN_FIRESABER_CLEAN_POLVEC2BS(uint8_t *bytes, uint16_t data[SABER_K][SABER_N], uint16_t modulus) { | |||
if (modulus == 1024) { | |||
POLVECp2BS(bytes, data); | |||
} else if (modulus == 8192) { | |||
POLVECq2BS(bytes, data); | |||
} | |||
} | |||
void PQCLEAN_FIRESABER_CLEAN_BS2POLVEC(const unsigned char *bytes, uint16_t data[SABER_K][SABER_N], uint16_t modulus) { | |||
if (modulus == 1024) { | |||
BS2POLVECp(bytes, data); | |||
} else if (modulus == 8192) { | |||
BS2POLVECq(bytes, data); | |||
} | |||
} |
@@ -0,0 +1,28 @@ | |||
#ifndef PACK_UNPACK_H | |||
#define PACK_UNPACK_H | |||
#include "SABER_params.h" | |||
#include <stdint.h> | |||
#include <stdio.h> | |||
void PQCLEAN_FIRESABER_CLEAN_pack_3bit(uint8_t *bytes, const uint16_t *data); | |||
void PQCLEAN_FIRESABER_CLEAN_un_pack3bit(const uint8_t *bytes, uint16_t *data); | |||
void PQCLEAN_FIRESABER_CLEAN_pack_4bit(uint8_t *bytes, const uint16_t *data); | |||
void PQCLEAN_FIRESABER_CLEAN_un_pack4bit(const unsigned char *bytes, uint16_t *ar); | |||
void PQCLEAN_FIRESABER_CLEAN_pack_6bit(uint8_t *bytes, const uint16_t *data); | |||
void PQCLEAN_FIRESABER_CLEAN_un_pack6bit(const unsigned char *bytes, uint16_t *data); | |||
void PQCLEAN_FIRESABER_CLEAN_BS2POL(const unsigned char *bytes, uint16_t data[SABER_N]); | |||
void PQCLEAN_FIRESABER_CLEAN_POLVEC2BS(uint8_t *bytes, uint16_t data[SABER_K][SABER_N], uint16_t modulus); | |||
void PQCLEAN_FIRESABER_CLEAN_BS2POLVEC(const unsigned char *bytes, uint16_t data[SABER_K][SABER_N], uint16_t modulus); | |||
#endif |
@@ -0,0 +1,21 @@ | |||
/*--------------------------------------------------------------------- | |||
This file has been adapted from the implementation | |||
(available at, Public Domain https://github.com/pq-crystals/kyber) | |||
of "CRYSTALS – Kyber: a CCA-secure module-lattice-based KEM" | |||
by : Joppe Bos, Leo Ducas, Eike Kiltz, Tancrede Lepoint, | |||
Vadim Lyubashevsky, John M. Schanck, Peter Schwabe & Damien stehle | |||
----------------------------------------------------------------------*/ | |||
#include "SABER_params.h" | |||
#include "cbd.h" | |||
#include "fips202.h" | |||
#include "poly.h" | |||
void PQCLEAN_FIRESABER_CLEAN_GenSecret(uint16_t r[SABER_K][SABER_N], const unsigned char *seed) { | |||
uint8_t buf[SABER_MU * SABER_N * SABER_K / 8]; | |||
shake128(buf, sizeof(buf), seed, SABER_NOISESEEDBYTES); | |||
for (size_t i = 0; i < SABER_K; i++) { | |||
PQCLEAN_FIRESABER_CLEAN_cbd(r[i], buf + i * SABER_MU * SABER_N / 8); | |||
} | |||
} |
@@ -0,0 +1,26 @@ | |||
#ifndef POLY_H | |||
#define POLY_H | |||
/*--------------------------------------------------------------------- | |||
This file has been adapted from the implementation | |||
(available at, Public Domain https://github.com/pq-crystals/kyber) | |||
of "CRYSTALS – Kyber: a CCA-secure module-lattice-based KEM" | |||
by : Joppe Bos, Leo Ducas, Eike Kiltz, Tancrede Lepoint, | |||
Vadim Lyubashevsky, John M. Schanck, Peter Schwabe & Damien stehle | |||
----------------------------------------------------------------------*/ | |||
#include "SABER_params.h" | |||
#include <stdint.h> | |||
typedef struct { | |||
uint16_t coeffs[SABER_N]; | |||
} poly; | |||
typedef struct { | |||
poly vec[SABER_K]; | |||
} polyvec; | |||
void PQCLEAN_FIRESABER_CLEAN_GenSecret(uint16_t r[SABER_K][SABER_N], const unsigned char *seed); | |||
#endif |
@@ -0,0 +1,237 @@ | |||
#include "poly_mul.h" | |||
#include <stdint.h> | |||
#include <string.h> | |||
#define SCHB_N 16 | |||
#define N_RES (SABER_N << 1) | |||
#define N_SB (SABER_N >> 2) | |||
#define N_SB_RES (2*N_SB-1) | |||
#define KARATSUBA_N 64 | |||
static void karatsuba_simple(const uint16_t *a_1, const uint16_t *b_1, uint16_t *result_final) { | |||
uint16_t d01[KARATSUBA_N / 2 - 1]; | |||
uint16_t d0123[KARATSUBA_N / 2 - 1]; | |||
uint16_t d23[KARATSUBA_N / 2 - 1]; | |||
uint16_t result_d01[KARATSUBA_N - 1]; | |||
int32_t i, j; | |||
memset(result_d01, 0, (KARATSUBA_N - 1)*sizeof(uint16_t)); | |||
memset(d01, 0, (KARATSUBA_N / 2 - 1)*sizeof(uint16_t)); | |||
memset(d0123, 0, (KARATSUBA_N / 2 - 1)*sizeof(uint16_t)); | |||
memset(d23, 0, (KARATSUBA_N / 2 - 1)*sizeof(uint16_t)); | |||
memset(result_final, 0, (2 * KARATSUBA_N - 1)*sizeof(uint16_t)); | |||
uint16_t acc1, acc2, acc3, acc4, acc5, acc6, acc7, acc8, acc9, acc10; | |||
for (i = 0; i < KARATSUBA_N / 4; i++) { | |||
acc1 = a_1[i]; //a0 | |||
acc2 = a_1[i + KARATSUBA_N / 4]; //a1 | |||
acc3 = a_1[i + 2 * KARATSUBA_N / 4]; //a2 | |||
acc4 = a_1[i + 3 * KARATSUBA_N / 4]; //a3 | |||
for (j = 0; j < KARATSUBA_N / 4; j++) { | |||
acc5 = b_1[j]; //b0 | |||
acc6 = b_1[j + KARATSUBA_N / 4]; //b1 | |||
result_final[i + j + 0 * KARATSUBA_N / 4] = result_final[i + j + 0 * KARATSUBA_N / 4] + acc1 * acc5; | |||
result_final[i + j + 2 * KARATSUBA_N / 4] = result_final[i + j + 2 * KARATSUBA_N / 4] + acc2 * acc6; | |||
acc7 = acc5 + acc6; //b01 | |||
acc8 = acc1 + acc2; //a01 | |||
d01[i + j] = d01[i + j] + acc7 * acc8; | |||
//-------------------------------------------------------- | |||
acc7 = b_1[j + 2 * KARATSUBA_N / 4]; //b2 | |||
acc8 = b_1[j + 3 * KARATSUBA_N / 4]; //b3 | |||
result_final[i + j + 4 * KARATSUBA_N / 4] = result_final[i + j + 4 * KARATSUBA_N / 4] + acc7 * acc3; | |||
result_final[i + j + 6 * KARATSUBA_N / 4] = result_final[i + j + 6 * KARATSUBA_N / 4] + acc8 * acc4; | |||
acc9 = acc3 + acc4; | |||
acc10 = acc7 + acc8; | |||
d23[i + j] = d23[i + j] + acc9 * acc10; | |||
//-------------------------------------------------------- | |||
acc5 = acc5 + acc7; //b02 | |||
acc7 = acc1 + acc3; //a02 | |||
result_d01[i + j + 0 * KARATSUBA_N / 4] = result_d01[i + j + 0 * KARATSUBA_N / 4] + acc5 * acc7; | |||
acc6 = acc6 + acc8; //b13 | |||
acc8 = acc2 + acc4; | |||
result_d01[i + j + 2 * KARATSUBA_N / 4] = result_d01[i + j + 2 * KARATSUBA_N / 4] + acc6 * acc8; | |||
acc5 = acc5 + acc6; | |||
acc7 = acc7 + acc8; | |||
d0123[i + j] = d0123[i + j] + acc5 * acc7; | |||
} | |||
} | |||
// 2nd last stage | |||
for (i = 0; i < KARATSUBA_N / 2 - 1; i++) { | |||
d0123[i] = d0123[i] - result_d01[i + 0 * KARATSUBA_N / 4] - result_d01[i + 2 * KARATSUBA_N / 4]; | |||
d01[i] = d01[i] - result_final[i + 0 * KARATSUBA_N / 4] - result_final[i + 2 * KARATSUBA_N / 4]; | |||
d23[i] = d23[i] - result_final[i + 4 * KARATSUBA_N / 4] - result_final[i + 6 * KARATSUBA_N / 4]; | |||
} | |||
for (i = 0; i < KARATSUBA_N / 2 - 1; i++) { | |||
result_d01[i + 1 * KARATSUBA_N / 4] = result_d01[i + 1 * KARATSUBA_N / 4] + d0123[i]; | |||
result_final[i + 1 * KARATSUBA_N / 4] = result_final[i + 1 * KARATSUBA_N / 4] + d01[i]; | |||
result_final[i + 5 * KARATSUBA_N / 4] = result_final[i + 5 * KARATSUBA_N / 4] + d23[i]; | |||
} | |||
// Last stage | |||
for (i = 0; i < KARATSUBA_N - 1; i++) { | |||
result_d01[i] = result_d01[i] - result_final[i] - result_final[i + KARATSUBA_N]; | |||
} | |||
for (i = 0; i < KARATSUBA_N - 1; i++) { | |||
result_final[i + 1 * KARATSUBA_N / 2] = result_final[i + 1 * KARATSUBA_N / 2] + result_d01[i]; | |||
} | |||
} | |||
static void toom_cook_4way (const uint16_t *a1, const uint16_t *b1, uint16_t *result) { | |||
uint16_t inv3 = 43691, inv9 = 36409, inv15 = 61167; | |||
uint16_t aw1[N_SB], aw2[N_SB], aw3[N_SB], aw4[N_SB], aw5[N_SB], aw6[N_SB], aw7[N_SB]; | |||
uint16_t bw1[N_SB], bw2[N_SB], bw3[N_SB], bw4[N_SB], bw5[N_SB], bw6[N_SB], bw7[N_SB]; | |||
uint16_t w1[N_SB_RES] = {0}, w2[N_SB_RES] = {0}, w3[N_SB_RES] = {0}, w4[N_SB_RES] = {0}, | |||
w5[N_SB_RES] = {0}, w6[N_SB_RES] = {0}, w7[N_SB_RES] = {0}; | |||
uint16_t r0, r1, r2, r3, r4, r5, r6, r7; | |||
uint16_t *A0, *A1, *A2, *A3, *B0, *B1, *B2, *B3; | |||
A0 = (uint16_t *)a1; | |||
A1 = (uint16_t *)&a1[N_SB]; | |||
A2 = (uint16_t *)&a1[2 * N_SB]; | |||
A3 = (uint16_t *)&a1[3 * N_SB]; | |||
B0 = (uint16_t *)b1; | |||
B1 = (uint16_t *)&b1[N_SB]; | |||
B2 = (uint16_t *)&b1[2 * N_SB]; | |||
B3 = (uint16_t *)&b1[3 * N_SB]; | |||
uint16_t *C; | |||
C = result; | |||
int i, j; | |||
// EVALUATION | |||
for (j = 0; j < N_SB; ++j) { | |||
r0 = A0[j]; | |||
r1 = A1[j]; | |||
r2 = A2[j]; | |||
r3 = A3[j]; | |||
r4 = r0 + r2; | |||
r5 = r1 + r3; | |||
r6 = r4 + r5; | |||
r7 = r4 - r5; | |||
aw3[j] = r6; | |||
aw4[j] = r7; | |||
r4 = ((r0 << 2) + r2) << 1; | |||
r5 = (r1 << 2) + r3; | |||
r6 = r4 + r5; | |||
r7 = r4 - r5; | |||
aw5[j] = r6; | |||
aw6[j] = r7; | |||
r4 = (r3 << 3) + (r2 << 2) + (r1 << 1) + r0; | |||
aw2[j] = r4; | |||
aw7[j] = r0; | |||
aw1[j] = r3; | |||
} | |||
for (j = 0; j < N_SB; ++j) { | |||
r0 = B0[j]; | |||
r1 = B1[j]; | |||
r2 = B2[j]; | |||
r3 = B3[j]; | |||
r4 = r0 + r2; | |||
r5 = r1 + r3; | |||
r6 = r4 + r5; | |||
r7 = r4 - r5; | |||
bw3[j] = r6; | |||
bw4[j] = r7; | |||
r4 = ((r0 << 2) + r2) << 1; | |||
r5 = (r1 << 2) + r3; | |||
r6 = r4 + r5; | |||
r7 = r4 - r5; | |||
bw5[j] = r6; | |||
bw6[j] = r7; | |||
r4 = (r3 << 3) + (r2 << 2) + (r1 << 1) + r0; | |||
bw2[j] = r4; | |||
bw7[j] = r0; | |||
bw1[j] = r3; | |||
} | |||
// MULTIPLICATION | |||
karatsuba_simple(aw1, bw1, w1); | |||
karatsuba_simple(aw2, bw2, w2); | |||
karatsuba_simple(aw3, bw3, w3); | |||
karatsuba_simple(aw4, bw4, w4); | |||
karatsuba_simple(aw5, bw5, w5); | |||
karatsuba_simple(aw6, bw6, w6); | |||
karatsuba_simple(aw7, bw7, w7); | |||
// INTERPOLATION | |||
for (i = 0; i < N_SB_RES; ++i) { | |||
r0 = w1[i]; | |||
r1 = w2[i]; | |||
r2 = w3[i]; | |||
r3 = w4[i]; | |||
r4 = w5[i]; | |||
r5 = w6[i]; | |||
r6 = w7[i]; | |||
r1 = r1 + r4; | |||
r5 = r5 - r4; | |||
r3 = ((r3 - r2) >> 1); | |||
r4 = r4 - r0; | |||
r4 = r4 - (r6 << 6); | |||
r4 = (r4 << 1) + r5; | |||
r2 = r2 + r3; | |||
r1 = r1 - (r2 << 6) - r2; | |||
r2 = r2 - r6; | |||
r2 = r2 - r0; | |||
r1 = r1 + 45 * r2; | |||
r4 = (((r4 - (r2 << 3)) * inv3) >> 3); | |||
r5 = r5 + r1; | |||
r1 = (((r1 + (r3 << 4)) * inv9) >> 1); | |||
r3 = -(r3 + r1); | |||
r5 = (((30 * r1 - r5) * inv15) >> 2); | |||
r2 = r2 - r4; | |||
r1 = r1 - r5; | |||
C[i] += r6; | |||
C[i + 64] += r5; | |||
C[i + 128] += r4; | |||
C[i + 192] += r3; | |||
C[i + 256] += r2; | |||
C[i + 320] += r1; | |||
C[i + 384] += r0; | |||
} | |||
} | |||
void PQCLEAN_FIRESABER_CLEAN_pol_mul(uint16_t *a, uint16_t *b, uint16_t *res, uint16_t p, uint32_t n) | |||
{ | |||
uint32_t i; | |||
// normal multiplication | |||
uint16_t c[512]; | |||
for (i = 0; i < 512; i++) { | |||
c[i] = 0; | |||
} | |||
toom_cook_4way(a, b, c); | |||
// reduction | |||
for (i = n; i < 2 * n; i++) { | |||
res[i - n] = (c[i - n] - c[i]) & (p - 1); | |||
} | |||
} |
@@ -0,0 +1,9 @@ | |||
#ifndef POLYMUL_H | |||
#define POLYMUL_H | |||
#include "SABER_params.h" | |||
#include <stdint.h> | |||
void PQCLEAN_FIRESABER_CLEAN_pol_mul(uint16_t *a, uint16_t *b, uint16_t *res, uint16_t p, uint32_t n); | |||
#endif |
@@ -0,0 +1,34 @@ | |||
/*------------------------------------------------- | |||
This file has been adapted from the implementation | |||
(available at https://github.com/pq-crystals/kyber) of | |||
"CRYSTALS – Kyber: a CCA-secure module-lattice-based KEM" | |||
by : Joppe Bos, Leo Ducas, Eike Kiltz, Tancrede Lepoint, | |||
Vadim Lyubashevsky, John M. Schanck, Peter Schwabe & Damien stehle | |||
----------------------------------------------------*/ | |||
#include "verify.h" | |||
#include <stdint.h> | |||
/* returns 0 for equal strings, 1 for non-equal strings */ | |||
unsigned char PQCLEAN_FIRESABER_CLEAN_verify(const unsigned char *a, const unsigned char *b, size_t len) { | |||
uint64_t r; | |||
size_t i; | |||
r = 0; | |||
for (i = 0; i < len; i++) { | |||
r |= a[i] ^ b[i]; | |||
} | |||
r = (~r + 1); // Two's complement | |||
r >>= 63; | |||
return (unsigned char)r; | |||
} | |||
/* b = 1 means mov, b = 0 means don't mov*/ | |||
void PQCLEAN_FIRESABER_CLEAN_cmov(unsigned char *r, const unsigned char *x, size_t len, unsigned char b) { | |||
size_t i; | |||
b = -b; | |||
for (i = 0; i < len; i++) { | |||
r[i] ^= b & (x[i] ^ r[i]); | |||
} | |||
} |
@@ -0,0 +1,21 @@ | |||
#ifndef VERIFY_H | |||
#define VERIFY_H | |||
/*------------------------------------------------- | |||
This file has been adapted from the implementation | |||
(available at https://github.com/pq-crystals/kyber) of | |||
"CRYSTALS – Kyber: a CCA-secure module-lattice-based KEM" | |||
by : Joppe Bos, Leo Ducas, Eike Kiltz, Tancrede Lepoint, | |||
Vadim Lyubashevsky, John M. Schanck, Peter Schwabe & Damien stehle | |||
----------------------------------------------------*/ | |||
#include <stddef.h> | |||
#include <stdint.h> | |||
/* returns 0 for equal strings, 1 for non-equal strings */ | |||
unsigned char PQCLEAN_FIRESABER_CLEAN_verify(const unsigned char *a, const unsigned char *b, size_t len); | |||
/* b = 1 means mov, b = 0 means don't mov*/ | |||
void PQCLEAN_FIRESABER_CLEAN_cmov(unsigned char *r, const unsigned char *x, size_t len, unsigned char b); | |||
#endif |
@@ -0,0 +1,17 @@ | |||
name: LightSaber | |||
type: kem | |||
claimed-nist-level: 1 | |||
claimed-security: IND-CCA2 | |||
length-public-key: 672 | |||
length-ciphertext: 736 | |||
length-secret-key: 1568 | |||
length-shared-secret: 32 | |||
nistkat-sha256: dc2233ae221cfabbb1db5ab1a76c93967d37de9f87a8092561f95ab28eff6061 | |||
principal-submitters: | |||
- Jan-Pieter D'Anvers | |||
- Angshuman Karmakar | |||
- Sujoy Sinha Roy | |||
- Frederik Vercauteren | |||
implementations: | |||
- name: clean | |||
version: https://github.com/KULeuven-COSIC/SABER/commit/14ede83f1ff3bcc41f0464543542366c68b55871 |
@@ -0,0 +1,8 @@ | |||
---------------------------------------------------------------------------------------- | |||
SABER_v1.1 | |||
Public domain | |||
Authors: Jan-Pieter D'Anvers, Angshuman Karmakar, Sujoy Sinha Roy, | |||
Frederik Vercauteren | |||
---------------------------------------------------------------------------------------- |
@@ -0,0 +1,19 @@ | |||
# This Makefile can be used with GNU Make or BSD Make | |||
LIB=liblightsaber_clean.a | |||
HEADERS=api.h cbd.h poly.h poly_mul.h SABER_indcpa.h SABER_params.h verify.h pack_unpack.h | |||
OBJECTS=cbd.o kem.o pack_unpack.o poly.o poly_mul.o SABER_indcpa.o verify.o | |||
CFLAGS=-O3 -Wall -Wextra -Wpedantic -Werror -Wmissing-prototypes -Wredundant-decls -std=c99 -I../../../common $(EXTRAFLAGS) | |||
all: $(LIB) | |||
%.o: %.c $(HEADERS) | |||
$(CC) $(CFLAGS) -c -o $@ $< | |||
$(LIB): $(OBJECTS) | |||
$(AR) -r $@ $(OBJECTS) | |||
clean: | |||
$(RM) $(OBJECTS) | |||
$(RM) $(LIB) |
@@ -0,0 +1,19 @@ | |||
# This Makefile can be used with Microsoft Visual Studio's nmake using the command: | |||
# nmake /f Makefile.Microsoft_nmake | |||
LIBRARY=liblightsaber_clean.lib | |||
OBJECTS=cbd.obj kem.obj pack_unpack.obj poly.obj poly_mul.obj SABER_indcpa.obj verify.obj | |||
CFLAGS=/nologo /I ..\..\..\common /W4 /WX | |||
all: $(LIBRARY) | |||
# Make sure objects are recompiled if headers change. | |||
$(OBJECTS): *.h | |||
$(LIBRARY): $(OBJECTS) | |||
LIB.EXE /NOLOGO /WX /OUT:$@ $** | |||
clean: | |||
-DEL $(OBJECTS) | |||
-DEL $(LIBRARY) |
@@ -0,0 +1,298 @@ | |||
#include "SABER_indcpa.h" | |||
#include "SABER_params.h" | |||
#include "fips202.h" | |||
#include "pack_unpack.h" | |||
#include "poly.h" | |||
#include "poly_mul.h" | |||
#include "randombytes.h" | |||
#include <stdint.h> | |||
#include <string.h> | |||
/*----------------------------------------------------------------------------------- | |||
This routine generates a=[Matrix K x K] of 256-coefficient polynomials | |||
-------------------------------------------------------------------------------------*/ | |||
#define h1 4 //2^(EQ-EP-1) | |||
#define h2 ( (1<<(SABER_EP-2)) - (1<<(SABER_EP-SABER_ET-1)) + (1<<(SABER_EQ-SABER_EP-1)) ) | |||
static void InnerProd(uint16_t pkcl[SABER_K][SABER_N], uint16_t skpv[SABER_K][SABER_N], uint16_t mod, uint16_t res[SABER_N]); | |||
static void MatrixVectorMul(polyvec *a, uint16_t skpv[SABER_K][SABER_N], uint16_t res[SABER_K][SABER_N], uint16_t mod, int16_t transpose); | |||
static void POL2MSG(const uint16_t *message_dec_unpacked, unsigned char *message_dec); | |||
static void GenMatrix(polyvec *a, const unsigned char *seed) { | |||
unsigned char buf[SABER_K * SABER_K * (13 * SABER_N / 8)]; | |||
uint16_t temp_ar[SABER_N]; | |||
int i, j, k; | |||
uint16_t mod = (SABER_Q - 1); | |||
shake128(buf, sizeof(buf), seed, SABER_SEEDBYTES); | |||
for (i = 0; i < SABER_K; i++) { | |||
for (j = 0; j < SABER_K; j++) { | |||
PQCLEAN_LIGHTSABER_CLEAN_BS2POL(buf + (i * SABER_K + j) * (13 * SABER_N / 8), temp_ar); | |||
for (k = 0; k < SABER_N; k++) { | |||
a[i].vec[j].coeffs[k] = (temp_ar[k])& mod ; | |||
} | |||
} | |||
} | |||
} | |||
void PQCLEAN_LIGHTSABER_CLEAN_indcpa_kem_keypair(unsigned char *pk, unsigned char *sk) { | |||
polyvec a[SABER_K]; | |||
uint16_t skpv[SABER_K][SABER_N]; | |||
unsigned char seed[SABER_SEEDBYTES]; | |||
unsigned char noiseseed[SABER_COINBYTES]; | |||
int32_t i, j; | |||
uint16_t mod_q = SABER_Q - 1; | |||
uint16_t res[SABER_K][SABER_N]; | |||
randombytes(seed, SABER_SEEDBYTES); | |||
// for not revealing system RNG state | |||
shake128(seed, SABER_SEEDBYTES, seed, SABER_SEEDBYTES); | |||
randombytes(noiseseed, SABER_COINBYTES); | |||
GenMatrix(a, seed); //sample matrix A | |||
// generate secret from constant-time binomial distribution | |||
PQCLEAN_LIGHTSABER_CLEAN_GenSecret(skpv, noiseseed); | |||
// do the matrix vector multiplication and rounding | |||
for (i = 0; i < SABER_K; i++) { | |||
for (j = 0; j < SABER_N; j++) { | |||
res[i][j] = 0; | |||
} | |||
} | |||
MatrixVectorMul(a, skpv, res, SABER_Q - 1, 1); | |||
// now rounding | |||
for (i = 0; i < SABER_K; i++) { | |||
for (j = 0; j < SABER_N; j++) { | |||
// shift right 3 bits | |||
res[i][j] = (res[i][j] + h1) & (mod_q); | |||
res[i][j] = (res[i][j] >> (SABER_EQ - SABER_EP)); | |||
} | |||
} | |||
// unload and pack sk=3 x (256 coefficients of 14 bits) | |||
PQCLEAN_LIGHTSABER_CLEAN_POLVEC2BS(sk, skpv, SABER_Q); | |||
// unload and pack pk=256 bits seed and 3 x (256 coefficients of 11 bits) | |||
// load the public-key coefficients | |||
PQCLEAN_LIGHTSABER_CLEAN_POLVEC2BS(pk, res, SABER_P); | |||
// now load the seedbytes in PK. Easy since seed bytes are kept in byte format. | |||
for (i = 0; i < SABER_SEEDBYTES; i++) { | |||
pk[SABER_POLYVECCOMPRESSEDBYTES + i] = seed[i]; | |||
} | |||
} | |||
void PQCLEAN_LIGHTSABER_CLEAN_indcpa_kem_enc(const unsigned char *message_received, unsigned char *noiseseed, const unsigned char *pk, unsigned char *ciphertext) { | |||
uint32_t i, j, k; | |||
polyvec a[SABER_K]; | |||
unsigned char seed[SABER_SEEDBYTES]; | |||
// public key of received by the client | |||
uint16_t pkcl[SABER_K][SABER_N]; | |||
uint16_t skpv1[SABER_K][SABER_N]; | |||
uint16_t message[SABER_KEYBYTES * 8]; | |||
uint16_t res[SABER_K][SABER_N]; | |||
uint16_t mod_p = SABER_P - 1; | |||
uint16_t mod_q = SABER_Q - 1; | |||
uint16_t vprime[SABER_N]; | |||
unsigned char msk_c[SABER_SCALEBYTES_KEM]; | |||
// extract the seedbytes from Public Key. | |||
for (i = 0; i < SABER_SEEDBYTES; i++) { | |||
seed[i] = pk[ SABER_POLYVECCOMPRESSEDBYTES + i]; | |||
} | |||
GenMatrix(a, seed); | |||
// generate secret from constant-time binomial distribution | |||
PQCLEAN_LIGHTSABER_CLEAN_GenSecret(skpv1, noiseseed); | |||
// matrix-vector multiplication and rounding | |||
for (i = 0; i < SABER_K; i++) { | |||
for (j = 0; j < SABER_N; j++) { | |||
res[i][j] = 0; | |||
} | |||
} | |||
MatrixVectorMul(a, skpv1, res, SABER_Q - 1, 0); | |||
// now rounding | |||
//shift right 3 bits | |||
for (i = 0; i < SABER_K; i++) { | |||
for (j = 0; j < SABER_N; j++) { | |||
res[i][j] = ( res[i][j] + h1 ) & mod_q; | |||
res[i][j] = (res[i][j] >> (SABER_EQ - SABER_EP) ); | |||
} | |||
} | |||
PQCLEAN_LIGHTSABER_CLEAN_POLVEC2BS(ciphertext, res, SABER_P); | |||
// ************client matrix-vector multiplication ends************ | |||
// now calculate the v' | |||
// unpack the public_key | |||
// pkcl is the b in the protocol | |||
PQCLEAN_LIGHTSABER_CLEAN_BS2POLVEC(pk, pkcl, SABER_P); | |||
for (i = 0; i < SABER_N; i++) { | |||
vprime[i] = 0; | |||
} | |||
for (i = 0; i < SABER_K; i++) { | |||
for (j = 0; j < SABER_N; j++) { | |||
skpv1[i][j] = skpv1[i][j] & (mod_p); | |||
} | |||
} | |||
// vector-vector scalar multiplication with mod p | |||
InnerProd(pkcl, skpv1, mod_p, vprime); | |||
// addition of h1 to vprime | |||
for (i = 0; i < SABER_N; i++) { | |||
vprime[i] = vprime[i] + h1; | |||
} | |||
// unpack message_received; | |||
for (j = 0; j < SABER_KEYBYTES; j++) { | |||
for (i = 0; i < 8; i++) { | |||
message[8 * j + i] = ((message_received[j] >> i) & 0x01); | |||
} | |||
} | |||
// message encoding | |||
for (i = 0; i < SABER_N; i++) { | |||
message[i] = (message[i] << (SABER_EP - 1)); | |||
} | |||
for (k = 0; k < SABER_N; k++) { | |||
vprime[k] = ( (vprime[k] - message[k]) & (mod_p) ) >> (SABER_EP - SABER_ET); | |||
} | |||
PQCLEAN_LIGHTSABER_CLEAN_pack_3bit(msk_c, vprime); | |||
for (j = 0; j < SABER_SCALEBYTES_KEM; j++) { | |||
ciphertext[SABER_POLYVECCOMPRESSEDBYTES + j] = msk_c[j]; | |||
} | |||
} | |||
void PQCLEAN_LIGHTSABER_CLEAN_indcpa_kem_dec(const unsigned char *sk, const unsigned char *ciphertext, unsigned char message_dec[]) { | |||
uint32_t i, j; | |||
// secret key of the server | |||
uint16_t sksv[SABER_K][SABER_N]; | |||
uint16_t pksv[SABER_K][SABER_N]; | |||
uint8_t scale_ar[SABER_SCALEBYTES_KEM]; | |||
uint16_t mod_p = SABER_P - 1; | |||
uint16_t v[SABER_N]; | |||
uint16_t op[SABER_N]; | |||
// sksv is the secret-key | |||
PQCLEAN_LIGHTSABER_CLEAN_BS2POLVEC(sk, sksv, SABER_Q); | |||
// pksv is the ciphertext | |||
PQCLEAN_LIGHTSABER_CLEAN_BS2POLVEC(ciphertext, pksv, SABER_P); | |||
// vector-vector scalar multiplication with mod p | |||
for (i = 0; i < SABER_N; i++) { | |||
v[i] = 0; | |||
} | |||
for (i = 0; i < SABER_K; i++) { | |||
for (j = 0; j < SABER_N; j++) { | |||
sksv[i][j] = sksv[i][j] & (mod_p); | |||
} | |||
} | |||
InnerProd(pksv, sksv, mod_p, v); | |||
//Extraction | |||
for (i = 0; i < SABER_SCALEBYTES_KEM; i++) { | |||
scale_ar[i] = ciphertext[SABER_POLYVECCOMPRESSEDBYTES + i]; | |||
} | |||
PQCLEAN_LIGHTSABER_CLEAN_un_pack3bit(scale_ar, op); | |||
//addition of h1 | |||
for (i = 0; i < SABER_N; i++) { | |||
v[i] = ( ( v[i] + h2 - (op[i] << (SABER_EP - SABER_ET)) ) & (mod_p) ) >> (SABER_EP - 1); | |||
} | |||
// pack decrypted message | |||
POL2MSG(v, message_dec); | |||
} | |||
static void MatrixVectorMul(polyvec *a, uint16_t skpv[SABER_K][SABER_N], uint16_t res[SABER_K][SABER_N], uint16_t mod, int16_t transpose) { | |||
uint16_t acc[SABER_N]; | |||
int32_t i, j, k; | |||
if (transpose == 1) { | |||
for (i = 0; i < SABER_K; i++) { | |||
for (j = 0; j < SABER_K; j++) { | |||
PQCLEAN_LIGHTSABER_CLEAN_pol_mul((uint16_t *)&a[j].vec[i], skpv[j], acc, SABER_Q, SABER_N); | |||
for (k = 0; k < SABER_N; k++) { | |||
res[i][k] = res[i][k] + acc[k]; | |||
//reduction mod p | |||
res[i][k] = (res[i][k] & mod); | |||
//clear the accumulator | |||
acc[k] = 0; | |||
} | |||
} | |||
} | |||
} else { | |||
for (i = 0; i < SABER_K; i++) { | |||
for (j = 0; j < SABER_K; j++) { | |||
PQCLEAN_LIGHTSABER_CLEAN_pol_mul((uint16_t *)&a[i].vec[j], skpv[j], acc, SABER_Q, SABER_N); | |||
for (k = 0; k < SABER_N; k++) { | |||
res[i][k] = res[i][k] + acc[k]; | |||
// reduction | |||
res[i][k] = res[i][k] & mod; | |||
// clear the accumulator | |||
acc[k] = 0; | |||
} | |||
} | |||
} | |||
} | |||
} | |||
static void POL2MSG(const uint16_t *message_dec_unpacked, unsigned char *message_dec) { | |||
int32_t i, j; | |||
for (j = 0; j < SABER_KEYBYTES; j++) { | |||
message_dec[j] = 0; | |||
for (i = 0; i < 8; i++) { | |||
message_dec[j] = message_dec[j] | (uint8_t) (message_dec_unpacked[j * 8 + i] << i); | |||
} | |||
} | |||
} | |||
static void InnerProd(uint16_t pkcl[SABER_K][SABER_N], uint16_t skpv[SABER_K][SABER_N], uint16_t mod, uint16_t res[SABER_N]) { | |||
uint32_t j, k; | |||
uint16_t acc[SABER_N]; | |||
// vector-vector scalar multiplication with mod p | |||
for (j = 0; j < SABER_K; j++) { | |||
PQCLEAN_LIGHTSABER_CLEAN_pol_mul(pkcl[j], skpv[j], acc, SABER_P, SABER_N); | |||
for (k = 0; k < SABER_N; k++) { | |||
res[k] = res[k] + acc[k]; | |||
// reduction | |||
res[k] = res[k] & mod; | |||
// clear the accumulator | |||
acc[k] = 0; | |||
} | |||
} | |||
} |
@@ -0,0 +1,9 @@ | |||
#ifndef INDCPA_H | |||
#define INDCPA_H | |||
void PQCLEAN_LIGHTSABER_CLEAN_indcpa_kem_keypair(unsigned char *pk, unsigned char *sk); | |||
void PQCLEAN_LIGHTSABER_CLEAN_indcpa_kem_enc(const unsigned char *message, unsigned char *noiseseed, const unsigned char *pk, unsigned char *ciphertext); | |||
void PQCLEAN_LIGHTSABER_CLEAN_indcpa_kem_dec(const unsigned char *sk, const unsigned char *ciphertext, unsigned char *message_dec); | |||
#endif | |||
@@ -0,0 +1,50 @@ | |||
#ifndef PARAMS_H | |||
#define PARAMS_H | |||
#include "api.h" | |||
#define SABER_K 2 | |||
#define SABER_MU 10 | |||
#define SABER_ET 3 | |||
#define SABER_EQ 13 | |||
#define SABER_EP 10 | |||
#define SABER_N 256 | |||
#define SABER_Q 8192 | |||
#define SABER_P 1024 | |||
#define SABER_SEEDBYTES 32 | |||
#define SABER_NOISESEEDBYTES 32 | |||
#define SABER_COINBYTES 32 | |||
#define SABER_KEYBYTES 32 | |||
#define SABER_HASHBYTES 32 | |||
#define SABER_POLYBYTES 416 //13*256/8 | |||
#define SABER_POLYVECBYTES (SABER_K * SABER_POLYBYTES) | |||
#define SABER_POLYVECCOMPRESSEDBYTES (SABER_K * 320) //10*256/8 NOTE : changed till here due to parameter adaptation | |||
#define SABER_CIPHERTEXTBYTES (SABER_POLYVECCOMPRESSEDBYTES) | |||
#define SABER_SCALEBYTES (SABER_DELTA*SABER_N/8) | |||
#define SABER_SCALEBYTES_KEM ((SABER_ET)*SABER_N/8) | |||
#define SABER_INDCPA_PUBLICKEYBYTES (SABER_POLYVECCOMPRESSEDBYTES + SABER_SEEDBYTES) | |||
#define SABER_INDCPA_SECRETKEYBYTES (SABER_POLYVECBYTES) | |||
#define SABER_PUBLICKEYBYTES (SABER_INDCPA_PUBLICKEYBYTES) | |||
#define SABER_SECRETKEYBYTES (SABER_INDCPA_SECRETKEYBYTES + SABER_INDCPA_PUBLICKEYBYTES + SABER_HASHBYTES + SABER_KEYBYTES) | |||
#define SABER_BYTES_CCA_DEC (SABER_POLYVECCOMPRESSEDBYTES + SABER_SCALEBYTES_KEM) /* Second part is for Targhi-Unruh */ | |||
#endif | |||
@@ -0,0 +1,14 @@ | |||
#ifndef PQCLEAN_LIGHTSABER_CLEAN_API_H | |||
#define PQCLEAN_LIGHTSABER_CLEAN_API_H | |||
#define PQCLEAN_LIGHTSABER_CLEAN_CRYPTO_ALGNAME "LightSaber" | |||
#define PQCLEAN_LIGHTSABER_CLEAN_CRYPTO_SECRETKEYBYTES 1568 | |||
#define PQCLEAN_LIGHTSABER_CLEAN_CRYPTO_PUBLICKEYBYTES (2*320+32) | |||
#define PQCLEAN_LIGHTSABER_CLEAN_CRYPTO_BYTES 32 | |||
#define PQCLEAN_LIGHTSABER_CLEAN_CRYPTO_CIPHERTEXTBYTES 736 | |||
int PQCLEAN_LIGHTSABER_CLEAN_crypto_kem_keypair(unsigned char *pk, unsigned char *sk); | |||
int PQCLEAN_LIGHTSABER_CLEAN_crypto_kem_enc(unsigned char *ct, unsigned char *ss, const unsigned char *pk); | |||
int PQCLEAN_LIGHTSABER_CLEAN_crypto_kem_dec(unsigned char *ss, const unsigned char *ct, const unsigned char *sk); | |||
#endif /* api_h */ |
@@ -0,0 +1,51 @@ | |||
/*--------------------------------------------------------------------- | |||
This file has been adapted from the implementation | |||
(available at, Public Domain https://github.com/pq-crystals/kyber) | |||
of "CRYSTALS – Kyber: a CCA-secure module-lattice-based KEM" | |||
by : Joppe Bos, Leo Ducas, Eike Kiltz, Tancrede Lepoint, | |||
Vadim Lyubashevsky, John M. Schanck, Peter Schwabe & Damien stehle | |||
----------------------------------------------------------------------*/ | |||
#include "SABER_params.h" | |||
#include "api.h" | |||
#include "cbd.h" | |||
#include <stdint.h> | |||
static uint64_t load_littleendian(const unsigned char *x, int bytes) { | |||
int i; | |||
uint64_t r = x[0]; | |||
for (i = 1; i < bytes; i++) { | |||
r |= (uint64_t)x[i] << (8 * i); | |||
} | |||
return r; | |||
} | |||
void PQCLEAN_LIGHTSABER_CLEAN_cbd(uint16_t *r, const unsigned char *buf) { | |||
uint16_t Qmod_minus1 = SABER_Q - 1; | |||
uint64_t t, d, a[4], b[4]; | |||
int i, j; | |||
for (i = 0; i < SABER_N / 4; i++) { | |||
t = load_littleendian(buf + 5 * i, 5); | |||
d = 0; | |||
for (j = 0; j < 5; j++) { | |||
d += (t >> j) & 0x0842108421UL; | |||
} | |||
a[0] = d & 0x1f; | |||
b[0] = (d >> 5) & 0x1f; | |||
a[1] = (d >> 10) & 0x1f; | |||
b[1] = (d >> 15) & 0x1f; | |||
a[2] = (d >> 20) & 0x1f; | |||
b[2] = (d >> 25) & 0x1f; | |||
a[3] = (d >> 30) & 0x1f; | |||
b[3] = (d >> 35); | |||
r[4 * i + 0] = (uint16_t)(a[0] - b[0]) & Qmod_minus1; | |||
r[4 * i + 1] = (uint16_t)(a[1] - b[1]) & Qmod_minus1; | |||
r[4 * i + 2] = (uint16_t)(a[2] - b[2]) & Qmod_minus1; | |||
r[4 * i + 3] = (uint16_t)(a[3] - b[3]) & Qmod_minus1; | |||
} | |||
} |
@@ -0,0 +1,17 @@ | |||
#ifndef CBD_H | |||
#define CBD_H | |||
/*--------------------------------------------------------------------- | |||
This file has been adapted from the implementation | |||
(available at, Public Domain https://github.com/pq-crystals/kyber) | |||
of "CRYSTALS – Kyber: a CCA-secure module-lattice-based KEM" | |||
by : Joppe Bos, Leo Ducas, Eike Kiltz, Tancrede Lepoint, | |||
Vadim Lyubashevsky, John M. Schanck, Peter Schwabe & Damien stehle | |||
----------------------------------------------------------------------*/ | |||
#include "poly.h" | |||
#include <stdint.h> | |||
void PQCLEAN_LIGHTSABER_CLEAN_cbd(uint16_t *r, const unsigned char *buf); | |||
#endif |
@@ -0,0 +1,96 @@ | |||
#include "SABER_indcpa.h" | |||
#include "SABER_params.h" | |||
#include "fips202.h" | |||
#include "randombytes.h" | |||
#include "verify.h" | |||
#include <stdint.h> | |||
#include <stdio.h> | |||
#include <string.h> | |||
int PQCLEAN_LIGHTSABER_CLEAN_crypto_kem_keypair(unsigned char *pk, unsigned char *sk) { | |||
int i; | |||
// sk[0:SABER_INDCPA_SECRETKEYBYTES-1] <-- sk | |||
PQCLEAN_LIGHTSABER_CLEAN_indcpa_kem_keypair(pk, sk); | |||
// sk[SABER_INDCPA_SECRETKEYBYTES:SABER_INDCPA_SECRETKEYBYTES+SABER_INDCPA_SECRETKEYBYTES-1] <-- pk | |||
for (i = 0; i < SABER_INDCPA_PUBLICKEYBYTES; i++) { | |||
sk[i + SABER_INDCPA_SECRETKEYBYTES] = pk[i]; | |||
} | |||
// Then hash(pk) is appended. | |||
sha3_256(sk + SABER_SECRETKEYBYTES - 64, pk, SABER_INDCPA_PUBLICKEYBYTES); | |||
// Remaining part of sk contains a pseudo-random number. | |||
// This is output when check in crypto_kem_dec() fails. | |||
randombytes(sk + SABER_SECRETKEYBYTES - SABER_KEYBYTES, SABER_KEYBYTES ); | |||
return (0); | |||
} | |||
int PQCLEAN_LIGHTSABER_CLEAN_crypto_kem_enc(unsigned char *ct, unsigned char *ss, const unsigned char *pk) { | |||
// Will contain key, coins | |||
unsigned char kr[64]; | |||
unsigned char buf[64]; | |||
randombytes(buf, 32); | |||
// BUF[0:31] <-- random message (will be used as the key for client) Note: hash doesnot release system RNG output | |||
sha3_256(buf, buf, 32); | |||
// BUF[32:63] <-- Hash(public key); Multitarget countermeasure for coins + contributory KEM | |||
sha3_256(buf + 32, pk, SABER_INDCPA_PUBLICKEYBYTES); | |||
// kr[0:63] <-- Hash(buf[0:63]); | |||
sha3_512(kr, buf, 64); | |||
// K^ <-- kr[0:31] | |||
// noiseseed (r) <-- kr[32:63]; | |||
// buf[0:31] contains message; kr[32:63] contains randomness r; | |||
PQCLEAN_LIGHTSABER_CLEAN_indcpa_kem_enc(buf, kr + 32, pk, ct); | |||
sha3_256(kr + 32, ct, SABER_BYTES_CCA_DEC); | |||
// hash concatenation of pre-k and h(c) to k | |||
sha3_256(ss, kr, 64); | |||
return (0); | |||
} | |||
int PQCLEAN_LIGHTSABER_CLEAN_crypto_kem_dec(unsigned char *ss, const unsigned char *ct, const unsigned char *sk) { | |||
int i; | |||
unsigned char fail; | |||
unsigned char cmp[SABER_BYTES_CCA_DEC]; | |||
unsigned char buf[64]; | |||
// Will contain key, coins | |||
unsigned char kr[64]; | |||
const unsigned char *pk = sk + SABER_INDCPA_SECRETKEYBYTES; | |||
// buf[0:31] <-- message | |||
PQCLEAN_LIGHTSABER_CLEAN_indcpa_kem_dec(sk, ct, buf); | |||
// Multitarget countermeasure for coins + contributory KEM | |||
// Save hash by storing h(pk) in sk | |||
for (i = 0; i < 32; i++) { | |||
buf[32 + i] = sk[SABER_SECRETKEYBYTES - 64 + i]; | |||
} | |||
sha3_512(kr, buf, 64); | |||
PQCLEAN_LIGHTSABER_CLEAN_indcpa_kem_enc(buf, kr + 32, pk, cmp); | |||
fail = PQCLEAN_LIGHTSABER_CLEAN_verify(ct, cmp, SABER_BYTES_CCA_DEC); | |||
// overwrite coins in kr with h(c) | |||
sha3_256(kr + 32, ct, SABER_BYTES_CCA_DEC); | |||
PQCLEAN_LIGHTSABER_CLEAN_cmov(kr, sk + SABER_SECRETKEYBYTES - SABER_KEYBYTES, SABER_KEYBYTES, fail); | |||
// hash concatenation of pre-k and h(c) to k | |||
sha3_256(ss, kr, 64); | |||
return (0); | |||
} |
@@ -0,0 +1,254 @@ | |||
#include "pack_unpack.h" | |||
void PQCLEAN_LIGHTSABER_CLEAN_pack_3bit(uint8_t *bytes, const uint16_t *data) { | |||
uint32_t j; | |||
uint32_t offset_data, offset_byte; | |||
for (j = 0; j < SABER_N / 8; j++) { | |||
offset_byte = 3 * j; | |||
offset_data = 8 * j; | |||
bytes[offset_byte + 0] = (data[offset_data + 0] & 0x7) | | |||
((data[offset_data + 1] & 0x7) << 3) | | |||
((data[offset_data + 2] & 0x3) << 6); | |||
bytes[offset_byte + 1] = ((data[offset_data + 2] >> 2 ) & 0x01) | | |||
((data[offset_data + 3] & 0x7) << 1) | | |||
((data[offset_data + 4] & 0x7) << 4) | | |||
(((data[offset_data + 5]) & 0x01) << 7); | |||
bytes[offset_byte + 2] = ((data[offset_data + 5] >> 1 ) & 0x03) | | |||
((data[offset_data + 6] & 0x7) << 2) | | |||
((data[offset_data + 7] & 0x7) << 5); | |||
} | |||
} | |||
void PQCLEAN_LIGHTSABER_CLEAN_un_pack3bit(const uint8_t *bytes, uint16_t *data) { | |||
uint32_t j; | |||
uint32_t offset_data, offset_byte; | |||
for (j = 0; j < SABER_N / 8; j++) { | |||
offset_byte = 3 * j; | |||
offset_data = 8 * j; | |||
data[offset_data + 0] = (bytes[offset_byte + 0]) & 0x07; | |||
data[offset_data + 1] = ((bytes[offset_byte + 0]) >> 3 ) & 0x07; | |||
data[offset_data + 2] = (((bytes[offset_byte + 0]) >> 6 ) & 0x03) | | |||
(((bytes[offset_byte + 1]) & 0x01) << 2); | |||
data[offset_data + 3] = ((bytes[offset_byte + 1]) >> 1 ) & 0x07; | |||
data[offset_data + 4] = ((bytes[offset_byte + 1]) >> 4 ) & 0x07; | |||
data[offset_data + 5] = (((bytes[offset_byte + 1]) >> 7 ) & 0x01) | | |||
(((bytes[offset_byte + 2]) & 0x03) << 1); | |||
data[offset_data + 6] = ((bytes[offset_byte + 2] >> 2) & 0x07); | |||
data[offset_data + 7] = ((bytes[offset_byte + 2] >> 5) & 0x07); | |||
} | |||
} | |||
void PQCLEAN_LIGHTSABER_CLEAN_pack_4bit(uint8_t *bytes, const uint16_t *data) { | |||
uint32_t j; | |||
uint32_t offset_data; | |||
for (j = 0; j < SABER_N / 2; j++) { | |||
offset_data = 2 * j; | |||
bytes[j] = (data[offset_data] & 0x0f) | | |||
((data[offset_data + 1] & 0x0f) << 4); | |||
} | |||
} | |||
void PQCLEAN_LIGHTSABER_CLEAN_un_pack4bit(const unsigned char *bytes, uint16_t *ar) { | |||
uint32_t j; | |||
uint32_t offset_data; | |||
for (j = 0; j < SABER_N / 2; j++) { | |||
offset_data = 2 * j; | |||
ar[offset_data] = bytes[j] & 0x0f; | |||
ar[offset_data + 1] = (bytes[j] >> 4) & 0x0f; | |||
} | |||
} | |||
void PQCLEAN_LIGHTSABER_CLEAN_pack_6bit(uint8_t *bytes, const uint16_t *data) { | |||
uint32_t j; | |||
uint32_t offset_data, offset_byte; | |||
for (j = 0; j < SABER_N / 4; j++) { | |||
offset_byte = 3 * j; | |||
offset_data = 4 * j; | |||
bytes[offset_byte + 0] = (data[offset_data + 0] & 0x3f) | | |||
((data[offset_data + 1] & 0x03) << 6); | |||
bytes[offset_byte + 1] = ((data[offset_data + 1] >> 2) & 0x0f) | | |||
((data[offset_data + 2] & 0x0f) << 4); | |||
bytes[offset_byte + 2] = ((data[offset_data + 2] >> 4) & 0x03) | | |||
((data[offset_data + 3] & 0x3f) << 2); | |||
} | |||
} | |||
void PQCLEAN_LIGHTSABER_CLEAN_un_pack6bit(const unsigned char *bytes, uint16_t *data) { | |||
uint32_t j; | |||
uint32_t offset_data, offset_byte; | |||
for (j = 0; j < SABER_N / 4; j++) { | |||
offset_byte = 3 * j; | |||
offset_data = 4 * j; | |||
data[offset_data + 0] = bytes[offset_byte + 0] & 0x3f; | |||
data[offset_data + 1] = ((bytes[offset_byte + 0] >> 6) & 0x03) | | |||
((bytes[offset_byte + 1] & 0x0f) << 2); | |||
data[offset_data + 2] = ((bytes[offset_byte + 1] & 0xff) >> 4) | | |||
((bytes[offset_byte + 2] & 0x03) << 4); | |||
data[offset_data + 3] = ((bytes[offset_byte + 2] & 0xff) >> 2); | |||
} | |||
} | |||
static void POLVECp2BS(uint8_t *bytes, uint16_t data[SABER_K][SABER_N]) { | |||
uint32_t i, j; | |||
uint32_t offset_data, offset_byte, offset_byte1; | |||
for (i = 0; i < SABER_K; i++) { | |||
offset_byte1 = i * (SABER_N * 10) / 8; | |||
for (j = 0; j < SABER_N / 4; j++) { | |||
offset_byte = offset_byte1 + 5 * j; | |||
offset_data = 4 * j; | |||
bytes[offset_byte + 0] = (data[i][offset_data + 0] & (0xff)); | |||
bytes[offset_byte + 1] = ((data[i][offset_data + 0] >> 8) & 0x03) | | |||
((data[i][offset_data + 1] & 0x3f) << 2); | |||
bytes[offset_byte + 2] = ((data[i][offset_data + 1] >> 6) & 0x0f) | | |||
((data[i][offset_data + 2] & 0x0f) << 4); | |||
bytes[offset_byte + 3] = ((data[i][offset_data + 2] >> 4) & 0x3f) | | |||
((data[i][offset_data + 3] & 0x03) << 6); | |||
bytes[offset_byte + 4] = ((data[i][offset_data + 3] >> 2) & 0xff); | |||
} | |||
} | |||
} | |||
static void BS2POLVECp(const unsigned char *bytes, uint16_t data[SABER_K][SABER_N]) { | |||
uint32_t i, j; | |||
uint32_t offset_data, offset_byte, offset_byte1; | |||
for (i = 0; i < SABER_K; i++) { | |||
offset_byte1 = i * (SABER_N * 10) / 8; | |||
for (j = 0; j < SABER_N / 4; j++) { | |||
offset_byte = offset_byte1 + 5 * j; | |||
offset_data = 4 * j; | |||
data[i][offset_data + 0] = (bytes[offset_byte + 0] & (0xff)) | | |||
((bytes[offset_byte + 1] & 0x03) << 8); | |||
data[i][offset_data + 1] = ((bytes[offset_byte + 1] >> 2) & (0x3f)) | | |||
((bytes[offset_byte + 2] & 0x0f) << 6); | |||
data[i][offset_data + 2] = ((bytes[offset_byte + 2] >> 4) & (0x0f)) | | |||
((bytes[offset_byte + 3] & 0x3f) << 4); | |||
data[i][offset_data + 3] = ((bytes[offset_byte + 3] >> 6) & (0x03)) | | |||
((bytes[offset_byte + 4] & 0xff) << 2); | |||
} | |||
} | |||
} | |||
static void POLVECq2BS(uint8_t *bytes, uint16_t data[SABER_K][SABER_N]) { | |||
uint32_t i, j; | |||
uint32_t offset_data, offset_byte, offset_byte1; | |||
for (i = 0; i < SABER_K; i++) { | |||
offset_byte1 = i * (SABER_N * 13) / 8; | |||
for (j = 0; j < SABER_N / 8; j++) { | |||
offset_byte = offset_byte1 + 13 * j; | |||
offset_data = 8 * j; | |||
bytes[offset_byte + 0] = (data[i][offset_data + 0] & (0xff)); | |||
bytes[offset_byte + 1] = ((data[i][offset_data + 0] >> 8) & 0x1f) | | |||
((data[i][offset_data + 1] & 0x07) << 5); | |||
bytes[offset_byte + 2] = ((data[i][offset_data + 1] >> 3) & 0xff); | |||
bytes[offset_byte + 3] = ((data[i][offset_data + 1] >> 11) & 0x03) | | |||
((data[i][offset_data + 2] & 0x3f) << 2); | |||
bytes[offset_byte + 4] = ((data[i][offset_data + 2] >> 6) & 0x7f) | | |||
((data[i][offset_data + 3] & 0x01) << 7); | |||
bytes[offset_byte + 5] = ((data[i][offset_data + 3] >> 1) & 0xff); | |||
bytes[offset_byte + 6] = ((data[i][offset_data + 3] >> 9) & 0x0f) | | |||
((data[i][offset_data + 4] & 0x0f) << 4); | |||
bytes[offset_byte + 7] = ((data[i][offset_data + 4] >> 4) & 0xff); | |||
bytes[offset_byte + 8] = ((data[i][offset_data + 4] >> 12) & 0x01) | | |||
((data[i][offset_data + 5] & 0x7f) << 1); | |||
bytes[offset_byte + 9] = ((data[i][offset_data + 5] >> 7) & 0x3f) | | |||
((data[i][offset_data + 6] & 0x03) << 6); | |||
bytes[offset_byte + 10] = ((data[i][offset_data + 6] >> 2) & 0xff); | |||
bytes[offset_byte + 11] = ((data[i][offset_data + 6] >> 10) & 0x07) | | |||
((data[i][offset_data + 7] & 0x1f) << 3); | |||
bytes[offset_byte + 12] = ((data[i][offset_data + 7] >> 5) & 0xff); | |||
} | |||
} | |||
} | |||
static void BS2POLVECq(const unsigned char *bytes, uint16_t data[SABER_K][SABER_N]) { | |||
uint32_t i, j; | |||
uint32_t offset_data, offset_byte, offset_byte1; | |||
for (i = 0; i < SABER_K; i++) { | |||
offset_byte1 = i * (SABER_N * 13) / 8; | |||
for (j = 0; j < SABER_N / 8; j++) { | |||
offset_byte = offset_byte1 + 13 * j; | |||
offset_data = 8 * j; | |||
data[i][offset_data + 0] = (bytes[offset_byte + 0] & (0xff)) | | |||
((bytes[offset_byte + 1] & 0x1f) << 8); | |||
data[i][offset_data + 1] = (bytes[offset_byte + 1] >> 5 & (0x07)) | | |||
((bytes[offset_byte + 2] & 0xff) << 3) | | |||
((bytes[offset_byte + 3] & 0x03) << 11); | |||
data[i][offset_data + 2] = (bytes[offset_byte + 3] >> 2 & (0x3f)) | | |||
((bytes[offset_byte + 4] & 0x7f) << 6); | |||
data[i][offset_data + 3] = (bytes[offset_byte + 4] >> 7 & (0x01)) | | |||
((bytes[offset_byte + 5] & 0xff) << 1) | | |||
((bytes[offset_byte + 6] & 0x0f) << 9); | |||
data[i][offset_data + 4] = (bytes[offset_byte + 6] >> 4 & (0x0f)) | | |||
((bytes[offset_byte + 7] & 0xff) << 4) | | |||
((bytes[offset_byte + 8] & 0x01) << 12); | |||
data[i][offset_data + 5] = (bytes[offset_byte + 8] >> 1 & (0x7f)) | | |||
((bytes[offset_byte + 9] & 0x3f) << 7); | |||
data[i][offset_data + 6] = (bytes[offset_byte + 9] >> 6 & (0x03)) | | |||
((bytes[offset_byte + 10] & 0xff) << 2) | | |||
((bytes[offset_byte + 11] & 0x07) << 10); | |||
data[i][offset_data + 7] = (bytes[offset_byte + 11] >> 3 & (0x1f)) | | |||
((bytes[offset_byte + 12] & 0xff) << 5); | |||
} | |||
} | |||
} | |||
//only BS2POLq no BS2POLp | |||
void PQCLEAN_LIGHTSABER_CLEAN_BS2POL(const unsigned char *bytes, uint16_t data[SABER_N]) { | |||
uint32_t j; | |||
uint32_t offset_data, offset_byte; | |||
for (j = 0; j < SABER_N / 8; j++) { | |||
offset_byte = 13 * j; | |||
offset_data = 8 * j; | |||
data[offset_data + 0] = (bytes[offset_byte + 0] & (0xff)) | | |||
((bytes[offset_byte + 1] & 0x1f) << 8); | |||
data[offset_data + 1] = (bytes[offset_byte + 1] >> 5 & (0x07)) | | |||
((bytes[offset_byte + 2] & 0xff) << 3) | | |||
((bytes[offset_byte + 3] & 0x03) << 11); | |||
data[offset_data + 2] = (bytes[offset_byte + 3] >> 2 & (0x3f)) | | |||
((bytes[offset_byte + 4] & 0x7f) << 6); | |||
data[offset_data + 3] = (bytes[offset_byte + 4] >> 7 & (0x01)) | | |||
((bytes[offset_byte + 5] & 0xff) << 1) | | |||
((bytes[offset_byte + 6] & 0x0f) << 9); | |||
data[offset_data + 4] = (bytes[offset_byte + 6] >> 4 & (0x0f)) | | |||
((bytes[offset_byte + 7] & 0xff) << 4) | | |||
((bytes[offset_byte + 8] & 0x01) << 12); | |||
data[offset_data + 5] = (bytes[offset_byte + 8] >> 1 & (0x7f)) | | |||
((bytes[offset_byte + 9] & 0x3f) << 7); | |||
data[offset_data + 6] = (bytes[offset_byte + 9] >> 6 & (0x03)) | | |||
((bytes[offset_byte + 10] & 0xff) << 2) | | |||
((bytes[offset_byte + 11] & 0x07) << 10); | |||
data[offset_data + 7] = (bytes[offset_byte + 11] >> 3 & (0x1f)) | | |||
((bytes[offset_byte + 12] & 0xff) << 5); | |||
} | |||
} | |||
void PQCLEAN_LIGHTSABER_CLEAN_POLVEC2BS(uint8_t *bytes, uint16_t data[SABER_K][SABER_N], uint16_t modulus) { | |||
if (modulus == 1024) { | |||
POLVECp2BS(bytes, data); | |||
} else if (modulus == 8192) { | |||
POLVECq2BS(bytes, data); | |||
} | |||
} | |||
void PQCLEAN_LIGHTSABER_CLEAN_BS2POLVEC(const unsigned char *bytes, uint16_t data[SABER_K][SABER_N], uint16_t modulus) { | |||
if (modulus == 1024) { | |||
BS2POLVECp(bytes, data); | |||
} else if (modulus == 8192) { | |||
BS2POLVECq(bytes, data); | |||
} | |||
} |
@@ -0,0 +1,28 @@ | |||
#ifndef PACK_UNPACK_H | |||
#define PACK_UNPACK_H | |||
#include "SABER_params.h" | |||
#include <stdint.h> | |||
#include <stdio.h> | |||
void PQCLEAN_LIGHTSABER_CLEAN_pack_3bit(uint8_t *bytes, const uint16_t *data); | |||
void PQCLEAN_LIGHTSABER_CLEAN_un_pack3bit(const uint8_t *bytes, uint16_t *data); | |||
void PQCLEAN_LIGHTSABER_CLEAN_pack_4bit(uint8_t *bytes, const uint16_t *data); | |||
void PQCLEAN_LIGHTSABER_CLEAN_un_pack4bit(const unsigned char *bytes, uint16_t *ar); | |||
void PQCLEAN_LIGHTSABER_CLEAN_pack_6bit(uint8_t *bytes, const uint16_t *data); | |||
void PQCLEAN_LIGHTSABER_CLEAN_un_pack6bit(const unsigned char *bytes, uint16_t *data); | |||
void PQCLEAN_LIGHTSABER_CLEAN_BS2POL(const unsigned char *bytes, uint16_t data[SABER_N]); | |||
void PQCLEAN_LIGHTSABER_CLEAN_POLVEC2BS(uint8_t *bytes, uint16_t data[SABER_K][SABER_N], uint16_t modulus); | |||
void PQCLEAN_LIGHTSABER_CLEAN_BS2POLVEC(const unsigned char *bytes, uint16_t data[SABER_K][SABER_N], uint16_t modulus); | |||
#endif |
@@ -0,0 +1,21 @@ | |||
/*--------------------------------------------------------------------- | |||
This file has been adapted from the implementation | |||
(available at, Public Domain https://github.com/pq-crystals/kyber) | |||
of "CRYSTALS – Kyber: a CCA-secure module-lattice-based KEM" | |||
by : Joppe Bos, Leo Ducas, Eike Kiltz, Tancrede Lepoint, | |||
Vadim Lyubashevsky, John M. Schanck, Peter Schwabe & Damien stehle | |||
----------------------------------------------------------------------*/ | |||
#include "SABER_params.h" | |||
#include "cbd.h" | |||
#include "fips202.h" | |||
#include "poly.h" | |||
void PQCLEAN_LIGHTSABER_CLEAN_GenSecret(uint16_t r[SABER_K][SABER_N], const unsigned char *seed) { | |||
uint8_t buf[SABER_MU * SABER_N * SABER_K / 8]; | |||
shake128(buf, sizeof(buf), seed, SABER_NOISESEEDBYTES); | |||
for (size_t i = 0; i < SABER_K; i++) { | |||
PQCLEAN_LIGHTSABER_CLEAN_cbd(r[i], buf + i * SABER_MU * SABER_N / 8); | |||
} | |||
} |
@@ -0,0 +1,26 @@ | |||
#ifndef POLY_H | |||
#define POLY_H | |||
/*--------------------------------------------------------------------- | |||
This file has been adapted from the implementation | |||
(available at, Public Domain https://github.com/pq-crystals/kyber) | |||
of "CRYSTALS – Kyber: a CCA-secure module-lattice-based KEM" | |||
by : Joppe Bos, Leo Ducas, Eike Kiltz, Tancrede Lepoint, | |||
Vadim Lyubashevsky, John M. Schanck, Peter Schwabe & Damien stehle | |||
----------------------------------------------------------------------*/ | |||
#include "SABER_params.h" | |||
#include <stdint.h> | |||
typedef struct { | |||
uint16_t coeffs[SABER_N]; | |||
} poly; | |||
typedef struct { | |||
poly vec[SABER_K]; | |||
} polyvec; | |||
void PQCLEAN_LIGHTSABER_CLEAN_GenSecret(uint16_t r[SABER_K][SABER_N], const unsigned char *seed); | |||
#endif |
@@ -0,0 +1,237 @@ | |||
#include "poly_mul.h" | |||
#include <stdint.h> | |||
#include <string.h> | |||
#define SCHB_N 16 | |||
#define N_RES (SABER_N << 1) | |||
#define N_SB (SABER_N >> 2) | |||
#define N_SB_RES (2*N_SB-1) | |||
#define KARATSUBA_N 64 | |||
static void karatsuba_simple(const uint16_t *a_1, const uint16_t *b_1, uint16_t *result_final) { | |||
uint16_t d01[KARATSUBA_N / 2 - 1]; | |||
uint16_t d0123[KARATSUBA_N / 2 - 1]; | |||
uint16_t d23[KARATSUBA_N / 2 - 1]; | |||
uint16_t result_d01[KARATSUBA_N - 1]; | |||
int32_t i, j; | |||
memset(result_d01, 0, (KARATSUBA_N - 1)*sizeof(uint16_t)); | |||
memset(d01, 0, (KARATSUBA_N / 2 - 1)*sizeof(uint16_t)); | |||
memset(d0123, 0, (KARATSUBA_N / 2 - 1)*sizeof(uint16_t)); | |||
memset(d23, 0, (KARATSUBA_N / 2 - 1)*sizeof(uint16_t)); | |||
memset(result_final, 0, (2 * KARATSUBA_N - 1)*sizeof(uint16_t)); | |||
uint16_t acc1, acc2, acc3, acc4, acc5, acc6, acc7, acc8, acc9, acc10; | |||
for (i = 0; i < KARATSUBA_N / 4; i++) { | |||
acc1 = a_1[i]; //a0 | |||
acc2 = a_1[i + KARATSUBA_N / 4]; //a1 | |||
acc3 = a_1[i + 2 * KARATSUBA_N / 4]; //a2 | |||
acc4 = a_1[i + 3 * KARATSUBA_N / 4]; //a3 | |||
for (j = 0; j < KARATSUBA_N / 4; j++) { | |||
acc5 = b_1[j]; //b0 | |||
acc6 = b_1[j + KARATSUBA_N / 4]; //b1 | |||
result_final[i + j + 0 * KARATSUBA_N / 4] = result_final[i + j + 0 * KARATSUBA_N / 4] + acc1 * acc5; | |||
result_final[i + j + 2 * KARATSUBA_N / 4] = result_final[i + j + 2 * KARATSUBA_N / 4] + acc2 * acc6; | |||
acc7 = acc5 + acc6; //b01 | |||
acc8 = acc1 + acc2; //a01 | |||
d01[i + j] = d01[i + j] + acc7 * acc8; | |||
//-------------------------------------------------------- | |||
acc7 = b_1[j + 2 * KARATSUBA_N / 4]; //b2 | |||
acc8 = b_1[j + 3 * KARATSUBA_N / 4]; //b3 | |||
result_final[i + j + 4 * KARATSUBA_N / 4] = result_final[i + j + 4 * KARATSUBA_N / 4] + acc7 * acc3; | |||
result_final[i + j + 6 * KARATSUBA_N / 4] = result_final[i + j + 6 * KARATSUBA_N / 4] + acc8 * acc4; | |||
acc9 = acc3 + acc4; | |||
acc10 = acc7 + acc8; | |||
d23[i + j] = d23[i + j] + acc9 * acc10; | |||
//-------------------------------------------------------- | |||
acc5 = acc5 + acc7; //b02 | |||
acc7 = acc1 + acc3; //a02 | |||
result_d01[i + j + 0 * KARATSUBA_N / 4] = result_d01[i + j + 0 * KARATSUBA_N / 4] + acc5 * acc7; | |||
acc6 = acc6 + acc8; //b13 | |||
acc8 = acc2 + acc4; | |||
result_d01[i + j + 2 * KARATSUBA_N / 4] = result_d01[i + j + 2 * KARATSUBA_N / 4] + acc6 * acc8; | |||
acc5 = acc5 + acc6; | |||
acc7 = acc7 + acc8; | |||
d0123[i + j] = d0123[i + j] + acc5 * acc7; | |||
} | |||
} | |||
// 2nd last stage | |||
for (i = 0; i < KARATSUBA_N / 2 - 1; i++) { | |||
d0123[i] = d0123[i] - result_d01[i + 0 * KARATSUBA_N / 4] - result_d01[i + 2 * KARATSUBA_N / 4]; | |||
d01[i] = d01[i] - result_final[i + 0 * KARATSUBA_N / 4] - result_final[i + 2 * KARATSUBA_N / 4]; | |||
d23[i] = d23[i] - result_final[i + 4 * KARATSUBA_N / 4] - result_final[i + 6 * KARATSUBA_N / 4]; | |||
} | |||
for (i = 0; i < KARATSUBA_N / 2 - 1; i++) { | |||
result_d01[i + 1 * KARATSUBA_N / 4] = result_d01[i + 1 * KARATSUBA_N / 4] + d0123[i]; | |||
result_final[i + 1 * KARATSUBA_N / 4] = result_final[i + 1 * KARATSUBA_N / 4] + d01[i]; | |||
result_final[i + 5 * KARATSUBA_N / 4] = result_final[i + 5 * KARATSUBA_N / 4] + d23[i]; | |||
} | |||
// Last stage | |||
for (i = 0; i < KARATSUBA_N - 1; i++) { | |||
result_d01[i] = result_d01[i] - result_final[i] - result_final[i + KARATSUBA_N]; | |||
} | |||
for (i = 0; i < KARATSUBA_N - 1; i++) { | |||
result_final[i + 1 * KARATSUBA_N / 2] = result_final[i + 1 * KARATSUBA_N / 2] + result_d01[i]; | |||
} | |||
} | |||
static void toom_cook_4way (const uint16_t *a1, const uint16_t *b1, uint16_t *result) { | |||
uint16_t inv3 = 43691, inv9 = 36409, inv15 = 61167; | |||
uint16_t aw1[N_SB], aw2[N_SB], aw3[N_SB], aw4[N_SB], aw5[N_SB], aw6[N_SB], aw7[N_SB]; | |||
uint16_t bw1[N_SB], bw2[N_SB], bw3[N_SB], bw4[N_SB], bw5[N_SB], bw6[N_SB], bw7[N_SB]; | |||
uint16_t w1[N_SB_RES] = {0}, w2[N_SB_RES] = {0}, w3[N_SB_RES] = {0}, w4[N_SB_RES] = {0}, | |||
w5[N_SB_RES] = {0}, w6[N_SB_RES] = {0}, w7[N_SB_RES] = {0}; | |||
uint16_t r0, r1, r2, r3, r4, r5, r6, r7; | |||
uint16_t *A0, *A1, *A2, *A3, *B0, *B1, *B2, *B3; | |||
A0 = (uint16_t *)a1; | |||
A1 = (uint16_t *)&a1[N_SB]; | |||
A2 = (uint16_t *)&a1[2 * N_SB]; | |||
A3 = (uint16_t *)&a1[3 * N_SB]; | |||
B0 = (uint16_t *)b1; | |||
B1 = (uint16_t *)&b1[N_SB]; | |||
B2 = (uint16_t *)&b1[2 * N_SB]; | |||
B3 = (uint16_t *)&b1[3 * N_SB]; | |||
uint16_t *C; | |||
C = result; | |||
int i, j; | |||
// EVALUATION | |||
for (j = 0; j < N_SB; ++j) { | |||
r0 = A0[j]; | |||
r1 = A1[j]; | |||
r2 = A2[j]; | |||
r3 = A3[j]; | |||
r4 = r0 + r2; | |||
r5 = r1 + r3; | |||
r6 = r4 + r5; | |||
r7 = r4 - r5; | |||
aw3[j] = r6; | |||
aw4[j] = r7; | |||
r4 = ((r0 << 2) + r2) << 1; | |||
r5 = (r1 << 2) + r3; | |||
r6 = r4 + r5; | |||
r7 = r4 - r5; | |||
aw5[j] = r6; | |||
aw6[j] = r7; | |||
r4 = (r3 << 3) + (r2 << 2) + (r1 << 1) + r0; | |||
aw2[j] = r4; | |||
aw7[j] = r0; | |||
aw1[j] = r3; | |||
} | |||
for (j = 0; j < N_SB; ++j) { | |||
r0 = B0[j]; | |||
r1 = B1[j]; | |||
r2 = B2[j]; | |||
r3 = B3[j]; | |||
r4 = r0 + r2; | |||
r5 = r1 + r3; | |||
r6 = r4 + r5; | |||
r7 = r4 - r5; | |||
bw3[j] = r6; | |||
bw4[j] = r7; | |||
r4 = ((r0 << 2) + r2) << 1; | |||
r5 = (r1 << 2) + r3; | |||
r6 = r4 + r5; | |||
r7 = r4 - r5; | |||
bw5[j] = r6; | |||
bw6[j] = r7; | |||
r4 = (r3 << 3) + (r2 << 2) + (r1 << 1) + r0; | |||
bw2[j] = r4; | |||
bw7[j] = r0; | |||
bw1[j] = r3; | |||
} | |||
// MULTIPLICATION | |||
karatsuba_simple(aw1, bw1, w1); | |||
karatsuba_simple(aw2, bw2, w2); | |||
karatsuba_simple(aw3, bw3, w3); | |||
karatsuba_simple(aw4, bw4, w4); | |||
karatsuba_simple(aw5, bw5, w5); | |||
karatsuba_simple(aw6, bw6, w6); | |||
karatsuba_simple(aw7, bw7, w7); | |||
// INTERPOLATION | |||
for (i = 0; i < N_SB_RES; ++i) { | |||
r0 = w1[i]; | |||
r1 = w2[i]; | |||
r2 = w3[i]; | |||
r3 = w4[i]; | |||
r4 = w5[i]; | |||
r5 = w6[i]; | |||
r6 = w7[i]; | |||
r1 = r1 + r4; | |||
r5 = r5 - r4; | |||
r3 = ((r3 - r2) >> 1); | |||
r4 = r4 - r0; | |||
r4 = r4 - (r6 << 6); | |||
r4 = (r4 << 1) + r5; | |||
r2 = r2 + r3; | |||
r1 = r1 - (r2 << 6) - r2; | |||
r2 = r2 - r6; | |||
r2 = r2 - r0; | |||
r1 = r1 + 45 * r2; | |||
r4 = (((r4 - (r2 << 3)) * inv3) >> 3); | |||
r5 = r5 + r1; | |||
r1 = (((r1 + (r3 << 4)) * inv9) >> 1); | |||
r3 = -(r3 + r1); | |||
r5 = (((30 * r1 - r5) * inv15) >> 2); | |||
r2 = r2 - r4; | |||
r1 = r1 - r5; | |||
C[i] += r6; | |||
C[i + 64] += r5; | |||
C[i + 128] += r4; | |||
C[i + 192] += r3; | |||
C[i + 256] += r2; | |||
C[i + 320] += r1; | |||
C[i + 384] += r0; | |||
} | |||
} | |||
void PQCLEAN_LIGHTSABER_CLEAN_pol_mul(uint16_t *a, uint16_t *b, uint16_t *res, uint16_t p, uint32_t n) | |||
{ | |||
uint32_t i; | |||
// normal multiplication | |||
uint16_t c[512]; | |||
for (i = 0; i < 512; i++) { | |||
c[i] = 0; | |||
} | |||
toom_cook_4way(a, b, c); | |||
// reduction | |||
for (i = n; i < 2 * n; i++) { | |||
res[i - n] = (c[i - n] - c[i]) & (p - 1); | |||
} | |||
} |
@@ -0,0 +1,9 @@ | |||
#ifndef POLYMUL_H | |||
#define POLYMUL_H | |||
#include "SABER_params.h" | |||
#include <stdint.h> | |||
void PQCLEAN_LIGHTSABER_CLEAN_pol_mul(uint16_t *a, uint16_t *b, uint16_t *res, uint16_t p, uint32_t n); | |||
#endif |
@@ -0,0 +1,34 @@ | |||
/*------------------------------------------------- | |||
This file has been adapted from the implementation | |||
(available at https://github.com/pq-crystals/kyber) of | |||
"CRYSTALS – Kyber: a CCA-secure module-lattice-based KEM" | |||
by : Joppe Bos, Leo Ducas, Eike Kiltz, Tancrede Lepoint, | |||
Vadim Lyubashevsky, John M. Schanck, Peter Schwabe & Damien stehle | |||
----------------------------------------------------*/ | |||
#include "verify.h" | |||
#include <stdint.h> | |||
/* returns 0 for equal strings, 1 for non-equal strings */ | |||
unsigned char PQCLEAN_LIGHTSABER_CLEAN_verify(const unsigned char *a, const unsigned char *b, size_t len) { | |||
uint64_t r; | |||
size_t i; | |||
r = 0; | |||
for (i = 0; i < len; i++) { | |||
r |= a[i] ^ b[i]; | |||
} | |||
r = (~r + 1); // Two's complement | |||
r >>= 63; | |||
return (unsigned char)r; | |||
} | |||
/* b = 1 means mov, b = 0 means don't mov*/ | |||
void PQCLEAN_LIGHTSABER_CLEAN_cmov(unsigned char *r, const unsigned char *x, size_t len, unsigned char b) { | |||
size_t i; | |||
b = -b; | |||
for (i = 0; i < len; i++) { | |||
r[i] ^= b & (x[i] ^ r[i]); | |||
} | |||
} |
@@ -0,0 +1,21 @@ | |||
#ifndef VERIFY_H | |||
#define VERIFY_H | |||
/*------------------------------------------------- | |||
This file has been adapted from the implementation | |||
(available at https://github.com/pq-crystals/kyber) of | |||
"CRYSTALS – Kyber: a CCA-secure module-lattice-based KEM" | |||
by : Joppe Bos, Leo Ducas, Eike Kiltz, Tancrede Lepoint, | |||
Vadim Lyubashevsky, John M. Schanck, Peter Schwabe & Damien stehle | |||
----------------------------------------------------*/ | |||
#include <stddef.h> | |||
#include <stdint.h> | |||
/* returns 0 for equal strings, 1 for non-equal strings */ | |||
unsigned char PQCLEAN_LIGHTSABER_CLEAN_verify(const unsigned char *a, const unsigned char *b, size_t len); | |||
/* b = 1 means mov, b = 0 means don't mov*/ | |||
void PQCLEAN_LIGHTSABER_CLEAN_cmov(unsigned char *r, const unsigned char *x, size_t len, unsigned char b); | |||
#endif |
@@ -0,0 +1,17 @@ | |||
name: Saber | |||
type: kem | |||
claimed-nist-level: 3 | |||
claimed-security: IND-CCA2 | |||
length-public-key: 992 | |||
length-ciphertext: 1088 | |||
length-secret-key: 2304 | |||
length-shared-secret: 32 | |||
nistkat-sha256: c9e2c16f41f162c607a1d5704107159e5e12713b9bb8c356b1d68b216e79096e | |||
principal-submitters: | |||
- Jan-Pieter D'Anvers | |||
- Angshuman Karmakar | |||
- Sujoy Sinha Roy | |||
- Frederik Vercauteren | |||
implementations: | |||
- name: clean | |||
version: https://github.com/KULeuven-COSIC/SABER/commit/14ede83f1ff3bcc41f0464543542366c68b55871 |
@@ -0,0 +1,8 @@ | |||
---------------------------------------------------------------------------------------- | |||
SABER_v1.1 | |||
Public domain | |||
Authors: Jan-Pieter D'Anvers, Angshuman Karmakar, Sujoy Sinha Roy, | |||
Frederik Vercauteren | |||
---------------------------------------------------------------------------------------- |
@@ -0,0 +1,19 @@ | |||
# This Makefile can be used with GNU Make or BSD Make | |||
LIB=libsaber_clean.a | |||
HEADERS=api.h cbd.h poly.h poly_mul.h SABER_indcpa.h SABER_params.h verify.h pack_unpack.h | |||
OBJECTS=cbd.o kem.o pack_unpack.o poly.o poly_mul.o SABER_indcpa.o verify.o | |||
CFLAGS=-O3 -Wall -Wextra -Wpedantic -Werror -Wmissing-prototypes -Wredundant-decls -std=c99 -I../../../common $(EXTRAFLAGS) | |||
all: $(LIB) | |||
%.o: %.c $(HEADERS) | |||
$(CC) $(CFLAGS) -c -o $@ $< | |||
$(LIB): $(OBJECTS) | |||
$(AR) -r $@ $(OBJECTS) | |||
clean: | |||
$(RM) $(OBJECTS) | |||
$(RM) $(LIB) |
@@ -0,0 +1,19 @@ | |||
# This Makefile can be used with Microsoft Visual Studio's nmake using the command: | |||
# nmake /f Makefile.Microsoft_nmake | |||
LIBRARY=libsaber_clean.lib | |||
OBJECTS=cbd.obj kem.obj pack_unpack.obj poly.obj poly_mul.obj SABER_indcpa.obj verify.obj | |||
CFLAGS=/nologo /I ..\..\..\common /W4 /WX | |||
all: $(LIBRARY) | |||
# Make sure objects are recompiled if headers change. | |||
$(OBJECTS): *.h | |||
$(LIBRARY): $(OBJECTS) | |||
LIB.EXE /NOLOGO /WX /OUT:$@ $** | |||
clean: | |||
-DEL $(OBJECTS) | |||
-DEL $(LIBRARY) |
@@ -0,0 +1,298 @@ | |||
#include "SABER_indcpa.h" | |||
#include "SABER_params.h" | |||
#include "fips202.h" | |||
#include "pack_unpack.h" | |||
#include "poly.h" | |||
#include "poly_mul.h" | |||
#include "randombytes.h" | |||
#include <stdint.h> | |||
#include <string.h> | |||
/*----------------------------------------------------------------------------------- | |||
This routine generates a=[Matrix K x K] of 256-coefficient polynomials | |||
-------------------------------------------------------------------------------------*/ | |||
#define h1 4 //2^(EQ-EP-1) | |||
#define h2 ( (1<<(SABER_EP-2)) - (1<<(SABER_EP-SABER_ET-1)) + (1<<(SABER_EQ-SABER_EP-1)) ) | |||
static void InnerProd(uint16_t pkcl[SABER_K][SABER_N], uint16_t skpv[SABER_K][SABER_N], uint16_t mod, uint16_t res[SABER_N]); | |||
static void MatrixVectorMul(polyvec *a, uint16_t skpv[SABER_K][SABER_N], uint16_t res[SABER_K][SABER_N], uint16_t mod, int16_t transpose); | |||
static void POL2MSG(const uint16_t *message_dec_unpacked, unsigned char *message_dec); | |||
static void GenMatrix(polyvec *a, const unsigned char *seed) { | |||
unsigned char buf[SABER_K * SABER_K * (13 * SABER_N / 8)]; | |||
uint16_t temp_ar[SABER_N]; | |||
int i, j, k; | |||
uint16_t mod = (SABER_Q - 1); | |||
shake128(buf, sizeof(buf), seed, SABER_SEEDBYTES); | |||
for (i = 0; i < SABER_K; i++) { | |||
for (j = 0; j < SABER_K; j++) { | |||
PQCLEAN_SABER_CLEAN_BS2POL(buf + (i * SABER_K + j) * (13 * SABER_N / 8), temp_ar); | |||
for (k = 0; k < SABER_N; k++) { | |||
a[i].vec[j].coeffs[k] = (temp_ar[k])& mod ; | |||
} | |||
} | |||
} | |||
} | |||
void PQCLEAN_SABER_CLEAN_indcpa_kem_keypair(unsigned char *pk, unsigned char *sk) { | |||
polyvec a[SABER_K]; | |||
uint16_t skpv[SABER_K][SABER_N]; | |||
unsigned char seed[SABER_SEEDBYTES]; | |||
unsigned char noiseseed[SABER_COINBYTES]; | |||
int32_t i, j; | |||
uint16_t mod_q = SABER_Q - 1; | |||
uint16_t res[SABER_K][SABER_N]; | |||
randombytes(seed, SABER_SEEDBYTES); | |||
// for not revealing system RNG state | |||
shake128(seed, SABER_SEEDBYTES, seed, SABER_SEEDBYTES); | |||
randombytes(noiseseed, SABER_COINBYTES); | |||
GenMatrix(a, seed); //sample matrix A | |||
// generate secret from constant-time binomial distribution | |||
PQCLEAN_SABER_CLEAN_GenSecret(skpv, noiseseed); | |||
// do the matrix vector multiplication and rounding | |||
for (i = 0; i < SABER_K; i++) { | |||
for (j = 0; j < SABER_N; j++) { | |||
res[i][j] = 0; | |||
} | |||
} | |||
MatrixVectorMul(a, skpv, res, SABER_Q - 1, 1); | |||
// now rounding | |||
for (i = 0; i < SABER_K; i++) { | |||
for (j = 0; j < SABER_N; j++) { | |||
// shift right 3 bits | |||
res[i][j] = (res[i][j] + h1) & (mod_q); | |||
res[i][j] = (res[i][j] >> (SABER_EQ - SABER_EP)); | |||
} | |||
} | |||
// unload and pack sk=3 x (256 coefficients of 14 bits) | |||
PQCLEAN_SABER_CLEAN_POLVEC2BS(sk, skpv, SABER_Q); | |||
// unload and pack pk=256 bits seed and 3 x (256 coefficients of 11 bits) | |||
// load the public-key coefficients | |||
PQCLEAN_SABER_CLEAN_POLVEC2BS(pk, res, SABER_P); | |||
// now load the seedbytes in PK. Easy since seed bytes are kept in byte format. | |||
for (i = 0; i < SABER_SEEDBYTES; i++) { | |||
pk[SABER_POLYVECCOMPRESSEDBYTES + i] = seed[i]; | |||
} | |||
} | |||
void PQCLEAN_SABER_CLEAN_indcpa_kem_enc(const unsigned char *message_received, unsigned char *noiseseed, const unsigned char *pk, unsigned char *ciphertext) { | |||
uint32_t i, j, k; | |||
polyvec a[SABER_K]; | |||
unsigned char seed[SABER_SEEDBYTES]; | |||
// public key of received by the client | |||
uint16_t pkcl[SABER_K][SABER_N]; | |||
uint16_t skpv1[SABER_K][SABER_N]; | |||
uint16_t message[SABER_KEYBYTES * 8]; | |||
uint16_t res[SABER_K][SABER_N]; | |||
uint16_t mod_p = SABER_P - 1; | |||
uint16_t mod_q = SABER_Q - 1; | |||
uint16_t vprime[SABER_N]; | |||
unsigned char msk_c[SABER_SCALEBYTES_KEM]; | |||
// extract the seedbytes from Public Key. | |||
for (i = 0; i < SABER_SEEDBYTES; i++) { | |||
seed[i] = pk[ SABER_POLYVECCOMPRESSEDBYTES + i]; | |||
} | |||
GenMatrix(a, seed); | |||
// generate secret from constant-time binomial distribution | |||
PQCLEAN_SABER_CLEAN_GenSecret(skpv1, noiseseed); | |||
// matrix-vector multiplication and rounding | |||
for (i = 0; i < SABER_K; i++) { | |||
for (j = 0; j < SABER_N; j++) { | |||
res[i][j] = 0; | |||
} | |||
} | |||
MatrixVectorMul(a, skpv1, res, SABER_Q - 1, 0); | |||
// now rounding | |||
//shift right 3 bits | |||
for (i = 0; i < SABER_K; i++) { | |||
for (j = 0; j < SABER_N; j++) { | |||
res[i][j] = ( res[i][j] + h1 ) & mod_q; | |||
res[i][j] = (res[i][j] >> (SABER_EQ - SABER_EP) ); | |||
} | |||
} | |||
PQCLEAN_SABER_CLEAN_POLVEC2BS(ciphertext, res, SABER_P); | |||
// ************client matrix-vector multiplication ends************ | |||
// now calculate the v' | |||
// unpack the public_key | |||
// pkcl is the b in the protocol | |||
PQCLEAN_SABER_CLEAN_BS2POLVEC(pk, pkcl, SABER_P); | |||
for (i = 0; i < SABER_N; i++) { | |||
vprime[i] = 0; | |||
} | |||
for (i = 0; i < SABER_K; i++) { | |||
for (j = 0; j < SABER_N; j++) { | |||
skpv1[i][j] = skpv1[i][j] & (mod_p); | |||
} | |||
} | |||
// vector-vector scalar multiplication with mod p | |||
InnerProd(pkcl, skpv1, mod_p, vprime); | |||
// addition of h1 to vprime | |||
for (i = 0; i < SABER_N; i++) { | |||
vprime[i] = vprime[i] + h1; | |||
} | |||
// unpack message_received; | |||
for (j = 0; j < SABER_KEYBYTES; j++) { | |||
for (i = 0; i < 8; i++) { | |||
message[8 * j + i] = ((message_received[j] >> i) & 0x01); | |||
} | |||
} | |||
// message encoding | |||
for (i = 0; i < SABER_N; i++) { | |||
message[i] = (message[i] << (SABER_EP - 1)); | |||
} | |||
for (k = 0; k < SABER_N; k++) { | |||
vprime[k] = ( (vprime[k] - message[k]) & (mod_p) ) >> (SABER_EP - SABER_ET); | |||
} | |||
PQCLEAN_SABER_CLEAN_pack_4bit(msk_c, vprime); | |||
for (j = 0; j < SABER_SCALEBYTES_KEM; j++) { | |||
ciphertext[SABER_POLYVECCOMPRESSEDBYTES + j] = msk_c[j]; | |||
} | |||
} | |||
void PQCLEAN_SABER_CLEAN_indcpa_kem_dec(const unsigned char *sk, const unsigned char *ciphertext, unsigned char message_dec[]) { | |||
uint32_t i, j; | |||
// secret key of the server | |||
uint16_t sksv[SABER_K][SABER_N]; | |||
uint16_t pksv[SABER_K][SABER_N]; | |||
uint8_t scale_ar[SABER_SCALEBYTES_KEM]; | |||
uint16_t mod_p = SABER_P - 1; | |||
uint16_t v[SABER_N]; | |||
uint16_t op[SABER_N]; | |||
// sksv is the secret-key | |||
PQCLEAN_SABER_CLEAN_BS2POLVEC(sk, sksv, SABER_Q); | |||
// pksv is the ciphertext | |||
PQCLEAN_SABER_CLEAN_BS2POLVEC(ciphertext, pksv, SABER_P); | |||
// vector-vector scalar multiplication with mod p | |||
for (i = 0; i < SABER_N; i++) { | |||
v[i] = 0; | |||
} | |||
for (i = 0; i < SABER_K; i++) { | |||
for (j = 0; j < SABER_N; j++) { | |||
sksv[i][j] = sksv[i][j] & (mod_p); | |||
} | |||
} | |||
InnerProd(pksv, sksv, mod_p, v); | |||
//Extraction | |||
for (i = 0; i < SABER_SCALEBYTES_KEM; i++) { | |||
scale_ar[i] = ciphertext[SABER_POLYVECCOMPRESSEDBYTES + i]; | |||
} | |||
PQCLEAN_SABER_CLEAN_un_pack4bit(scale_ar, op); | |||
//addition of h1 | |||
for (i = 0; i < SABER_N; i++) { | |||
v[i] = ( ( v[i] + h2 - (op[i] << (SABER_EP - SABER_ET)) ) & (mod_p) ) >> (SABER_EP - 1); | |||
} | |||
// pack decrypted message | |||
POL2MSG(v, message_dec); | |||
} | |||
static void MatrixVectorMul(polyvec *a, uint16_t skpv[SABER_K][SABER_N], uint16_t res[SABER_K][SABER_N], uint16_t mod, int16_t transpose) { | |||
uint16_t acc[SABER_N]; | |||
int32_t i, j, k; | |||
if (transpose == 1) { | |||
for (i = 0; i < SABER_K; i++) { | |||
for (j = 0; j < SABER_K; j++) { | |||
PQCLEAN_SABER_CLEAN_pol_mul((uint16_t *)&a[j].vec[i], skpv[j], acc, SABER_Q, SABER_N); | |||
for (k = 0; k < SABER_N; k++) { | |||
res[i][k] = res[i][k] + acc[k]; | |||
//reduction mod p | |||
res[i][k] = (res[i][k] & mod); | |||
//clear the accumulator | |||
acc[k] = 0; | |||
} | |||
} | |||
} | |||
} else { | |||
for (i = 0; i < SABER_K; i++) { | |||
for (j = 0; j < SABER_K; j++) { | |||
PQCLEAN_SABER_CLEAN_pol_mul((uint16_t *)&a[i].vec[j], skpv[j], acc, SABER_Q, SABER_N); | |||
for (k = 0; k < SABER_N; k++) { | |||
res[i][k] = res[i][k] + acc[k]; | |||
// reduction | |||
res[i][k] = res[i][k] & mod; | |||
// clear the accumulator | |||
acc[k] = 0; | |||
} | |||
} | |||
} | |||
} | |||
} | |||
static void POL2MSG(const uint16_t *message_dec_unpacked, unsigned char *message_dec) { | |||
int32_t i, j; | |||
for (j = 0; j < SABER_KEYBYTES; j++) { | |||
message_dec[j] = 0; | |||
for (i = 0; i < 8; i++) { | |||
message_dec[j] = message_dec[j] | (uint8_t) (message_dec_unpacked[j * 8 + i] << i); | |||
} | |||
} | |||
} | |||
static void InnerProd(uint16_t pkcl[SABER_K][SABER_N], uint16_t skpv[SABER_K][SABER_N], uint16_t mod, uint16_t res[SABER_N]) { | |||
uint32_t j, k; | |||
uint16_t acc[SABER_N]; | |||
// vector-vector scalar multiplication with mod p | |||
for (j = 0; j < SABER_K; j++) { | |||
PQCLEAN_SABER_CLEAN_pol_mul(pkcl[j], skpv[j], acc, SABER_P, SABER_N); | |||
for (k = 0; k < SABER_N; k++) { | |||
res[k] = res[k] + acc[k]; | |||
// reduction | |||
res[k] = res[k] & mod; | |||
// clear the accumulator | |||
acc[k] = 0; | |||
} | |||
} | |||
} |
@@ -0,0 +1,9 @@ | |||
#ifndef INDCPA_H | |||
#define INDCPA_H | |||
void PQCLEAN_SABER_CLEAN_indcpa_kem_keypair(unsigned char *pk, unsigned char *sk); | |||
void PQCLEAN_SABER_CLEAN_indcpa_kem_enc(const unsigned char *message, unsigned char *noiseseed, const unsigned char *pk, unsigned char *ciphertext); | |||
void PQCLEAN_SABER_CLEAN_indcpa_kem_dec(const unsigned char *sk, const unsigned char *ciphertext, unsigned char *message_dec); | |||
#endif | |||
@@ -0,0 +1,50 @@ | |||
#ifndef PARAMS_H | |||
#define PARAMS_H | |||
#include "api.h" | |||
#define SABER_K 3 | |||
#define SABER_MU 8 | |||
#define SABER_ET 4 | |||
#define SABER_EQ 13 | |||
#define SABER_EP 10 | |||
#define SABER_N 256 | |||
#define SABER_Q 8192 | |||
#define SABER_P 1024 | |||
#define SABER_SEEDBYTES 32 | |||
#define SABER_NOISESEEDBYTES 32 | |||
#define SABER_COINBYTES 32 | |||
#define SABER_KEYBYTES 32 | |||
#define SABER_HASHBYTES 32 | |||
#define SABER_POLYBYTES 416 //13*256/8 | |||
#define SABER_POLYVECBYTES (SABER_K * SABER_POLYBYTES) | |||
#define SABER_POLYVECCOMPRESSEDBYTES (SABER_K * 320) //10*256/8 NOTE : changed till here due to parameter adaptation | |||
#define SABER_CIPHERTEXTBYTES (SABER_POLYVECCOMPRESSEDBYTES) | |||
#define SABER_SCALEBYTES (SABER_DELTA*SABER_N/8) | |||
#define SABER_SCALEBYTES_KEM ((SABER_ET)*SABER_N/8) | |||
#define SABER_INDCPA_PUBLICKEYBYTES (SABER_POLYVECCOMPRESSEDBYTES + SABER_SEEDBYTES) | |||
#define SABER_INDCPA_SECRETKEYBYTES (SABER_POLYVECBYTES) | |||
#define SABER_PUBLICKEYBYTES (SABER_INDCPA_PUBLICKEYBYTES) | |||
#define SABER_SECRETKEYBYTES (SABER_INDCPA_SECRETKEYBYTES + SABER_INDCPA_PUBLICKEYBYTES + SABER_HASHBYTES + SABER_KEYBYTES) | |||
#define SABER_BYTES_CCA_DEC (SABER_POLYVECCOMPRESSEDBYTES + SABER_SCALEBYTES_KEM) /* Second part is for Targhi-Unruh */ | |||
#endif | |||
@@ -0,0 +1,14 @@ | |||
#ifndef PQCLEAN_SABER_CLEAN_API_H | |||
#define PQCLEAN_SABER_CLEAN_API_H | |||
#define PQCLEAN_SABER_CLEAN_CRYPTO_ALGNAME "Saber" | |||
#define PQCLEAN_SABER_CLEAN_CRYPTO_SECRETKEYBYTES 2304 | |||
#define PQCLEAN_SABER_CLEAN_CRYPTO_PUBLICKEYBYTES (3*320+32) | |||
#define PQCLEAN_SABER_CLEAN_CRYPTO_BYTES 32 | |||
#define PQCLEAN_SABER_CLEAN_CRYPTO_CIPHERTEXTBYTES 1088 | |||
int PQCLEAN_SABER_CLEAN_crypto_kem_keypair(unsigned char *pk, unsigned char *sk); | |||
int PQCLEAN_SABER_CLEAN_crypto_kem_enc(unsigned char *ct, unsigned char *ss, const unsigned char *pk); | |||
int PQCLEAN_SABER_CLEAN_crypto_kem_dec(unsigned char *ss, const unsigned char *ct, const unsigned char *sk); | |||
#endif /* api_h */ |
@@ -0,0 +1,51 @@ | |||
/*--------------------------------------------------------------------- | |||
This file has been adapted from the implementation | |||
(available at, Public Domain https://github.com/pq-crystals/kyber) | |||
of "CRYSTALS – Kyber: a CCA-secure module-lattice-based KEM" | |||
by : Joppe Bos, Leo Ducas, Eike Kiltz, Tancrede Lepoint, | |||
Vadim Lyubashevsky, John M. Schanck, Peter Schwabe & Damien stehle | |||
----------------------------------------------------------------------*/ | |||
#include "SABER_params.h" | |||
#include "api.h" | |||
#include "cbd.h" | |||
#include <stdint.h> | |||
static uint64_t load_littleendian(const unsigned char *x, int bytes) { | |||
int i; | |||
uint64_t r = x[0]; | |||
for (i = 1; i < bytes; i++) { | |||
r |= (uint64_t)x[i] << (8 * i); | |||
} | |||
return r; | |||
} | |||
void PQCLEAN_SABER_CLEAN_cbd(uint16_t *r, const unsigned char *buf) { | |||
uint16_t Qmod_minus1 = SABER_Q - 1; | |||
uint32_t t, d, a[4], b[4]; | |||
int i, j; | |||
for (i = 0; i < SABER_N / 4; i++) { | |||
t = (uint32_t) load_littleendian(buf + 4 * i, 4); | |||
d = 0; | |||
for (j = 0; j < 4; j++) { | |||
d += (t >> j) & 0x11111111; | |||
} | |||
a[0] = d & 0xf; | |||
b[0] = (d >> 4) & 0xf; | |||
a[1] = (d >> 8) & 0xf; | |||
b[1] = (d >> 12) & 0xf; | |||
a[2] = (d >> 16) & 0xf; | |||
b[2] = (d >> 20) & 0xf; | |||
a[3] = (d >> 24) & 0xf; | |||
b[3] = (d >> 28); | |||
r[4 * i + 0] = (uint16_t)(a[0] - b[0]) & Qmod_minus1; | |||
r[4 * i + 1] = (uint16_t)(a[1] - b[1]) & Qmod_minus1; | |||
r[4 * i + 2] = (uint16_t)(a[2] - b[2]) & Qmod_minus1; | |||
r[4 * i + 3] = (uint16_t)(a[3] - b[3]) & Qmod_minus1; | |||
} | |||
} |
@@ -0,0 +1,17 @@ | |||
#ifndef CBD_H | |||
#define CBD_H | |||
/*--------------------------------------------------------------------- | |||
This file has been adapted from the implementation | |||
(available at, Public Domain https://github.com/pq-crystals/kyber) | |||
of "CRYSTALS – Kyber: a CCA-secure module-lattice-based KEM" | |||
by : Joppe Bos, Leo Ducas, Eike Kiltz, Tancrede Lepoint, | |||
Vadim Lyubashevsky, John M. Schanck, Peter Schwabe & Damien stehle | |||
----------------------------------------------------------------------*/ | |||
#include "poly.h" | |||
#include <stdint.h> | |||
void PQCLEAN_SABER_CLEAN_cbd(uint16_t *r, const unsigned char *buf); | |||
#endif |
@@ -0,0 +1,96 @@ | |||
#include "SABER_indcpa.h" | |||
#include "SABER_params.h" | |||
#include "fips202.h" | |||
#include "randombytes.h" | |||
#include "verify.h" | |||
#include <stdint.h> | |||
#include <stdio.h> | |||
#include <string.h> | |||
int PQCLEAN_SABER_CLEAN_crypto_kem_keypair(unsigned char *pk, unsigned char *sk) { | |||
int i; | |||
// sk[0:SABER_INDCPA_SECRETKEYBYTES-1] <-- sk | |||
PQCLEAN_SABER_CLEAN_indcpa_kem_keypair(pk, sk); | |||
// sk[SABER_INDCPA_SECRETKEYBYTES:SABER_INDCPA_SECRETKEYBYTES+SABER_INDCPA_SECRETKEYBYTES-1] <-- pk | |||
for (i = 0; i < SABER_INDCPA_PUBLICKEYBYTES; i++) { | |||
sk[i + SABER_INDCPA_SECRETKEYBYTES] = pk[i]; | |||
} | |||
// Then hash(pk) is appended. | |||
sha3_256(sk + SABER_SECRETKEYBYTES - 64, pk, SABER_INDCPA_PUBLICKEYBYTES); | |||
// Remaining part of sk contains a pseudo-random number. | |||
// This is output when check in crypto_kem_dec() fails. | |||
randombytes(sk + SABER_SECRETKEYBYTES - SABER_KEYBYTES, SABER_KEYBYTES ); | |||
return (0); | |||
} | |||
int PQCLEAN_SABER_CLEAN_crypto_kem_enc(unsigned char *ct, unsigned char *ss, const unsigned char *pk) { | |||
// Will contain key, coins | |||
unsigned char kr[64]; | |||
unsigned char buf[64]; | |||
randombytes(buf, 32); | |||
// BUF[0:31] <-- random message (will be used as the key for client) Note: hash doesnot release system RNG output | |||
sha3_256(buf, buf, 32); | |||
// BUF[32:63] <-- Hash(public key); Multitarget countermeasure for coins + contributory KEM | |||
sha3_256(buf + 32, pk, SABER_INDCPA_PUBLICKEYBYTES); | |||
// kr[0:63] <-- Hash(buf[0:63]); | |||
sha3_512(kr, buf, 64); | |||
// K^ <-- kr[0:31] | |||
// noiseseed (r) <-- kr[32:63]; | |||
// buf[0:31] contains message; kr[32:63] contains randomness r; | |||
PQCLEAN_SABER_CLEAN_indcpa_kem_enc(buf, kr + 32, pk, ct); | |||
sha3_256(kr + 32, ct, SABER_BYTES_CCA_DEC); | |||
// hash concatenation of pre-k and h(c) to k | |||
sha3_256(ss, kr, 64); | |||
return (0); | |||
} | |||
int PQCLEAN_SABER_CLEAN_crypto_kem_dec(unsigned char *ss, const unsigned char *ct, const unsigned char *sk) { | |||
int i; | |||
unsigned char fail; | |||
unsigned char cmp[SABER_BYTES_CCA_DEC]; | |||
unsigned char buf[64]; | |||
// Will contain key, coins | |||
unsigned char kr[64]; | |||
const unsigned char *pk = sk + SABER_INDCPA_SECRETKEYBYTES; | |||
// buf[0:31] <-- message | |||
PQCLEAN_SABER_CLEAN_indcpa_kem_dec(sk, ct, buf); | |||
// Multitarget countermeasure for coins + contributory KEM | |||
// Save hash by storing h(pk) in sk | |||
for (i = 0; i < 32; i++) { | |||
buf[32 + i] = sk[SABER_SECRETKEYBYTES - 64 + i]; | |||
} | |||
sha3_512(kr, buf, 64); | |||
PQCLEAN_SABER_CLEAN_indcpa_kem_enc(buf, kr + 32, pk, cmp); | |||
fail = PQCLEAN_SABER_CLEAN_verify(ct, cmp, SABER_BYTES_CCA_DEC); | |||
// overwrite coins in kr with h(c) | |||
sha3_256(kr + 32, ct, SABER_BYTES_CCA_DEC); | |||
PQCLEAN_SABER_CLEAN_cmov(kr, sk + SABER_SECRETKEYBYTES - SABER_KEYBYTES, SABER_KEYBYTES, fail); | |||
// hash concatenation of pre-k and h(c) to k | |||
sha3_256(ss, kr, 64); | |||
return (0); | |||
} |
@@ -0,0 +1,254 @@ | |||
#include "pack_unpack.h" | |||
void PQCLEAN_SABER_CLEAN_pack_3bit(uint8_t *bytes, const uint16_t *data) { | |||
uint32_t j; | |||
uint32_t offset_data, offset_byte; | |||
for (j = 0; j < SABER_N / 8; j++) { | |||
offset_byte = 3 * j; | |||
offset_data = 8 * j; | |||
bytes[offset_byte + 0] = (data[offset_data + 0] & 0x7) | | |||
((data[offset_data + 1] & 0x7) << 3) | | |||
((data[offset_data + 2] & 0x3) << 6); | |||
bytes[offset_byte + 1] = ((data[offset_data + 2] >> 2 ) & 0x01) | | |||
((data[offset_data + 3] & 0x7) << 1) | | |||
((data[offset_data + 4] & 0x7) << 4) | | |||
(((data[offset_data + 5]) & 0x01) << 7); | |||
bytes[offset_byte + 2] = ((data[offset_data + 5] >> 1 ) & 0x03) | | |||
((data[offset_data + 6] & 0x7) << 2) | | |||
((data[offset_data + 7] & 0x7) << 5); | |||
} | |||
} | |||
void PQCLEAN_SABER_CLEAN_un_pack3bit(const uint8_t *bytes, uint16_t *data) { | |||
uint32_t j; | |||
uint32_t offset_data, offset_byte; | |||
for (j = 0; j < SABER_N / 8; j++) { | |||
offset_byte = 3 * j; | |||
offset_data = 8 * j; | |||
data[offset_data + 0] = (bytes[offset_byte + 0]) & 0x07; | |||
data[offset_data + 1] = ((bytes[offset_byte + 0]) >> 3 ) & 0x07; | |||
data[offset_data + 2] = (((bytes[offset_byte + 0]) >> 6 ) & 0x03) | | |||
(((bytes[offset_byte + 1]) & 0x01) << 2); | |||
data[offset_data + 3] = ((bytes[offset_byte + 1]) >> 1 ) & 0x07; | |||
data[offset_data + 4] = ((bytes[offset_byte + 1]) >> 4 ) & 0x07; | |||
data[offset_data + 5] = (((bytes[offset_byte + 1]) >> 7 ) & 0x01) | | |||
(((bytes[offset_byte + 2]) & 0x03) << 1); | |||
data[offset_data + 6] = ((bytes[offset_byte + 2] >> 2) & 0x07); | |||
data[offset_data + 7] = ((bytes[offset_byte + 2] >> 5) & 0x07); | |||
} | |||
} | |||
void PQCLEAN_SABER_CLEAN_pack_4bit(uint8_t *bytes, const uint16_t *data) { | |||
uint32_t j; | |||
uint32_t offset_data; | |||
for (j = 0; j < SABER_N / 2; j++) { | |||
offset_data = 2 * j; | |||
bytes[j] = (data[offset_data] & 0x0f) | | |||
((data[offset_data + 1] & 0x0f) << 4); | |||
} | |||
} | |||
void PQCLEAN_SABER_CLEAN_un_pack4bit(const unsigned char *bytes, uint16_t *ar) { | |||
uint32_t j; | |||
uint32_t offset_data; | |||
for (j = 0; j < SABER_N / 2; j++) { | |||
offset_data = 2 * j; | |||
ar[offset_data] = bytes[j] & 0x0f; | |||
ar[offset_data + 1] = (bytes[j] >> 4) & 0x0f; | |||
} | |||
} | |||
void PQCLEAN_SABER_CLEAN_pack_6bit(uint8_t *bytes, const uint16_t *data) { | |||
uint32_t j; | |||
uint32_t offset_data, offset_byte; | |||
for (j = 0; j < SABER_N / 4; j++) { | |||
offset_byte = 3 * j; | |||
offset_data = 4 * j; | |||
bytes[offset_byte + 0] = (data[offset_data + 0] & 0x3f) | | |||
((data[offset_data + 1] & 0x03) << 6); | |||
bytes[offset_byte + 1] = ((data[offset_data + 1] >> 2) & 0x0f) | | |||
((data[offset_data + 2] & 0x0f) << 4); | |||
bytes[offset_byte + 2] = ((data[offset_data + 2] >> 4) & 0x03) | | |||
((data[offset_data + 3] & 0x3f) << 2); | |||
} | |||
} | |||
void PQCLEAN_SABER_CLEAN_un_pack6bit(const unsigned char *bytes, uint16_t *data) { | |||
uint32_t j; | |||
uint32_t offset_data, offset_byte; | |||
for (j = 0; j < SABER_N / 4; j++) { | |||
offset_byte = 3 * j; | |||
offset_data = 4 * j; | |||
data[offset_data + 0] = bytes[offset_byte + 0] & 0x3f; | |||
data[offset_data + 1] = ((bytes[offset_byte + 0] >> 6) & 0x03) | | |||
((bytes[offset_byte + 1] & 0x0f) << 2); | |||
data[offset_data + 2] = ((bytes[offset_byte + 1] & 0xff) >> 4) | | |||
((bytes[offset_byte + 2] & 0x03) << 4); | |||
data[offset_data + 3] = ((bytes[offset_byte + 2] & 0xff) >> 2); | |||
} | |||
} | |||
static void POLVECp2BS(uint8_t *bytes, uint16_t data[SABER_K][SABER_N]) { | |||
uint32_t i, j; | |||
uint32_t offset_data, offset_byte, offset_byte1; | |||
for (i = 0; i < SABER_K; i++) { | |||
offset_byte1 = i * (SABER_N * 10) / 8; | |||
for (j = 0; j < SABER_N / 4; j++) { | |||
offset_byte = offset_byte1 + 5 * j; | |||
offset_data = 4 * j; | |||
bytes[offset_byte + 0] = (data[i][offset_data + 0] & (0xff)); | |||
bytes[offset_byte + 1] = ((data[i][offset_data + 0] >> 8) & 0x03) | | |||
((data[i][offset_data + 1] & 0x3f) << 2); | |||
bytes[offset_byte + 2] = ((data[i][offset_data + 1] >> 6) & 0x0f) | | |||
((data[i][offset_data + 2] & 0x0f) << 4); | |||
bytes[offset_byte + 3] = ((data[i][offset_data + 2] >> 4) & 0x3f) | | |||
((data[i][offset_data + 3] & 0x03) << 6); | |||
bytes[offset_byte + 4] = ((data[i][offset_data + 3] >> 2) & 0xff); | |||
} | |||
} | |||
} | |||
static void BS2POLVECp(const unsigned char *bytes, uint16_t data[SABER_K][SABER_N]) { | |||
uint32_t i, j; | |||
uint32_t offset_data, offset_byte, offset_byte1; | |||
for (i = 0; i < SABER_K; i++) { | |||
offset_byte1 = i * (SABER_N * 10) / 8; | |||
for (j = 0; j < SABER_N / 4; j++) { | |||
offset_byte = offset_byte1 + 5 * j; | |||
offset_data = 4 * j; | |||
data[i][offset_data + 0] = (bytes[offset_byte + 0] & (0xff)) | | |||
((bytes[offset_byte + 1] & 0x03) << 8); | |||
data[i][offset_data + 1] = ((bytes[offset_byte + 1] >> 2) & (0x3f)) | | |||
((bytes[offset_byte + 2] & 0x0f) << 6); | |||
data[i][offset_data + 2] = ((bytes[offset_byte + 2] >> 4) & (0x0f)) | | |||
((bytes[offset_byte + 3] & 0x3f) << 4); | |||
data[i][offset_data + 3] = ((bytes[offset_byte + 3] >> 6) & (0x03)) | | |||
((bytes[offset_byte + 4] & 0xff) << 2); | |||
} | |||
} | |||
} | |||
static void POLVECq2BS(uint8_t *bytes, uint16_t data[SABER_K][SABER_N]) { | |||
uint32_t i, j; | |||
uint32_t offset_data, offset_byte, offset_byte1; | |||
for (i = 0; i < SABER_K; i++) { | |||
offset_byte1 = i * (SABER_N * 13) / 8; | |||
for (j = 0; j < SABER_N / 8; j++) { | |||
offset_byte = offset_byte1 + 13 * j; | |||
offset_data = 8 * j; | |||
bytes[offset_byte + 0] = (data[i][offset_data + 0] & (0xff)); | |||
bytes[offset_byte + 1] = ((data[i][offset_data + 0] >> 8) & 0x1f) | | |||
((data[i][offset_data + 1] & 0x07) << 5); | |||
bytes[offset_byte + 2] = ((data[i][offset_data + 1] >> 3) & 0xff); | |||
bytes[offset_byte + 3] = ((data[i][offset_data + 1] >> 11) & 0x03) | | |||
((data[i][offset_data + 2] & 0x3f) << 2); | |||
bytes[offset_byte + 4] = ((data[i][offset_data + 2] >> 6) & 0x7f) | | |||
((data[i][offset_data + 3] & 0x01) << 7); | |||
bytes[offset_byte + 5] = ((data[i][offset_data + 3] >> 1) & 0xff); | |||
bytes[offset_byte + 6] = ((data[i][offset_data + 3] >> 9) & 0x0f) | | |||
((data[i][offset_data + 4] & 0x0f) << 4); | |||
bytes[offset_byte + 7] = ((data[i][offset_data + 4] >> 4) & 0xff); | |||
bytes[offset_byte + 8] = ((data[i][offset_data + 4] >> 12) & 0x01) | | |||
((data[i][offset_data + 5] & 0x7f) << 1); | |||
bytes[offset_byte + 9] = ((data[i][offset_data + 5] >> 7) & 0x3f) | | |||
((data[i][offset_data + 6] & 0x03) << 6); | |||
bytes[offset_byte + 10] = ((data[i][offset_data + 6] >> 2) & 0xff); | |||
bytes[offset_byte + 11] = ((data[i][offset_data + 6] >> 10) & 0x07) | | |||
((data[i][offset_data + 7] & 0x1f) << 3); | |||
bytes[offset_byte + 12] = ((data[i][offset_data + 7] >> 5) & 0xff); | |||
} | |||
} | |||
} | |||
static void BS2POLVECq(const unsigned char *bytes, uint16_t data[SABER_K][SABER_N]) { | |||
uint32_t i, j; | |||
uint32_t offset_data, offset_byte, offset_byte1; | |||
for (i = 0; i < SABER_K; i++) { | |||
offset_byte1 = i * (SABER_N * 13) / 8; | |||
for (j = 0; j < SABER_N / 8; j++) { | |||
offset_byte = offset_byte1 + 13 * j; | |||
offset_data = 8 * j; | |||
data[i][offset_data + 0] = (bytes[offset_byte + 0] & (0xff)) | | |||
((bytes[offset_byte + 1] & 0x1f) << 8); | |||
data[i][offset_data + 1] = (bytes[offset_byte + 1] >> 5 & (0x07)) | | |||
((bytes[offset_byte + 2] & 0xff) << 3) | | |||
((bytes[offset_byte + 3] & 0x03) << 11); | |||
data[i][offset_data + 2] = (bytes[offset_byte + 3] >> 2 & (0x3f)) | | |||
((bytes[offset_byte + 4] & 0x7f) << 6); | |||
data[i][offset_data + 3] = (bytes[offset_byte + 4] >> 7 & (0x01)) | | |||
((bytes[offset_byte + 5] & 0xff) << 1) | | |||
((bytes[offset_byte + 6] & 0x0f) << 9); | |||
data[i][offset_data + 4] = (bytes[offset_byte + 6] >> 4 & (0x0f)) | | |||
((bytes[offset_byte + 7] & 0xff) << 4) | | |||
((bytes[offset_byte + 8] & 0x01) << 12); | |||
data[i][offset_data + 5] = (bytes[offset_byte + 8] >> 1 & (0x7f)) | | |||
((bytes[offset_byte + 9] & 0x3f) << 7); | |||
data[i][offset_data + 6] = (bytes[offset_byte + 9] >> 6 & (0x03)) | | |||
((bytes[offset_byte + 10] & 0xff) << 2) | | |||
((bytes[offset_byte + 11] & 0x07) << 10); | |||
data[i][offset_data + 7] = (bytes[offset_byte + 11] >> 3 & (0x1f)) | | |||
((bytes[offset_byte + 12] & 0xff) << 5); | |||
} | |||
} | |||
} | |||
//only BS2POLq no BS2POLp | |||
void PQCLEAN_SABER_CLEAN_BS2POL(const unsigned char *bytes, uint16_t data[SABER_N]) { | |||
uint32_t j; | |||
uint32_t offset_data, offset_byte; | |||
for (j = 0; j < SABER_N / 8; j++) { | |||
offset_byte = 13 * j; | |||
offset_data = 8 * j; | |||
data[offset_data + 0] = (bytes[offset_byte + 0] & (0xff)) | | |||
((bytes[offset_byte + 1] & 0x1f) << 8); | |||
data[offset_data + 1] = (bytes[offset_byte + 1] >> 5 & (0x07)) | | |||
((bytes[offset_byte + 2] & 0xff) << 3) | | |||
((bytes[offset_byte + 3] & 0x03) << 11); | |||
data[offset_data + 2] = (bytes[offset_byte + 3] >> 2 & (0x3f)) | | |||
((bytes[offset_byte + 4] & 0x7f) << 6); | |||
data[offset_data + 3] = (bytes[offset_byte + 4] >> 7 & (0x01)) | | |||
((bytes[offset_byte + 5] & 0xff) << 1) | | |||
((bytes[offset_byte + 6] & 0x0f) << 9); | |||
data[offset_data + 4] = (bytes[offset_byte + 6] >> 4 & (0x0f)) | | |||
((bytes[offset_byte + 7] & 0xff) << 4) | | |||
((bytes[offset_byte + 8] & 0x01) << 12); | |||
data[offset_data + 5] = (bytes[offset_byte + 8] >> 1 & (0x7f)) | | |||
((bytes[offset_byte + 9] & 0x3f) << 7); | |||
data[offset_data + 6] = (bytes[offset_byte + 9] >> 6 & (0x03)) | | |||
((bytes[offset_byte + 10] & 0xff) << 2) | | |||
((bytes[offset_byte + 11] & 0x07) << 10); | |||
data[offset_data + 7] = (bytes[offset_byte + 11] >> 3 & (0x1f)) | | |||
((bytes[offset_byte + 12] & 0xff) << 5); | |||
} | |||
} | |||
void PQCLEAN_SABER_CLEAN_POLVEC2BS(uint8_t *bytes, uint16_t data[SABER_K][SABER_N], uint16_t modulus) { | |||
if (modulus == 1024) { | |||
POLVECp2BS(bytes, data); | |||
} else if (modulus == 8192) { | |||
POLVECq2BS(bytes, data); | |||
} | |||
} | |||
void PQCLEAN_SABER_CLEAN_BS2POLVEC(const unsigned char *bytes, uint16_t data[SABER_K][SABER_N], uint16_t modulus) { | |||
if (modulus == 1024) { | |||
BS2POLVECp(bytes, data); | |||
} else if (modulus == 8192) { | |||
BS2POLVECq(bytes, data); | |||
} | |||
} |
@@ -0,0 +1,28 @@ | |||
#ifndef PACK_UNPACK_H | |||
#define PACK_UNPACK_H | |||
#include "SABER_params.h" | |||
#include <stdint.h> | |||
#include <stdio.h> | |||
void PQCLEAN_SABER_CLEAN_pack_3bit(uint8_t *bytes, const uint16_t *data); | |||
void PQCLEAN_SABER_CLEAN_un_pack3bit(const uint8_t *bytes, uint16_t *data); | |||
void PQCLEAN_SABER_CLEAN_pack_4bit(uint8_t *bytes, const uint16_t *data); | |||
void PQCLEAN_SABER_CLEAN_un_pack4bit(const unsigned char *bytes, uint16_t *ar); | |||
void PQCLEAN_SABER_CLEAN_pack_6bit(uint8_t *bytes, const uint16_t *data); | |||
void PQCLEAN_SABER_CLEAN_un_pack6bit(const unsigned char *bytes, uint16_t *data); | |||
void PQCLEAN_SABER_CLEAN_BS2POL(const unsigned char *bytes, uint16_t data[SABER_N]); | |||
void PQCLEAN_SABER_CLEAN_POLVEC2BS(uint8_t *bytes, uint16_t data[SABER_K][SABER_N], uint16_t modulus); | |||
void PQCLEAN_SABER_CLEAN_BS2POLVEC(const unsigned char *bytes, uint16_t data[SABER_K][SABER_N], uint16_t modulus); | |||
#endif |
@@ -0,0 +1,21 @@ | |||
/*--------------------------------------------------------------------- | |||
This file has been adapted from the implementation | |||
(available at, Public Domain https://github.com/pq-crystals/kyber) | |||
of "CRYSTALS – Kyber: a CCA-secure module-lattice-based KEM" | |||
by : Joppe Bos, Leo Ducas, Eike Kiltz, Tancrede Lepoint, | |||
Vadim Lyubashevsky, John M. Schanck, Peter Schwabe & Damien stehle | |||
----------------------------------------------------------------------*/ | |||
#include "SABER_params.h" | |||
#include "cbd.h" | |||
#include "fips202.h" | |||
#include "poly.h" | |||
void PQCLEAN_SABER_CLEAN_GenSecret(uint16_t r[SABER_K][SABER_N], const unsigned char *seed) { | |||
uint8_t buf[SABER_MU * SABER_N * SABER_K / 8]; | |||
shake128(buf, sizeof(buf), seed, SABER_NOISESEEDBYTES); | |||
for (size_t i = 0; i < SABER_K; i++) { | |||
PQCLEAN_SABER_CLEAN_cbd(r[i], buf + i * SABER_MU * SABER_N / 8); | |||
} | |||
} |
@@ -0,0 +1,26 @@ | |||
#ifndef POLY_H | |||
#define POLY_H | |||
/*--------------------------------------------------------------------- | |||
This file has been adapted from the implementation | |||
(available at, Public Domain https://github.com/pq-crystals/kyber) | |||
of "CRYSTALS – Kyber: a CCA-secure module-lattice-based KEM" | |||
by : Joppe Bos, Leo Ducas, Eike Kiltz, Tancrede Lepoint, | |||
Vadim Lyubashevsky, John M. Schanck, Peter Schwabe & Damien stehle | |||
----------------------------------------------------------------------*/ | |||
#include "SABER_params.h" | |||
#include <stdint.h> | |||
typedef struct { | |||
uint16_t coeffs[SABER_N]; | |||
} poly; | |||
typedef struct { | |||
poly vec[SABER_K]; | |||
} polyvec; | |||
void PQCLEAN_SABER_CLEAN_GenSecret(uint16_t r[SABER_K][SABER_N], const unsigned char *seed); | |||
#endif |
@@ -0,0 +1,237 @@ | |||
#include "poly_mul.h" | |||
#include <stdint.h> | |||
#include <string.h> | |||
#define SCHB_N 16 | |||
#define N_RES (SABER_N << 1) | |||
#define N_SB (SABER_N >> 2) | |||
#define N_SB_RES (2*N_SB-1) | |||
#define KARATSUBA_N 64 | |||
static void karatsuba_simple(const uint16_t *a_1, const uint16_t *b_1, uint16_t *result_final) { | |||
uint16_t d01[KARATSUBA_N / 2 - 1]; | |||
uint16_t d0123[KARATSUBA_N / 2 - 1]; | |||
uint16_t d23[KARATSUBA_N / 2 - 1]; | |||
uint16_t result_d01[KARATSUBA_N - 1]; | |||
int32_t i, j; | |||
memset(result_d01, 0, (KARATSUBA_N - 1)*sizeof(uint16_t)); | |||
memset(d01, 0, (KARATSUBA_N / 2 - 1)*sizeof(uint16_t)); | |||
memset(d0123, 0, (KARATSUBA_N / 2 - 1)*sizeof(uint16_t)); | |||
memset(d23, 0, (KARATSUBA_N / 2 - 1)*sizeof(uint16_t)); | |||
memset(result_final, 0, (2 * KARATSUBA_N - 1)*sizeof(uint16_t)); | |||
uint16_t acc1, acc2, acc3, acc4, acc5, acc6, acc7, acc8, acc9, acc10; | |||
for (i = 0; i < KARATSUBA_N / 4; i++) { | |||
acc1 = a_1[i]; //a0 | |||
acc2 = a_1[i + KARATSUBA_N / 4]; //a1 | |||
acc3 = a_1[i + 2 * KARATSUBA_N / 4]; //a2 | |||
acc4 = a_1[i + 3 * KARATSUBA_N / 4]; //a3 | |||
for (j = 0; j < KARATSUBA_N / 4; j++) { | |||
acc5 = b_1[j]; //b0 | |||
acc6 = b_1[j + KARATSUBA_N / 4]; //b1 | |||
result_final[i + j + 0 * KARATSUBA_N / 4] = result_final[i + j + 0 * KARATSUBA_N / 4] + acc1 * acc5; | |||
result_final[i + j + 2 * KARATSUBA_N / 4] = result_final[i + j + 2 * KARATSUBA_N / 4] + acc2 * acc6; | |||
acc7 = acc5 + acc6; //b01 | |||
acc8 = acc1 + acc2; //a01 | |||
d01[i + j] = d01[i + j] + acc7 * acc8; | |||
//-------------------------------------------------------- | |||
acc7 = b_1[j + 2 * KARATSUBA_N / 4]; //b2 | |||
acc8 = b_1[j + 3 * KARATSUBA_N / 4]; //b3 | |||
result_final[i + j + 4 * KARATSUBA_N / 4] = result_final[i + j + 4 * KARATSUBA_N / 4] + acc7 * acc3; | |||
result_final[i + j + 6 * KARATSUBA_N / 4] = result_final[i + j + 6 * KARATSUBA_N / 4] + acc8 * acc4; | |||
acc9 = acc3 + acc4; | |||
acc10 = acc7 + acc8; | |||
d23[i + j] = d23[i + j] + acc9 * acc10; | |||
//-------------------------------------------------------- | |||
acc5 = acc5 + acc7; //b02 | |||
acc7 = acc1 + acc3; //a02 | |||
result_d01[i + j + 0 * KARATSUBA_N / 4] = result_d01[i + j + 0 * KARATSUBA_N / 4] + acc5 * acc7; | |||
acc6 = acc6 + acc8; //b13 | |||
acc8 = acc2 + acc4; | |||
result_d01[i + j + 2 * KARATSUBA_N / 4] = result_d01[i + j + 2 * KARATSUBA_N / 4] + acc6 * acc8; | |||
acc5 = acc5 + acc6; | |||
acc7 = acc7 + acc8; | |||
d0123[i + j] = d0123[i + j] + acc5 * acc7; | |||
} | |||
} | |||
// 2nd last stage | |||
for (i = 0; i < KARATSUBA_N / 2 - 1; i++) { | |||
d0123[i] = d0123[i] - result_d01[i + 0 * KARATSUBA_N / 4] - result_d01[i + 2 * KARATSUBA_N / 4]; | |||
d01[i] = d01[i] - result_final[i + 0 * KARATSUBA_N / 4] - result_final[i + 2 * KARATSUBA_N / 4]; | |||
d23[i] = d23[i] - result_final[i + 4 * KARATSUBA_N / 4] - result_final[i + 6 * KARATSUBA_N / 4]; | |||
} | |||
for (i = 0; i < KARATSUBA_N / 2 - 1; i++) { | |||
result_d01[i + 1 * KARATSUBA_N / 4] = result_d01[i + 1 * KARATSUBA_N / 4] + d0123[i]; | |||
result_final[i + 1 * KARATSUBA_N / 4] = result_final[i + 1 * KARATSUBA_N / 4] + d01[i]; | |||
result_final[i + 5 * KARATSUBA_N / 4] = result_final[i + 5 * KARATSUBA_N / 4] + d23[i]; | |||
} | |||
// Last stage | |||
for (i = 0; i < KARATSUBA_N - 1; i++) { | |||
result_d01[i] = result_d01[i] - result_final[i] - result_final[i + KARATSUBA_N]; | |||
} | |||
for (i = 0; i < KARATSUBA_N - 1; i++) { | |||
result_final[i + 1 * KARATSUBA_N / 2] = result_final[i + 1 * KARATSUBA_N / 2] + result_d01[i]; | |||
} | |||
} | |||
static void toom_cook_4way (const uint16_t *a1, const uint16_t *b1, uint16_t *result) { | |||
uint16_t inv3 = 43691, inv9 = 36409, inv15 = 61167; | |||
uint16_t aw1[N_SB], aw2[N_SB], aw3[N_SB], aw4[N_SB], aw5[N_SB], aw6[N_SB], aw7[N_SB]; | |||
uint16_t bw1[N_SB], bw2[N_SB], bw3[N_SB], bw4[N_SB], bw5[N_SB], bw6[N_SB], bw7[N_SB]; | |||
uint16_t w1[N_SB_RES] = {0}, w2[N_SB_RES] = {0}, w3[N_SB_RES] = {0}, w4[N_SB_RES] = {0}, | |||
w5[N_SB_RES] = {0}, w6[N_SB_RES] = {0}, w7[N_SB_RES] = {0}; | |||
uint16_t r0, r1, r2, r3, r4, r5, r6, r7; | |||
uint16_t *A0, *A1, *A2, *A3, *B0, *B1, *B2, *B3; | |||
A0 = (uint16_t *)a1; | |||
A1 = (uint16_t *)&a1[N_SB]; | |||
A2 = (uint16_t *)&a1[2 * N_SB]; | |||
A3 = (uint16_t *)&a1[3 * N_SB]; | |||
B0 = (uint16_t *)b1; | |||
B1 = (uint16_t *)&b1[N_SB]; | |||
B2 = (uint16_t *)&b1[2 * N_SB]; | |||
B3 = (uint16_t *)&b1[3 * N_SB]; | |||
uint16_t *C; | |||
C = result; | |||
int i, j; | |||
// EVALUATION | |||
for (j = 0; j < N_SB; ++j) { | |||
r0 = A0[j]; | |||
r1 = A1[j]; | |||
r2 = A2[j]; | |||
r3 = A3[j]; | |||
r4 = r0 + r2; | |||
r5 = r1 + r3; | |||
r6 = r4 + r5; | |||
r7 = r4 - r5; | |||
aw3[j] = r6; | |||
aw4[j] = r7; | |||
r4 = ((r0 << 2) + r2) << 1; | |||
r5 = (r1 << 2) + r3; | |||
r6 = r4 + r5; | |||
r7 = r4 - r5; | |||
aw5[j] = r6; | |||
aw6[j] = r7; | |||
r4 = (r3 << 3) + (r2 << 2) + (r1 << 1) + r0; | |||
aw2[j] = r4; | |||
aw7[j] = r0; | |||
aw1[j] = r3; | |||
} | |||
for (j = 0; j < N_SB; ++j) { | |||
r0 = B0[j]; | |||
r1 = B1[j]; | |||
r2 = B2[j]; | |||
r3 = B3[j]; | |||
r4 = r0 + r2; | |||
r5 = r1 + r3; | |||
r6 = r4 + r5; | |||
r7 = r4 - r5; | |||
bw3[j] = r6; | |||
bw4[j] = r7; | |||
r4 = ((r0 << 2) + r2) << 1; | |||
r5 = (r1 << 2) + r3; | |||
r6 = r4 + r5; | |||
r7 = r4 - r5; | |||
bw5[j] = r6; | |||
bw6[j] = r7; | |||
r4 = (r3 << 3) + (r2 << 2) + (r1 << 1) + r0; | |||
bw2[j] = r4; | |||
bw7[j] = r0; | |||
bw1[j] = r3; | |||
} | |||
// MULTIPLICATION | |||
karatsuba_simple(aw1, bw1, w1); | |||
karatsuba_simple(aw2, bw2, w2); | |||
karatsuba_simple(aw3, bw3, w3); | |||
karatsuba_simple(aw4, bw4, w4); | |||
karatsuba_simple(aw5, bw5, w5); | |||
karatsuba_simple(aw6, bw6, w6); | |||
karatsuba_simple(aw7, bw7, w7); | |||
// INTERPOLATION | |||
for (i = 0; i < N_SB_RES; ++i) { | |||
r0 = w1[i]; | |||
r1 = w2[i]; | |||
r2 = w3[i]; | |||
r3 = w4[i]; | |||
r4 = w5[i]; | |||
r5 = w6[i]; | |||
r6 = w7[i]; | |||
r1 = r1 + r4; | |||
r5 = r5 - r4; | |||
r3 = ((r3 - r2) >> 1); | |||
r4 = r4 - r0; | |||
r4 = r4 - (r6 << 6); | |||
r4 = (r4 << 1) + r5; | |||
r2 = r2 + r3; | |||
r1 = r1 - (r2 << 6) - r2; | |||
r2 = r2 - r6; | |||
r2 = r2 - r0; | |||
r1 = r1 + 45 * r2; | |||
r4 = (((r4 - (r2 << 3)) * inv3) >> 3); | |||
r5 = r5 + r1; | |||
r1 = (((r1 + (r3 << 4)) * inv9) >> 1); | |||
r3 = -(r3 + r1); | |||
r5 = (((30 * r1 - r5) * inv15) >> 2); | |||
r2 = r2 - r4; | |||
r1 = r1 - r5; | |||
C[i] += r6; | |||
C[i + 64] += r5; | |||
C[i + 128] += r4; | |||
C[i + 192] += r3; | |||
C[i + 256] += r2; | |||
C[i + 320] += r1; | |||
C[i + 384] += r0; | |||
} | |||
} | |||
void PQCLEAN_SABER_CLEAN_pol_mul(uint16_t *a, uint16_t *b, uint16_t *res, uint16_t p, uint32_t n) | |||
{ | |||
uint32_t i; | |||
// normal multiplication | |||
uint16_t c[512]; | |||
for (i = 0; i < 512; i++) { | |||
c[i] = 0; | |||
} | |||
toom_cook_4way(a, b, c); | |||
// reduction | |||
for (i = n; i < 2 * n; i++) { | |||
res[i - n] = (c[i - n] - c[i]) & (p - 1); | |||
} | |||
} |
@@ -0,0 +1,9 @@ | |||
#ifndef POLYMUL_H | |||
#define POLYMUL_H | |||
#include "SABER_params.h" | |||
#include <stdint.h> | |||
void PQCLEAN_SABER_CLEAN_pol_mul(uint16_t *a, uint16_t *b, uint16_t *res, uint16_t p, uint32_t n); | |||
#endif |
@@ -0,0 +1,34 @@ | |||
/*------------------------------------------------- | |||
This file has been adapted from the implementation | |||
(available at https://github.com/pq-crystals/kyber) of | |||
"CRYSTALS – Kyber: a CCA-secure module-lattice-based KEM" | |||
by : Joppe Bos, Leo Ducas, Eike Kiltz, Tancrede Lepoint, | |||
Vadim Lyubashevsky, John M. Schanck, Peter Schwabe & Damien stehle | |||
----------------------------------------------------*/ | |||
#include "verify.h" | |||
#include <stdint.h> | |||
/* returns 0 for equal strings, 1 for non-equal strings */ | |||
unsigned char PQCLEAN_SABER_CLEAN_verify(const unsigned char *a, const unsigned char *b, size_t len) { | |||
uint64_t r; | |||
size_t i; | |||
r = 0; | |||
for (i = 0; i < len; i++) { | |||
r |= a[i] ^ b[i]; | |||
} | |||
r = (~r + 1); // Two's complement | |||
r >>= 63; | |||
return (unsigned char)r; | |||
} | |||
/* b = 1 means mov, b = 0 means don't mov*/ | |||
void PQCLEAN_SABER_CLEAN_cmov(unsigned char *r, const unsigned char *x, size_t len, unsigned char b) { | |||
size_t i; | |||
b = -b; | |||
for (i = 0; i < len; i++) { | |||
r[i] ^= b & (x[i] ^ r[i]); | |||
} | |||
} |
@@ -0,0 +1,21 @@ | |||
#ifndef VERIFY_H | |||
#define VERIFY_H | |||
/*------------------------------------------------- | |||
This file has been adapted from the implementation | |||
(available at https://github.com/pq-crystals/kyber) of | |||
"CRYSTALS – Kyber: a CCA-secure module-lattice-based KEM" | |||
by : Joppe Bos, Leo Ducas, Eike Kiltz, Tancrede Lepoint, | |||
Vadim Lyubashevsky, John M. Schanck, Peter Schwabe & Damien stehle | |||
----------------------------------------------------*/ | |||
#include <stddef.h> | |||
#include <stdint.h> | |||
/* returns 0 for equal strings, 1 for non-equal strings */ | |||
unsigned char PQCLEAN_SABER_CLEAN_verify(const unsigned char *a, const unsigned char *b, size_t len); | |||
/* b = 1 means mov, b = 0 means don't mov*/ | |||
void PQCLEAN_SABER_CLEAN_cmov(unsigned char *r, const unsigned char *x, size_t len, unsigned char b); | |||
#endif |
@@ -0,0 +1,31 @@ | |||
consistency_checks: | |||
- source: | |||
scheme: lightsaber | |||
implementation: clean | |||
files: | |||
- cbd.h | |||
- kem.c | |||
- pack_unpack.c | |||
- pack_unpack.h | |||
- poly.c | |||
- poly.h | |||
- poly_mul.c | |||
- poly_mul.h | |||
- SABER_indcpa.h | |||
- verify.c | |||
- verify.h | |||
- source: | |||
scheme: saber | |||
implementation: clean | |||
files: | |||
- cbd.h | |||
- kem.c | |||
- pack_unpack.c | |||
- pack_unpack.h | |||
- poly.c | |||
- poly.h | |||
- poly_mul.c | |||
- poly_mul.h | |||
- SABER_indcpa.h | |||
- verify.c | |||
- verify.h |
@@ -0,0 +1,31 @@ | |||
consistency_checks: | |||
- source: | |||
scheme: saber | |||
implementation: clean | |||
files: | |||
- cbd.h | |||
- kem.c | |||
- pack_unpack.c | |||
- pack_unpack.h | |||
- poly.c | |||
- poly.h | |||
- poly_mul.c | |||
- poly_mul.h | |||
- SABER_indcpa.h | |||
- verify.c | |||
- verify.h | |||
- source: | |||
scheme: firesaber | |||
implementation: clean | |||
files: | |||
- cbd.h | |||
- kem.c | |||
- pack_unpack.c | |||
- pack_unpack.h | |||
- poly.c | |||
- poly.h | |||
- poly_mul.c | |||
- poly_mul.h | |||
- SABER_indcpa.h | |||
- verify.c | |||
- verify.h |
@@ -0,0 +1,31 @@ | |||
consistency_checks: | |||
- source: | |||
scheme: lightsaber | |||
implementation: clean | |||
files: | |||
- cbd.h | |||
- kem.c | |||
- pack_unpack.c | |||
- pack_unpack.h | |||
- poly.c | |||
- poly.h | |||
- poly_mul.c | |||
- poly_mul.h | |||
- SABER_indcpa.h | |||
- verify.c | |||
- verify.h | |||
- source: | |||
scheme: firesaber | |||
implementation: clean | |||
files: | |||
- cbd.h | |||
- kem.c | |||
- pack_unpack.c | |||
- pack_unpack.h | |||
- poly.c | |||
- poly.h | |||
- poly_mul.c | |||
- poly_mul.h | |||
- SABER_indcpa.h | |||
- verify.c | |||
- verify.h |
@@ -49,7 +49,7 @@ EXPECTED_FIELDS = { | |||
'length-secret-key': {'type': int, 'min': 1}, | |||
'nistkat-sha256': {'type': str, 'length': 64}, | |||
'principal-submitters': {'type': list, 'elements': {'type': str}}, | |||
'auxiliary-submitters': {'type': list, 'elements': {'type': str}}, | |||
'auxiliary-submitters': {'type': list, 'elements': {'type': str}, 'optional' : True}, | |||
'implementations': { | |||
'type': list, | |||
'elements': { | |||