Explorar el Código

Falcon implementations (integer-only code, constant-time).

master
Thomas Pornin hace 5 años
padre
commit
192e72144b
Se han modificado 32 ficheros con 21988 adiciones y 0 borrados
  1. +23
    -0
      crypto_sign/falcon-1024/META.yml
  2. +22
    -0
      crypto_sign/falcon-1024/clean/LICENSE
  3. +21
    -0
      crypto_sign/falcon-1024/clean/Makefile
  4. +18
    -0
      crypto_sign/falcon-1024/clean/Makefile.Microsoft_nmake
  5. +80
    -0
      crypto_sign/falcon-1024/clean/api.h
  6. +549
    -0
      crypto_sign/falcon-1024/clean/codec.c
  7. +261
    -0
      crypto_sign/falcon-1024/clean/common.c
  8. +699
    -0
      crypto_sign/falcon-1024/clean/fft.c
  9. +1615
    -0
      crypto_sign/falcon-1024/clean/fpr.c
  10. +457
    -0
      crypto_sign/falcon-1024/clean/fpr.h
  11. +663
    -0
      crypto_sign/falcon-1024/clean/inner.h
  12. +4201
    -0
      crypto_sign/falcon-1024/clean/keygen.c
  13. +381
    -0
      crypto_sign/falcon-1024/clean/pqclean.c
  14. +187
    -0
      crypto_sign/falcon-1024/clean/rng.c
  15. +1072
    -0
      crypto_sign/falcon-1024/clean/sign.c
  16. +745
    -0
      crypto_sign/falcon-1024/clean/vrfy.c
  17. +23
    -0
      crypto_sign/falcon-512/META.yml
  18. +22
    -0
      crypto_sign/falcon-512/clean/LICENSE
  19. +21
    -0
      crypto_sign/falcon-512/clean/Makefile
  20. +18
    -0
      crypto_sign/falcon-512/clean/Makefile.Microsoft_nmake
  21. +80
    -0
      crypto_sign/falcon-512/clean/api.h
  22. +549
    -0
      crypto_sign/falcon-512/clean/codec.c
  23. +261
    -0
      crypto_sign/falcon-512/clean/common.c
  24. +699
    -0
      crypto_sign/falcon-512/clean/fft.c
  25. +1615
    -0
      crypto_sign/falcon-512/clean/fpr.c
  26. +457
    -0
      crypto_sign/falcon-512/clean/fpr.h
  27. +663
    -0
      crypto_sign/falcon-512/clean/inner.h
  28. +4201
    -0
      crypto_sign/falcon-512/clean/keygen.c
  29. +381
    -0
      crypto_sign/falcon-512/clean/pqclean.c
  30. +187
    -0
      crypto_sign/falcon-512/clean/rng.c
  31. +1072
    -0
      crypto_sign/falcon-512/clean/sign.c
  32. +745
    -0
      crypto_sign/falcon-512/clean/vrfy.c

+ 23
- 0
crypto_sign/falcon-1024/META.yml Ver fichero

@@ -0,0 +1,23 @@
name: Falcon-1024
type: signature
claimed-nist-level: 5
length-public-key: 1793
length-secret-key: 2305
length-signature: 1330
nistkat-sha256: ad3d17869fdc05deae13ffa2ef26bde125b42f61b2dcd861a1ae20adcb2accc5
testvectors-sha256: bd8076c13722d8c555c68fc6bd7763e1a9dd5483ee7c8d1c74dd2df459c72a40
principal-submitters:
- Thomas Prest
auxiliary-submitters:
- Pierre-Alain Fouque
- Jeffrey Hoffstein
- Paul Kirchner
- Vadim Lyubashevsky
- Thomas Pornin
- Thomas Ricosset
- Gregor Seiler
- William Whyte
- Zhenfei Zhang
implementations:
- name: clean
version: https://github.com/FIX-THIS/YES-BUT-HOW/DUNNO-GUV

+ 22
- 0
crypto_sign/falcon-1024/clean/LICENSE Ver fichero

@@ -0,0 +1,22 @@
MIT License

Copyright (c) 2017-2019 Falcon Project

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

+ 21
- 0
crypto_sign/falcon-1024/clean/Makefile Ver fichero

@@ -0,0 +1,21 @@
# This Makefile can be used with GNU Make or BSD Make

LIB=libfalcon-1024_clean.a

SOURCES = codec.c common.c fft.c fpr.c keygen.c pqclean.c rng.c sign.c vrfy.c
OBJECTS = codec.o common.o fft.o fpr.o keygen.o pqclean.o rng.o sign.o vrfy.o
HEADERS = api.h fpr.h inner.h

CFLAGS=-O3 -Wall -Wconversion -Wextra -Wpedantic -Wvla -Werror -Wmissing-prototypes -Wredundant-decls -std=c99 -I../../../common $(EXTRAFLAGS)

all: $(LIB)

%.o: %.c $(HEADERS)
$(CC) $(CFLAGS) -c -o $@ $<

$(LIB): $(OBJECTS)
$(AR) -r $@ $(OBJECTS)

clean:
$(RM) $(OBJECTS)
$(RM) $(LIB)

+ 18
- 0
crypto_sign/falcon-1024/clean/Makefile.Microsoft_nmake Ver fichero

@@ -0,0 +1,18 @@
# This Makefile can be used with Microsoft Visual Studio's nmake using the command:
# nmake /f Makefile.Microsoft_nmake

LIBRARY=libfalcon-1024_clean.lib
OBJECTS=codec.obj common.obj fft.obj fpr.obj keygen.obj pqclean.obj rng.obj sign.obj vrfy.obj
CFLAGS=/nologo /I ..\..\..\common /W4 /WX

all: $(LIBRARY)

# Make sure objects are recompiled if headers change.
$(OBJECTS): *.h

$(LIBRARY): $(OBJECTS)
LIB.EXE /NOLOGO /WX /OUT:$@ $**

clean:
-DEL $(OBJECTS)
-DEL $(LIBRARY)

+ 80
- 0
crypto_sign/falcon-1024/clean/api.h Ver fichero

@@ -0,0 +1,80 @@
#ifndef PQCLEAN_FALCON1024_CLEAN_API_H
#define PQCLEAN_FALCON1024_CLEAN_API_H

#include <stddef.h>
#include <stdint.h>

#define PQCLEAN_FALCON1024_CLEAN_CRYPTO_SECRETKEYBYTES 2305
#define PQCLEAN_FALCON1024_CLEAN_CRYPTO_PUBLICKEYBYTES 1793
#define PQCLEAN_FALCON1024_CLEAN_CRYPTO_BYTES 1330

#define PQCLEAN_FALCON1024_CLEAN_CRYPTO_ALGNAME "Falcon-1024"

/*
* Generate a new key pair. Public key goes into pk[], private key in sk[].
* Key sizes are exact (in bytes):
* public (pk): PQCLEAN_FALCON1024_CLEAN_CRYPTO_PUBLICKEYBYTES
* private (sk): PQCLEAN_FALCON1024_CLEAN_CRYPTO_SECRETKEYBYTES
*
* Return value: 0 on success, -1 on error.
*/
int PQCLEAN_FALCON1024_CLEAN_crypto_sign_keypair(
uint8_t *pk, uint8_t *sk);

/*
* Compute a signature on a provided message (m, mlen), with a given
* private key (sk). Signature is written in sig[], with length written
* into *siglen. Signature length is variable; maximum signature length
* (in bytes) is PQCLEAN_FALCON1024_CLEAN_CRYPTO_BYTES.
*
* sig[], m[] and sk[] may overlap each other arbitrarily.
*
* Return value: 0 on success, -1 on error.
*/
int PQCLEAN_FALCON1024_CLEAN_crypto_sign_signature(
uint8_t *sig, size_t *siglen,
const uint8_t *m, size_t mlen, const uint8_t *sk);

/*
* Verify a signature (sig, siglen) on a message (m, mlen) with a given
* public key (pk).
*
* sig[], m[] and pk[] may overlap each other arbitrarily.
*
* Return value: 0 on success, -1 on error.
*/
int PQCLEAN_FALCON1024_CLEAN_crypto_sign_verify(
const uint8_t *sig, size_t siglen,
const uint8_t *m, size_t mlen, const uint8_t *pk);

/*
* Compute a signature on a message and pack the signature and message
* into a single object, written into sm[]. The length of that output is
* written in *smlen; that length may be larger than the message length
* (mlen) by up to PQCLEAN_FALCON1024_CLEAN_CRYPTO_BYTES.
*
* sm[] and m[] may overlap each other arbitrarily; however, sm[] shall
* not overlap with sk[].
*
* Return value: 0 on success, -1 on error.
*/
int PQCLEAN_FALCON1024_CLEAN_crypto_sign(
uint8_t *sm, size_t *smlen,
const uint8_t *m, size_t mlen, const uint8_t *sk);

/*
* Open a signed message object (sm, smlen) and verify the signature;
* on success, the message itself is written into m[] and its length
* into *mlen. The message is shorter than the signed message object,
* but the size difference depends on the signature value; the difference
* may range up to PQCLEAN_FALCON1024_CLEAN_CRYPTO_BYTES.
*
* m[], sm[] and pk[] may overlap each other arbitrarily.
*
* Return value: 0 on success, -1 on error.
*/
int PQCLEAN_FALCON1024_CLEAN_crypto_sign_open(
uint8_t *m, size_t *mlen,
const uint8_t *sm, size_t smlen, const uint8_t *pk);

#endif

+ 549
- 0
crypto_sign/falcon-1024/clean/codec.c Ver fichero

@@ -0,0 +1,549 @@
/*
* Encoding/decoding of keys and signatures.
*
* ==========================(LICENSE BEGIN)============================
*
* Copyright (c) 2017-2019 Falcon Project
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* ===========================(LICENSE END)=============================
*
* @author Thomas Pornin <thomas.pornin@nccgroup.com>
*/

#include "inner.h"

/* see inner.h */
size_t
PQCLEAN_FALCON1024_CLEAN_modq_encode(
void *out, size_t max_out_len,
const uint16_t *x, unsigned logn) {
size_t n, out_len, u;
uint8_t *buf;
uint32_t acc;
int acc_len;

n = (size_t)1 << logn;
for (u = 0; u < n; u ++) {
if (x[u] >= 12289) {
return 0;
}
}
out_len = ((n * 14) + 7) >> 3;
if (out == NULL) {
return out_len;
}
if (out_len > max_out_len) {
return 0;
}
buf = out;
acc = 0;
acc_len = 0;
for (u = 0; u < n; u ++) {
acc = (acc << 14) | x[u];
acc_len += 14;
while (acc_len >= 8) {
acc_len -= 8;
*buf ++ = (uint8_t)(acc >> acc_len);
}
}
if (acc_len > 0) {
*buf = (uint8_t)(acc << (8 - acc_len));
}
return out_len;
}

/* see inner.h */
size_t
PQCLEAN_FALCON1024_CLEAN_modq_decode(
uint16_t *x, unsigned logn,
const void *in, size_t in_max_len) {
size_t n, in_len, u;
const uint8_t *buf;
uint32_t acc;
int acc_len;

n = (size_t)1 << logn;
in_len = ((n * 14) + 7) >> 3;
if (in_len > in_max_len) {
return 0;
}
buf = in;
acc = 0;
acc_len = 0;
u = 0;
while (u < n) {
acc = (acc << 8) | (*buf ++);
acc_len += 8;
if (acc_len >= 14) {
unsigned w;

acc_len -= 14;
w = (acc >> acc_len) & 0x3FFF;
if (w >= 12289) {
return 0;
}
x[u ++] = (uint16_t)w;
}
}
if ((acc & (((uint32_t)1 << acc_len) - 1)) != 0) {
return 0;
}
return in_len;
}

/* see inner.h */
size_t
PQCLEAN_FALCON1024_CLEAN_trim_i16_encode(
void *out, size_t max_out_len,
const int16_t *x, unsigned logn, unsigned bits) {
size_t n, u, out_len;
int minv, maxv;
uint8_t *buf;
uint32_t acc, mask;
unsigned acc_len;

n = (size_t)1 << logn;
maxv = (1 << (bits - 1)) - 1;
minv = -maxv;
for (u = 0; u < n; u ++) {
if (x[u] < minv || x[u] > maxv) {
return 0;
}
}
out_len = ((n * bits) + 7) >> 3;
if (out == NULL) {
return out_len;
} else if (out_len > max_out_len) {
return 0;
}
buf = out;
acc = 0;
acc_len = 0;
mask = ((uint32_t)1 << bits) - 1;
for (u = 0; u < n; u ++) {
acc = (acc << bits) | ((uint16_t)x[u] & mask);
acc_len += bits;
while (acc_len >= 8) {
acc_len -= 8;
*buf ++ = (uint8_t)(acc >> acc_len);
}
}
if (acc_len > 0) {
*buf ++ = (uint8_t)(acc << (8 - acc_len));
}
return out_len;
}

/* see inner.h */
size_t
PQCLEAN_FALCON1024_CLEAN_trim_i16_decode(
int16_t *x, unsigned logn, unsigned bits,
const void *in, size_t in_max_len) {
size_t n, in_len;
const uint8_t *buf;
size_t u;
uint32_t acc, mask1, mask2;
unsigned acc_len;

n = (size_t)1 << logn;
in_len = ((n * bits) + 7) >> 3;
if (in_len > in_max_len) {
return 0;
}
buf = in;
u = 0;
acc = 0;
acc_len = 0;
mask1 = ((uint32_t)1 << bits) - 1;
mask2 = (uint32_t)1 << (bits - 1);
while (u < n) {
acc = (acc << 8) | *buf ++;
acc_len += 8;
while (acc_len >= bits && u < n) {
uint32_t w;

acc_len -= bits;
w = (acc >> acc_len) & mask1;
w |= -(w & mask2);
if (w == -mask2) {
/*
* The -2^(bits-1) value is forbidden.
*/
return 0;
}
w |= -(w & mask2);
x[u ++] = (int16_t) * (int32_t *)&w;
}
}
if ((acc & (((uint32_t)1 << acc_len) - 1)) != 0) {
/*
* Extra bits in the last byte must be zero.
*/
return 0;
}
return in_len;
}

/* see inner.h */
size_t
PQCLEAN_FALCON1024_CLEAN_trim_i8_encode(
void *out, size_t max_out_len,
const int8_t *x, unsigned logn, unsigned bits) {
size_t n, u, out_len;
int minv, maxv;
uint8_t *buf;
uint32_t acc, mask;
unsigned acc_len;

n = (size_t)1 << logn;
maxv = (1 << (bits - 1)) - 1;
minv = -maxv;
for (u = 0; u < n; u ++) {
if (x[u] < minv || x[u] > maxv) {
return 0;
}
}
out_len = ((n * bits) + 7) >> 3;
if (out == NULL) {
return out_len;
} else if (out_len > max_out_len) {
return 0;
}
buf = out;
acc = 0;
acc_len = 0;
mask = ((uint32_t)1 << bits) - 1;
for (u = 0; u < n; u ++) {
acc = (acc << bits) | ((uint8_t)x[u] & mask);
acc_len += bits;
while (acc_len >= 8) {
acc_len -= 8;
*buf ++ = (uint8_t)(acc >> acc_len);
}
}
if (acc_len > 0) {
*buf ++ = (uint8_t)(acc << (8 - acc_len));
}
return out_len;
}

/* see inner.h */
size_t
PQCLEAN_FALCON1024_CLEAN_trim_i8_decode(
int8_t *x, unsigned logn, unsigned bits,
const void *in, size_t in_max_len) {
size_t n, in_len;
const uint8_t *buf;
size_t u;
uint32_t acc, mask1, mask2;
unsigned acc_len;

n = (size_t)1 << logn;
in_len = ((n * bits) + 7) >> 3;
if (in_len > in_max_len) {
return 0;
}
buf = in;
u = 0;
acc = 0;
acc_len = 0;
mask1 = ((uint32_t)1 << bits) - 1;
mask2 = (uint32_t)1 << (bits - 1);
while (u < n) {
acc = (acc << 8) | *buf ++;
acc_len += 8;
while (acc_len >= bits && u < n) {
uint32_t w;

acc_len -= bits;
w = (acc >> acc_len) & mask1;
w |= -(w & mask2);
if (w == -mask2) {
/*
* The -2^(bits-1) value is forbidden.
*/
return 0;
}
x[u ++] = (int8_t) * (int32_t *)&w;
}
}
if ((acc & (((uint32_t)1 << acc_len) - 1)) != 0) {
/*
* Extra bits in the last byte must be zero.
*/
return 0;
}
return in_len;
}

/* see inner.h */
size_t
PQCLEAN_FALCON1024_CLEAN_comp_encode(
void *out, size_t max_out_len,
const int16_t *x, unsigned logn) {
uint8_t *buf;
size_t n, u, v;
uint32_t acc;
unsigned acc_len;

n = (size_t)1 << logn;
buf = out;

/*
* Make sure that all values are within the -2047..+2047 range.
*/
for (u = 0; u < n; u ++) {
if (x[u] < -2047 || x[u] > +2047) {
return 0;
}
}

acc = 0;
acc_len = 0;
v = 0;
for (u = 0; u < n; u ++) {
int t;
unsigned w;

/*
* Get sign and absolute value of next integer; push the
* sign bit.
*/
acc <<= 1;
t = x[u];
if (t < 0) {
t = -t;
acc |= 1;
}
w = (unsigned)t;

/*
* Push the low 7 bits of the absolute value.
*/
acc <<= 7;
acc |= w & 127u;
w >>= 7;

/*
* We pushed exactly 8 bits.
*/
acc_len += 8;

/*
* Push as many zeros as necessary, then a one. Since the
* absolute value is at most 2047, w can only range up to
* 15 at this point, thus we will add at most 16 bits
* here. With the 8 bits above and possibly up to 7 bits
* from previous iterations, we may go up to 31 bits, which
* will fit in the accumulator, which is an uint32_t.
*/
acc <<= (w + 1);
acc |= 1;
acc_len += w + 1;

/*
* Produce all full bytes.
*/
while (acc_len >= 8) {
acc_len -= 8;
if (buf != NULL) {
if (v >= max_out_len) {
return 0;
}
buf[v] = (uint8_t)(acc >> acc_len);
}
v ++;
}
}

/*
* Flush remaining bits (if any).
*/
if (acc_len > 0) {
if (buf != NULL) {
if (v >= max_out_len) {
return 0;
}
buf[v] = (uint8_t)(acc << (8 - acc_len));
}
v ++;
}

return v;
}

/* see inner.h */
size_t
PQCLEAN_FALCON1024_CLEAN_comp_decode(
int16_t *x, unsigned logn,
const void *in, size_t in_max_len) {
const uint8_t *buf;
size_t n, u, v;
uint32_t acc;
unsigned acc_len;

n = (size_t)1 << logn;
buf = in;
acc = 0;
acc_len = 0;
v = 0;
for (u = 0; u < n; u ++) {
unsigned b, s, m;

/*
* Get next eight bits: sign and low seven bits of the
* absolute value.
*/
if (v >= in_max_len) {
return 0;
}
acc = (acc << 8) | (uint32_t)buf[v ++];
b = acc >> acc_len;
s = b & 128;
m = b & 127;

/*
* Get next bits until a 1 is reached.
*/
for (;;) {
if (acc_len == 0) {
if (v >= in_max_len) {
return 0;
}
acc = (acc << 8) | (uint32_t)buf[v ++];
acc_len = 8;
}
acc_len --;
if (((acc >> acc_len) & 1) != 0) {
break;
}
m += 128;
if (m > 2047) {
return 0;
}
}
x[u] = (int16_t)(s ? -(int)m : (int)m);
}
return v;
}

/*
* Key elements and signatures are polynomials with small integer
* coefficients. Here are some statistics gathered over many
* generated key pairs (10000 or more for each degree):
*
* log(n) n max(f,g) std(f,g) max(F,G) std(F,G)
* 1 2 129 56.31 143 60.02
* 2 4 123 40.93 160 46.52
* 3 8 97 28.97 159 38.01
* 4 16 100 21.48 154 32.50
* 5 32 71 15.41 151 29.36
* 6 64 59 11.07 138 27.77
* 7 128 39 7.91 144 27.00
* 8 256 32 5.63 148 26.61
* 9 512 22 4.00 137 26.46
* 10 1024 15 2.84 146 26.41
*
* We want a compact storage format for private key, and, as part of
* key generation, we are allowed to reject some keys which would
* otherwise be fine (this does not induce any noticeable vulnerability
* as long as we reject only a small proportion of possible keys).
* Hence, we enforce at key generation time maximum values for the
* elements of f, g, F and G, so that their encoding can be expressed
* in fixed-width values. Limits have been chosen so that generated
* keys are almost always within bounds, thus not impacting neither
* security or performance.
*
* IMPORTANT: the code assumes that all coefficients of f, g, F and G
* ultimately fit in the -127..+127 range. Thus, none of the elements
* of max_fg_bits[] and max_FG_bits[] shall be greater than 8.
*/

const uint8_t PQCLEAN_FALCON1024_CLEAN_max_fg_bits[] = {
0, /* unused */
8,
8,
8,
8,
8,
7,
7,
6,
6,
5
};

const uint8_t PQCLEAN_FALCON1024_CLEAN_max_FG_bits[] = {
0, /* unused */
8,
8,
8,
8,
8,
8,
8,
8,
8,
8
};

/*
* When generating a new key pair, we can always reject keys which
* feature an abnormally large coefficient. This can also be done for
* signatures, albeit with some care: in case the signature process is
* used in a derandomized setup (explicitly seeded with the message and
* private key), we have to follow the specification faithfully, and the
* specification only enforces a limit on the L2 norm of the signature
* vector. The limit on the L2 norm implies that the absolute value of
* a coefficient of the signature cannot be more than the following:
*
* log(n) n max sig coeff (theoretical)
* 1 2 412
* 2 4 583
* 3 8 824
* 4 16 1166
* 5 32 1649
* 6 64 2332
* 7 128 3299
* 8 256 4665
* 9 512 6598
* 10 1024 9331
*
* However, the largest observed signature coefficients during our
* experiments was 1077 (in absolute value), hence we can assume that,
* with overwhelming probability, signature coefficients will fit
* in -2047..2047, i.e. 12 bits.
*/

const uint8_t PQCLEAN_FALCON1024_CLEAN_max_sig_bits[] = {
0, /* unused */
10,
11,
11,
12,
12,
12,
12,
12,
12,
12
};

+ 261
- 0
crypto_sign/falcon-1024/clean/common.c Ver fichero

@@ -0,0 +1,261 @@
/*
* Support functions for signatures (hash-to-point, norm).
*
* ==========================(LICENSE BEGIN)============================
*
* Copyright (c) 2017-2019 Falcon Project
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* ===========================(LICENSE END)=============================
*
* @author Thomas Pornin <thomas.pornin@nccgroup.com>
*/

#include "inner.h"

/* see inner.h */
void
PQCLEAN_FALCON1024_CLEAN_hash_to_point(
shake256_context *sc,
uint16_t *x, unsigned logn, uint8_t *tmp) {

/*
* Each 16-bit sample is a value in 0..65535. The value is
* kept if it falls in 0..61444 (because 61445 = 5*12289)
* and rejected otherwise; thus, each sample has probability
* about 0.93758 of being selected.
*
* We want to oversample enough to be sure that we will
* have enough values with probability at least 1 - 2^(-256).
* Depending on degree N, this leads to the following
* required oversampling:
*
* logn n oversampling
* 1 2 65
* 2 4 67
* 3 8 71
* 4 16 77
* 5 32 86
* 6 64 100
* 7 128 122
* 8 256 154
* 9 512 205
* 10 1024 287
*
* If logn >= 7, then the provided temporary buffer is large
* enough. Otherwise, we use a stack buffer of 63 entries
* (i.e. 126 bytes) for the values that do not fit in tmp[].
*/

static const uint16_t overtab[] = {
0, /* unused */
65,
67,
71,
77,
86,
100,
122,
154,
205,
287
};

unsigned n, n2, u, m, p, over;
uint16_t *tt1, tt2[63];

/*
* We first generate m 16-bit value. Values 0..n-1 go to x[].
* Values n..2*n-1 go to tt1[]. Values 2*n and later go to tt2[].
* We also reduce modulo q the values; rejected values are set
* to 0xFFFF.
*/
n = 1U << logn;
n2 = n << 1;
over = overtab[logn];
m = n + over;
tt1 = (uint16_t *)tmp;
for (u = 0; u < m; u ++) {
uint8_t buf[2];
uint32_t w, wr;

shake256_extract(sc, buf, sizeof buf);
w = ((uint32_t)buf[0] << 8) | (uint32_t)buf[1];
wr = w - ((uint32_t)24578 & (((w - 24578) >> 31) - 1));
wr = wr - ((uint32_t)24578 & (((wr - 24578) >> 31) - 1));
wr = wr - ((uint32_t)12289 & (((wr - 12289) >> 31) - 1));
wr |= ((w - 61445) >> 31) - 1;
if (u < n) {
x[u] = (uint16_t)wr;
} else if (u < n2) {
tt1[u - n] = (uint16_t)wr;
} else {
tt2[u - n2] = (uint16_t)wr;
}
}

/*
* Now we must "squeeze out" the invalid values. We do this in
* a logarithmic sequence of passes; each pass computes where a
* value should go, and moves it down by 'p' slots if necessary,
* where 'p' uses an increasing powers-of-two scale. It can be
* shown that in all cases where the loop decides that a value
* has to be moved down by p slots, the destination slot is
* "free" (i.e. contains an invalid value).
*/
for (p = 1; p <= over; p <<= 1) {
unsigned v;

/*
* In the loop below:
*
* - v contains the index of the final destination of
* the value; it is recomputed dynamically based on
* whether values are valid or not.
*
* - u is the index of the value we consider ("source");
* its address is s.
*
* - The loop may swap the value with the one at index
* u-p. The address of the swap destination is d.
*/
v = 0;
for (u = 0; u < m; u ++) {
uint16_t *s, *d;
unsigned j, sv, dv, m;

if (u < n) {
s = &x[u];
} else if (u < n2) {
s = &tt1[u - n];
} else {
s = &tt2[u - n2];
}
sv = *s;

/*
* The value in sv should ultimately go to
* address v, i.e. jump back by u-v slots.
*/
j = u - v;

/*
* We increment v for the next iteration, but
* only if the source value is valid. The mask
* 'm' is -1 if the value is valid, 0 otherwise,
* so we _subtract_ m.
*/
m = (sv >> 15) - 1U;
v -= m;

/*
* In this loop we consider jumps by p slots; if
* u < p then there is nothing more to do.
*/
if (u < p) {
continue;
}

/*
* Destination for the swap: value at address u-p.
*/
if ((u - p) < n) {
d = &x[u - p];
} else if ((u - p) < n2) {
d = &tt1[(u - p) - n];
} else {
d = &tt2[(u - p) - n2];
}
dv = *d;

/*
* The swap should be performed only if the source
* is valid AND the jump j has its 'p' bit set.
*/
m &= -(((j & p) + 0x1FF) >> 9);

*s = (uint16_t)(sv ^ (m & (sv ^ dv)));
*d = (uint16_t)(dv ^ (m & (sv ^ dv)));
}
}

}

/* see inner.h */
int
PQCLEAN_FALCON1024_CLEAN_is_short(
const int16_t *s1, const int16_t *s2, unsigned logn) {
/*
* We use the l2-norm. Code below uses only 32-bit operations to
* compute the square of the norm with saturation to 2^32-1 if
* the value exceeds 2^31-1.
*/
size_t n, u;
uint32_t s, ng;

n = (size_t)1 << logn;
s = 0;
ng = 0;
for (u = 0; u < n; u ++) {
int32_t z;

z = s1[u];
s += (uint32_t)(z * z);
ng |= s;
z = s2[u];
s += (uint32_t)(z * z);
ng |= s;
}
s |= -(ng >> 31);

/*
* Acceptance bound on the l2-norm is:
* 1.2*1.55*sqrt(q)*sqrt(2*N)
* Value 7085 is floor((1.2^2)*(1.55^2)*2*1024).
*/
return s < (((uint32_t)7085 * (uint32_t)12289) >> (10 - logn));
}

/* see inner.h */
int
PQCLEAN_FALCON1024_CLEAN_is_short_half(
uint32_t sqn, const int16_t *a, unsigned logn) {
size_t n, u;
uint32_t ng;

n = (size_t)1 << logn;
ng = -(sqn >> 31);
for (u = 0; u < n; u ++) {
int32_t z;

z = a[u];
sqn += (uint32_t)(z * z);
ng |= sqn;
}
sqn |= -(ng >> 31);

/*
* Acceptance bound on the l2-norm is:
* 1.2*1.55*sqrt(q)*sqrt(2*N)
* Value 7085 is floor((1.2^2)*(1.55^2)*2*1024).
*/
return sqn < (((uint32_t)7085 * (uint32_t)12289) >> (10 - logn));
}

+ 699
- 0
crypto_sign/falcon-1024/clean/fft.c Ver fichero

@@ -0,0 +1,699 @@
/*
* FFT code.
*
* ==========================(LICENSE BEGIN)============================
*
* Copyright (c) 2017-2019 Falcon Project
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* ===========================(LICENSE END)=============================
*
* @author Thomas Pornin <thomas.pornin@nccgroup.com>
*/

#include "inner.h"

/*
* Rules for complex number macros:
* --------------------------------
*
* Operand order is: destination, source1, source2...
*
* Each operand is a real and an imaginary part.
*
* All overlaps are allowed.
*/

/*
* Addition of two complex numbers (d = a + b).
*/
#define FPC_ADD(d_re, d_im, a_re, a_im, b_re, b_im) do { \
fpr fpct_re, fpct_im; \
fpct_re = fpr_add(a_re, b_re); \
fpct_im = fpr_add(a_im, b_im); \
(d_re) = fpct_re; \
(d_im) = fpct_im; \
} while (0)

/*
* Subtraction of two complex numbers (d = a - b).
*/
#define FPC_SUB(d_re, d_im, a_re, a_im, b_re, b_im) do { \
fpr fpct_re, fpct_im; \
fpct_re = fpr_sub(a_re, b_re); \
fpct_im = fpr_sub(a_im, b_im); \
(d_re) = fpct_re; \
(d_im) = fpct_im; \
} while (0)

/*
* Multplication of two complex numbers (d = a * b).
*/
#define FPC_MUL(d_re, d_im, a_re, a_im, b_re, b_im) do { \
fpr fpct_a_re, fpct_a_im; \
fpr fpct_b_re, fpct_b_im; \
fpr fpct_d_re, fpct_d_im; \
fpct_a_re = (a_re); \
fpct_a_im = (a_im); \
fpct_b_re = (b_re); \
fpct_b_im = (b_im); \
fpct_d_re = fpr_sub( \
fpr_mul(fpct_a_re, fpct_b_re), \
fpr_mul(fpct_a_im, fpct_b_im)); \
fpct_d_im = fpr_add( \
fpr_mul(fpct_a_re, fpct_b_im), \
fpr_mul(fpct_a_im, fpct_b_re)); \
(d_re) = fpct_d_re; \
(d_im) = fpct_d_im; \
} while (0)

/*
* Squaring of a complex number (d = a * a).
*/
#define FPC_SQR(d_re, d_im, a_re, a_im) do { \
fpr fpct_a_re, fpct_a_im; \
fpr fpct_d_re, fpct_d_im; \
fpct_a_re = (a_re); \
fpct_a_im = (a_im); \
fpct_d_re = fpr_sub(fpr_sqr(fpct_a_re), fpr_sqr(fpct_a_im)); \
fpct_d_im = fpr_double(fpr_mul(fpct_a_re, fpct_a_im)); \
(d_re) = fpct_d_re; \
(d_im) = fpct_d_im; \
} while (0)

/*
* Inversion of a complex number (d = 1 / a).
*/
#define FPC_INV(d_re, d_im, a_re, a_im) do { \
fpr fpct_a_re, fpct_a_im; \
fpr fpct_d_re, fpct_d_im; \
fpr fpct_m; \
fpct_a_re = (a_re); \
fpct_a_im = (a_im); \
fpct_m = fpr_add(fpr_sqr(fpct_a_re), fpr_sqr(fpct_a_im)); \
fpct_m = fpr_inv(fpct_m); \
fpct_d_re = fpr_mul(fpct_a_re, fpct_m); \
fpct_d_im = fpr_mul(fpr_neg(fpct_a_im), fpct_m); \
(d_re) = fpct_d_re; \
(d_im) = fpct_d_im; \
} while (0)

/*
* Division of complex numbers (d = a / b).
*/
#define FPC_DIV(d_re, d_im, a_re, a_im, b_re, b_im) do { \
fpr fpct_a_re, fpct_a_im; \
fpr fpct_b_re, fpct_b_im; \
fpr fpct_d_re, fpct_d_im; \
fpr fpct_m; \
fpct_a_re = (a_re); \
fpct_a_im = (a_im); \
fpct_b_re = (b_re); \
fpct_b_im = (b_im); \
fpct_m = fpr_add(fpr_sqr(fpct_b_re), fpr_sqr(fpct_b_im)); \
fpct_m = fpr_inv(fpct_m); \
fpct_b_re = fpr_mul(fpct_b_re, fpct_m); \
fpct_b_im = fpr_mul(fpr_neg(fpct_b_im), fpct_m); \
fpct_d_re = fpr_sub( \
fpr_mul(fpct_a_re, fpct_b_re), \
fpr_mul(fpct_a_im, fpct_b_im)); \
fpct_d_im = fpr_add( \
fpr_mul(fpct_a_re, fpct_b_im), \
fpr_mul(fpct_a_im, fpct_b_re)); \
(d_re) = fpct_d_re; \
(d_im) = fpct_d_im; \
} while (0)

/*
* Let w = exp(i*pi/N); w is a primitive 2N-th root of 1. We define the
* values w_j = w^(2j+1) for all j from 0 to N-1: these are the roots
* of X^N+1 in the field of complex numbers. A crucial property is that
* w_{N-1-j} = conj(w_j) = 1/w_j for all j.
*
* FFT representation of a polynomial f (taken modulo X^N+1) is the
* set of values f(w_j). Since f is real, conj(f(w_j)) = f(conj(w_j)),
* thus f(w_{N-1-j}) = conj(f(w_j)). We thus store only half the values,
* for j = 0 to N/2-1; the other half can be recomputed easily when (if)
* needed. A consequence is that FFT representation has the same size
* as normal representation: N/2 complex numbers use N real numbers (each
* complex number is the combination of a real and an imaginary part).
*
* We use a specific ordering which makes computations easier. Let rev()
* be the bit-reversal function over log(N) bits. For j in 0..N/2-1, we
* store the real and imaginary parts of f(w_j) in slots:
*
* Re(f(w_j)) -> slot rev(j)/2
* Im(f(w_j)) -> slot rev(j)/2+N/2
*
* (Note that rev(j) is even for j < N/2.)
*/

/* see inner.h */
void
PQCLEAN_FALCON1024_CLEAN_FFT(fpr *f, unsigned logn) {
/*
* FFT algorithm in bit-reversal order uses the following
* iterative algorithm:
*
* t = N
* for m = 1; m < N; m *= 2:
* ht = t/2
* for i1 = 0; i1 < m; i1 ++:
* j1 = i1 * t
* s = GM[m + i1]
* for j = j1; j < (j1 + ht); j ++:
* x = f[j]
* y = s * f[j + ht]
* f[j] = x + y
* f[j + ht] = x - y
* t = ht
*
* GM[k] contains w^rev(k) for primitive root w = exp(i*pi/N).
*
* In the description above, f[] is supposed to contain complex
* numbers. In our in-memory representation, the real and
* imaginary parts of f[k] are in array slots k and k+N/2.
*
* We only keep the first half of the complex numbers. We can
* see that after the first iteration, the first and second halves
* of the array of complex numbers have separate lives, so we
* simply ignore the second part.
*/

unsigned u;
size_t t, n, hn, m;

/*
* First iteration: compute f[j] + i * f[j+N/2] for all j < N/2
* (because GM[1] = w^rev(1) = w^(N/2) = i).
* In our chosen representation, this is a no-op: everything is
* already where it should be.
*/

/*
* Subsequent iterations are truncated to use only the first
* half of values.
*/
n = (size_t)1 << logn;
hn = n >> 1;
t = hn;
for (u = 1, m = 2; u < logn; u ++, m <<= 1) {
size_t ht, hm, i1, j1;

ht = t >> 1;
hm = m >> 1;
for (i1 = 0, j1 = 0; i1 < hm; i1 ++, j1 += t) {
size_t j, j2;

j2 = j1 + ht;
fpr s_re, s_im;

s_re = fpr_gm_tab[((m + i1) << 1) + 0];
s_im = fpr_gm_tab[((m + i1) << 1) + 1];
for (j = j1; j < j2; j ++) {
fpr x_re, x_im, y_re, y_im;

x_re = f[j];
x_im = f[j + hn];
y_re = f[j + ht];
y_im = f[j + ht + hn];
FPC_MUL(y_re, y_im, y_re, y_im, s_re, s_im);
FPC_ADD(f[j], f[j + hn],
x_re, x_im, y_re, y_im);
FPC_SUB(f[j + ht], f[j + ht + hn],
x_re, x_im, y_re, y_im);
}
}
t = ht;
}
}

/* see inner.h */
void
PQCLEAN_FALCON1024_CLEAN_iFFT(fpr *f, unsigned logn) {
/*
* Inverse FFT algorithm in bit-reversal order uses the following
* iterative algorithm:
*
* t = 1
* for m = N; m > 1; m /= 2:
* hm = m/2
* dt = t*2
* for i1 = 0; i1 < hm; i1 ++:
* j1 = i1 * dt
* s = iGM[hm + i1]
* for j = j1; j < (j1 + t); j ++:
* x = f[j]
* y = f[j + t]
* f[j] = x + y
* f[j + t] = s * (x - y)
* t = dt
* for i1 = 0; i1 < N; i1 ++:
* f[i1] = f[i1] / N
*
* iGM[k] contains (1/w)^rev(k) for primitive root w = exp(i*pi/N)
* (actually, iGM[k] = 1/GM[k] = conj(GM[k])).
*
* In the main loop (not counting the final division loop), in
* all iterations except the last, the first and second half of f[]
* (as an array of complex numbers) are separate. In our chosen
* representation, we do not keep the second half.
*
* The last iteration recombines the recomputed half with the
* implicit half, and should yield only real numbers since the
* target polynomial is real; moreover, s = i at that step.
* Thus, when considering x and y:
* y = conj(x) since the final f[j] must be real
* Therefore, f[j] is filled with 2*Re(x), and f[j + t] is
* filled with 2*Im(x).
* But we already have Re(x) and Im(x) in array slots j and j+t
* in our chosen representation. That last iteration is thus a
* simple doubling of the values in all the array.
*
* We make the last iteration a no-op by tweaking the final
* division into a division by N/2, not N.
*/
size_t u, n, hn, t, m;

n = (size_t)1 << logn;
t = 1;
m = n;
hn = n >> 1;
for (u = logn; u > 1; u --) {
size_t hm, dt, i1, j1;

hm = m >> 1;
dt = t << 1;
for (i1 = 0, j1 = 0; j1 < hn; i1 ++, j1 += dt) {
size_t j, j2;

j2 = j1 + t;
fpr s_re, s_im;

s_re = fpr_gm_tab[((hm + i1) << 1) + 0];
s_im = fpr_neg(fpr_gm_tab[((hm + i1) << 1) + 1]);
for (j = j1; j < j2; j ++) {
fpr x_re, x_im, y_re, y_im;

x_re = f[j];
x_im = f[j + hn];
y_re = f[j + t];
y_im = f[j + t + hn];
FPC_ADD(f[j], f[j + hn],
x_re, x_im, y_re, y_im);
FPC_SUB(x_re, x_im, x_re, x_im, y_re, y_im);
FPC_MUL(f[j + t], f[j + t + hn],
x_re, x_im, s_re, s_im);
}
}
t = dt;
m = hm;
}

/*
* Last iteration is a no-op, provided that we divide by N/2
* instead of N. We need to make a special case for logn = 0.
*/
if (logn > 0) {
fpr ni;

ni = fpr_p2_tab[logn];
for (u = 0; u < n; u ++) {
f[u] = fpr_mul(f[u], ni);
}
}
}

/* see inner.h */
void
PQCLEAN_FALCON1024_CLEAN_poly_add(
fpr *restrict a, const fpr *restrict b, unsigned logn) {
size_t n, u;

n = (size_t)1 << logn;
for (u = 0; u < n; u ++) {
a[u] = fpr_add(a[u], b[u]);
}
}

/* see inner.h */
void
PQCLEAN_FALCON1024_CLEAN_poly_sub(
fpr *restrict a, const fpr *restrict b, unsigned logn) {
size_t n, u;

n = (size_t)1 << logn;
for (u = 0; u < n; u ++) {
a[u] = fpr_sub(a[u], b[u]);
}
}

/* see inner.h */
void
PQCLEAN_FALCON1024_CLEAN_poly_neg(fpr *a, unsigned logn) {
size_t n, u;

n = (size_t)1 << logn;
for (u = 0; u < n; u ++) {
a[u] = fpr_neg(a[u]);
}
}

/* see inner.h */
void
PQCLEAN_FALCON1024_CLEAN_poly_adj_fft(fpr *a, unsigned logn) {
size_t n, u;

n = (size_t)1 << logn;
for (u = (n >> 1); u < n; u ++) {
a[u] = fpr_neg(a[u]);
}
}

/* see inner.h */
void
PQCLEAN_FALCON1024_CLEAN_poly_mul_fft(
fpr *restrict a, const fpr *restrict b, unsigned logn) {
size_t n, hn, u;

n = (size_t)1 << logn;
hn = n >> 1;
for (u = 0; u < hn; u ++) {
fpr a_re, a_im, b_re, b_im;

a_re = a[u];
a_im = a[u + hn];
b_re = b[u];
b_im = b[u + hn];
FPC_MUL(a[u], a[u + hn], a_re, a_im, b_re, b_im);
}
}

/* see inner.h */
void
PQCLEAN_FALCON1024_CLEAN_poly_muladj_fft(
fpr *restrict a, const fpr *restrict b, unsigned logn) {
size_t n, hn, u;

n = (size_t)1 << logn;
hn = n >> 1;
for (u = 0; u < hn; u ++) {
fpr a_re, a_im, b_re, b_im;

a_re = a[u];
a_im = a[u + hn];
b_re = b[u];
b_im = fpr_neg(b[u + hn]);
FPC_MUL(a[u], a[u + hn], a_re, a_im, b_re, b_im);
}
}

/* see inner.h */
void
PQCLEAN_FALCON1024_CLEAN_poly_mulselfadj_fft(fpr *a, unsigned logn) {
/*
* Since each coefficient is multiplied with its own conjugate,
* the result contains only real values.
*/
size_t n, hn, u;

n = (size_t)1 << logn;
hn = n >> 1;
for (u = 0; u < hn; u ++) {
fpr a_re, a_im;

a_re = a[u];
a_im = a[u + hn];
a[u] = fpr_add(fpr_sqr(a_re), fpr_sqr(a_im));
a[u + hn] = fpr_zero;
}
}

/* see inner.h */
void
PQCLEAN_FALCON1024_CLEAN_poly_mulconst(fpr *a, fpr x, unsigned logn) {
size_t n, u;

n = (size_t)1 << logn;
for (u = 0; u < n; u ++) {
a[u] = fpr_mul(a[u], x);
}
}

/* see inner.h */
void
PQCLEAN_FALCON1024_CLEAN_poly_div_fft(
fpr *restrict a, const fpr *restrict b, unsigned logn) {
size_t n, hn, u;

n = (size_t)1 << logn;
hn = n >> 1;
for (u = 0; u < hn; u ++) {
fpr a_re, a_im, b_re, b_im;

a_re = a[u];
a_im = a[u + hn];
b_re = b[u];
b_im = b[u + hn];
FPC_DIV(a[u], a[u + hn], a_re, a_im, b_re, b_im);
}
}

/* see inner.h */
void
PQCLEAN_FALCON1024_CLEAN_poly_invnorm2_fft(fpr *restrict d,
const fpr *restrict a, const fpr *restrict b, unsigned logn) {
size_t n, hn, u;

n = (size_t)1 << logn;
hn = n >> 1;
for (u = 0; u < hn; u ++) {
fpr a_re, a_im;
fpr b_re, b_im;

a_re = a[u];
a_im = a[u + hn];
b_re = b[u];
b_im = b[u + hn];
d[u] = fpr_inv(fpr_add(
fpr_add(fpr_sqr(a_re), fpr_sqr(a_im)),
fpr_add(fpr_sqr(b_re), fpr_sqr(b_im))));
}
}

/* see inner.h */
void
PQCLEAN_FALCON1024_CLEAN_poly_add_muladj_fft(fpr *restrict d,
const fpr *restrict F, const fpr *restrict G,
const fpr *restrict f, const fpr *restrict g, unsigned logn) {
size_t n, hn, u;

n = (size_t)1 << logn;
hn = n >> 1;
for (u = 0; u < hn; u ++) {
fpr F_re, F_im, G_re, G_im;
fpr f_re, f_im, g_re, g_im;
fpr a_re, a_im, b_re, b_im;

F_re = F[u];
F_im = F[u + hn];
G_re = G[u];
G_im = G[u + hn];
f_re = f[u];
f_im = f[u + hn];
g_re = g[u];
g_im = g[u + hn];

FPC_MUL(a_re, a_im, F_re, F_im, f_re, fpr_neg(f_im));
FPC_MUL(b_re, b_im, G_re, G_im, g_re, fpr_neg(g_im));
d[u] = fpr_add(a_re, b_re);
d[u + hn] = fpr_add(a_im, b_im);
}
}

/* see inner.h */
void
PQCLEAN_FALCON1024_CLEAN_poly_mul_autoadj_fft(
fpr *restrict a, const fpr *restrict b, unsigned logn) {
size_t n, hn, u;

n = (size_t)1 << logn;
hn = n >> 1;
for (u = 0; u < hn; u ++) {
a[u] = fpr_mul(a[u], b[u]);
a[u + hn] = fpr_mul(a[u + hn], b[u]);
}
}

/* see inner.h */
void
PQCLEAN_FALCON1024_CLEAN_poly_div_autoadj_fft(
fpr *restrict a, const fpr *restrict b, unsigned logn) {
size_t n, hn, u;

n = (size_t)1 << logn;
hn = n >> 1;
for (u = 0; u < hn; u ++) {
fpr ib;

ib = fpr_inv(b[u]);
a[u] = fpr_mul(a[u], ib);
a[u + hn] = fpr_mul(a[u + hn], ib);
}
}

/* see inner.h */
void
PQCLEAN_FALCON1024_CLEAN_poly_LDL_fft(
const fpr *restrict g00,
fpr *restrict g01, fpr *restrict g11, unsigned logn) {
size_t n, hn, u;

n = (size_t)1 << logn;
hn = n >> 1;
for (u = 0; u < hn; u ++) {
fpr g00_re, g00_im, g01_re, g01_im, g11_re, g11_im;
fpr mu_re, mu_im;

g00_re = g00[u];
g00_im = g00[u + hn];
g01_re = g01[u];
g01_im = g01[u + hn];
g11_re = g11[u];
g11_im = g11[u + hn];
FPC_DIV(mu_re, mu_im, g01_re, g01_im, g00_re, g00_im);
FPC_MUL(g01_re, g01_im, mu_re, mu_im, g01_re, fpr_neg(g01_im));
FPC_SUB(g11[u], g11[u + hn], g11_re, g11_im, g01_re, g01_im);
g01[u] = mu_re;
g01[u + hn] = fpr_neg(mu_im);
}
}

/* see inner.h */
void
PQCLEAN_FALCON1024_CLEAN_poly_LDLmv_fft(
fpr *restrict d11, fpr *restrict l10,
const fpr *restrict g00, const fpr *restrict g01,
const fpr *restrict g11, unsigned logn) {
size_t n, hn, u;

n = (size_t)1 << logn;
hn = n >> 1;
for (u = 0; u < hn; u ++) {
fpr g00_re, g00_im, g01_re, g01_im, g11_re, g11_im;
fpr mu_re, mu_im;

g00_re = g00[u];
g00_im = g00[u + hn];
g01_re = g01[u];
g01_im = g01[u + hn];
g11_re = g11[u];
g11_im = g11[u + hn];
FPC_DIV(mu_re, mu_im, g01_re, g01_im, g00_re, g00_im);
FPC_MUL(g01_re, g01_im, mu_re, mu_im, g01_re, fpr_neg(g01_im));
FPC_SUB(d11[u], d11[u + hn], g11_re, g11_im, g01_re, g01_im);
l10[u] = mu_re;
l10[u + hn] = fpr_neg(mu_im);
}
}

/* see inner.h */
void
PQCLEAN_FALCON1024_CLEAN_poly_split_fft(
fpr *restrict f0, fpr *restrict f1,
const fpr *restrict f, unsigned logn) {
/*
* The FFT representation we use is in bit-reversed order
* (element i contains f(w^(rev(i))), where rev() is the
* bit-reversal function over the ring degree. This changes
* indexes with regards to the Falcon specification.
*/
size_t n, hn, qn, u;

n = (size_t)1 << logn;
hn = n >> 1;
qn = hn >> 1;

/*
* We process complex values by pairs. For logn = 1, there is only
* one complex value (the other one is the implicit conjugate),
* so we add the two lines below because the loop will be
* skipped.
*/
f0[0] = f[0];
f1[0] = f[hn];

for (u = 0; u < qn; u ++) {
fpr a_re, a_im, b_re, b_im;
fpr t_re, t_im;

a_re = f[(u << 1) + 0];
a_im = f[(u << 1) + 0 + hn];
b_re = f[(u << 1) + 1];
b_im = f[(u << 1) + 1 + hn];

FPC_ADD(t_re, t_im, a_re, a_im, b_re, b_im);
f0[u] = fpr_half(t_re);
f0[u + qn] = fpr_half(t_im);

FPC_SUB(t_re, t_im, a_re, a_im, b_re, b_im);
FPC_MUL(t_re, t_im, t_re, t_im,
fpr_gm_tab[((u + hn) << 1) + 0],
fpr_neg(fpr_gm_tab[((u + hn) << 1) + 1]));
f1[u] = fpr_half(t_re);
f1[u + qn] = fpr_half(t_im);
}
}

/* see inner.h */
void
PQCLEAN_FALCON1024_CLEAN_poly_merge_fft(
fpr *restrict f,
const fpr *restrict f0, const fpr *restrict f1, unsigned logn) {
size_t n, hn, qn, u;

n = (size_t)1 << logn;
hn = n >> 1;
qn = hn >> 1;

/*
* An extra copy to handle the special case logn = 1.
*/
f[0] = f0[0];
f[hn] = f1[0];

for (u = 0; u < qn; u ++) {
fpr a_re, a_im, b_re, b_im;
fpr t_re, t_im;

a_re = f0[u];
a_im = f0[u + qn];
FPC_MUL(b_re, b_im, f1[u], f1[u + qn],
fpr_gm_tab[((u + hn) << 1) + 0],
fpr_gm_tab[((u + hn) << 1) + 1]);
FPC_ADD(t_re, t_im, a_re, a_im, b_re, b_im);
f[(u << 1) + 0] = t_re;
f[(u << 1) + 0 + hn] = t_im;
FPC_SUB(t_re, t_im, a_re, a_im, b_re, b_im);
f[(u << 1) + 1] = t_re;
f[(u << 1) + 1 + hn] = t_im;
}
}

+ 1615
- 0
crypto_sign/falcon-1024/clean/fpr.c
La diferencia del archivo ha sido suprimido porque es demasiado grande
Ver fichero


+ 457
- 0
crypto_sign/falcon-1024/clean/fpr.h Ver fichero

@@ -0,0 +1,457 @@
/*
* Floating-point operations.
*
* ==========================(LICENSE BEGIN)============================
*
* Copyright (c) 2017-2019 Falcon Project
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* ===========================(LICENSE END)=============================
*
* @author Thomas Pornin <thomas.pornin@nccgroup.com>
*/


/* ====================================================================== */
/*
* Custom floating-point implementation with integer arithmetics. We
* use IEEE-754 "binary64" format, with some simplifications:
*
* - Top bit is s = 1 for negative, 0 for positive.
*
* - Exponent e uses the next 11 bits (bits 52 to 62, inclusive).
*
* - Mantissa m uses the 52 low bits.
*
* Encoded value is, in general: (-1)^s * 2^(e-1023) * (1 + m*2^(-52))
* i.e. the mantissa really is a 53-bit number (less than 2.0, but not
* less than 1.0), but the top bit (equal to 1 by definition) is omitted
* in the encoding.
*
* In IEEE-754, there are some special values:
*
* - If e = 2047, then the value is either an infinite (m = 0) or
* a NaN (m != 0).
*
* - If e = 0, then the value is either a zero (m = 0) or a subnormal,
* aka "denormalized number" (m != 0).
*
* Of these, we only need the zeros. The caller is responsible for not
* providing operands that would lead to infinites, NaNs or subnormals.
* If inputs are such that values go out of range, then indeterminate
* values are returned (it would still be deterministic, but no specific
* value may be relied upon).
*
* At the C level, the three parts are stored in a 64-bit unsigned
* word.
*
* One may note that a property of the IEEE-754 format is that order
* is preserved for positive values: if two positive floating-point
* values x and y are such that x < y, then their respective encodings
* as _signed_ 64-bit integers i64(x) and i64(y) will be such that
* i64(x) < i64(y). For negative values, order is reversed: if x < 0,
* y < 0, and x < y, then ia64(x) > ia64(y).
*
* IMPORTANT ASSUMPTIONS:
* ======================
*
* For proper computations, and constant-time behaviour, we assume the
* following:
*
* - 32x32->64 multiplication (unsigned) has an execution time that
* is independent of its operands. This is true of most modern
* x86 and ARM cores. Notable exceptions are the ARM Cortex M0, M0+
* and M3 (in the M0 and M0+, this is done in software, so it depends
* on that routine), and the PowerPC cores from the G3/G4 lines.
* For more info, see: https://www.bearssl.org/ctmul.html
*
* - Left-shifts and right-shifts of 32-bit values have an execution
* time which does not depend on the shifted value nor on the
* shift count. An historical exception is the Pentium IV, but most
* modern CPU have barrel shifters. Some small microcontrollers
* might have varying-time shifts (not the ARM Cortex M*, though).
*
* - Right-shift of a signed negative value performs a sign extension.
* As per the C standard, this operation returns an
* implementation-defined result (this is NOT an "undefined
* behaviour"). On most/all systems, an arithmetic shift is
* performed, because this is what makes most sense.
*/

/*
* Normally we should declare the 'fpr' type to be a struct or union
* around the internal 64-bit value; however, we want to use the
* direct 64-bit integer type to enable a lighter call convention on
* ARM platforms. This means that direct (invalid) use of operators
* such as '*' or '+' will not be caught by the compiler. We rely on
* the "normal" (non-emulated) code to detect such instances.
*/
typedef uint64_t fpr;

/*
* For computations, we split values into an integral mantissa in the
* 2^54..2^55 range, and an (adjusted) exponent. The lowest bit is
* "sticky" (it is set to 1 if any of the bits below it is 1); when
* re-encoding, the low two bits are dropped, but may induce an
* increment in the value for proper rounding.
*/

/*
* Right-shift a 64-bit unsigned value by a possibly secret shift count.
* We assumed that the underlying architecture had a barrel shifter for
* 32-bit shifts, but for 64-bit shifts on a 32-bit system, this will
* typically invoke a software routine that is not necessarily
* constant-time; hence the function below.
*
* Shift count n MUST be in the 0..63 range.
*/
static inline uint64_t
fpr_ursh(uint64_t x, int n) {
x ^= (x ^ (x >> 32)) & -(uint64_t)(n >> 5);
return x >> (n & 31);
}

/*
* Right-shift a 64-bit signed value by a possibly secret shift count
* (see fpr_ursh() for the rationale).
*
* Shift count n MUST be in the 0..63 range.
*/
static inline int64_t
fpr_irsh(int64_t x, int n) {
x ^= (x ^ (x >> 32)) & -(int64_t)(n >> 5);
return x >> (n & 31);
}

/*
* Left-shift a 64-bit unsigned value by a possibly secret shift count
* (see fpr_ursh() for the rationale).
*
* Shift count n MUST be in the 0..63 range.
*/
static inline uint64_t
fpr_ulsh(uint64_t x, int n) {
x ^= (x ^ (x << 32)) & -(uint64_t)(n >> 5);
return x << (n & 31);
}

/*
* Expectations:
* s = 0 or 1
* exponent e is "arbitrary" and unbiased
* 2^54 <= m < 2^55
* Numerical value is (-1)^2 * m * 2^e
*
* Exponents which are too low lead to value zero. If the exponent is
* too large, the returned value is indeterminate.
*
* If m = 0, then a zero is returned (using the provided sign).
* If e < -1076, then a zero is returned (regardless of the value of m).
* If e >= -1076 and e != 0, m must be within the expected range
* (2^54 to 2^55-1).
*/
static inline fpr
FPR(int s, int e, uint64_t m) {
fpr x;
uint32_t t;
unsigned f;

/*
* If e >= -1076, then the value is "normal"; otherwise, it
* should be a subnormal, which we clamp down to zero.
*/
e += 1076;
t = (uint32_t)e >> 31;
m &= (uint64_t)t - 1;

/*
* If m = 0 then we want a zero; make e = 0 too, but conserve
* the sign.
*/
t = (uint32_t)(m >> 54);
e &= -(int)t;

/*
* The 52 mantissa bits come from m. Value m has its top bit set
* (unless it is a zero); we leave it "as is": the top bit will
* increment the exponent by 1, except when m = 0, which is
* exactly what we want.
*/
x = (((uint64_t)s << 63) | (m >> 2)) + ((uint64_t)(uint32_t)e << 52);

/*
* Rounding: if the low three bits of m are 011, 110 or 111,
* then the value should be incremented to get the next
* representable value. This implements the usual
* round-to-nearest rule (with preference to even values in case
* of a tie). Note that the increment may make a carry spill
* into the exponent field, which is again exactly what we want
* in that case.
*/
f = (unsigned)m & 7U;
x += (0xC8U >> f) & 1;
return x;
}

#define fpr_scaled PQCLEAN_FALCON1024_CLEAN_fpr_scaled
fpr fpr_scaled(int64_t i, int sc);

static inline fpr
fpr_of(int64_t i) {
return fpr_scaled(i, 0);
}

static const fpr fpr_q = 4667981563525332992;
static const fpr fpr_inverse_of_q = 4545632735260551042;
static const fpr fpr_inv_2sqrsigma0 = 4594603506513722306;
static const fpr fpr_inv_sigma = 4573359825155195350;
static const fpr fpr_sigma_min_9 = 4608495221497168882;
static const fpr fpr_sigma_min_10 = 4608586345619182117;
static const fpr fpr_log2 = 4604418534313441775;
static const fpr fpr_inv_log2 = 4609176140021203710;
static const fpr fpr_bnorm_max = 4670353323383631276;
static const fpr fpr_zero = 0;
static const fpr fpr_one = 4607182418800017408;
static const fpr fpr_two = 4611686018427387904;
static const fpr fpr_onehalf = 4602678819172646912;
static const fpr fpr_ptwo31 = 4746794007248502784;
static const fpr fpr_ptwo31m1 = 4746794007244308480;
static const fpr fpr_mtwo31m1 = 13970166044099084288U;
static const fpr fpr_ptwo63m1 = 4890909195324358656;
static const fpr fpr_mtwo63m1 = 14114281232179134464U;
static const fpr fpr_ptwo63 = 4890909195324358656;

static inline int64_t
fpr_rint(fpr x) {
uint64_t m, d;
int e;
uint32_t s, dd;
unsigned f;

/*
* We assume that the value fits in -(2^63-1)..+(2^63-1). We can
* thus extract the mantissa as a 63-bit integer, then right-shift
* it as needed.
*/
m = ((x << 10) | ((uint64_t)1 << 62)) & (((uint64_t)1 << 63) - 1);
e = 1085 - ((int)(x >> 52) & 0x7FF);

/*
* If a shift of more than 63 bits is needed, then simply set m
* to zero. This also covers the case of an input operand equal
* to zero.
*/
m &= -(uint64_t)((uint32_t)(e - 64) >> 31);
e &= 63;

/*
* Right-shift m as needed. Shift count is e. Proper rounding
* mandates that:
* - If the highest dropped bit is zero, then round low.
* - If the highest dropped bit is one, and at least one of the
* other dropped bits is one, then round up.
* - If the highest dropped bit is one, and all other dropped
* bits are zero, then round up if the lowest kept bit is 1,
* or low otherwise (i.e. ties are broken by "rounding to even").
*
* We thus first extract a word consisting of all the dropped bit
* AND the lowest kept bit; then we shrink it down to three bits,
* the lowest being "sticky".
*/
d = fpr_ulsh(m, 63 - e);
dd = (uint32_t)d | ((uint32_t)(d >> 32) & 0x1FFFFFFF);
f = (unsigned)(d >> 61) | (unsigned)((dd | -dd) >> 31);
m = fpr_ursh(m, e) + (uint64_t)((0xC8U >> f) & 1U);

/*
* Apply the sign bit.
*/
s = (uint32_t)(x >> 63);
return ((int64_t)m ^ -(int64_t)s) + (int64_t)s;
}

static inline long
fpr_floor(fpr x) {
uint64_t t;
int64_t xi;
int e, cc;

/*
* We extract the integer as a _signed_ 64-bit integer with
* a scaling factor. Since we assume that the value fits
* in the -(2^63-1)..+(2^63-1) range, we can left-shift the
* absolute value to make it in the 2^62..2^63-1 range: we
* will only need a right-shift afterwards.
*/
e = (int)(x >> 52) & 0x7FF;
t = x >> 63;
xi = (int64_t)(((x << 10) | ((uint64_t)1 << 62))
& (((uint64_t)1 << 63) - 1));
xi = (xi ^ -(int64_t)t) + (int64_t)t;
cc = 1085 - e;

/*
* We perform an arithmetic right-shift on the value. This
* applies floor() semantics on both positive and negative values
* (rounding toward minus infinity).
*/
xi = fpr_irsh(xi, cc & 63);

/*
* If the true shift count was 64 or more, then we should instead
* replace xi with 0 (if nonnegative) or -1 (if negative). Edge
* case: -0 will be floored to -1, not 0 (whether this is correct
* is debatable; in any case, the other functions normalize zero
* to +0).
*
* For an input of zero, the non-shifted xi was incorrect (we used
* a top implicit bit of value 1, not 0), but this does not matter
* since this operation will clamp it down.
*/
xi ^= (xi ^ -(int64_t)t) & -(int64_t)((uint32_t)(63 - cc) >> 31);
return xi;
}

static inline int64_t
fpr_trunc(fpr x) {
uint64_t t, xu;
int e, cc;

/*
* Extract the absolute value. Since we assume that the value
* fits in the -(2^63-1)..+(2^63-1) range, we can left-shift
* the absolute value into the 2^62..2^63-1 range, and then
* do a right shift afterwards.
*/
e = (int)(x >> 52) & 0x7FF;
xu = ((x << 10) | ((uint64_t)1 << 62)) & (((uint64_t)1 << 63) - 1);
cc = 1085 - e;
xu = fpr_ursh(xu, cc & 63);

/*
* If the exponent is too low (cc > 63), then the shift was wrong
* and we must clamp the value to 0. This also covers the case
* of an input equal to zero.
*/
xu &= -(uint64_t)((uint32_t)(cc - 64) >> 31);

/*
* Apply back the sign, if the source value is negative.
*/
t = x >> 63;
xu = (xu ^ -t) + t;
return *(int64_t *)&xu;
}

#define fpr_add PQCLEAN_FALCON1024_CLEAN_fpr_add
fpr fpr_add(fpr x, fpr y);

static inline fpr
fpr_sub(fpr x, fpr y) {
y ^= (uint64_t)1 << 63;
return fpr_add(x, y);
}

static inline fpr
fpr_neg(fpr x) {
x ^= (uint64_t)1 << 63;
return x;
}

static inline fpr
fpr_half(fpr x) {
/*
* To divide a value by 2, we just have to subtract 1 from its
* exponent, but we have to take care of zero.
*/
uint32_t t;

x -= (uint64_t)1 << 52;
t = (((uint32_t)(x >> 52) & 0x7FF) + 1) >> 11;
x &= (uint64_t)t - 1;
return x;
}

static inline fpr
fpr_double(fpr x) {
/*
* To double a value, we just increment by one the exponent. We
* don't care about infinites or NaNs; however, 0 is a
* special case.
*/
x += (uint64_t)((((unsigned)(x >> 52) & 0x7FFU) + 0x7FFU) >> 11) << 52;
return x;
}

#define fpr_mul PQCLEAN_FALCON1024_CLEAN_fpr_mul
fpr fpr_mul(fpr x, fpr y);

static inline fpr
fpr_sqr(fpr x) {
return fpr_mul(x, x);
}

#define fpr_div PQCLEAN_FALCON1024_CLEAN_fpr_div
fpr fpr_div(fpr x, fpr y);

static inline fpr
fpr_inv(fpr x) {
return fpr_div(4607182418800017408u, x);
}

#define fpr_sqrt PQCLEAN_FALCON1024_CLEAN_fpr_sqrt
fpr fpr_sqrt(fpr x);

static inline int
fpr_lt(fpr x, fpr y) {
/*
* If x >= 0 or y >= 0, a signed comparison yields the proper
* result:
* - For positive values, the order is preserved.
* - The sign bit is at the same place as in integers, so
* sign is preserved.
*
* If both x and y are negative, then the order is reversed.
* We cannot simply invert the comparison result in that case
* because it would not handle the edge case x = y properly.
*/
int cc0, cc1;

cc0 = *(int64_t *)&x < *(int64_t *)&y;
cc1 = *(int64_t *)&x > *(int64_t *)&y;
return cc0 ^ ((cc0 ^ cc1) & (int)((x & y) >> 63));
}

/*
* Compute exp(x) for x such that |x| <= ln 2. We want a precision of 50
* bits or so.
*/
#define fpr_expm_p63 PQCLEAN_FALCON1024_CLEAN_fpr_expm_p63
uint64_t fpr_expm_p63(fpr x);

#define fpr_gm_tab PQCLEAN_FALCON1024_CLEAN_fpr_gm_tab
extern const fpr fpr_gm_tab[];

#define fpr_p2_tab PQCLEAN_FALCON1024_CLEAN_fpr_p2_tab
extern const fpr fpr_p2_tab[];

/* ====================================================================== */


+ 663
- 0
crypto_sign/falcon-1024/clean/inner.h Ver fichero

@@ -0,0 +1,663 @@
#ifndef FALCON_INNER_H__
#define FALCON_INNER_H__

/*
* Internal functions for Falcon. This is not the API intended to be
* used by applications; instead, this internal API provides all the
* primitives on which wrappers build to provide external APIs.
*
* ==========================(LICENSE BEGIN)============================
*
* Copyright (c) 2017-2019 Falcon Project
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* ===========================(LICENSE END)=============================
*
* @author Thomas Pornin <thomas.pornin@nccgroup.com>
*/


#include <stdint.h>
#include <stdlib.h>
#include <string.h>




/* ==================================================================== */
/*
* SHAKE256 implementation (shake.c).
*
* API is defined to be easily replaced with the fips202.h API defined
* as part of PQ Clean.
*/


#include "fips202.h"

#define shake256_context shake256incctx
#define shake256_init(sc) shake256_inc_init(sc)
#define shake256_inject(sc, in, len) shake256_inc_absorb(sc, in, len)
#define shake256_flip(sc) shake256_inc_finalize(sc)
#define shake256_extract(sc, out, len) shake256_inc_squeeze(out, len, sc)


/* ==================================================================== */
/*
* Encoding/decoding functions (codec.c).
*
* Encoding functions take as parameters an output buffer (out) with
* a given maximum length (max_out_len); returned value is the actual
* number of bytes which have been written. If the output buffer is
* not large enough, then 0 is returned (some bytes may have been
* written to the buffer). If 'out' is NULL, then 'max_out_len' is
* ignored; instead, the function computes and returns the actual
* required output length (in bytes).
*
* Decoding functions take as parameters an input buffer (in) with
* its maximum length (max_in_len); returned value is the actual number
* of bytes that have been read from the buffer. If the provided length
* is too short, then 0 is returned.
*
* Values to encode or decode are vectors of integers, with N = 2^logn
* elements.
*
* Three encoding formats are defined:
*
* - modq: sequence of values modulo 12289, each encoded over exactly
* 14 bits. The encoder and decoder verify that integers are within
* the valid range (0..12288). Values are arrays of uint16.
*
* - trim: sequence of signed integers, a specified number of bits
* each. The number of bits is provided as parameter and includes
* the sign bit. Each integer x must be such that |x| < 2^(bits-1)
* (which means that the -2^(bits-1) value is forbidden); encode and
* decode functions check that property. Values are arrays of
* int16_t or int8_t, corresponding to names 'trim_i16' and
* 'trim_i8', respectively.
*
* - comp: variable-length encoding for signed integers; each integer
* uses a minimum of 9 bits, possibly more. This is normally used
* only for signatures.
*
*/

size_t PQCLEAN_FALCON1024_CLEAN_modq_encode(void *out, size_t max_out_len,
const uint16_t *x, unsigned logn);
size_t PQCLEAN_FALCON1024_CLEAN_trim_i16_encode(void *out, size_t max_out_len,
const int16_t *x, unsigned logn, unsigned bits);
size_t PQCLEAN_FALCON1024_CLEAN_trim_i8_encode(void *out, size_t max_out_len,
const int8_t *x, unsigned logn, unsigned bits);
size_t PQCLEAN_FALCON1024_CLEAN_comp_encode(void *out, size_t max_out_len,
const int16_t *x, unsigned logn);

size_t PQCLEAN_FALCON1024_CLEAN_modq_decode(uint16_t *x, unsigned logn,
const void *in, size_t max_in_len);
size_t PQCLEAN_FALCON1024_CLEAN_trim_i16_decode(int16_t *x, unsigned logn, unsigned bits,
const void *in, size_t max_in_len);
size_t PQCLEAN_FALCON1024_CLEAN_trim_i8_decode(int8_t *x, unsigned logn, unsigned bits,
const void *in, size_t max_in_len);
size_t PQCLEAN_FALCON1024_CLEAN_comp_decode(int16_t *x, unsigned logn,
const void *in, size_t max_in_len);

/*
* Number of bits for key elements, indexed by logn (1 to 10). This
* is at most 8 bits for all degrees, but some degrees may have shorter
* elements.
*/
extern const uint8_t PQCLEAN_FALCON1024_CLEAN_max_fg_bits[];
extern const uint8_t PQCLEAN_FALCON1024_CLEAN_max_FG_bits[];

/*
* Maximum size, in bits, of elements in a signature, indexed by logn
* (1 to 10). The size includes the sign bit.
*/
extern const uint8_t PQCLEAN_FALCON1024_CLEAN_max_sig_bits[];

/* ==================================================================== */
/*
* Support functions used for both signature generation and signature
* verification (common.c).
*/

/*
* From a SHAKE256 context (must be already flipped), produce a new
* point. The temporary buffer (tmp) must have room for 2*2^logn bytes.
*/
void PQCLEAN_FALCON1024_CLEAN_hash_to_point(shake256_context *sc,
uint16_t *x, unsigned logn, uint8_t *tmp);

/*
* Tell whether a given vector (2N coordinates, in two halves) is
* acceptable as a signature. This compares the appropriate norm of the
* vector with the acceptance bound. Returned value is 1 on success
* (vector is short enough to be acceptable), 0 otherwise.
*/
int PQCLEAN_FALCON1024_CLEAN_is_short(const int16_t *s1, const int16_t *s2, unsigned logn);

/*
* Tell whether a given vector (2N coordinates, in two halves) is
* acceptable as a signature. Instead of the first half s1, this
* function receives the "saturated squared norm" of s1, i.e. the
* sum of the squares of the coordinates of s1 (saturated at 2^32-1
* if the sum exceeds 2^31-1).
*
* Returned value is 1 on success (vector is short enough to be
* acceptable), 0 otherwise.
*/
int PQCLEAN_FALCON1024_CLEAN_is_short_half(uint32_t sqn, const int16_t *s2, unsigned logn);

/* ==================================================================== */
/*
* Signature verification functions (vrfy.c).
*/

/*
* Convert a public key to NTT + Montgomery format. Conversion is done
* in place.
*/
void PQCLEAN_FALCON1024_CLEAN_to_ntt_monty(uint16_t *h, unsigned logn);

/*
* Internal signature verification code:
* c0[] contains the hashed nonce+message
* s2[] is the decoded signature
* h[] contains the public key, in NTT + Montgomery format
* logn is the degree log
* tmp[] temporary, must have at least 2*2^logn bytes
* Returned value is 1 on success, 0 on error.
*/
int PQCLEAN_FALCON1024_CLEAN_verify_raw(const uint16_t *c0, const int16_t *s2,
const uint16_t *h, unsigned logn, uint8_t *tmp);

/*
* Compute the public key h[], given the private key elements f[] and
* g[]. This computes h = g/f mod phi mod q, where phi is the polynomial
* modulus. This function returns 1 on success, 0 on error (an error is
* reported if f is not invertible mod phi mod q).
*
* The tmp[] array must have room for at least 2*2^logn elements.
*/
int PQCLEAN_FALCON1024_CLEAN_compute_public(uint16_t *h,
const int8_t *f, const int8_t *g, unsigned logn, uint8_t *tmp);

/*
* Recompute the fourth private key element. Private key consists in
* four polynomials with small coefficients f, g, F and G, which are
* such that fG - gF = q mod phi; furthermore, f is invertible modulo
* phi and modulo q. This function recomputes G from f, g and F.
*
* The tmp[] array must have room for at least 4*2^logn bytes.
*
* Returned value is 1 in success, 0 on error (f not invertible).
*/
int PQCLEAN_FALCON1024_CLEAN_complete_private(int8_t *G,
const int8_t *f, const int8_t *g, const int8_t *F,
unsigned logn, uint8_t *tmp);

/* ==================================================================== */
/*
* Implementation of floating-point real numbers (fpr.h, fpr.c).
*/

/*
* Real numbers are implemented by an extra header file, included below.
* This is meant to support pluggable implementations. The default
* implementation relies on the C type 'double'.
*
* The included file must define the following types, functions and
* constants:
*
* fpr
* type for a real number
*
* fpr fpr_of(int64_t i)
* cast an integer into a real number; source must be in the
* -(2^63-1)..+(2^63-1) range
*
* fpr fpr_scaled(int64_t i, int sc)
* compute i*2^sc as a real number; source 'i' must be in the
* -(2^63-1)..+(2^63-1) range
*
* fpr fpr_ldexp(fpr x, int e)
* compute x*2^e
*
* int64_t fpr_rint(fpr x)
* round x to the nearest integer; x must be in the -(2^63-1)
* to +(2^63-1) range
*
* int64_t fpr_trunc(fpr x)
* round to an integer; this rounds towards zero; value must
* be in the -(2^63-1) to +(2^63-1) range
*
* fpr fpr_add(fpr x, fpr y)
* compute x + y
*
* fpr fpr_sub(fpr x, fpr y)
* compute x - y
*
* fpr fpr_neg(fpr x)
* compute -x
*
* fpr fpr_half(fpr x)
* compute x/2
*
* fpr fpr_double(fpr x)
* compute x*2
*
* fpr fpr_mul(fpr x, fpr y)
* compute x * y
*
* fpr fpr_sqr(fpr x)
* compute x * x
*
* fpr fpr_inv(fpr x)
* compute 1/x
*
* fpr fpr_div(fpr x, fpr y)
* compute x/y
*
* fpr fpr_sqrt(fpr x)
* compute the square root of x
*
* int fpr_lt(fpr x, fpr y)
* return 1 if x < y, 0 otherwise
*
* uint64_t fpr_expm_p63(fpr x)
* return exp(x), assuming that 0 <= x < log(2). Returned value
* is scaled to 63 bits (i.e. it really returns 2^63*exp(-x),
* rounded to the nearest integer). Computation should have a
* precision of at least 45 bits.
*
* const fpr fpr_gm_tab[]
* array of constants for FFT / iFFT
*
* const fpr fpr_p2_tab[]
* precomputed powers of 2 (by index, 0 to 10)
*
* Constants of type 'fpr':
*
* fpr fpr_q 12289
* fpr fpr_inverse_of_q 1/12289
* fpr fpr_inv_2sqrsigma0 1/(2*(1.8205^2))
* fpr fpr_inv_sigma 1/(1.55*sqrt(12289))
* fpr fpr_sigma_min_9 1.291500756233514568549480827642
* fpr fpr_sigma_min_10 1.311734375905083682667395805765
* fpr fpr_log2 log(2)
* fpr fpr_inv_log2 1/log(2)
* fpr fpr_bnorm_max 16822.4121
* fpr fpr_zero 0
* fpr fpr_one 1
* fpr fpr_two 2
* fpr fpr_onehalf 0.5
* fpr fpr_ptwo31 2^31
* fpr fpr_ptwo31m1 2^31-1
* fpr fpr_mtwo31m1 -(2^31-1)
* fpr fpr_ptwo63m1 2^63-1
* fpr fpr_mtwo63m1 -(2^63-1)
* fpr fpr_ptwo63 2^63
*/
#include "fpr.h"

/* ==================================================================== */
/*
* RNG (rng.c).
*
* A PRNG based on ChaCha20 is implemented; it is seeded from a SHAKE256
* context (flipped) and is used for bulk pseudorandom generation.
* A system-dependent seed generator is also provided.
*/

/*
* Obtain a random seed from the system RNG.
*
* Returned value is 1 on success, 0 on error.
*/
int PQCLEAN_FALCON1024_CLEAN_get_seed(void *seed, size_t seed_len);

/*
* Structure for a PRNG. This includes a large buffer so that values
* get generated in advance. The 'state' is used to keep the current
* PRNG algorithm state (contents depend on the selected algorithm).
*
* The unions with 'dummy_u64' are there to ensure proper alignment for
* 64-bit direct access.
*/
typedef struct {
union {
unsigned char d[512]; /* MUST be 512, exactly */
uint64_t dummy_u64;
} buf;
size_t ptr;
union {
unsigned char d[256];
uint64_t dummy_u64;
} state;
int type;
} prng;

/*
* Instantiate a PRNG. That PRNG will feed over the provided SHAKE256
* context (in "flipped" state) to obtain its initial state.
*/
void PQCLEAN_FALCON1024_CLEAN_prng_init(prng *p, shake256_context *src);

/*
* Refill the PRNG buffer. This is normally invoked automatically, and
* is declared here only so that prng_get_u64() may be inlined.
*/
void PQCLEAN_FALCON1024_CLEAN_prng_refill(prng *p);

/*
* Get some bytes from a PRNG.
*/
void PQCLEAN_FALCON1024_CLEAN_prng_get_bytes(prng *p, void *dst, size_t len);

/*
* Get a 64-bit random value from a PRNG.
*/
static inline uint64_t
prng_get_u64(prng *p) {
size_t u;

/*
* If there are less than 9 bytes in the buffer, we refill it.
* This means that we may drop the last few bytes, but this allows
* for faster extraction code. Also, it means that we never leave
* an empty buffer.
*/
u = p->ptr;
if (u >= (sizeof p->buf.d) - 9) {
PQCLEAN_FALCON1024_CLEAN_prng_refill(p);
u = 0;
}
p->ptr = u + 8;

/*
* On systems that use little-endian encoding and allow
* unaligned accesses, we can simply read the data where it is.
*/
return (uint64_t)p->buf.d[u + 0]
| ((uint64_t)p->buf.d[u + 1] << 8)
| ((uint64_t)p->buf.d[u + 2] << 16)
| ((uint64_t)p->buf.d[u + 3] << 24)
| ((uint64_t)p->buf.d[u + 4] << 32)
| ((uint64_t)p->buf.d[u + 5] << 40)
| ((uint64_t)p->buf.d[u + 6] << 48)
| ((uint64_t)p->buf.d[u + 7] << 56);
}

/*
* Get an 8-bit random value from a PRNG.
*/
static inline unsigned
prng_get_u8(prng *p) {
unsigned v;

v = p->buf.d[p->ptr ++];
if (p->ptr == sizeof p->buf.d) {
PQCLEAN_FALCON1024_CLEAN_prng_refill(p);
}
return v;
}

/* ==================================================================== */
/*
* FFT (falcon-fft.c).
*
* A real polynomial is represented as an array of N 'fpr' elements.
* The FFT representation of a real polynomial contains N/2 complex
* elements; each is stored as two real numbers, for the real and
* imaginary parts, respectively. See falcon-fft.c for details on the
* internal representation.
*/

/*
* Compute FFT in-place: the source array should contain a real
* polynomial (N coefficients); its storage area is reused to store
* the FFT representation of that polynomial (N/2 complex numbers).
*
* 'logn' MUST lie between 1 and 10 (inclusive).
*/
void PQCLEAN_FALCON1024_CLEAN_FFT(fpr *f, unsigned logn);

/*
* Compute the inverse FFT in-place: the source array should contain the
* FFT representation of a real polynomial (N/2 elements); the resulting
* real polynomial (N coefficients of type 'fpr') is written over the
* array.
*
* 'logn' MUST lie between 1 and 10 (inclusive).
*/
void PQCLEAN_FALCON1024_CLEAN_iFFT(fpr *f, unsigned logn);

/*
* Add polynomial b to polynomial a. a and b MUST NOT overlap. This
* function works in both normal and FFT representations.
*/
void PQCLEAN_FALCON1024_CLEAN_poly_add(fpr *restrict a, const fpr *restrict b, unsigned logn);

/*
* Subtract polynomial b from polynomial a. a and b MUST NOT overlap. This
* function works in both normal and FFT representations.
*/
void PQCLEAN_FALCON1024_CLEAN_poly_sub(fpr *restrict a, const fpr *restrict b, unsigned logn);

/*
* Negate polynomial a. This function works in both normal and FFT
* representations.
*/
void PQCLEAN_FALCON1024_CLEAN_poly_neg(fpr *a, unsigned logn);

/*
* Compute adjoint of polynomial a. This function works only in FFT
* representation.
*/
void PQCLEAN_FALCON1024_CLEAN_poly_adj_fft(fpr *a, unsigned logn);

/*
* Multiply polynomial a with polynomial b. a and b MUST NOT overlap.
* This function works only in FFT representation.
*/
void PQCLEAN_FALCON1024_CLEAN_poly_mul_fft(fpr *restrict a, const fpr *restrict b, unsigned logn);

/*
* Multiply polynomial a with the adjoint of polynomial b. a and b MUST NOT
* overlap. This function works only in FFT representation.
*/
void PQCLEAN_FALCON1024_CLEAN_poly_muladj_fft(fpr *restrict a, const fpr *restrict b, unsigned logn);

/*
* Multiply polynomial with its own adjoint. This function works only in FFT
* representation.
*/
void PQCLEAN_FALCON1024_CLEAN_poly_mulselfadj_fft(fpr *a, unsigned logn);

/*
* Multiply polynomial with a real constant. This function works in both
* normal and FFT representations.
*/
void PQCLEAN_FALCON1024_CLEAN_poly_mulconst(fpr *a, fpr x, unsigned logn);

/*
* Divide polynomial a by polynomial b, modulo X^N+1 (FFT representation).
* a and b MUST NOT overlap.
*/
void PQCLEAN_FALCON1024_CLEAN_poly_div_fft(fpr *restrict a, const fpr *restrict b, unsigned logn);

/*
* Given f and g (in FFT representation), compute 1/(f*adj(f)+g*adj(g))
* (also in FFT representation). Since the result is auto-adjoint, all its
* coordinates in FFT representation are real; as such, only the first N/2
* values of d[] are filled (the imaginary parts are skipped).
*
* Array d MUST NOT overlap with either a or b.
*/
void PQCLEAN_FALCON1024_CLEAN_poly_invnorm2_fft(fpr *restrict d,
const fpr *restrict a, const fpr *restrict b, unsigned logn);

/*
* Given F, G, f and g (in FFT representation), compute F*adj(f)+G*adj(g)
* (also in FFT representation). Destination d MUST NOT overlap with
* any of the source arrays.
*/
void PQCLEAN_FALCON1024_CLEAN_poly_add_muladj_fft(fpr *restrict d,
const fpr *restrict F, const fpr *restrict G,
const fpr *restrict f, const fpr *restrict g, unsigned logn);

/*
* Multiply polynomial a by polynomial b, where b is autoadjoint. Both
* a and b are in FFT representation. Since b is autoadjoint, all its
* FFT coefficients are real, and the array b contains only N/2 elements.
* a and b MUST NOT overlap.
*/
void PQCLEAN_FALCON1024_CLEAN_poly_mul_autoadj_fft(fpr *restrict a,
const fpr *restrict b, unsigned logn);

/*
* Divide polynomial a by polynomial b, where b is autoadjoint. Both
* a and b are in FFT representation. Since b is autoadjoint, all its
* FFT coefficients are real, and the array b contains only N/2 elements.
* a and b MUST NOT overlap.
*/
void PQCLEAN_FALCON1024_CLEAN_poly_div_autoadj_fft(fpr *restrict a,
const fpr *restrict b, unsigned logn);

/*
* Perform an LDL decomposition of an auto-adjoint matrix G, in FFT
* representation. On input, g00, g01 and g11 are provided (where the
* matrix G = [[g00, g01], [adj(g01), g11]]). On output, the d00, l10
* and d11 values are written in g00, g01 and g11, respectively
* (with D = [[d00, 0], [0, d11]] and L = [[1, 0], [l10, 1]]).
* (In fact, d00 = g00, so the g00 operand is left unmodified.)
*/
void PQCLEAN_FALCON1024_CLEAN_poly_LDL_fft(const fpr *restrict g00,
fpr *restrict g01, fpr *restrict g11, unsigned logn);

/*
* Perform an LDL decomposition of an auto-adjoint matrix G, in FFT
* representation. This is identical to poly_LDL_fft() except that
* g00, g01 and g11 are unmodified; the outputs d11 and l10 are written
* in two other separate buffers provided as extra parameters.
*/
void PQCLEAN_FALCON1024_CLEAN_poly_LDLmv_fft(fpr *restrict d11, fpr *restrict l10,
const fpr *restrict g00, const fpr *restrict g01,
const fpr *restrict g11, unsigned logn);

/*
* Apply "split" operation on a polynomial in FFT representation:
* f = f0(x^2) + x*f1(x^2), for half-size polynomials f0 and f1
* (polynomials modulo X^(N/2)+1). f0, f1 and f MUST NOT overlap.
*/
void PQCLEAN_FALCON1024_CLEAN_poly_split_fft(fpr *restrict t0, fpr *restrict t1,
const fpr *restrict f, unsigned logn);

/*
* Apply "merge" operation on two polynomials in FFT representation:
* given f0 and f1, polynomials moduo X^(N/2)+1, this function computes
* f = f0(x^2) + x*f1(x^2), in FFT representation modulo X^N+1.
* f MUST NOT overlap with either f0 or f1.
*/
void PQCLEAN_FALCON1024_CLEAN_poly_merge_fft(fpr *restrict f,
const fpr *restrict f0, const fpr *restrict f1, unsigned logn);

/* ==================================================================== */
/*
* Key pair generation.
*/

/*
* Required sizes of the temporary buffer (in bytes).
*/
#define FALCON_KEYGEN_TEMP_1 136
#define FALCON_KEYGEN_TEMP_2 272
#define FALCON_KEYGEN_TEMP_3 224
#define FALCON_KEYGEN_TEMP_4 448
#define FALCON_KEYGEN_TEMP_5 896
#define FALCON_KEYGEN_TEMP_6 1792
#define FALCON_KEYGEN_TEMP_7 3584
#define FALCON_KEYGEN_TEMP_8 7168
#define FALCON_KEYGEN_TEMP_9 14336
#define FALCON_KEYGEN_TEMP_10 28672

/*
* Generate a new key pair. Randomness is extracted from the provided
* SHAKE256 context, which must have already been seeded and flipped.
* The tmp[] array must have suitable size (see FALCON_KEYGEN_TEMP_*
* macros) and be aligned for the uint32_t, uint64_t and fpr types.
*
* The private key elements are written in f, g, F and G, and the
* public key is written in h. Either or both of G and h may be NULL,
* in which case the corresponding element is not returned (they can
* be recomputed from f, g and F).
*/
void PQCLEAN_FALCON1024_CLEAN_keygen(shake256_context *rng,
int8_t *f, int8_t *g, int8_t *F, int8_t *G, uint16_t *h,
unsigned logn, uint8_t *tmp);

/* ==================================================================== */
/*
* Signature generation.
*/

/*
* Expand a private key into the B0 matrix in FFT representation and
* the LDL tree. All the values are written in 'expanded_key', for
* a total of (8*logn+40)*2^logn bytes.
*
* The tmp[] array must have room for at least 48*2^logn bytes.
*/
void PQCLEAN_FALCON1024_CLEAN_expand_privkey(fpr *restrict expanded_key,
const int8_t *f, const int8_t *g, const int8_t *F, const int8_t *G,
unsigned logn, uint8_t *restrict tmp);

/*
* Compute a signature over the provided hashed message (hm); the
* signature value is one short vector. This function uses an
* expanded key (as generated by PQCLEAN_FALCON1024_CLEAN_expand_privkey()).
*
* The sig[] and hm[] buffers may overlap.
*
* The minimal size (in bytes) of tmp[] is 48*2^logn bytes.
*/
void PQCLEAN_FALCON1024_CLEAN_sign_tree(int16_t *sig, shake256_context *rng,
const fpr *restrict expanded_key,
const uint16_t *hm, unsigned logn, uint8_t *tmp);

/*
* Compute a signature over the provided hashed message (hm); the
* signature value is one short vector. This function uses a raw
* key and dynamically recompute the B0 matrix and LDL tree; this
* saves RAM since there is no needed for an expanded key, but
* increases the signature cost.
*
* The sig[] and hm[] buffers may overlap.
*
* The minimal size (in bytes) of tmp[] is 72*2^logn bytes.
*/
void PQCLEAN_FALCON1024_CLEAN_sign_dyn(int16_t *sig, shake256_context *rng,
const int8_t *restrict f, const int8_t *restrict g,
const int8_t *restrict F, const int8_t *restrict G,
const uint16_t *hm, unsigned logn, uint8_t *tmp);

/* ==================================================================== */

#endif

+ 4201
- 0
crypto_sign/falcon-1024/clean/keygen.c
La diferencia del archivo ha sido suprimido porque es demasiado grande
Ver fichero


+ 381
- 0
crypto_sign/falcon-1024/clean/pqclean.c Ver fichero

@@ -0,0 +1,381 @@
/*
* Wrapper for implementing the PQClean API.
*/

#include <stddef.h>
#include <string.h>

#include "api.h"
#include "inner.h"

#define NONCELEN 40

#include "randombytes.h"

/*
* Encoding formats (nnnn = log of degree, 9 for Falcon-512, 10 for Falcon-1024)
*
* private key:
* header byte: 0101nnnn
* private f (6 or 5 bits by element, depending on degree)
* private g (6 or 5 bits by element, depending on degree)
* private F (8 bits by element)
*
* public key:
* header byte: 0000nnnn
* public h (14 bits by element)
*
* signature:
* header byte: 0011nnnn
* nonce 40 bytes
* value (12 bits by element)
*
* message + signature:
* signature length (2 bytes, big-endian)
* nonce 40 bytes
* message
* header byte: 0010nnnn
* value (12 bits by element)
* (signature length is 1+len(value), not counting the nonce)
*/

/* see api.h */
int
PQCLEAN_FALCON1024_CLEAN_crypto_sign_keypair(
uint8_t *pk, uint8_t *sk) {
union {
uint8_t b[FALCON_KEYGEN_TEMP_10];
uint64_t dummy_u64;
fpr dummy_fpr;
} tmp;
int8_t f[1024], g[1024], F[1024];
uint16_t h[1024];
unsigned char seed[48];
shake256_context rng;
size_t u, v;

/*
* Generate key pair.
*/
randombytes(seed, sizeof seed);
shake256_init(&rng);
shake256_inject(&rng, seed, sizeof seed);
shake256_flip(&rng);
PQCLEAN_FALCON1024_CLEAN_keygen(&rng, f, g, F, NULL, h, 10, tmp.b);

/*
* Encode private key.
*/
sk[0] = 0x50 + 10;
u = 1;
v = PQCLEAN_FALCON1024_CLEAN_trim_i8_encode(
sk + u, PQCLEAN_FALCON1024_CLEAN_CRYPTO_SECRETKEYBYTES - u,
f, 10, PQCLEAN_FALCON1024_CLEAN_max_fg_bits[10]);
if (v == 0) {
return -1;
}
u += v;
v = PQCLEAN_FALCON1024_CLEAN_trim_i8_encode(
sk + u, PQCLEAN_FALCON1024_CLEAN_CRYPTO_SECRETKEYBYTES - u,
g, 10, PQCLEAN_FALCON1024_CLEAN_max_fg_bits[10]);
if (v == 0) {
return -1;
}
u += v;
v = PQCLEAN_FALCON1024_CLEAN_trim_i8_encode(
sk + u, PQCLEAN_FALCON1024_CLEAN_CRYPTO_SECRETKEYBYTES - u,
F, 10, PQCLEAN_FALCON1024_CLEAN_max_FG_bits[10]);
if (v == 0) {
return -1;
}
u += v;
if (u != PQCLEAN_FALCON1024_CLEAN_CRYPTO_SECRETKEYBYTES) {
return -1;
}

/*
* Encode public key.
*/
pk[0] = 0x00 + 10;
v = PQCLEAN_FALCON1024_CLEAN_modq_encode(
pk + 1, PQCLEAN_FALCON1024_CLEAN_CRYPTO_PUBLICKEYBYTES - 1,
h, 10);
if (v != PQCLEAN_FALCON1024_CLEAN_CRYPTO_PUBLICKEYBYTES - 1) {
return -1;
}

return 0;
}

/*
* Compute the signature. nonce[] receives the nonce and must have length
* NONCELEN bytes. sigbuf[] receives the signature value (without nonce
* or header byte), with *sigbuflen providing the maximum value length and
* receiving the actual value length.
*
* If a signature could be computed but not encoded because it would
* exceed the output buffer size, then a new signature is computed. If
* the provided buffer size is too low, this could loop indefinitely, so
* the caller must provide a size that can accommodate signatures with a
* large enough probability.
*
* Return value: 0 on success, -1 on error.
*/
static int
do_sign(uint8_t *nonce, uint8_t *sigbuf, size_t *sigbuflen,
const uint8_t *m, size_t mlen, const uint8_t *sk) {
union {
uint8_t b[72 * 1024];
uint64_t dummy_u64;
fpr dummy_fpr;
} tmp;
int8_t f[1024], g[1024], F[1024], G[1024];
union {
int16_t sig[1024];
uint16_t hm[1024];
} r;
unsigned char seed[48];
shake256_context sc;
size_t u, v;

/*
* Decode the private key.
*/
if (sk[0] != 0x50 + 10) {
return -1;
}
u = 1;
v = PQCLEAN_FALCON1024_CLEAN_trim_i8_decode(
f, 10, PQCLEAN_FALCON1024_CLEAN_max_fg_bits[10],
sk + u, PQCLEAN_FALCON1024_CLEAN_CRYPTO_SECRETKEYBYTES - u);
if (v == 0) {
return -1;
}
u += v;
v = PQCLEAN_FALCON1024_CLEAN_trim_i8_decode(
g, 10, PQCLEAN_FALCON1024_CLEAN_max_fg_bits[10],
sk + u, PQCLEAN_FALCON1024_CLEAN_CRYPTO_SECRETKEYBYTES - u);
if (v == 0) {
return -1;
}
u += v;
v = PQCLEAN_FALCON1024_CLEAN_trim_i8_decode(
F, 10, PQCLEAN_FALCON1024_CLEAN_max_FG_bits[10],
sk + u, PQCLEAN_FALCON1024_CLEAN_CRYPTO_SECRETKEYBYTES - u);
if (v == 0) {
return -1;
}
u += v;
if (u != PQCLEAN_FALCON1024_CLEAN_CRYPTO_SECRETKEYBYTES) {
return -1;
}
if (!PQCLEAN_FALCON1024_CLEAN_complete_private(G, f, g, F, 10, tmp.b)) {
return -1;
}

/*
* Create a random nonce (40 bytes).
*/
randombytes(nonce, NONCELEN);

/*
* Hash message nonce + message into a vector.
*/
shake256_init(&sc);
shake256_inject(&sc, nonce, NONCELEN);
shake256_inject(&sc, m, mlen);
shake256_flip(&sc);
PQCLEAN_FALCON1024_CLEAN_hash_to_point(&sc, r.hm, 10, tmp.b);

/*
* Initialize a RNG.
*/
randombytes(seed, sizeof seed);
shake256_init(&sc);
shake256_inject(&sc, seed, sizeof seed);
shake256_flip(&sc);

/*
* Compute and return the signature. This loops until a signature
* value is found that fits in the provided buffer.
*/
for (;;) {
PQCLEAN_FALCON1024_CLEAN_sign_dyn(r.sig, &sc, f, g, F, G, r.hm, 10, tmp.b);
v = PQCLEAN_FALCON1024_CLEAN_comp_encode(sigbuf, *sigbuflen, r.sig, 10);
if (v != 0) {
*sigbuflen = v;
return 0;
}
}
}

/*
* Verify a sigature. The nonce has size NONCELEN bytes. sigbuf[]
* (of size sigbuflen) contains the signature value, not including the
* header byte or nonce. Return value is 0 on success, -1 on error.
*/
static int
do_verify(
const uint8_t *nonce, const uint8_t *sigbuf, size_t sigbuflen,
const uint8_t *m, size_t mlen, const uint8_t *pk) {
union {
uint8_t b[2 * 1024];
uint64_t dummy_u64;
fpr dummy_fpr;
} tmp;
uint16_t h[1024], hm[1024];
int16_t sig[1024];
shake256_context sc;

/*
* Decode public key.
*/
if (pk[0] != 0x00 + 10) {
return -1;
}
if (PQCLEAN_FALCON1024_CLEAN_modq_decode(h, 10,
pk + 1, PQCLEAN_FALCON1024_CLEAN_CRYPTO_PUBLICKEYBYTES - 1)
!= PQCLEAN_FALCON1024_CLEAN_CRYPTO_PUBLICKEYBYTES - 1) {
return -1;
}
PQCLEAN_FALCON1024_CLEAN_to_ntt_monty(h, 10);

/*
* Decode signature.
*/
if (sigbuflen == 0) {
return -1;
}
if (PQCLEAN_FALCON1024_CLEAN_comp_decode(sig, 10, sigbuf, sigbuflen) != sigbuflen) {
return -1;
}

/*
* Hash nonce + message into a vector.
*/
shake256_init(&sc);
shake256_inject(&sc, nonce, NONCELEN);
shake256_inject(&sc, m, mlen);
shake256_flip(&sc);
PQCLEAN_FALCON1024_CLEAN_hash_to_point(&sc, hm, 10, tmp.b);

/*
* Verify signature.
*/
if (!PQCLEAN_FALCON1024_CLEAN_verify_raw(hm, sig, h, 10, tmp.b)) {
return -1;
}
return 0;
}

/* see api.h */
int
PQCLEAN_FALCON1024_CLEAN_crypto_sign_signature(
uint8_t *sig, size_t *siglen,
const uint8_t *m, size_t mlen, const uint8_t *sk) {
/*
* The PQCLEAN_FALCON1024_CLEAN_CRYPTO_BYTES constant is used for
* the signed message object (as produced by crypto_sign())
* and includes a two-byte length value, so we take care here
* to only generate signatures that are two bytes shorter than
* the maximum. This is done to ensure that crypto_sign()
* and crypto_sign_signature() produce the exact same signature
* value, if used on the same message, with the same private key,
* and using the same output from randombytes() (this is for
* reproducibility of tests).
*/
size_t vlen;

vlen = PQCLEAN_FALCON1024_CLEAN_CRYPTO_BYTES - NONCELEN - 3;
if (do_sign(sig + 1, sig + 1 + NONCELEN, &vlen, m, mlen, sk) < 0) {
return -1;
}
sig[0] = 0x30 + 10;
*siglen = 1 + NONCELEN + vlen;
return 0;
}

/* see api.h */
int
PQCLEAN_FALCON1024_CLEAN_crypto_sign_verify(
const uint8_t *sig, size_t siglen,
const uint8_t *m, size_t mlen, const uint8_t *pk) {
if (siglen < 1 + NONCELEN) {
return -1;
}
if (sig[0] != 0x30 + 10) {
return -1;
}
return do_verify(sig + 1,
sig + 1 + NONCELEN, siglen - 1 - NONCELEN, m, mlen, pk);
}

/* see api.h */
int
PQCLEAN_FALCON1024_CLEAN_crypto_sign(
uint8_t *sm, size_t *smlen,
const uint8_t *m, size_t mlen, const uint8_t *sk) {
uint8_t *pm, *sigbuf;
size_t sigbuflen;

/*
* Move the message to its final location; this is a memmove() so
* it handles overlaps properly.
*/
memmove(sm + 2 + NONCELEN, m, mlen);
pm = sm + 2 + NONCELEN;
sigbuf = pm + 1 + mlen;
sigbuflen = PQCLEAN_FALCON1024_CLEAN_CRYPTO_BYTES - NONCELEN - 3;
if (do_sign(sm + 2, sigbuf, &sigbuflen, pm, mlen, sk) < 0) {
return -1;
}
pm[mlen] = 0x20 + 10;
sigbuflen ++;
sm[0] = (uint8_t)(sigbuflen >> 8);
sm[1] = (uint8_t)sigbuflen;
*smlen = mlen + 2 + NONCELEN + sigbuflen;
return 0;
}

/* see api.h */
int
PQCLEAN_FALCON1024_CLEAN_crypto_sign_open(
uint8_t *m, size_t *mlen,
const uint8_t *sm, size_t smlen, const uint8_t *pk) {
const uint8_t *sigbuf;
size_t pmlen, sigbuflen;

if (smlen < 3 + NONCELEN) {
return -1;
}
sigbuflen = ((size_t)sm[0] << 8) | (size_t)sm[1];
if (sigbuflen < 2 || sigbuflen > (smlen - NONCELEN - 2)) {
return -1;
}
sigbuflen --;
pmlen = smlen - NONCELEN - 3 - sigbuflen;
if (sm[2 + NONCELEN + pmlen] != 0x20 + 10) {
return -1;
}
sigbuf = sm + 2 + NONCELEN + pmlen + 1;

/*
* The 2-byte length header and the one-byte signature header
* have been verified. Nonce is at sm+2, followed by the message
* itself. Message length is in pmlen. sigbuf/sigbuflen point to
* the signature value (excluding the header byte).
*/
if (do_verify(sm + 2, sigbuf, sigbuflen,
sm + 2 + NONCELEN, pmlen, pk) < 0) {
return -1;
}

/*
* Signature is correct, we just have to copy/move the message
* to its final destination. The memmove() properly handles
* overlaps.
*/
memmove(m, sm + 2 + NONCELEN, pmlen);
*mlen = pmlen;
return 0;
}

+ 187
- 0
crypto_sign/falcon-1024/clean/rng.c Ver fichero

@@ -0,0 +1,187 @@
/*
* PRNG and interface to the system RNG.
*
* ==========================(LICENSE BEGIN)============================
*
* Copyright (c) 2017-2019 Falcon Project
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* ===========================(LICENSE END)=============================
*
* @author Thomas Pornin <thomas.pornin@nccgroup.com>
*/

#include <assert.h>

#include "inner.h"


/* see inner.h */
void
PQCLEAN_FALCON1024_CLEAN_prng_init(prng *p, shake256_context *src) {
/*
* To ensure reproducibility for a given seed, we
* must enforce little-endian interpretation of
* the state words.
*/
unsigned char tmp[56];
uint64_t th, tl;
int i;

shake256_extract(src, tmp, 56);
for (i = 0; i < 14; i ++) {
uint32_t w;

w = (uint32_t)tmp[(i << 2) + 0]
| ((uint32_t)tmp[(i << 2) + 1] << 8)
| ((uint32_t)tmp[(i << 2) + 2] << 16)
| ((uint32_t)tmp[(i << 2) + 3] << 24);
*(uint32_t *)(p->state.d + (i << 2)) = w;
}
tl = *(uint32_t *)(p->state.d + 48);
th = *(uint32_t *)(p->state.d + 52);
*(uint64_t *)(p->state.d + 48) = tl + (th << 32);
PQCLEAN_FALCON1024_CLEAN_prng_refill(p);
}

/*
* PRNG based on ChaCha20.
*
* State consists in key (32 bytes) then IV (16 bytes) and block counter
* (8 bytes). Normally, we should not care about local endianness (this
* is for a PRNG), but for the NIST competition we need reproducible KAT
* vectors that work across architectures, so we enforce little-endian
* interpretation where applicable. Moreover, output words are "spread
* out" over the output buffer with the interleaving pattern that is
* naturally obtained from the AVX2 implementation that runs eight
* ChaCha20 instances in parallel.
*
* The block counter is XORed into the first 8 bytes of the IV.
*/
void
PQCLEAN_FALCON1024_CLEAN_prng_refill(prng *p) {

static const uint32_t CW[] = {
0x61707865, 0x3320646e, 0x79622d32, 0x6b206574
};

uint64_t cc;
size_t u;

/*
* State uses local endianness. Only the output bytes must be
* converted to little endian (if used on a big-endian machine).
*/
cc = *(uint64_t *)(p->state.d + 48);
for (u = 0; u < 8; u ++) {
uint32_t state[16];
size_t v;
int i;

memcpy(&state[0], CW, sizeof CW);
memcpy(&state[4], p->state.d, 48);
state[14] ^= (uint32_t)cc;
state[15] ^= (uint32_t)(cc >> 32);
for (i = 0; i < 10; i ++) {

#define QROUND(a, b, c, d) do { \
state[a] += state[b]; \
state[d] ^= state[a]; \
state[d] = (state[d] << 16) | (state[d] >> 16); \
state[c] += state[d]; \
state[b] ^= state[c]; \
state[b] = (state[b] << 12) | (state[b] >> 20); \
state[a] += state[b]; \
state[d] ^= state[a]; \
state[d] = (state[d] << 8) | (state[d] >> 24); \
state[c] += state[d]; \
state[b] ^= state[c]; \
state[b] = (state[b] << 7) | (state[b] >> 25); \
} while (0)

QROUND( 0, 4, 8, 12);
QROUND( 1, 5, 9, 13);
QROUND( 2, 6, 10, 14);
QROUND( 3, 7, 11, 15);
QROUND( 0, 5, 10, 15);
QROUND( 1, 6, 11, 12);
QROUND( 2, 7, 8, 13);
QROUND( 3, 4, 9, 14);

#undef QROUND

}

for (v = 0; v < 4; v ++) {
state[v] += CW[v];
}
for (v = 4; v < 14; v ++) {
state[v] += ((uint32_t *)p->state.d)[v - 4];
}
state[14] += ((uint32_t *)p->state.d)[10]
^ (uint32_t)cc;
state[15] += ((uint32_t *)p->state.d)[11]
^ (uint32_t)(cc >> 32);
cc ++;

/*
* We mimic the interleaving that is used in the AVX2
* implementation.
*/
for (v = 0; v < 16; v ++) {
p->buf.d[(u << 2) + (v << 5) + 0] =
(unsigned char)state[v];
p->buf.d[(u << 2) + (v << 5) + 1] =
(unsigned char)(state[v] >> 8);
p->buf.d[(u << 2) + (v << 5) + 2] =
(unsigned char)(state[v] >> 16);
p->buf.d[(u << 2) + (v << 5) + 3] =
(unsigned char)(state[v] >> 24);
}
}
*(uint64_t *)(p->state.d + 48) = cc;


p->ptr = 0;
}

/* see inner.h */
void
PQCLEAN_FALCON1024_CLEAN_prng_get_bytes(prng *p, void *dst, size_t len) {
unsigned char *buf;

buf = dst;
while (len > 0) {
size_t clen;

clen = (sizeof p->buf.d) - p->ptr;
if (clen > len) {
clen = len;
}
memcpy(buf, p->buf.d, clen);
buf += clen;
len -= clen;
p->ptr += clen;
if (p->ptr == sizeof p->buf.d) {
PQCLEAN_FALCON1024_CLEAN_prng_refill(p);
}
}
}

+ 1072
- 0
crypto_sign/falcon-1024/clean/sign.c
La diferencia del archivo ha sido suprimido porque es demasiado grande
Ver fichero


+ 745
- 0
crypto_sign/falcon-1024/clean/vrfy.c Ver fichero

@@ -0,0 +1,745 @@
/*
* Falcon signature verification.
*
* ==========================(LICENSE BEGIN)============================
*
* Copyright (c) 2017-2019 Falcon Project
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* ===========================(LICENSE END)=============================
*
* @author Thomas Pornin <thomas.pornin@nccgroup.com>
*/

#include "inner.h"

/* ===================================================================== */
/*
* Constants for NTT.
*
* n = 2^logn (2 <= n <= 1024)
* phi = X^n + 1
* q = 12289
* q0i = -1/q mod 2^16
* R = 2^16 mod q
* R2 = 2^32 mod q
*/

#define Q 12289
#define Q0I 12287
#define R 4091
#define R2 10952

/*
* Table for NTT, binary case:
* GMb[x] = R*(g^rev(x)) mod q
* where g = 7 (it is a 2048-th primitive root of 1 modulo q)
* and rev() is the bit-reversal function over 10 bits.
*/
static const uint16_t GMb[] = {
4091, 7888, 11060, 11208, 6960, 4342, 6275, 9759,
1591, 6399, 9477, 5266, 586, 5825, 7538, 9710,
1134, 6407, 1711, 965, 7099, 7674, 3743, 6442,
10414, 8100, 1885, 1688, 1364, 10329, 10164, 9180,
12210, 6240, 997, 117, 4783, 4407, 1549, 7072,
2829, 6458, 4431, 8877, 7144, 2564, 5664, 4042,
12189, 432, 10751, 1237, 7610, 1534, 3983, 7863,
2181, 6308, 8720, 6570, 4843, 1690, 14, 3872,
5569, 9368, 12163, 2019, 7543, 2315, 4673, 7340,
1553, 1156, 8401, 11389, 1020, 2967, 10772, 7045,
3316, 11236, 5285, 11578, 10637, 10086, 9493, 6180,
9277, 6130, 3323, 883, 10469, 489, 1502, 2851,
11061, 9729, 2742, 12241, 4970, 10481, 10078, 1195,
730, 1762, 3854, 2030, 5892, 10922, 9020, 5274,
9179, 3604, 3782, 10206, 3180, 3467, 4668, 2446,
7613, 9386, 834, 7703, 6836, 3403, 5351, 12276,
3580, 1739, 10820, 9787, 10209, 4070, 12250, 8525,
10401, 2749, 7338, 10574, 6040, 943, 9330, 1477,
6865, 9668, 3585, 6633, 12145, 4063, 3684, 7680,
8188, 6902, 3533, 9807, 6090, 727, 10099, 7003,
6945, 1949, 9731, 10559, 6057, 378, 7871, 8763,
8901, 9229, 8846, 4551, 9589, 11664, 7630, 8821,
5680, 4956, 6251, 8388, 10156, 8723, 2341, 3159,
1467, 5460, 8553, 7783, 2649, 2320, 9036, 6188,
737, 3698, 4699, 5753, 9046, 3687, 16, 914,
5186, 10531, 4552, 1964, 3509, 8436, 7516, 5381,
10733, 3281, 7037, 1060, 2895, 7156, 8887, 5357,
6409, 8197, 2962, 6375, 5064, 6634, 5625, 278,
932, 10229, 8927, 7642, 351, 9298, 237, 5858,
7692, 3146, 12126, 7586, 2053, 11285, 3802, 5204,
4602, 1748, 11300, 340, 3711, 4614, 300, 10993,
5070, 10049, 11616, 12247, 7421, 10707, 5746, 5654,
3835, 5553, 1224, 8476, 9237, 3845, 250, 11209,
4225, 6326, 9680, 12254, 4136, 2778, 692, 8808,
6410, 6718, 10105, 10418, 3759, 7356, 11361, 8433,
6437, 3652, 6342, 8978, 5391, 2272, 6476, 7416,
8418, 10824, 11986, 5733, 876, 7030, 2167, 2436,
3442, 9217, 8206, 4858, 5964, 2746, 7178, 1434,
7389, 8879, 10661, 11457, 4220, 1432, 10832, 4328,
8557, 1867, 9454, 2416, 3816, 9076, 686, 5393,
2523, 4339, 6115, 619, 937, 2834, 7775, 3279,
2363, 7488, 6112, 5056, 824, 10204, 11690, 1113,
2727, 9848, 896, 2028, 5075, 2654, 10464, 7884,
12169, 5434, 3070, 6400, 9132, 11672, 12153, 4520,
1273, 9739, 11468, 9937, 10039, 9720, 2262, 9399,
11192, 315, 4511, 1158, 6061, 6751, 11865, 357,
7367, 4550, 983, 8534, 8352, 10126, 7530, 9253,
4367, 5221, 3999, 8777, 3161, 6990, 4130, 11652,
3374, 11477, 1753, 292, 8681, 2806, 10378, 12188,
5800, 11811, 3181, 1988, 1024, 9340, 2477, 10928,
4582, 6750, 3619, 5503, 5233, 2463, 8470, 7650,
7964, 6395, 1071, 1272, 3474, 11045, 3291, 11344,
8502, 9478, 9837, 1253, 1857, 6233, 4720, 11561,
6034, 9817, 3339, 1797, 2879, 6242, 5200, 2114,
7962, 9353, 11363, 5475, 6084, 9601, 4108, 7323,
10438, 9471, 1271, 408, 6911, 3079, 360, 8276,
11535, 9156, 9049, 11539, 850, 8617, 784, 7919,
8334, 12170, 1846, 10213, 12184, 7827, 11903, 5600,
9779, 1012, 721, 2784, 6676, 6552, 5348, 4424,
6816, 8405, 9959, 5150, 2356, 5552, 5267, 1333,
8801, 9661, 7308, 5788, 4910, 909, 11613, 4395,
8238, 6686, 4302, 3044, 2285, 12249, 1963, 9216,
4296, 11918, 695, 4371, 9793, 4884, 2411, 10230,
2650, 841, 3890, 10231, 7248, 8505, 11196, 6688,
4059, 6060, 3686, 4722, 11853, 5816, 7058, 6868,
11137, 7926, 4894, 12284, 4102, 3908, 3610, 6525,
7938, 7982, 11977, 6755, 537, 4562, 1623, 8227,
11453, 7544, 906, 11816, 9548, 10858, 9703, 2815,
11736, 6813, 6979, 819, 8903, 6271, 10843, 348,
7514, 8339, 6439, 694, 852, 5659, 2781, 3716,
11589, 3024, 1523, 8659, 4114, 10738, 3303, 5885,
2978, 7289, 11884, 9123, 9323, 11830, 98, 2526,
2116, 4131, 11407, 1844, 3645, 3916, 8133, 2224,
10871, 8092, 9651, 5989, 7140, 8480, 1670, 159,
10923, 4918, 128, 7312, 725, 9157, 5006, 6393,
3494, 6043, 10972, 6181, 11838, 3423, 10514, 7668,
3693, 6658, 6905, 11953, 10212, 11922, 9101, 8365,
5110, 45, 2400, 1921, 4377, 2720, 1695, 51,
2808, 650, 1896, 9997, 9971, 11980, 8098, 4833,
4135, 4257, 5838, 4765, 10985, 11532, 590, 12198,
482, 12173, 2006, 7064, 10018, 3912, 12016, 10519,
11362, 6954, 2210, 284, 5413, 6601, 3865, 10339,
11188, 6231, 517, 9564, 11281, 3863, 1210, 4604,
8160, 11447, 153, 7204, 5763, 5089, 9248, 12154,
11748, 1354, 6672, 179, 5532, 2646, 5941, 12185,
862, 3158, 477, 7279, 5678, 7914, 4254, 302,
2893, 10114, 6890, 9560, 9647, 11905, 4098, 9824,
10269, 1353, 10715, 5325, 6254, 3951, 1807, 6449,
5159, 1308, 8315, 3404, 1877, 1231, 112, 6398,
11724, 12272, 7286, 1459, 12274, 9896, 3456, 800,
1397, 10678, 103, 7420, 7976, 936, 764, 632,
7996, 8223, 8445, 7758, 10870, 9571, 2508, 1946,
6524, 10158, 1044, 4338, 2457, 3641, 1659, 4139,
4688, 9733, 11148, 3946, 2082, 5261, 2036, 11850,
7636, 12236, 5366, 2380, 1399, 7720, 2100, 3217,
10912, 8898, 7578, 11995, 2791, 1215, 3355, 2711,
2267, 2004, 8568, 10176, 3214, 2337, 1750, 4729,
4997, 7415, 6315, 12044, 4374, 7157, 4844, 211,
8003, 10159, 9290, 11481, 1735, 2336, 5793, 9875,
8192, 986, 7527, 1401, 870, 3615, 8465, 2756,
9770, 2034, 10168, 3264, 6132, 54, 2880, 4763,
11805, 3074, 8286, 9428, 4881, 6933, 1090, 10038,
2567, 708, 893, 6465, 4962, 10024, 2090, 5718,
10743, 780, 4733, 4623, 2134, 2087, 4802, 884,
5372, 5795, 5938, 4333, 6559, 7549, 5269, 10664,
4252, 3260, 5917, 10814, 5768, 9983, 8096, 7791,
6800, 7491, 6272, 1907, 10947, 6289, 11803, 6032,
11449, 1171, 9201, 7933, 2479, 7970, 11337, 7062,
8911, 6728, 6542, 8114, 8828, 6595, 3545, 4348,
4610, 2205, 6999, 8106, 5560, 10390, 9321, 2499,
2413, 7272, 6881, 10582, 9308, 9437, 3554, 3326,
5991, 11969, 3415, 12283, 9838, 12063, 4332, 7830,
11329, 6605, 12271, 2044, 11611, 7353, 11201, 11582,
3733, 8943, 9978, 1627, 7168, 3935, 5050, 2762,
7496, 10383, 755, 1654, 12053, 4952, 10134, 4394,
6592, 7898, 7497, 8904, 12029, 3581, 10748, 5674,
10358, 4901, 7414, 8771, 710, 6764, 8462, 7193,
5371, 7274, 11084, 290, 7864, 6827, 11822, 2509,
6578, 4026, 5807, 1458, 5721, 5762, 4178, 2105,
11621, 4852, 8897, 2856, 11510, 9264, 2520, 8776,
7011, 2647, 1898, 7039, 5950, 11163, 5488, 6277,
9182, 11456, 633, 10046, 11554, 5633, 9587, 2333,
7008, 7084, 5047, 7199, 9865, 8997, 569, 6390,
10845, 9679, 8268, 11472, 4203, 1997, 2, 9331,
162, 6182, 2000, 3649, 9792, 6363, 7557, 6187,
8510, 9935, 5536, 9019, 3706, 12009, 1452, 3067,
5494, 9692, 4865, 6019, 7106, 9610, 4588, 10165,
6261, 5887, 2652, 10172, 1580, 10379, 4638, 9949
};

/*
* Table for inverse NTT, binary case:
* iGMb[x] = R*((1/g)^rev(x)) mod q
* Since g = 7, 1/g = 8778 mod 12289.
*/
static const uint16_t iGMb[] = {
4091, 4401, 1081, 1229, 2530, 6014, 7947, 5329,
2579, 4751, 6464, 11703, 7023, 2812, 5890, 10698,
3109, 2125, 1960, 10925, 10601, 10404, 4189, 1875,
5847, 8546, 4615, 5190, 11324, 10578, 5882, 11155,
8417, 12275, 10599, 7446, 5719, 3569, 5981, 10108,
4426, 8306, 10755, 4679, 11052, 1538, 11857, 100,
8247, 6625, 9725, 5145, 3412, 7858, 5831, 9460,
5217, 10740, 7882, 7506, 12172, 11292, 6049, 79,
13, 6938, 8886, 5453, 4586, 11455, 2903, 4676,
9843, 7621, 8822, 9109, 2083, 8507, 8685, 3110,
7015, 3269, 1367, 6397, 10259, 8435, 10527, 11559,
11094, 2211, 1808, 7319, 48, 9547, 2560, 1228,
9438, 10787, 11800, 1820, 11406, 8966, 6159, 3012,
6109, 2796, 2203, 1652, 711, 7004, 1053, 8973,
5244, 1517, 9322, 11269, 900, 3888, 11133, 10736,
4949, 7616, 9974, 4746, 10270, 126, 2921, 6720,
6635, 6543, 1582, 4868, 42, 673, 2240, 7219,
1296, 11989, 7675, 8578, 11949, 989, 10541, 7687,
7085, 8487, 1004, 10236, 4703, 163, 9143, 4597,
6431, 12052, 2991, 11938, 4647, 3362, 2060, 11357,
12011, 6664, 5655, 7225, 5914, 9327, 4092, 5880,
6932, 3402, 5133, 9394, 11229, 5252, 9008, 1556,
6908, 4773, 3853, 8780, 10325, 7737, 1758, 7103,
11375, 12273, 8602, 3243, 6536, 7590, 8591, 11552,
6101, 3253, 9969, 9640, 4506, 3736, 6829, 10822,
9130, 9948, 3566, 2133, 3901, 6038, 7333, 6609,
3468, 4659, 625, 2700, 7738, 3443, 3060, 3388,
3526, 4418, 11911, 6232, 1730, 2558, 10340, 5344,
5286, 2190, 11562, 6199, 2482, 8756, 5387, 4101,
4609, 8605, 8226, 144, 5656, 8704, 2621, 5424,
10812, 2959, 11346, 6249, 1715, 4951, 9540, 1888,
3764, 39, 8219, 2080, 2502, 1469, 10550, 8709,
5601, 1093, 3784, 5041, 2058, 8399, 11448, 9639,
2059, 9878, 7405, 2496, 7918, 11594, 371, 7993,
3073, 10326, 40, 10004, 9245, 7987, 5603, 4051,
7894, 676, 11380, 7379, 6501, 4981, 2628, 3488,
10956, 7022, 6737, 9933, 7139, 2330, 3884, 5473,
7865, 6941, 5737, 5613, 9505, 11568, 11277, 2510,
6689, 386, 4462, 105, 2076, 10443, 119, 3955,
4370, 11505, 3672, 11439, 750, 3240, 3133, 754,
4013, 11929, 9210, 5378, 11881, 11018, 2818, 1851,
4966, 8181, 2688, 6205, 6814, 926, 2936, 4327,
10175, 7089, 6047, 9410, 10492, 8950, 2472, 6255,
728, 7569, 6056, 10432, 11036, 2452, 2811, 3787,
945, 8998, 1244, 8815, 11017, 11218, 5894, 4325,
4639, 3819, 9826, 7056, 6786, 8670, 5539, 7707,
1361, 9812, 2949, 11265, 10301, 9108, 478, 6489,
101, 1911, 9483, 3608, 11997, 10536, 812, 8915,
637, 8159, 5299, 9128, 3512, 8290, 7068, 7922,
3036, 4759, 2163, 3937, 3755, 11306, 7739, 4922,
11932, 424, 5538, 6228, 11131, 7778, 11974, 1097,
2890, 10027, 2569, 2250, 2352, 821, 2550, 11016,
7769, 136, 617, 3157, 5889, 9219, 6855, 120,
4405, 1825, 9635, 7214, 10261, 11393, 2441, 9562,
11176, 599, 2085, 11465, 7233, 6177, 4801, 9926,
9010, 4514, 9455, 11352, 11670, 6174, 7950, 9766,
6896, 11603, 3213, 8473, 9873, 2835, 10422, 3732,
7961, 1457, 10857, 8069, 832, 1628, 3410, 4900,
10855, 5111, 9543, 6325, 7431, 4083, 3072, 8847,
9853, 10122, 5259, 11413, 6556, 303, 1465, 3871,
4873, 5813, 10017, 6898, 3311, 5947, 8637, 5852,
3856, 928, 4933, 8530, 1871, 2184, 5571, 5879,
3481, 11597, 9511, 8153, 35, 2609, 5963, 8064,
1080, 12039, 8444, 3052, 3813, 11065, 6736, 8454,
2340, 7651, 1910, 10709, 2117, 9637, 6402, 6028,
2124, 7701, 2679, 5183, 6270, 7424, 2597, 6795,
9222, 10837, 280, 8583, 3270, 6753, 2354, 3779,
6102, 4732, 5926, 2497, 8640, 10289, 6107, 12127,
2958, 12287, 10292, 8086, 817, 4021, 2610, 1444,
5899, 11720, 3292, 2424, 5090, 7242, 5205, 5281,
9956, 2702, 6656, 735, 2243, 11656, 833, 3107,
6012, 6801, 1126, 6339, 5250, 10391, 9642, 5278,
3513, 9769, 3025, 779, 9433, 3392, 7437, 668,
10184, 8111, 6527, 6568, 10831, 6482, 8263, 5711,
9780, 467, 5462, 4425, 11999, 1205, 5015, 6918,
5096, 3827, 5525, 11579, 3518, 4875, 7388, 1931,
6615, 1541, 8708, 260, 3385, 4792, 4391, 5697,
7895, 2155, 7337, 236, 10635, 11534, 1906, 4793,
9527, 7239, 8354, 5121, 10662, 2311, 3346, 8556,
707, 1088, 4936, 678, 10245, 18, 5684, 960,
4459, 7957, 226, 2451, 6, 8874, 320, 6298,
8963, 8735, 2852, 2981, 1707, 5408, 5017, 9876,
9790, 2968, 1899, 6729, 4183, 5290, 10084, 7679,
7941, 8744, 5694, 3461, 4175, 5747, 5561, 3378,
5227, 952, 4319, 9810, 4356, 3088, 11118, 840,
6257, 486, 6000, 1342, 10382, 6017, 4798, 5489,
4498, 4193, 2306, 6521, 1475, 6372, 9029, 8037,
1625, 7020, 4740, 5730, 7956, 6351, 6494, 6917,
11405, 7487, 10202, 10155, 7666, 7556, 11509, 1546,
6571, 10199, 2265, 7327, 5824, 11396, 11581, 9722,
2251, 11199, 5356, 7408, 2861, 4003, 9215, 484,
7526, 9409, 12235, 6157, 9025, 2121, 10255, 2519,
9533, 3824, 8674, 11419, 10888, 4762, 11303, 4097,
2414, 6496, 9953, 10554, 808, 2999, 2130, 4286,
12078, 7445, 5132, 7915, 245, 5974, 4874, 7292,
7560, 10539, 9952, 9075, 2113, 3721, 10285, 10022,
9578, 8934, 11074, 9498, 294, 4711, 3391, 1377,
9072, 10189, 4569, 10890, 9909, 6923, 53, 4653,
439, 10253, 7028, 10207, 8343, 1141, 2556, 7601,
8150, 10630, 8648, 9832, 7951, 11245, 2131, 5765,
10343, 9781, 2718, 1419, 4531, 3844, 4066, 4293,
11657, 11525, 11353, 4313, 4869, 12186, 1611, 10892,
11489, 8833, 2393, 15, 10830, 5003, 17, 565,
5891, 12177, 11058, 10412, 8885, 3974, 10981, 7130,
5840, 10482, 8338, 6035, 6964, 1574, 10936, 2020,
2465, 8191, 384, 2642, 2729, 5399, 2175, 9396,
11987, 8035, 4375, 6611, 5010, 11812, 9131, 11427,
104, 6348, 9643, 6757, 12110, 5617, 10935, 541,
135, 3041, 7200, 6526, 5085, 12136, 842, 4129,
7685, 11079, 8426, 1008, 2725, 11772, 6058, 1101,
1950, 8424, 5688, 6876, 12005, 10079, 5335, 927,
1770, 273, 8377, 2271, 5225, 10283, 116, 11807,
91, 11699, 757, 1304, 7524, 6451, 8032, 8154,
7456, 4191, 309, 2318, 2292, 10393, 11639, 9481,
12238, 10594, 9569, 7912, 10368, 9889, 12244, 7179,
3924, 3188, 367, 2077, 336, 5384, 5631, 8596,
4621, 1775, 8866, 451, 6108, 1317, 6246, 8795,
5896, 7283, 3132, 11564, 4977, 12161, 7371, 1366,
12130, 10619, 3809, 5149, 6300, 2638, 4197, 1418,
10065, 4156, 8373, 8644, 10445, 882, 8158, 10173,
9763, 12191, 459, 2966, 3166, 405, 5000, 9311,
6404, 8986, 1551, 8175, 3630, 10766, 9265, 700,
8573, 9508, 6630, 11437, 11595, 5850, 3950, 4775,
11941, 1446, 6018, 3386, 11470, 5310, 5476, 553,
9474, 2586, 1431, 2741, 473, 11383, 4745, 836,
4062, 10666, 7727, 11752, 5534, 312, 4307, 4351,
5764, 8679, 8381, 8187, 5, 7395, 4363, 1152,
5421, 5231, 6473, 436, 7567, 8603, 6229, 8230
};

/*
* Reduce a small signed integer modulo q. The source integer MUST
* be between -q/2 and +q/2.
*/
static inline uint32_t
mq_conv_small(int x) {
/*
* If x < 0, the cast to uint32_t will set the high bit to 1.
*/
uint32_t y;

y = (uint32_t)x;
y += Q & -(y >> 31);
return y;
}

/*
* Addition modulo q. Operands must be in the 0..q-1 range.
*/
static inline uint32_t
mq_add(uint32_t x, uint32_t y) {
/*
* We compute x + y - q. If the result is negative, then the
* high bit will be set, and 'd >> 31' will be equal to 1;
* thus '-(d >> 31)' will be an all-one pattern. Otherwise,
* it will be an all-zero pattern. In other words, this
* implements a conditional addition of q.
*/
uint32_t d;

d = x + y - Q;
d += Q & -(d >> 31);
return d;
}

/*
* Subtraction modulo q. Operands must be in the 0..q-1 range.
*/
static inline uint32_t
mq_sub(uint32_t x, uint32_t y) {
/*
* As in mq_add(), we use a conditional addition to ensure the
* result is in the 0..q-1 range.
*/
uint32_t d;

d = x - y;
d += Q & -(d >> 31);
return d;
}

/*
* Division by 2 modulo q. Operand must be in the 0..q-1 range.
*/
static inline uint32_t
mq_rshift1(uint32_t x) {
x += Q & -(x & 1);
return (x >> 1);
}

/*
* Montgomery multiplication modulo q. If we set R = 2^16 mod q, then
* this function computes: x * y / R mod q
* Operands must be in the 0..q-1 range.
*/
static inline uint32_t
mq_montymul(uint32_t x, uint32_t y) {
uint32_t z, w;

/*
* We compute x*y + k*q with a value of k chosen so that the 16
* low bits of the result are 0. We can then shift the value.
* After the shift, result may still be larger than q, but it
* will be lower than 2*q, so a conditional subtraction works.
*/

z = x * y;
w = ((z * Q0I) & 0xFFFF) * Q;

/*
* When adding z and w, the result will have its low 16 bits
* equal to 0. Since x, y and z are lower than q, the sum will
* be no more than (2^15 - 1) * q + (q - 1)^2, which will
* fit on 29 bits.
*/
z = (z + w) >> 16;

/*
* After the shift, analysis shows that the value will be less
* than 2q. We do a subtraction then conditional subtraction to
* ensure the result is in the expected range.
*/
z -= Q;
z += Q & -(z >> 31);
return z;
}

/*
* Montgomery squaring (computes (x^2)/R).
*/
static inline uint32_t
mq_montysqr(uint32_t x) {
return mq_montymul(x, x);
}

/*
* Divide x by y modulo q = 12289.
*/
static inline uint32_t
mq_div_12289(uint32_t x, uint32_t y) {
/*
* We invert y by computing y^(q-2) mod q.
*
* We use the following addition chain for exponent e = 12287:
*
* e0 = 1
* e1 = 2 * e0 = 2
* e2 = e1 + e0 = 3
* e3 = e2 + e1 = 5
* e4 = 2 * e3 = 10
* e5 = 2 * e4 = 20
* e6 = 2 * e5 = 40
* e7 = 2 * e6 = 80
* e8 = 2 * e7 = 160
* e9 = e8 + e2 = 163
* e10 = e9 + e8 = 323
* e11 = 2 * e10 = 646
* e12 = 2 * e11 = 1292
* e13 = e12 + e9 = 1455
* e14 = 2 * e13 = 2910
* e15 = 2 * e14 = 5820
* e16 = e15 + e10 = 6143
* e17 = 2 * e16 = 12286
* e18 = e17 + e0 = 12287
*
* Additions on exponents are converted to Montgomery
* multiplications. We define all intermediate results as so
* many local variables, and let the C compiler work out which
* must be kept around.
*/
uint32_t y0, y1, y2, y3, y4, y5, y6, y7, y8, y9;
uint32_t y10, y11, y12, y13, y14, y15, y16, y17, y18;

y0 = mq_montymul(y, R2);
y1 = mq_montysqr(y0);
y2 = mq_montymul(y1, y0);
y3 = mq_montymul(y2, y1);
y4 = mq_montysqr(y3);
y5 = mq_montysqr(y4);
y6 = mq_montysqr(y5);
y7 = mq_montysqr(y6);
y8 = mq_montysqr(y7);
y9 = mq_montymul(y8, y2);
y10 = mq_montymul(y9, y8);
y11 = mq_montysqr(y10);
y12 = mq_montysqr(y11);
y13 = mq_montymul(y12, y9);
y14 = mq_montysqr(y13);
y15 = mq_montysqr(y14);
y16 = mq_montymul(y15, y10);
y17 = mq_montysqr(y16);
y18 = mq_montymul(y17, y0);

/*
* Final multiplication with x, which is not in Montgomery
* representation, computes the correct division result.
*/
return mq_montymul(y18, x);
}

/*
* Compute NTT on a ring element.
*/
static void
mq_NTT(uint16_t *a, unsigned logn) {
size_t n, t, m;

n = (size_t)1 << logn;
t = n;
for (m = 1; m < n; m <<= 1) {
size_t ht, i, j1;

ht = t >> 1;
for (i = 0, j1 = 0; i < m; i ++, j1 += t) {
size_t j, j2;
uint32_t s;

s = GMb[m + i];
j2 = j1 + ht;
for (j = j1; j < j2; j ++) {
uint32_t u, v;

u = a[j];
v = mq_montymul(a[j + ht], s);
a[j] = (uint16_t)mq_add(u, v);
a[j + ht] = (uint16_t)mq_sub(u, v);
}
}
t = ht;
}
}

/*
* Compute the inverse NTT on a ring element, binary case.
*/
static void
mq_iNTT(uint16_t *a, unsigned logn) {
size_t n, t, m;
uint32_t ni;

n = (size_t)1 << logn;
t = 1;
m = n;
while (m > 1) {
size_t hm, dt, i, j1;

hm = m >> 1;
dt = t << 1;
for (i = 0, j1 = 0; i < hm; i ++, j1 += dt) {
size_t j, j2;
uint32_t s;

j2 = j1 + t;
s = iGMb[hm + i];
for (j = j1; j < j2; j ++) {
uint32_t u, v, w;

u = a[j];
v = a[j + t];
a[j] = (uint16_t)mq_add(u, v);
w = mq_sub(u, v);
a[j + t] = (uint16_t)
mq_montymul(w, s);
}
}
t = dt;
m = hm;
}

/*
* To complete the inverse NTT, we must now divide all values by
* n (the vector size). We thus need the inverse of n, i.e. we
* need to divide 1 by 2 logn times. But we also want it in
* Montgomery representation, i.e. we also want to multiply it
* by R = 2^16. In the common case, this should be a simple right
* shift. The loop below is generic and works also in corner cases;
* its computation time is negligible.
*/
ni = R;
for (m = n; m > 1; m >>= 1) {
ni = mq_rshift1(ni);
}
for (m = 0; m < n; m ++) {
a[m] = (uint16_t)mq_montymul(a[m], ni);
}
}

/*
* Convert a polynomial (mod q) to Montgomery representation.
*/
static void
mq_poly_tomonty(uint16_t *f, unsigned logn) {
size_t u, n;

n = (size_t)1 << logn;
for (u = 0; u < n; u ++) {
f[u] = (uint16_t)mq_montymul(f[u], R2);
}
}

/*
* Multiply two polynomials together (NTT representation, and using
* a Montgomery multiplication). Result f*g is written over f.
*/
static void
mq_poly_montymul_ntt(uint16_t *f, const uint16_t *g, unsigned logn) {
size_t u, n;

n = (size_t)1 << logn;
for (u = 0; u < n; u ++) {
f[u] = (uint16_t)mq_montymul(f[u], g[u]);
}
}

/*
* Subtract polynomial g from polynomial f.
*/
static void
mq_poly_sub(uint16_t *f, const uint16_t *g, unsigned logn) {
size_t u, n;

n = (size_t)1 << logn;
for (u = 0; u < n; u ++) {
f[u] = (uint16_t)mq_sub(f[u], g[u]);
}
}

/* ===================================================================== */

/* see inner.h */
void
PQCLEAN_FALCON1024_CLEAN_to_ntt_monty(uint16_t *h, unsigned logn) {
mq_NTT(h, logn);
mq_poly_tomonty(h, logn);
}

/* see inner.h */
int
PQCLEAN_FALCON1024_CLEAN_verify_raw(const uint16_t *c0, const int16_t *s2,
const uint16_t *h, unsigned logn, uint8_t *tmp) {
size_t u, n;
uint16_t *tt;

n = (size_t)1 << logn;
tt = (uint16_t *)tmp;

/*
* Reduce s2 elements modulo q ([0..q-1] range).
*/
for (u = 0; u < n; u ++) {
uint32_t w;

w = (uint32_t)s2[u];
w += Q & -(w >> 31);
tt[u] = (uint16_t)w;
}

/*
* Compute s1 = s2*h - c0 mod phi mod q (in tt[]).
*/
mq_NTT(tt, logn);
mq_poly_montymul_ntt(tt, h, logn);
mq_iNTT(tt, logn);
mq_poly_sub(tt, c0, logn);

/*
* Normalize s1 elements into the [-q/2..q/2] range.
*/
for (u = 0; u < n; u ++) {
int32_t w;

w = (int32_t)tt[u];
w -= (int32_t)(Q & -(((Q >> 1) - (uint32_t)w) >> 31));
((int16_t *)tt)[u] = (int16_t)w;
}

/*
* Signature is valid if and only if the aggregate (s1,s2) vector
* is short enough.
*/
return PQCLEAN_FALCON1024_CLEAN_is_short((int16_t *)tt, s2, logn);
}

/* see inner.h */
int
PQCLEAN_FALCON1024_CLEAN_compute_public(uint16_t *h,
const int8_t *f, const int8_t *g, unsigned logn, uint8_t *tmp) {
size_t u, n;
uint16_t *tt;

n = (size_t)1 << logn;
tt = (uint16_t *)tmp;
for (u = 0; u < n; u ++) {
tt[u] = (uint16_t)mq_conv_small(f[u]);
h[u] = (uint16_t)mq_conv_small(g[u]);
}
mq_NTT(h, logn);
mq_NTT(tt, logn);
for (u = 0; u < n; u ++) {
if (tt[u] == 0) {
return 0;
}
h[u] = (uint16_t)mq_div_12289(h[u], tt[u]);
}
mq_iNTT(h, logn);
return 1;
}

/* see internal.h */
int
PQCLEAN_FALCON1024_CLEAN_complete_private(int8_t *G,
const int8_t *f, const int8_t *g, const int8_t *F,
unsigned logn, uint8_t *tmp) {
size_t u, n;
uint16_t *t1, *t2;

n = (size_t)1 << logn;
t1 = (uint16_t *)tmp;
t2 = t1 + n;
for (u = 0; u < n; u ++) {
t1[u] = (uint16_t)mq_conv_small(g[u]);
t2[u] = (uint16_t)mq_conv_small(F[u]);
}
mq_NTT(t1, logn);
mq_NTT(t2, logn);
mq_poly_tomonty(t1, logn);
mq_poly_montymul_ntt(t1, t2, logn);
for (u = 0; u < n; u ++) {
t2[u] = (uint16_t)mq_conv_small(f[u]);
}
mq_NTT(t2, logn);
for (u = 0; u < n; u ++) {
if (t2[u] == 0) {
return 0;
}
t1[u] = (uint16_t)mq_div_12289(t1[u], t2[u]);
}
mq_iNTT(t1, logn);
for (u = 0; u < n; u ++) {
uint32_t w;
int32_t gi;

w = t1[u];
w -= (Q & ~ -((w - (Q >> 1)) >> 31));
gi = *(int32_t *)&w;
if (gi < -127 || gi > +127) {
return 0;
}
G[u] = (int8_t)gi;
}
return 1;
}

+ 23
- 0
crypto_sign/falcon-512/META.yml Ver fichero

@@ -0,0 +1,23 @@
name: Falcon-512
type: signature
claimed-nist-level: 1
length-public-key: 897
length-secret-key: 1281
length-signature: 690
nistkat-sha256: abc62e7be3d7c1db757ba3cbb771cfdc89c6b36fb5efc885593db89ec2ea8bc4
testvectors-sha256: 1a1b170fc9e4623e7ff519c15ec7a2dda55e94a175756b7c72429451bd226b09
principal-submitters:
- Thomas Prest
auxiliary-submitters:
- Pierre-Alain Fouque
- Jeffrey Hoffstein
- Paul Kirchner
- Vadim Lyubashevsky
- Thomas Pornin
- Thomas Ricosset
- Gregor Seiler
- William Whyte
- Zhenfei Zhang
implementations:
- name: clean
version: https://github.com/FIX-THIS/YES-BUT-HOW/DUNNO-GUV

+ 22
- 0
crypto_sign/falcon-512/clean/LICENSE Ver fichero

@@ -0,0 +1,22 @@
MIT License

Copyright (c) 2017-2019 Falcon Project

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

+ 21
- 0
crypto_sign/falcon-512/clean/Makefile Ver fichero

@@ -0,0 +1,21 @@
# This Makefile can be used with GNU Make or BSD Make

LIB=libfalcon-512_clean.a

SOURCES = codec.c common.c fft.c fpr.c keygen.c pqclean.c rng.c sign.c vrfy.c
OBJECTS = codec.o common.o fft.o fpr.o keygen.o pqclean.o rng.o sign.o vrfy.o
HEADERS = api.h fpr.h inner.h

CFLAGS=-O3 -Wall -Wconversion -Wextra -Wpedantic -Wvla -Werror -Wmissing-prototypes -Wredundant-decls -std=c99 -I../../../common $(EXTRAFLAGS)

all: $(LIB)

%.o: %.c $(HEADERS)
$(CC) $(CFLAGS) -c -o $@ $<

$(LIB): $(OBJECTS)
$(AR) -r $@ $(OBJECTS)

clean:
$(RM) $(OBJECTS)
$(RM) $(LIB)

+ 18
- 0
crypto_sign/falcon-512/clean/Makefile.Microsoft_nmake Ver fichero

@@ -0,0 +1,18 @@
# This Makefile can be used with Microsoft Visual Studio's nmake using the command:
# nmake /f Makefile.Microsoft_nmake

LIBRARY=libfalcon-512_clean.lib
OBJECTS=codec.obj common.obj fft.obj fpr.obj keygen.obj pqclean.obj rng.obj sign.obj vrfy.obj
CFLAGS=/nologo /I ..\..\..\common /W4 /WX

all: $(LIBRARY)

# Make sure objects are recompiled if headers change.
$(OBJECTS): *.h

$(LIBRARY): $(OBJECTS)
LIB.EXE /NOLOGO /WX /OUT:$@ $**

clean:
-DEL $(OBJECTS)
-DEL $(LIBRARY)

+ 80
- 0
crypto_sign/falcon-512/clean/api.h Ver fichero

@@ -0,0 +1,80 @@
#ifndef PQCLEAN_FALCON512_CLEAN_API_H
#define PQCLEAN_FALCON512_CLEAN_API_H

#include <stddef.h>
#include <stdint.h>

#define PQCLEAN_FALCON512_CLEAN_CRYPTO_SECRETKEYBYTES 1281
#define PQCLEAN_FALCON512_CLEAN_CRYPTO_PUBLICKEYBYTES 897
#define PQCLEAN_FALCON512_CLEAN_CRYPTO_BYTES 690

#define PQCLEAN_FALCON512_CLEAN_CRYPTO_ALGNAME "Falcon-512"

/*
* Generate a new key pair. Public key goes into pk[], private key in sk[].
* Key sizes are exact (in bytes):
* public (pk): PQCLEAN_FALCON512_CLEAN_CRYPTO_PUBLICKEYBYTES
* private (sk): PQCLEAN_FALCON512_CLEAN_CRYPTO_SECRETKEYBYTES
*
* Return value: 0 on success, -1 on error.
*/
int PQCLEAN_FALCON512_CLEAN_crypto_sign_keypair(
uint8_t *pk, uint8_t *sk);

/*
* Compute a signature on a provided message (m, mlen), with a given
* private key (sk). Signature is written in sig[], with length written
* into *siglen. Signature length is variable; maximum signature length
* (in bytes) is PQCLEAN_FALCON512_CLEAN_CRYPTO_BYTES.
*
* sig[], m[] and sk[] may overlap each other arbitrarily.
*
* Return value: 0 on success, -1 on error.
*/
int PQCLEAN_FALCON512_CLEAN_crypto_sign_signature(
uint8_t *sig, size_t *siglen,
const uint8_t *m, size_t mlen, const uint8_t *sk);

/*
* Verify a signature (sig, siglen) on a message (m, mlen) with a given
* public key (pk).
*
* sig[], m[] and pk[] may overlap each other arbitrarily.
*
* Return value: 0 on success, -1 on error.
*/
int PQCLEAN_FALCON512_CLEAN_crypto_sign_verify(
const uint8_t *sig, size_t siglen,
const uint8_t *m, size_t mlen, const uint8_t *pk);

/*
* Compute a signature on a message and pack the signature and message
* into a single object, written into sm[]. The length of that output is
* written in *smlen; that length may be larger than the message length
* (mlen) by up to PQCLEAN_FALCON512_CLEAN_CRYPTO_BYTES.
*
* sm[] and m[] may overlap each other arbitrarily; however, sm[] shall
* not overlap with sk[].
*
* Return value: 0 on success, -1 on error.
*/
int PQCLEAN_FALCON512_CLEAN_crypto_sign(
uint8_t *sm, size_t *smlen,
const uint8_t *m, size_t mlen, const uint8_t *sk);

/*
* Open a signed message object (sm, smlen) and verify the signature;
* on success, the message itself is written into m[] and its length
* into *mlen. The message is shorter than the signed message object,
* but the size difference depends on the signature value; the difference
* may range up to PQCLEAN_FALCON512_CLEAN_CRYPTO_BYTES.
*
* m[], sm[] and pk[] may overlap each other arbitrarily.
*
* Return value: 0 on success, -1 on error.
*/
int PQCLEAN_FALCON512_CLEAN_crypto_sign_open(
uint8_t *m, size_t *mlen,
const uint8_t *sm, size_t smlen, const uint8_t *pk);

#endif

+ 549
- 0
crypto_sign/falcon-512/clean/codec.c Ver fichero

@@ -0,0 +1,549 @@
/*
* Encoding/decoding of keys and signatures.
*
* ==========================(LICENSE BEGIN)============================
*
* Copyright (c) 2017-2019 Falcon Project
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* ===========================(LICENSE END)=============================
*
* @author Thomas Pornin <thomas.pornin@nccgroup.com>
*/

#include "inner.h"

/* see inner.h */
size_t
PQCLEAN_FALCON512_CLEAN_modq_encode(
void *out, size_t max_out_len,
const uint16_t *x, unsigned logn) {
size_t n, out_len, u;
uint8_t *buf;
uint32_t acc;
int acc_len;

n = (size_t)1 << logn;
for (u = 0; u < n; u ++) {
if (x[u] >= 12289) {
return 0;
}
}
out_len = ((n * 14) + 7) >> 3;
if (out == NULL) {
return out_len;
}
if (out_len > max_out_len) {
return 0;
}
buf = out;
acc = 0;
acc_len = 0;
for (u = 0; u < n; u ++) {
acc = (acc << 14) | x[u];
acc_len += 14;
while (acc_len >= 8) {
acc_len -= 8;
*buf ++ = (uint8_t)(acc >> acc_len);
}
}
if (acc_len > 0) {
*buf = (uint8_t)(acc << (8 - acc_len));
}
return out_len;
}

/* see inner.h */
size_t
PQCLEAN_FALCON512_CLEAN_modq_decode(
uint16_t *x, unsigned logn,
const void *in, size_t in_max_len) {
size_t n, in_len, u;
const uint8_t *buf;
uint32_t acc;
int acc_len;

n = (size_t)1 << logn;
in_len = ((n * 14) + 7) >> 3;
if (in_len > in_max_len) {
return 0;
}
buf = in;
acc = 0;
acc_len = 0;
u = 0;
while (u < n) {
acc = (acc << 8) | (*buf ++);
acc_len += 8;
if (acc_len >= 14) {
unsigned w;

acc_len -= 14;
w = (acc >> acc_len) & 0x3FFF;
if (w >= 12289) {
return 0;
}
x[u ++] = (uint16_t)w;
}
}
if ((acc & (((uint32_t)1 << acc_len) - 1)) != 0) {
return 0;
}
return in_len;
}

/* see inner.h */
size_t
PQCLEAN_FALCON512_CLEAN_trim_i16_encode(
void *out, size_t max_out_len,
const int16_t *x, unsigned logn, unsigned bits) {
size_t n, u, out_len;
int minv, maxv;
uint8_t *buf;
uint32_t acc, mask;
unsigned acc_len;

n = (size_t)1 << logn;
maxv = (1 << (bits - 1)) - 1;
minv = -maxv;
for (u = 0; u < n; u ++) {
if (x[u] < minv || x[u] > maxv) {
return 0;
}
}
out_len = ((n * bits) + 7) >> 3;
if (out == NULL) {
return out_len;
} else if (out_len > max_out_len) {
return 0;
}
buf = out;
acc = 0;
acc_len = 0;
mask = ((uint32_t)1 << bits) - 1;
for (u = 0; u < n; u ++) {
acc = (acc << bits) | ((uint16_t)x[u] & mask);
acc_len += bits;
while (acc_len >= 8) {
acc_len -= 8;
*buf ++ = (uint8_t)(acc >> acc_len);
}
}
if (acc_len > 0) {
*buf ++ = (uint8_t)(acc << (8 - acc_len));
}
return out_len;
}

/* see inner.h */
size_t
PQCLEAN_FALCON512_CLEAN_trim_i16_decode(
int16_t *x, unsigned logn, unsigned bits,
const void *in, size_t in_max_len) {
size_t n, in_len;
const uint8_t *buf;
size_t u;
uint32_t acc, mask1, mask2;
unsigned acc_len;

n = (size_t)1 << logn;
in_len = ((n * bits) + 7) >> 3;
if (in_len > in_max_len) {
return 0;
}
buf = in;
u = 0;
acc = 0;
acc_len = 0;
mask1 = ((uint32_t)1 << bits) - 1;
mask2 = (uint32_t)1 << (bits - 1);
while (u < n) {
acc = (acc << 8) | *buf ++;
acc_len += 8;
while (acc_len >= bits && u < n) {
uint32_t w;

acc_len -= bits;
w = (acc >> acc_len) & mask1;
w |= -(w & mask2);
if (w == -mask2) {
/*
* The -2^(bits-1) value is forbidden.
*/
return 0;
}
w |= -(w & mask2);
x[u ++] = (int16_t) * (int32_t *)&w;
}
}
if ((acc & (((uint32_t)1 << acc_len) - 1)) != 0) {
/*
* Extra bits in the last byte must be zero.
*/
return 0;
}
return in_len;
}

/* see inner.h */
size_t
PQCLEAN_FALCON512_CLEAN_trim_i8_encode(
void *out, size_t max_out_len,
const int8_t *x, unsigned logn, unsigned bits) {
size_t n, u, out_len;
int minv, maxv;
uint8_t *buf;
uint32_t acc, mask;
unsigned acc_len;

n = (size_t)1 << logn;
maxv = (1 << (bits - 1)) - 1;
minv = -maxv;
for (u = 0; u < n; u ++) {
if (x[u] < minv || x[u] > maxv) {
return 0;
}
}
out_len = ((n * bits) + 7) >> 3;
if (out == NULL) {
return out_len;
} else if (out_len > max_out_len) {
return 0;
}
buf = out;
acc = 0;
acc_len = 0;
mask = ((uint32_t)1 << bits) - 1;
for (u = 0; u < n; u ++) {
acc = (acc << bits) | ((uint8_t)x[u] & mask);
acc_len += bits;
while (acc_len >= 8) {
acc_len -= 8;
*buf ++ = (uint8_t)(acc >> acc_len);
}
}
if (acc_len > 0) {
*buf ++ = (uint8_t)(acc << (8 - acc_len));
}
return out_len;
}

/* see inner.h */
size_t
PQCLEAN_FALCON512_CLEAN_trim_i8_decode(
int8_t *x, unsigned logn, unsigned bits,
const void *in, size_t in_max_len) {
size_t n, in_len;
const uint8_t *buf;
size_t u;
uint32_t acc, mask1, mask2;
unsigned acc_len;

n = (size_t)1 << logn;
in_len = ((n * bits) + 7) >> 3;
if (in_len > in_max_len) {
return 0;
}
buf = in;
u = 0;
acc = 0;
acc_len = 0;
mask1 = ((uint32_t)1 << bits) - 1;
mask2 = (uint32_t)1 << (bits - 1);
while (u < n) {
acc = (acc << 8) | *buf ++;
acc_len += 8;
while (acc_len >= bits && u < n) {
uint32_t w;

acc_len -= bits;
w = (acc >> acc_len) & mask1;
w |= -(w & mask2);
if (w == -mask2) {
/*
* The -2^(bits-1) value is forbidden.
*/
return 0;
}
x[u ++] = (int8_t) * (int32_t *)&w;
}
}
if ((acc & (((uint32_t)1 << acc_len) - 1)) != 0) {
/*
* Extra bits in the last byte must be zero.
*/
return 0;
}
return in_len;
}

/* see inner.h */
size_t
PQCLEAN_FALCON512_CLEAN_comp_encode(
void *out, size_t max_out_len,
const int16_t *x, unsigned logn) {
uint8_t *buf;
size_t n, u, v;
uint32_t acc;
unsigned acc_len;

n = (size_t)1 << logn;
buf = out;

/*
* Make sure that all values are within the -2047..+2047 range.
*/
for (u = 0; u < n; u ++) {
if (x[u] < -2047 || x[u] > +2047) {
return 0;
}
}

acc = 0;
acc_len = 0;
v = 0;
for (u = 0; u < n; u ++) {
int t;
unsigned w;

/*
* Get sign and absolute value of next integer; push the
* sign bit.
*/
acc <<= 1;
t = x[u];
if (t < 0) {
t = -t;
acc |= 1;
}
w = (unsigned)t;

/*
* Push the low 7 bits of the absolute value.
*/
acc <<= 7;
acc |= w & 127u;
w >>= 7;

/*
* We pushed exactly 8 bits.
*/
acc_len += 8;

/*
* Push as many zeros as necessary, then a one. Since the
* absolute value is at most 2047, w can only range up to
* 15 at this point, thus we will add at most 16 bits
* here. With the 8 bits above and possibly up to 7 bits
* from previous iterations, we may go up to 31 bits, which
* will fit in the accumulator, which is an uint32_t.
*/
acc <<= (w + 1);
acc |= 1;
acc_len += w + 1;

/*
* Produce all full bytes.
*/
while (acc_len >= 8) {
acc_len -= 8;
if (buf != NULL) {
if (v >= max_out_len) {
return 0;
}
buf[v] = (uint8_t)(acc >> acc_len);
}
v ++;
}
}

/*
* Flush remaining bits (if any).
*/
if (acc_len > 0) {
if (buf != NULL) {
if (v >= max_out_len) {
return 0;
}
buf[v] = (uint8_t)(acc << (8 - acc_len));
}
v ++;
}

return v;
}

/* see inner.h */
size_t
PQCLEAN_FALCON512_CLEAN_comp_decode(
int16_t *x, unsigned logn,
const void *in, size_t in_max_len) {
const uint8_t *buf;
size_t n, u, v;
uint32_t acc;
unsigned acc_len;

n = (size_t)1 << logn;
buf = in;
acc = 0;
acc_len = 0;
v = 0;
for (u = 0; u < n; u ++) {
unsigned b, s, m;

/*
* Get next eight bits: sign and low seven bits of the
* absolute value.
*/
if (v >= in_max_len) {
return 0;
}
acc = (acc << 8) | (uint32_t)buf[v ++];
b = acc >> acc_len;
s = b & 128;
m = b & 127;

/*
* Get next bits until a 1 is reached.
*/
for (;;) {
if (acc_len == 0) {
if (v >= in_max_len) {
return 0;
}
acc = (acc << 8) | (uint32_t)buf[v ++];
acc_len = 8;
}
acc_len --;
if (((acc >> acc_len) & 1) != 0) {
break;
}
m += 128;
if (m > 2047) {
return 0;
}
}
x[u] = (int16_t)(s ? -(int)m : (int)m);
}
return v;
}

/*
* Key elements and signatures are polynomials with small integer
* coefficients. Here are some statistics gathered over many
* generated key pairs (10000 or more for each degree):
*
* log(n) n max(f,g) std(f,g) max(F,G) std(F,G)
* 1 2 129 56.31 143 60.02
* 2 4 123 40.93 160 46.52
* 3 8 97 28.97 159 38.01
* 4 16 100 21.48 154 32.50
* 5 32 71 15.41 151 29.36
* 6 64 59 11.07 138 27.77
* 7 128 39 7.91 144 27.00
* 8 256 32 5.63 148 26.61
* 9 512 22 4.00 137 26.46
* 10 1024 15 2.84 146 26.41
*
* We want a compact storage format for private key, and, as part of
* key generation, we are allowed to reject some keys which would
* otherwise be fine (this does not induce any noticeable vulnerability
* as long as we reject only a small proportion of possible keys).
* Hence, we enforce at key generation time maximum values for the
* elements of f, g, F and G, so that their encoding can be expressed
* in fixed-width values. Limits have been chosen so that generated
* keys are almost always within bounds, thus not impacting neither
* security or performance.
*
* IMPORTANT: the code assumes that all coefficients of f, g, F and G
* ultimately fit in the -127..+127 range. Thus, none of the elements
* of max_fg_bits[] and max_FG_bits[] shall be greater than 8.
*/

const uint8_t PQCLEAN_FALCON512_CLEAN_max_fg_bits[] = {
0, /* unused */
8,
8,
8,
8,
8,
7,
7,
6,
6,
5
};

const uint8_t PQCLEAN_FALCON512_CLEAN_max_FG_bits[] = {
0, /* unused */
8,
8,
8,
8,
8,
8,
8,
8,
8,
8
};

/*
* When generating a new key pair, we can always reject keys which
* feature an abnormally large coefficient. This can also be done for
* signatures, albeit with some care: in case the signature process is
* used in a derandomized setup (explicitly seeded with the message and
* private key), we have to follow the specification faithfully, and the
* specification only enforces a limit on the L2 norm of the signature
* vector. The limit on the L2 norm implies that the absolute value of
* a coefficient of the signature cannot be more than the following:
*
* log(n) n max sig coeff (theoretical)
* 1 2 412
* 2 4 583
* 3 8 824
* 4 16 1166
* 5 32 1649
* 6 64 2332
* 7 128 3299
* 8 256 4665
* 9 512 6598
* 10 1024 9331
*
* However, the largest observed signature coefficients during our
* experiments was 1077 (in absolute value), hence we can assume that,
* with overwhelming probability, signature coefficients will fit
* in -2047..2047, i.e. 12 bits.
*/

const uint8_t PQCLEAN_FALCON512_CLEAN_max_sig_bits[] = {
0, /* unused */
10,
11,
11,
12,
12,
12,
12,
12,
12,
12
};

+ 261
- 0
crypto_sign/falcon-512/clean/common.c Ver fichero

@@ -0,0 +1,261 @@
/*
* Support functions for signatures (hash-to-point, norm).
*
* ==========================(LICENSE BEGIN)============================
*
* Copyright (c) 2017-2019 Falcon Project
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* ===========================(LICENSE END)=============================
*
* @author Thomas Pornin <thomas.pornin@nccgroup.com>
*/

#include "inner.h"

/* see inner.h */
void
PQCLEAN_FALCON512_CLEAN_hash_to_point(
shake256_context *sc,
uint16_t *x, unsigned logn, uint8_t *tmp) {

/*
* Each 16-bit sample is a value in 0..65535. The value is
* kept if it falls in 0..61444 (because 61445 = 5*12289)
* and rejected otherwise; thus, each sample has probability
* about 0.93758 of being selected.
*
* We want to oversample enough to be sure that we will
* have enough values with probability at least 1 - 2^(-256).
* Depending on degree N, this leads to the following
* required oversampling:
*
* logn n oversampling
* 1 2 65
* 2 4 67
* 3 8 71
* 4 16 77
* 5 32 86
* 6 64 100
* 7 128 122
* 8 256 154
* 9 512 205
* 10 1024 287
*
* If logn >= 7, then the provided temporary buffer is large
* enough. Otherwise, we use a stack buffer of 63 entries
* (i.e. 126 bytes) for the values that do not fit in tmp[].
*/

static const uint16_t overtab[] = {
0, /* unused */
65,
67,
71,
77,
86,
100,
122,
154,
205,
287
};

unsigned n, n2, u, m, p, over;
uint16_t *tt1, tt2[63];

/*
* We first generate m 16-bit value. Values 0..n-1 go to x[].
* Values n..2*n-1 go to tt1[]. Values 2*n and later go to tt2[].
* We also reduce modulo q the values; rejected values are set
* to 0xFFFF.
*/
n = 1U << logn;
n2 = n << 1;
over = overtab[logn];
m = n + over;
tt1 = (uint16_t *)tmp;
for (u = 0; u < m; u ++) {
uint8_t buf[2];
uint32_t w, wr;

shake256_extract(sc, buf, sizeof buf);
w = ((uint32_t)buf[0] << 8) | (uint32_t)buf[1];
wr = w - ((uint32_t)24578 & (((w - 24578) >> 31) - 1));
wr = wr - ((uint32_t)24578 & (((wr - 24578) >> 31) - 1));
wr = wr - ((uint32_t)12289 & (((wr - 12289) >> 31) - 1));
wr |= ((w - 61445) >> 31) - 1;
if (u < n) {
x[u] = (uint16_t)wr;
} else if (u < n2) {
tt1[u - n] = (uint16_t)wr;
} else {
tt2[u - n2] = (uint16_t)wr;
}
}

/*
* Now we must "squeeze out" the invalid values. We do this in
* a logarithmic sequence of passes; each pass computes where a
* value should go, and moves it down by 'p' slots if necessary,
* where 'p' uses an increasing powers-of-two scale. It can be
* shown that in all cases where the loop decides that a value
* has to be moved down by p slots, the destination slot is
* "free" (i.e. contains an invalid value).
*/
for (p = 1; p <= over; p <<= 1) {
unsigned v;

/*
* In the loop below:
*
* - v contains the index of the final destination of
* the value; it is recomputed dynamically based on
* whether values are valid or not.
*
* - u is the index of the value we consider ("source");
* its address is s.
*
* - The loop may swap the value with the one at index
* u-p. The address of the swap destination is d.
*/
v = 0;
for (u = 0; u < m; u ++) {
uint16_t *s, *d;
unsigned j, sv, dv, m;

if (u < n) {
s = &x[u];
} else if (u < n2) {
s = &tt1[u - n];
} else {
s = &tt2[u - n2];
}
sv = *s;

/*
* The value in sv should ultimately go to
* address v, i.e. jump back by u-v slots.
*/
j = u - v;

/*
* We increment v for the next iteration, but
* only if the source value is valid. The mask
* 'm' is -1 if the value is valid, 0 otherwise,
* so we _subtract_ m.
*/
m = (sv >> 15) - 1U;
v -= m;

/*
* In this loop we consider jumps by p slots; if
* u < p then there is nothing more to do.
*/
if (u < p) {
continue;
}

/*
* Destination for the swap: value at address u-p.
*/
if ((u - p) < n) {
d = &x[u - p];
} else if ((u - p) < n2) {
d = &tt1[(u - p) - n];
} else {
d = &tt2[(u - p) - n2];
}
dv = *d;

/*
* The swap should be performed only if the source
* is valid AND the jump j has its 'p' bit set.
*/
m &= -(((j & p) + 0x1FF) >> 9);

*s = (uint16_t)(sv ^ (m & (sv ^ dv)));
*d = (uint16_t)(dv ^ (m & (sv ^ dv)));
}
}

}

/* see inner.h */
int
PQCLEAN_FALCON512_CLEAN_is_short(
const int16_t *s1, const int16_t *s2, unsigned logn) {
/*
* We use the l2-norm. Code below uses only 32-bit operations to
* compute the square of the norm with saturation to 2^32-1 if
* the value exceeds 2^31-1.
*/
size_t n, u;
uint32_t s, ng;

n = (size_t)1 << logn;
s = 0;
ng = 0;
for (u = 0; u < n; u ++) {
int32_t z;

z = s1[u];
s += (uint32_t)(z * z);
ng |= s;
z = s2[u];
s += (uint32_t)(z * z);
ng |= s;
}
s |= -(ng >> 31);

/*
* Acceptance bound on the l2-norm is:
* 1.2*1.55*sqrt(q)*sqrt(2*N)
* Value 7085 is floor((1.2^2)*(1.55^2)*2*1024).
*/
return s < (((uint32_t)7085 * (uint32_t)12289) >> (10 - logn));
}

/* see inner.h */
int
PQCLEAN_FALCON512_CLEAN_is_short_half(
uint32_t sqn, const int16_t *a, unsigned logn) {
size_t n, u;
uint32_t ng;

n = (size_t)1 << logn;
ng = -(sqn >> 31);
for (u = 0; u < n; u ++) {
int32_t z;

z = a[u];
sqn += (uint32_t)(z * z);
ng |= sqn;
}
sqn |= -(ng >> 31);

/*
* Acceptance bound on the l2-norm is:
* 1.2*1.55*sqrt(q)*sqrt(2*N)
* Value 7085 is floor((1.2^2)*(1.55^2)*2*1024).
*/
return sqn < (((uint32_t)7085 * (uint32_t)12289) >> (10 - logn));
}

+ 699
- 0
crypto_sign/falcon-512/clean/fft.c Ver fichero

@@ -0,0 +1,699 @@
/*
* FFT code.
*
* ==========================(LICENSE BEGIN)============================
*
* Copyright (c) 2017-2019 Falcon Project
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* ===========================(LICENSE END)=============================
*
* @author Thomas Pornin <thomas.pornin@nccgroup.com>
*/

#include "inner.h"

/*
* Rules for complex number macros:
* --------------------------------
*
* Operand order is: destination, source1, source2...
*
* Each operand is a real and an imaginary part.
*
* All overlaps are allowed.
*/

/*
* Addition of two complex numbers (d = a + b).
*/
#define FPC_ADD(d_re, d_im, a_re, a_im, b_re, b_im) do { \
fpr fpct_re, fpct_im; \
fpct_re = fpr_add(a_re, b_re); \
fpct_im = fpr_add(a_im, b_im); \
(d_re) = fpct_re; \
(d_im) = fpct_im; \
} while (0)

/*
* Subtraction of two complex numbers (d = a - b).
*/
#define FPC_SUB(d_re, d_im, a_re, a_im, b_re, b_im) do { \
fpr fpct_re, fpct_im; \
fpct_re = fpr_sub(a_re, b_re); \
fpct_im = fpr_sub(a_im, b_im); \
(d_re) = fpct_re; \
(d_im) = fpct_im; \
} while (0)

/*
* Multplication of two complex numbers (d = a * b).
*/
#define FPC_MUL(d_re, d_im, a_re, a_im, b_re, b_im) do { \
fpr fpct_a_re, fpct_a_im; \
fpr fpct_b_re, fpct_b_im; \
fpr fpct_d_re, fpct_d_im; \
fpct_a_re = (a_re); \
fpct_a_im = (a_im); \
fpct_b_re = (b_re); \
fpct_b_im = (b_im); \
fpct_d_re = fpr_sub( \
fpr_mul(fpct_a_re, fpct_b_re), \
fpr_mul(fpct_a_im, fpct_b_im)); \
fpct_d_im = fpr_add( \
fpr_mul(fpct_a_re, fpct_b_im), \
fpr_mul(fpct_a_im, fpct_b_re)); \
(d_re) = fpct_d_re; \
(d_im) = fpct_d_im; \
} while (0)

/*
* Squaring of a complex number (d = a * a).
*/
#define FPC_SQR(d_re, d_im, a_re, a_im) do { \
fpr fpct_a_re, fpct_a_im; \
fpr fpct_d_re, fpct_d_im; \
fpct_a_re = (a_re); \
fpct_a_im = (a_im); \
fpct_d_re = fpr_sub(fpr_sqr(fpct_a_re), fpr_sqr(fpct_a_im)); \
fpct_d_im = fpr_double(fpr_mul(fpct_a_re, fpct_a_im)); \
(d_re) = fpct_d_re; \
(d_im) = fpct_d_im; \
} while (0)

/*
* Inversion of a complex number (d = 1 / a).
*/
#define FPC_INV(d_re, d_im, a_re, a_im) do { \
fpr fpct_a_re, fpct_a_im; \
fpr fpct_d_re, fpct_d_im; \
fpr fpct_m; \
fpct_a_re = (a_re); \
fpct_a_im = (a_im); \
fpct_m = fpr_add(fpr_sqr(fpct_a_re), fpr_sqr(fpct_a_im)); \
fpct_m = fpr_inv(fpct_m); \
fpct_d_re = fpr_mul(fpct_a_re, fpct_m); \
fpct_d_im = fpr_mul(fpr_neg(fpct_a_im), fpct_m); \
(d_re) = fpct_d_re; \
(d_im) = fpct_d_im; \
} while (0)

/*
* Division of complex numbers (d = a / b).
*/
#define FPC_DIV(d_re, d_im, a_re, a_im, b_re, b_im) do { \
fpr fpct_a_re, fpct_a_im; \
fpr fpct_b_re, fpct_b_im; \
fpr fpct_d_re, fpct_d_im; \
fpr fpct_m; \
fpct_a_re = (a_re); \
fpct_a_im = (a_im); \
fpct_b_re = (b_re); \
fpct_b_im = (b_im); \
fpct_m = fpr_add(fpr_sqr(fpct_b_re), fpr_sqr(fpct_b_im)); \
fpct_m = fpr_inv(fpct_m); \
fpct_b_re = fpr_mul(fpct_b_re, fpct_m); \
fpct_b_im = fpr_mul(fpr_neg(fpct_b_im), fpct_m); \
fpct_d_re = fpr_sub( \
fpr_mul(fpct_a_re, fpct_b_re), \
fpr_mul(fpct_a_im, fpct_b_im)); \
fpct_d_im = fpr_add( \
fpr_mul(fpct_a_re, fpct_b_im), \
fpr_mul(fpct_a_im, fpct_b_re)); \
(d_re) = fpct_d_re; \
(d_im) = fpct_d_im; \
} while (0)

/*
* Let w = exp(i*pi/N); w is a primitive 2N-th root of 1. We define the
* values w_j = w^(2j+1) for all j from 0 to N-1: these are the roots
* of X^N+1 in the field of complex numbers. A crucial property is that
* w_{N-1-j} = conj(w_j) = 1/w_j for all j.
*
* FFT representation of a polynomial f (taken modulo X^N+1) is the
* set of values f(w_j). Since f is real, conj(f(w_j)) = f(conj(w_j)),
* thus f(w_{N-1-j}) = conj(f(w_j)). We thus store only half the values,
* for j = 0 to N/2-1; the other half can be recomputed easily when (if)
* needed. A consequence is that FFT representation has the same size
* as normal representation: N/2 complex numbers use N real numbers (each
* complex number is the combination of a real and an imaginary part).
*
* We use a specific ordering which makes computations easier. Let rev()
* be the bit-reversal function over log(N) bits. For j in 0..N/2-1, we
* store the real and imaginary parts of f(w_j) in slots:
*
* Re(f(w_j)) -> slot rev(j)/2
* Im(f(w_j)) -> slot rev(j)/2+N/2
*
* (Note that rev(j) is even for j < N/2.)
*/

/* see inner.h */
void
PQCLEAN_FALCON512_CLEAN_FFT(fpr *f, unsigned logn) {
/*
* FFT algorithm in bit-reversal order uses the following
* iterative algorithm:
*
* t = N
* for m = 1; m < N; m *= 2:
* ht = t/2
* for i1 = 0; i1 < m; i1 ++:
* j1 = i1 * t
* s = GM[m + i1]
* for j = j1; j < (j1 + ht); j ++:
* x = f[j]
* y = s * f[j + ht]
* f[j] = x + y
* f[j + ht] = x - y
* t = ht
*
* GM[k] contains w^rev(k) for primitive root w = exp(i*pi/N).
*
* In the description above, f[] is supposed to contain complex
* numbers. In our in-memory representation, the real and
* imaginary parts of f[k] are in array slots k and k+N/2.
*
* We only keep the first half of the complex numbers. We can
* see that after the first iteration, the first and second halves
* of the array of complex numbers have separate lives, so we
* simply ignore the second part.
*/

unsigned u;
size_t t, n, hn, m;

/*
* First iteration: compute f[j] + i * f[j+N/2] for all j < N/2
* (because GM[1] = w^rev(1) = w^(N/2) = i).
* In our chosen representation, this is a no-op: everything is
* already where it should be.
*/

/*
* Subsequent iterations are truncated to use only the first
* half of values.
*/
n = (size_t)1 << logn;
hn = n >> 1;
t = hn;
for (u = 1, m = 2; u < logn; u ++, m <<= 1) {
size_t ht, hm, i1, j1;

ht = t >> 1;
hm = m >> 1;
for (i1 = 0, j1 = 0; i1 < hm; i1 ++, j1 += t) {
size_t j, j2;

j2 = j1 + ht;
fpr s_re, s_im;

s_re = fpr_gm_tab[((m + i1) << 1) + 0];
s_im = fpr_gm_tab[((m + i1) << 1) + 1];
for (j = j1; j < j2; j ++) {
fpr x_re, x_im, y_re, y_im;

x_re = f[j];
x_im = f[j + hn];
y_re = f[j + ht];
y_im = f[j + ht + hn];
FPC_MUL(y_re, y_im, y_re, y_im, s_re, s_im);
FPC_ADD(f[j], f[j + hn],
x_re, x_im, y_re, y_im);
FPC_SUB(f[j + ht], f[j + ht + hn],
x_re, x_im, y_re, y_im);
}
}
t = ht;
}
}

/* see inner.h */
void
PQCLEAN_FALCON512_CLEAN_iFFT(fpr *f, unsigned logn) {
/*
* Inverse FFT algorithm in bit-reversal order uses the following
* iterative algorithm:
*
* t = 1
* for m = N; m > 1; m /= 2:
* hm = m/2
* dt = t*2
* for i1 = 0; i1 < hm; i1 ++:
* j1 = i1 * dt
* s = iGM[hm + i1]
* for j = j1; j < (j1 + t); j ++:
* x = f[j]
* y = f[j + t]
* f[j] = x + y
* f[j + t] = s * (x - y)
* t = dt
* for i1 = 0; i1 < N; i1 ++:
* f[i1] = f[i1] / N
*
* iGM[k] contains (1/w)^rev(k) for primitive root w = exp(i*pi/N)
* (actually, iGM[k] = 1/GM[k] = conj(GM[k])).
*
* In the main loop (not counting the final division loop), in
* all iterations except the last, the first and second half of f[]
* (as an array of complex numbers) are separate. In our chosen
* representation, we do not keep the second half.
*
* The last iteration recombines the recomputed half with the
* implicit half, and should yield only real numbers since the
* target polynomial is real; moreover, s = i at that step.
* Thus, when considering x and y:
* y = conj(x) since the final f[j] must be real
* Therefore, f[j] is filled with 2*Re(x), and f[j + t] is
* filled with 2*Im(x).
* But we already have Re(x) and Im(x) in array slots j and j+t
* in our chosen representation. That last iteration is thus a
* simple doubling of the values in all the array.
*
* We make the last iteration a no-op by tweaking the final
* division into a division by N/2, not N.
*/
size_t u, n, hn, t, m;

n = (size_t)1 << logn;
t = 1;
m = n;
hn = n >> 1;
for (u = logn; u > 1; u --) {
size_t hm, dt, i1, j1;

hm = m >> 1;
dt = t << 1;
for (i1 = 0, j1 = 0; j1 < hn; i1 ++, j1 += dt) {
size_t j, j2;

j2 = j1 + t;
fpr s_re, s_im;

s_re = fpr_gm_tab[((hm + i1) << 1) + 0];
s_im = fpr_neg(fpr_gm_tab[((hm + i1) << 1) + 1]);
for (j = j1; j < j2; j ++) {
fpr x_re, x_im, y_re, y_im;

x_re = f[j];
x_im = f[j + hn];
y_re = f[j + t];
y_im = f[j + t + hn];
FPC_ADD(f[j], f[j + hn],
x_re, x_im, y_re, y_im);
FPC_SUB(x_re, x_im, x_re, x_im, y_re, y_im);
FPC_MUL(f[j + t], f[j + t + hn],
x_re, x_im, s_re, s_im);
}
}
t = dt;
m = hm;
}

/*
* Last iteration is a no-op, provided that we divide by N/2
* instead of N. We need to make a special case for logn = 0.
*/
if (logn > 0) {
fpr ni;

ni = fpr_p2_tab[logn];
for (u = 0; u < n; u ++) {
f[u] = fpr_mul(f[u], ni);
}
}
}

/* see inner.h */
void
PQCLEAN_FALCON512_CLEAN_poly_add(
fpr *restrict a, const fpr *restrict b, unsigned logn) {
size_t n, u;

n = (size_t)1 << logn;
for (u = 0; u < n; u ++) {
a[u] = fpr_add(a[u], b[u]);
}
}

/* see inner.h */
void
PQCLEAN_FALCON512_CLEAN_poly_sub(
fpr *restrict a, const fpr *restrict b, unsigned logn) {
size_t n, u;

n = (size_t)1 << logn;
for (u = 0; u < n; u ++) {
a[u] = fpr_sub(a[u], b[u]);
}
}

/* see inner.h */
void
PQCLEAN_FALCON512_CLEAN_poly_neg(fpr *a, unsigned logn) {
size_t n, u;

n = (size_t)1 << logn;
for (u = 0; u < n; u ++) {
a[u] = fpr_neg(a[u]);
}
}

/* see inner.h */
void
PQCLEAN_FALCON512_CLEAN_poly_adj_fft(fpr *a, unsigned logn) {
size_t n, u;

n = (size_t)1 << logn;
for (u = (n >> 1); u < n; u ++) {
a[u] = fpr_neg(a[u]);
}
}

/* see inner.h */
void
PQCLEAN_FALCON512_CLEAN_poly_mul_fft(
fpr *restrict a, const fpr *restrict b, unsigned logn) {
size_t n, hn, u;

n = (size_t)1 << logn;
hn = n >> 1;
for (u = 0; u < hn; u ++) {
fpr a_re, a_im, b_re, b_im;

a_re = a[u];
a_im = a[u + hn];
b_re = b[u];
b_im = b[u + hn];
FPC_MUL(a[u], a[u + hn], a_re, a_im, b_re, b_im);
}
}

/* see inner.h */
void
PQCLEAN_FALCON512_CLEAN_poly_muladj_fft(
fpr *restrict a, const fpr *restrict b, unsigned logn) {
size_t n, hn, u;

n = (size_t)1 << logn;
hn = n >> 1;
for (u = 0; u < hn; u ++) {
fpr a_re, a_im, b_re, b_im;

a_re = a[u];
a_im = a[u + hn];
b_re = b[u];
b_im = fpr_neg(b[u + hn]);
FPC_MUL(a[u], a[u + hn], a_re, a_im, b_re, b_im);
}
}

/* see inner.h */
void
PQCLEAN_FALCON512_CLEAN_poly_mulselfadj_fft(fpr *a, unsigned logn) {
/*
* Since each coefficient is multiplied with its own conjugate,
* the result contains only real values.
*/
size_t n, hn, u;

n = (size_t)1 << logn;
hn = n >> 1;
for (u = 0; u < hn; u ++) {
fpr a_re, a_im;

a_re = a[u];
a_im = a[u + hn];
a[u] = fpr_add(fpr_sqr(a_re), fpr_sqr(a_im));
a[u + hn] = fpr_zero;
}
}

/* see inner.h */
void
PQCLEAN_FALCON512_CLEAN_poly_mulconst(fpr *a, fpr x, unsigned logn) {
size_t n, u;

n = (size_t)1 << logn;
for (u = 0; u < n; u ++) {
a[u] = fpr_mul(a[u], x);
}
}

/* see inner.h */
void
PQCLEAN_FALCON512_CLEAN_poly_div_fft(
fpr *restrict a, const fpr *restrict b, unsigned logn) {
size_t n, hn, u;

n = (size_t)1 << logn;
hn = n >> 1;
for (u = 0; u < hn; u ++) {
fpr a_re, a_im, b_re, b_im;

a_re = a[u];
a_im = a[u + hn];
b_re = b[u];
b_im = b[u + hn];
FPC_DIV(a[u], a[u + hn], a_re, a_im, b_re, b_im);
}
}

/* see inner.h */
void
PQCLEAN_FALCON512_CLEAN_poly_invnorm2_fft(fpr *restrict d,
const fpr *restrict a, const fpr *restrict b, unsigned logn) {
size_t n, hn, u;

n = (size_t)1 << logn;
hn = n >> 1;
for (u = 0; u < hn; u ++) {
fpr a_re, a_im;
fpr b_re, b_im;

a_re = a[u];
a_im = a[u + hn];
b_re = b[u];
b_im = b[u + hn];
d[u] = fpr_inv(fpr_add(
fpr_add(fpr_sqr(a_re), fpr_sqr(a_im)),
fpr_add(fpr_sqr(b_re), fpr_sqr(b_im))));
}
}

/* see inner.h */
void
PQCLEAN_FALCON512_CLEAN_poly_add_muladj_fft(fpr *restrict d,
const fpr *restrict F, const fpr *restrict G,
const fpr *restrict f, const fpr *restrict g, unsigned logn) {
size_t n, hn, u;

n = (size_t)1 << logn;
hn = n >> 1;
for (u = 0; u < hn; u ++) {
fpr F_re, F_im, G_re, G_im;
fpr f_re, f_im, g_re, g_im;
fpr a_re, a_im, b_re, b_im;

F_re = F[u];
F_im = F[u + hn];
G_re = G[u];
G_im = G[u + hn];
f_re = f[u];
f_im = f[u + hn];
g_re = g[u];
g_im = g[u + hn];

FPC_MUL(a_re, a_im, F_re, F_im, f_re, fpr_neg(f_im));
FPC_MUL(b_re, b_im, G_re, G_im, g_re, fpr_neg(g_im));
d[u] = fpr_add(a_re, b_re);
d[u + hn] = fpr_add(a_im, b_im);
}
}

/* see inner.h */
void
PQCLEAN_FALCON512_CLEAN_poly_mul_autoadj_fft(
fpr *restrict a, const fpr *restrict b, unsigned logn) {
size_t n, hn, u;

n = (size_t)1 << logn;
hn = n >> 1;
for (u = 0; u < hn; u ++) {
a[u] = fpr_mul(a[u], b[u]);
a[u + hn] = fpr_mul(a[u + hn], b[u]);
}
}

/* see inner.h */
void
PQCLEAN_FALCON512_CLEAN_poly_div_autoadj_fft(
fpr *restrict a, const fpr *restrict b, unsigned logn) {
size_t n, hn, u;

n = (size_t)1 << logn;
hn = n >> 1;
for (u = 0; u < hn; u ++) {
fpr ib;

ib = fpr_inv(b[u]);
a[u] = fpr_mul(a[u], ib);
a[u + hn] = fpr_mul(a[u + hn], ib);
}
}

/* see inner.h */
void
PQCLEAN_FALCON512_CLEAN_poly_LDL_fft(
const fpr *restrict g00,
fpr *restrict g01, fpr *restrict g11, unsigned logn) {
size_t n, hn, u;

n = (size_t)1 << logn;
hn = n >> 1;
for (u = 0; u < hn; u ++) {
fpr g00_re, g00_im, g01_re, g01_im, g11_re, g11_im;
fpr mu_re, mu_im;

g00_re = g00[u];
g00_im = g00[u + hn];
g01_re = g01[u];
g01_im = g01[u + hn];
g11_re = g11[u];
g11_im = g11[u + hn];
FPC_DIV(mu_re, mu_im, g01_re, g01_im, g00_re, g00_im);
FPC_MUL(g01_re, g01_im, mu_re, mu_im, g01_re, fpr_neg(g01_im));
FPC_SUB(g11[u], g11[u + hn], g11_re, g11_im, g01_re, g01_im);
g01[u] = mu_re;
g01[u + hn] = fpr_neg(mu_im);
}
}

/* see inner.h */
void
PQCLEAN_FALCON512_CLEAN_poly_LDLmv_fft(
fpr *restrict d11, fpr *restrict l10,
const fpr *restrict g00, const fpr *restrict g01,
const fpr *restrict g11, unsigned logn) {
size_t n, hn, u;

n = (size_t)1 << logn;
hn = n >> 1;
for (u = 0; u < hn; u ++) {
fpr g00_re, g00_im, g01_re, g01_im, g11_re, g11_im;
fpr mu_re, mu_im;

g00_re = g00[u];
g00_im = g00[u + hn];
g01_re = g01[u];
g01_im = g01[u + hn];
g11_re = g11[u];
g11_im = g11[u + hn];
FPC_DIV(mu_re, mu_im, g01_re, g01_im, g00_re, g00_im);
FPC_MUL(g01_re, g01_im, mu_re, mu_im, g01_re, fpr_neg(g01_im));
FPC_SUB(d11[u], d11[u + hn], g11_re, g11_im, g01_re, g01_im);
l10[u] = mu_re;
l10[u + hn] = fpr_neg(mu_im);
}
}

/* see inner.h */
void
PQCLEAN_FALCON512_CLEAN_poly_split_fft(
fpr *restrict f0, fpr *restrict f1,
const fpr *restrict f, unsigned logn) {
/*
* The FFT representation we use is in bit-reversed order
* (element i contains f(w^(rev(i))), where rev() is the
* bit-reversal function over the ring degree. This changes
* indexes with regards to the Falcon specification.
*/
size_t n, hn, qn, u;

n = (size_t)1 << logn;
hn = n >> 1;
qn = hn >> 1;

/*
* We process complex values by pairs. For logn = 1, there is only
* one complex value (the other one is the implicit conjugate),
* so we add the two lines below because the loop will be
* skipped.
*/
f0[0] = f[0];
f1[0] = f[hn];

for (u = 0; u < qn; u ++) {
fpr a_re, a_im, b_re, b_im;
fpr t_re, t_im;

a_re = f[(u << 1) + 0];
a_im = f[(u << 1) + 0 + hn];
b_re = f[(u << 1) + 1];
b_im = f[(u << 1) + 1 + hn];

FPC_ADD(t_re, t_im, a_re, a_im, b_re, b_im);
f0[u] = fpr_half(t_re);
f0[u + qn] = fpr_half(t_im);

FPC_SUB(t_re, t_im, a_re, a_im, b_re, b_im);
FPC_MUL(t_re, t_im, t_re, t_im,
fpr_gm_tab[((u + hn) << 1) + 0],
fpr_neg(fpr_gm_tab[((u + hn) << 1) + 1]));
f1[u] = fpr_half(t_re);
f1[u + qn] = fpr_half(t_im);
}
}

/* see inner.h */
void
PQCLEAN_FALCON512_CLEAN_poly_merge_fft(
fpr *restrict f,
const fpr *restrict f0, const fpr *restrict f1, unsigned logn) {
size_t n, hn, qn, u;

n = (size_t)1 << logn;
hn = n >> 1;
qn = hn >> 1;

/*
* An extra copy to handle the special case logn = 1.
*/
f[0] = f0[0];
f[hn] = f1[0];

for (u = 0; u < qn; u ++) {
fpr a_re, a_im, b_re, b_im;
fpr t_re, t_im;

a_re = f0[u];
a_im = f0[u + qn];
FPC_MUL(b_re, b_im, f1[u], f1[u + qn],
fpr_gm_tab[((u + hn) << 1) + 0],
fpr_gm_tab[((u + hn) << 1) + 1]);
FPC_ADD(t_re, t_im, a_re, a_im, b_re, b_im);
f[(u << 1) + 0] = t_re;
f[(u << 1) + 0 + hn] = t_im;
FPC_SUB(t_re, t_im, a_re, a_im, b_re, b_im);
f[(u << 1) + 1] = t_re;
f[(u << 1) + 1 + hn] = t_im;
}
}

+ 1615
- 0
crypto_sign/falcon-512/clean/fpr.c
La diferencia del archivo ha sido suprimido porque es demasiado grande
Ver fichero


+ 457
- 0
crypto_sign/falcon-512/clean/fpr.h Ver fichero

@@ -0,0 +1,457 @@
/*
* Floating-point operations.
*
* ==========================(LICENSE BEGIN)============================
*
* Copyright (c) 2017-2019 Falcon Project
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* ===========================(LICENSE END)=============================
*
* @author Thomas Pornin <thomas.pornin@nccgroup.com>
*/


/* ====================================================================== */
/*
* Custom floating-point implementation with integer arithmetics. We
* use IEEE-754 "binary64" format, with some simplifications:
*
* - Top bit is s = 1 for negative, 0 for positive.
*
* - Exponent e uses the next 11 bits (bits 52 to 62, inclusive).
*
* - Mantissa m uses the 52 low bits.
*
* Encoded value is, in general: (-1)^s * 2^(e-1023) * (1 + m*2^(-52))
* i.e. the mantissa really is a 53-bit number (less than 2.0, but not
* less than 1.0), but the top bit (equal to 1 by definition) is omitted
* in the encoding.
*
* In IEEE-754, there are some special values:
*
* - If e = 2047, then the value is either an infinite (m = 0) or
* a NaN (m != 0).
*
* - If e = 0, then the value is either a zero (m = 0) or a subnormal,
* aka "denormalized number" (m != 0).
*
* Of these, we only need the zeros. The caller is responsible for not
* providing operands that would lead to infinites, NaNs or subnormals.
* If inputs are such that values go out of range, then indeterminate
* values are returned (it would still be deterministic, but no specific
* value may be relied upon).
*
* At the C level, the three parts are stored in a 64-bit unsigned
* word.
*
* One may note that a property of the IEEE-754 format is that order
* is preserved for positive values: if two positive floating-point
* values x and y are such that x < y, then their respective encodings
* as _signed_ 64-bit integers i64(x) and i64(y) will be such that
* i64(x) < i64(y). For negative values, order is reversed: if x < 0,
* y < 0, and x < y, then ia64(x) > ia64(y).
*
* IMPORTANT ASSUMPTIONS:
* ======================
*
* For proper computations, and constant-time behaviour, we assume the
* following:
*
* - 32x32->64 multiplication (unsigned) has an execution time that
* is independent of its operands. This is true of most modern
* x86 and ARM cores. Notable exceptions are the ARM Cortex M0, M0+
* and M3 (in the M0 and M0+, this is done in software, so it depends
* on that routine), and the PowerPC cores from the G3/G4 lines.
* For more info, see: https://www.bearssl.org/ctmul.html
*
* - Left-shifts and right-shifts of 32-bit values have an execution
* time which does not depend on the shifted value nor on the
* shift count. An historical exception is the Pentium IV, but most
* modern CPU have barrel shifters. Some small microcontrollers
* might have varying-time shifts (not the ARM Cortex M*, though).
*
* - Right-shift of a signed negative value performs a sign extension.
* As per the C standard, this operation returns an
* implementation-defined result (this is NOT an "undefined
* behaviour"). On most/all systems, an arithmetic shift is
* performed, because this is what makes most sense.
*/

/*
* Normally we should declare the 'fpr' type to be a struct or union
* around the internal 64-bit value; however, we want to use the
* direct 64-bit integer type to enable a lighter call convention on
* ARM platforms. This means that direct (invalid) use of operators
* such as '*' or '+' will not be caught by the compiler. We rely on
* the "normal" (non-emulated) code to detect such instances.
*/
typedef uint64_t fpr;

/*
* For computations, we split values into an integral mantissa in the
* 2^54..2^55 range, and an (adjusted) exponent. The lowest bit is
* "sticky" (it is set to 1 if any of the bits below it is 1); when
* re-encoding, the low two bits are dropped, but may induce an
* increment in the value for proper rounding.
*/

/*
* Right-shift a 64-bit unsigned value by a possibly secret shift count.
* We assumed that the underlying architecture had a barrel shifter for
* 32-bit shifts, but for 64-bit shifts on a 32-bit system, this will
* typically invoke a software routine that is not necessarily
* constant-time; hence the function below.
*
* Shift count n MUST be in the 0..63 range.
*/
static inline uint64_t
fpr_ursh(uint64_t x, int n) {
x ^= (x ^ (x >> 32)) & -(uint64_t)(n >> 5);
return x >> (n & 31);
}

/*
* Right-shift a 64-bit signed value by a possibly secret shift count
* (see fpr_ursh() for the rationale).
*
* Shift count n MUST be in the 0..63 range.
*/
static inline int64_t
fpr_irsh(int64_t x, int n) {
x ^= (x ^ (x >> 32)) & -(int64_t)(n >> 5);
return x >> (n & 31);
}

/*
* Left-shift a 64-bit unsigned value by a possibly secret shift count
* (see fpr_ursh() for the rationale).
*
* Shift count n MUST be in the 0..63 range.
*/
static inline uint64_t
fpr_ulsh(uint64_t x, int n) {
x ^= (x ^ (x << 32)) & -(uint64_t)(n >> 5);
return x << (n & 31);
}

/*
* Expectations:
* s = 0 or 1
* exponent e is "arbitrary" and unbiased
* 2^54 <= m < 2^55
* Numerical value is (-1)^2 * m * 2^e
*
* Exponents which are too low lead to value zero. If the exponent is
* too large, the returned value is indeterminate.
*
* If m = 0, then a zero is returned (using the provided sign).
* If e < -1076, then a zero is returned (regardless of the value of m).
* If e >= -1076 and e != 0, m must be within the expected range
* (2^54 to 2^55-1).
*/
static inline fpr
FPR(int s, int e, uint64_t m) {
fpr x;
uint32_t t;
unsigned f;

/*
* If e >= -1076, then the value is "normal"; otherwise, it
* should be a subnormal, which we clamp down to zero.
*/
e += 1076;
t = (uint32_t)e >> 31;
m &= (uint64_t)t - 1;

/*
* If m = 0 then we want a zero; make e = 0 too, but conserve
* the sign.
*/
t = (uint32_t)(m >> 54);
e &= -(int)t;

/*
* The 52 mantissa bits come from m. Value m has its top bit set
* (unless it is a zero); we leave it "as is": the top bit will
* increment the exponent by 1, except when m = 0, which is
* exactly what we want.
*/
x = (((uint64_t)s << 63) | (m >> 2)) + ((uint64_t)(uint32_t)e << 52);

/*
* Rounding: if the low three bits of m are 011, 110 or 111,
* then the value should be incremented to get the next
* representable value. This implements the usual
* round-to-nearest rule (with preference to even values in case
* of a tie). Note that the increment may make a carry spill
* into the exponent field, which is again exactly what we want
* in that case.
*/
f = (unsigned)m & 7U;
x += (0xC8U >> f) & 1;
return x;
}

#define fpr_scaled PQCLEAN_FALCON512_CLEAN_fpr_scaled
fpr fpr_scaled(int64_t i, int sc);

static inline fpr
fpr_of(int64_t i) {
return fpr_scaled(i, 0);
}

static const fpr fpr_q = 4667981563525332992;
static const fpr fpr_inverse_of_q = 4545632735260551042;
static const fpr fpr_inv_2sqrsigma0 = 4594603506513722306;
static const fpr fpr_inv_sigma = 4573359825155195350;
static const fpr fpr_sigma_min_9 = 4608495221497168882;
static const fpr fpr_sigma_min_10 = 4608586345619182117;
static const fpr fpr_log2 = 4604418534313441775;
static const fpr fpr_inv_log2 = 4609176140021203710;
static const fpr fpr_bnorm_max = 4670353323383631276;
static const fpr fpr_zero = 0;
static const fpr fpr_one = 4607182418800017408;
static const fpr fpr_two = 4611686018427387904;
static const fpr fpr_onehalf = 4602678819172646912;
static const fpr fpr_ptwo31 = 4746794007248502784;
static const fpr fpr_ptwo31m1 = 4746794007244308480;
static const fpr fpr_mtwo31m1 = 13970166044099084288U;
static const fpr fpr_ptwo63m1 = 4890909195324358656;
static const fpr fpr_mtwo63m1 = 14114281232179134464U;
static const fpr fpr_ptwo63 = 4890909195324358656;

static inline int64_t
fpr_rint(fpr x) {
uint64_t m, d;
int e;
uint32_t s, dd;
unsigned f;

/*
* We assume that the value fits in -(2^63-1)..+(2^63-1). We can
* thus extract the mantissa as a 63-bit integer, then right-shift
* it as needed.
*/
m = ((x << 10) | ((uint64_t)1 << 62)) & (((uint64_t)1 << 63) - 1);
e = 1085 - ((int)(x >> 52) & 0x7FF);

/*
* If a shift of more than 63 bits is needed, then simply set m
* to zero. This also covers the case of an input operand equal
* to zero.
*/
m &= -(uint64_t)((uint32_t)(e - 64) >> 31);
e &= 63;

/*
* Right-shift m as needed. Shift count is e. Proper rounding
* mandates that:
* - If the highest dropped bit is zero, then round low.
* - If the highest dropped bit is one, and at least one of the
* other dropped bits is one, then round up.
* - If the highest dropped bit is one, and all other dropped
* bits are zero, then round up if the lowest kept bit is 1,
* or low otherwise (i.e. ties are broken by "rounding to even").
*
* We thus first extract a word consisting of all the dropped bit
* AND the lowest kept bit; then we shrink it down to three bits,
* the lowest being "sticky".
*/
d = fpr_ulsh(m, 63 - e);
dd = (uint32_t)d | ((uint32_t)(d >> 32) & 0x1FFFFFFF);
f = (unsigned)(d >> 61) | (unsigned)((dd | -dd) >> 31);
m = fpr_ursh(m, e) + (uint64_t)((0xC8U >> f) & 1U);

/*
* Apply the sign bit.
*/
s = (uint32_t)(x >> 63);
return ((int64_t)m ^ -(int64_t)s) + (int64_t)s;
}

static inline long
fpr_floor(fpr x) {
uint64_t t;
int64_t xi;
int e, cc;

/*
* We extract the integer as a _signed_ 64-bit integer with
* a scaling factor. Since we assume that the value fits
* in the -(2^63-1)..+(2^63-1) range, we can left-shift the
* absolute value to make it in the 2^62..2^63-1 range: we
* will only need a right-shift afterwards.
*/
e = (int)(x >> 52) & 0x7FF;
t = x >> 63;
xi = (int64_t)(((x << 10) | ((uint64_t)1 << 62))
& (((uint64_t)1 << 63) - 1));
xi = (xi ^ -(int64_t)t) + (int64_t)t;
cc = 1085 - e;

/*
* We perform an arithmetic right-shift on the value. This
* applies floor() semantics on both positive and negative values
* (rounding toward minus infinity).
*/
xi = fpr_irsh(xi, cc & 63);

/*
* If the true shift count was 64 or more, then we should instead
* replace xi with 0 (if nonnegative) or -1 (if negative). Edge
* case: -0 will be floored to -1, not 0 (whether this is correct
* is debatable; in any case, the other functions normalize zero
* to +0).
*
* For an input of zero, the non-shifted xi was incorrect (we used
* a top implicit bit of value 1, not 0), but this does not matter
* since this operation will clamp it down.
*/
xi ^= (xi ^ -(int64_t)t) & -(int64_t)((uint32_t)(63 - cc) >> 31);
return xi;
}

static inline int64_t
fpr_trunc(fpr x) {
uint64_t t, xu;
int e, cc;

/*
* Extract the absolute value. Since we assume that the value
* fits in the -(2^63-1)..+(2^63-1) range, we can left-shift
* the absolute value into the 2^62..2^63-1 range, and then
* do a right shift afterwards.
*/
e = (int)(x >> 52) & 0x7FF;
xu = ((x << 10) | ((uint64_t)1 << 62)) & (((uint64_t)1 << 63) - 1);
cc = 1085 - e;
xu = fpr_ursh(xu, cc & 63);

/*
* If the exponent is too low (cc > 63), then the shift was wrong
* and we must clamp the value to 0. This also covers the case
* of an input equal to zero.
*/
xu &= -(uint64_t)((uint32_t)(cc - 64) >> 31);

/*
* Apply back the sign, if the source value is negative.
*/
t = x >> 63;
xu = (xu ^ -t) + t;
return *(int64_t *)&xu;
}

#define fpr_add PQCLEAN_FALCON512_CLEAN_fpr_add
fpr fpr_add(fpr x, fpr y);

static inline fpr
fpr_sub(fpr x, fpr y) {
y ^= (uint64_t)1 << 63;
return fpr_add(x, y);
}

static inline fpr
fpr_neg(fpr x) {
x ^= (uint64_t)1 << 63;
return x;
}

static inline fpr
fpr_half(fpr x) {
/*
* To divide a value by 2, we just have to subtract 1 from its
* exponent, but we have to take care of zero.
*/
uint32_t t;

x -= (uint64_t)1 << 52;
t = (((uint32_t)(x >> 52) & 0x7FF) + 1) >> 11;
x &= (uint64_t)t - 1;
return x;
}

static inline fpr
fpr_double(fpr x) {
/*
* To double a value, we just increment by one the exponent. We
* don't care about infinites or NaNs; however, 0 is a
* special case.
*/
x += (uint64_t)((((unsigned)(x >> 52) & 0x7FFU) + 0x7FFU) >> 11) << 52;
return x;
}

#define fpr_mul PQCLEAN_FALCON512_CLEAN_fpr_mul
fpr fpr_mul(fpr x, fpr y);

static inline fpr
fpr_sqr(fpr x) {
return fpr_mul(x, x);
}

#define fpr_div PQCLEAN_FALCON512_CLEAN_fpr_div
fpr fpr_div(fpr x, fpr y);

static inline fpr
fpr_inv(fpr x) {
return fpr_div(4607182418800017408u, x);
}

#define fpr_sqrt PQCLEAN_FALCON512_CLEAN_fpr_sqrt
fpr fpr_sqrt(fpr x);

static inline int
fpr_lt(fpr x, fpr y) {
/*
* If x >= 0 or y >= 0, a signed comparison yields the proper
* result:
* - For positive values, the order is preserved.
* - The sign bit is at the same place as in integers, so
* sign is preserved.
*
* If both x and y are negative, then the order is reversed.
* We cannot simply invert the comparison result in that case
* because it would not handle the edge case x = y properly.
*/
int cc0, cc1;

cc0 = *(int64_t *)&x < *(int64_t *)&y;
cc1 = *(int64_t *)&x > *(int64_t *)&y;
return cc0 ^ ((cc0 ^ cc1) & (int)((x & y) >> 63));
}

/*
* Compute exp(x) for x such that |x| <= ln 2. We want a precision of 50
* bits or so.
*/
#define fpr_expm_p63 PQCLEAN_FALCON512_CLEAN_fpr_expm_p63
uint64_t fpr_expm_p63(fpr x);

#define fpr_gm_tab PQCLEAN_FALCON512_CLEAN_fpr_gm_tab
extern const fpr fpr_gm_tab[];

#define fpr_p2_tab PQCLEAN_FALCON512_CLEAN_fpr_p2_tab
extern const fpr fpr_p2_tab[];

/* ====================================================================== */


+ 663
- 0
crypto_sign/falcon-512/clean/inner.h Ver fichero

@@ -0,0 +1,663 @@
#ifndef FALCON_INNER_H__
#define FALCON_INNER_H__

/*
* Internal functions for Falcon. This is not the API intended to be
* used by applications; instead, this internal API provides all the
* primitives on which wrappers build to provide external APIs.
*
* ==========================(LICENSE BEGIN)============================
*
* Copyright (c) 2017-2019 Falcon Project
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* ===========================(LICENSE END)=============================
*
* @author Thomas Pornin <thomas.pornin@nccgroup.com>
*/


#include <stdint.h>
#include <stdlib.h>
#include <string.h>




/* ==================================================================== */
/*
* SHAKE256 implementation (shake.c).
*
* API is defined to be easily replaced with the fips202.h API defined
* as part of PQ Clean.
*/


#include "fips202.h"

#define shake256_context shake256incctx
#define shake256_init(sc) shake256_inc_init(sc)
#define shake256_inject(sc, in, len) shake256_inc_absorb(sc, in, len)
#define shake256_flip(sc) shake256_inc_finalize(sc)
#define shake256_extract(sc, out, len) shake256_inc_squeeze(out, len, sc)


/* ==================================================================== */
/*
* Encoding/decoding functions (codec.c).
*
* Encoding functions take as parameters an output buffer (out) with
* a given maximum length (max_out_len); returned value is the actual
* number of bytes which have been written. If the output buffer is
* not large enough, then 0 is returned (some bytes may have been
* written to the buffer). If 'out' is NULL, then 'max_out_len' is
* ignored; instead, the function computes and returns the actual
* required output length (in bytes).
*
* Decoding functions take as parameters an input buffer (in) with
* its maximum length (max_in_len); returned value is the actual number
* of bytes that have been read from the buffer. If the provided length
* is too short, then 0 is returned.
*
* Values to encode or decode are vectors of integers, with N = 2^logn
* elements.
*
* Three encoding formats are defined:
*
* - modq: sequence of values modulo 12289, each encoded over exactly
* 14 bits. The encoder and decoder verify that integers are within
* the valid range (0..12288). Values are arrays of uint16.
*
* - trim: sequence of signed integers, a specified number of bits
* each. The number of bits is provided as parameter and includes
* the sign bit. Each integer x must be such that |x| < 2^(bits-1)
* (which means that the -2^(bits-1) value is forbidden); encode and
* decode functions check that property. Values are arrays of
* int16_t or int8_t, corresponding to names 'trim_i16' and
* 'trim_i8', respectively.
*
* - comp: variable-length encoding for signed integers; each integer
* uses a minimum of 9 bits, possibly more. This is normally used
* only for signatures.
*
*/

size_t PQCLEAN_FALCON512_CLEAN_modq_encode(void *out, size_t max_out_len,
const uint16_t *x, unsigned logn);
size_t PQCLEAN_FALCON512_CLEAN_trim_i16_encode(void *out, size_t max_out_len,
const int16_t *x, unsigned logn, unsigned bits);
size_t PQCLEAN_FALCON512_CLEAN_trim_i8_encode(void *out, size_t max_out_len,
const int8_t *x, unsigned logn, unsigned bits);
size_t PQCLEAN_FALCON512_CLEAN_comp_encode(void *out, size_t max_out_len,
const int16_t *x, unsigned logn);

size_t PQCLEAN_FALCON512_CLEAN_modq_decode(uint16_t *x, unsigned logn,
const void *in, size_t max_in_len);
size_t PQCLEAN_FALCON512_CLEAN_trim_i16_decode(int16_t *x, unsigned logn, unsigned bits,
const void *in, size_t max_in_len);
size_t PQCLEAN_FALCON512_CLEAN_trim_i8_decode(int8_t *x, unsigned logn, unsigned bits,
const void *in, size_t max_in_len);
size_t PQCLEAN_FALCON512_CLEAN_comp_decode(int16_t *x, unsigned logn,
const void *in, size_t max_in_len);

/*
* Number of bits for key elements, indexed by logn (1 to 10). This
* is at most 8 bits for all degrees, but some degrees may have shorter
* elements.
*/
extern const uint8_t PQCLEAN_FALCON512_CLEAN_max_fg_bits[];
extern const uint8_t PQCLEAN_FALCON512_CLEAN_max_FG_bits[];

/*
* Maximum size, in bits, of elements in a signature, indexed by logn
* (1 to 10). The size includes the sign bit.
*/
extern const uint8_t PQCLEAN_FALCON512_CLEAN_max_sig_bits[];

/* ==================================================================== */
/*
* Support functions used for both signature generation and signature
* verification (common.c).
*/

/*
* From a SHAKE256 context (must be already flipped), produce a new
* point. The temporary buffer (tmp) must have room for 2*2^logn bytes.
*/
void PQCLEAN_FALCON512_CLEAN_hash_to_point(shake256_context *sc,
uint16_t *x, unsigned logn, uint8_t *tmp);

/*
* Tell whether a given vector (2N coordinates, in two halves) is
* acceptable as a signature. This compares the appropriate norm of the
* vector with the acceptance bound. Returned value is 1 on success
* (vector is short enough to be acceptable), 0 otherwise.
*/
int PQCLEAN_FALCON512_CLEAN_is_short(const int16_t *s1, const int16_t *s2, unsigned logn);

/*
* Tell whether a given vector (2N coordinates, in two halves) is
* acceptable as a signature. Instead of the first half s1, this
* function receives the "saturated squared norm" of s1, i.e. the
* sum of the squares of the coordinates of s1 (saturated at 2^32-1
* if the sum exceeds 2^31-1).
*
* Returned value is 1 on success (vector is short enough to be
* acceptable), 0 otherwise.
*/
int PQCLEAN_FALCON512_CLEAN_is_short_half(uint32_t sqn, const int16_t *s2, unsigned logn);

/* ==================================================================== */
/*
* Signature verification functions (vrfy.c).
*/

/*
* Convert a public key to NTT + Montgomery format. Conversion is done
* in place.
*/
void PQCLEAN_FALCON512_CLEAN_to_ntt_monty(uint16_t *h, unsigned logn);

/*
* Internal signature verification code:
* c0[] contains the hashed nonce+message
* s2[] is the decoded signature
* h[] contains the public key, in NTT + Montgomery format
* logn is the degree log
* tmp[] temporary, must have at least 2*2^logn bytes
* Returned value is 1 on success, 0 on error.
*/
int PQCLEAN_FALCON512_CLEAN_verify_raw(const uint16_t *c0, const int16_t *s2,
const uint16_t *h, unsigned logn, uint8_t *tmp);

/*
* Compute the public key h[], given the private key elements f[] and
* g[]. This computes h = g/f mod phi mod q, where phi is the polynomial
* modulus. This function returns 1 on success, 0 on error (an error is
* reported if f is not invertible mod phi mod q).
*
* The tmp[] array must have room for at least 2*2^logn elements.
*/
int PQCLEAN_FALCON512_CLEAN_compute_public(uint16_t *h,
const int8_t *f, const int8_t *g, unsigned logn, uint8_t *tmp);

/*
* Recompute the fourth private key element. Private key consists in
* four polynomials with small coefficients f, g, F and G, which are
* such that fG - gF = q mod phi; furthermore, f is invertible modulo
* phi and modulo q. This function recomputes G from f, g and F.
*
* The tmp[] array must have room for at least 4*2^logn bytes.
*
* Returned value is 1 in success, 0 on error (f not invertible).
*/
int PQCLEAN_FALCON512_CLEAN_complete_private(int8_t *G,
const int8_t *f, const int8_t *g, const int8_t *F,
unsigned logn, uint8_t *tmp);

/* ==================================================================== */
/*
* Implementation of floating-point real numbers (fpr.h, fpr.c).
*/

/*
* Real numbers are implemented by an extra header file, included below.
* This is meant to support pluggable implementations. The default
* implementation relies on the C type 'double'.
*
* The included file must define the following types, functions and
* constants:
*
* fpr
* type for a real number
*
* fpr fpr_of(int64_t i)
* cast an integer into a real number; source must be in the
* -(2^63-1)..+(2^63-1) range
*
* fpr fpr_scaled(int64_t i, int sc)
* compute i*2^sc as a real number; source 'i' must be in the
* -(2^63-1)..+(2^63-1) range
*
* fpr fpr_ldexp(fpr x, int e)
* compute x*2^e
*
* int64_t fpr_rint(fpr x)
* round x to the nearest integer; x must be in the -(2^63-1)
* to +(2^63-1) range
*
* int64_t fpr_trunc(fpr x)
* round to an integer; this rounds towards zero; value must
* be in the -(2^63-1) to +(2^63-1) range
*
* fpr fpr_add(fpr x, fpr y)
* compute x + y
*
* fpr fpr_sub(fpr x, fpr y)
* compute x - y
*
* fpr fpr_neg(fpr x)
* compute -x
*
* fpr fpr_half(fpr x)
* compute x/2
*
* fpr fpr_double(fpr x)
* compute x*2
*
* fpr fpr_mul(fpr x, fpr y)
* compute x * y
*
* fpr fpr_sqr(fpr x)
* compute x * x
*
* fpr fpr_inv(fpr x)
* compute 1/x
*
* fpr fpr_div(fpr x, fpr y)
* compute x/y
*
* fpr fpr_sqrt(fpr x)
* compute the square root of x
*
* int fpr_lt(fpr x, fpr y)
* return 1 if x < y, 0 otherwise
*
* uint64_t fpr_expm_p63(fpr x)
* return exp(x), assuming that 0 <= x < log(2). Returned value
* is scaled to 63 bits (i.e. it really returns 2^63*exp(-x),
* rounded to the nearest integer). Computation should have a
* precision of at least 45 bits.
*
* const fpr fpr_gm_tab[]
* array of constants for FFT / iFFT
*
* const fpr fpr_p2_tab[]
* precomputed powers of 2 (by index, 0 to 10)
*
* Constants of type 'fpr':
*
* fpr fpr_q 12289
* fpr fpr_inverse_of_q 1/12289
* fpr fpr_inv_2sqrsigma0 1/(2*(1.8205^2))
* fpr fpr_inv_sigma 1/(1.55*sqrt(12289))
* fpr fpr_sigma_min_9 1.291500756233514568549480827642
* fpr fpr_sigma_min_10 1.311734375905083682667395805765
* fpr fpr_log2 log(2)
* fpr fpr_inv_log2 1/log(2)
* fpr fpr_bnorm_max 16822.4121
* fpr fpr_zero 0
* fpr fpr_one 1
* fpr fpr_two 2
* fpr fpr_onehalf 0.5
* fpr fpr_ptwo31 2^31
* fpr fpr_ptwo31m1 2^31-1
* fpr fpr_mtwo31m1 -(2^31-1)
* fpr fpr_ptwo63m1 2^63-1
* fpr fpr_mtwo63m1 -(2^63-1)
* fpr fpr_ptwo63 2^63
*/
#include "fpr.h"

/* ==================================================================== */
/*
* RNG (rng.c).
*
* A PRNG based on ChaCha20 is implemented; it is seeded from a SHAKE256
* context (flipped) and is used for bulk pseudorandom generation.
* A system-dependent seed generator is also provided.
*/

/*
* Obtain a random seed from the system RNG.
*
* Returned value is 1 on success, 0 on error.
*/
int PQCLEAN_FALCON512_CLEAN_get_seed(void *seed, size_t seed_len);

/*
* Structure for a PRNG. This includes a large buffer so that values
* get generated in advance. The 'state' is used to keep the current
* PRNG algorithm state (contents depend on the selected algorithm).
*
* The unions with 'dummy_u64' are there to ensure proper alignment for
* 64-bit direct access.
*/
typedef struct {
union {
unsigned char d[512]; /* MUST be 512, exactly */
uint64_t dummy_u64;
} buf;
size_t ptr;
union {
unsigned char d[256];
uint64_t dummy_u64;
} state;
int type;
} prng;

/*
* Instantiate a PRNG. That PRNG will feed over the provided SHAKE256
* context (in "flipped" state) to obtain its initial state.
*/
void PQCLEAN_FALCON512_CLEAN_prng_init(prng *p, shake256_context *src);

/*
* Refill the PRNG buffer. This is normally invoked automatically, and
* is declared here only so that prng_get_u64() may be inlined.
*/
void PQCLEAN_FALCON512_CLEAN_prng_refill(prng *p);

/*
* Get some bytes from a PRNG.
*/
void PQCLEAN_FALCON512_CLEAN_prng_get_bytes(prng *p, void *dst, size_t len);

/*
* Get a 64-bit random value from a PRNG.
*/
static inline uint64_t
prng_get_u64(prng *p) {
size_t u;

/*
* If there are less than 9 bytes in the buffer, we refill it.
* This means that we may drop the last few bytes, but this allows
* for faster extraction code. Also, it means that we never leave
* an empty buffer.
*/
u = p->ptr;
if (u >= (sizeof p->buf.d) - 9) {
PQCLEAN_FALCON512_CLEAN_prng_refill(p);
u = 0;
}
p->ptr = u + 8;

/*
* On systems that use little-endian encoding and allow
* unaligned accesses, we can simply read the data where it is.
*/
return (uint64_t)p->buf.d[u + 0]
| ((uint64_t)p->buf.d[u + 1] << 8)
| ((uint64_t)p->buf.d[u + 2] << 16)
| ((uint64_t)p->buf.d[u + 3] << 24)
| ((uint64_t)p->buf.d[u + 4] << 32)
| ((uint64_t)p->buf.d[u + 5] << 40)
| ((uint64_t)p->buf.d[u + 6] << 48)
| ((uint64_t)p->buf.d[u + 7] << 56);
}

/*
* Get an 8-bit random value from a PRNG.
*/
static inline unsigned
prng_get_u8(prng *p) {
unsigned v;

v = p->buf.d[p->ptr ++];
if (p->ptr == sizeof p->buf.d) {
PQCLEAN_FALCON512_CLEAN_prng_refill(p);
}
return v;
}

/* ==================================================================== */
/*
* FFT (falcon-fft.c).
*
* A real polynomial is represented as an array of N 'fpr' elements.
* The FFT representation of a real polynomial contains N/2 complex
* elements; each is stored as two real numbers, for the real and
* imaginary parts, respectively. See falcon-fft.c for details on the
* internal representation.
*/

/*
* Compute FFT in-place: the source array should contain a real
* polynomial (N coefficients); its storage area is reused to store
* the FFT representation of that polynomial (N/2 complex numbers).
*
* 'logn' MUST lie between 1 and 10 (inclusive).
*/
void PQCLEAN_FALCON512_CLEAN_FFT(fpr *f, unsigned logn);

/*
* Compute the inverse FFT in-place: the source array should contain the
* FFT representation of a real polynomial (N/2 elements); the resulting
* real polynomial (N coefficients of type 'fpr') is written over the
* array.
*
* 'logn' MUST lie between 1 and 10 (inclusive).
*/
void PQCLEAN_FALCON512_CLEAN_iFFT(fpr *f, unsigned logn);

/*
* Add polynomial b to polynomial a. a and b MUST NOT overlap. This
* function works in both normal and FFT representations.
*/
void PQCLEAN_FALCON512_CLEAN_poly_add(fpr *restrict a, const fpr *restrict b, unsigned logn);

/*
* Subtract polynomial b from polynomial a. a and b MUST NOT overlap. This
* function works in both normal and FFT representations.
*/
void PQCLEAN_FALCON512_CLEAN_poly_sub(fpr *restrict a, const fpr *restrict b, unsigned logn);

/*
* Negate polynomial a. This function works in both normal and FFT
* representations.
*/
void PQCLEAN_FALCON512_CLEAN_poly_neg(fpr *a, unsigned logn);

/*
* Compute adjoint of polynomial a. This function works only in FFT
* representation.
*/
void PQCLEAN_FALCON512_CLEAN_poly_adj_fft(fpr *a, unsigned logn);

/*
* Multiply polynomial a with polynomial b. a and b MUST NOT overlap.
* This function works only in FFT representation.
*/
void PQCLEAN_FALCON512_CLEAN_poly_mul_fft(fpr *restrict a, const fpr *restrict b, unsigned logn);

/*
* Multiply polynomial a with the adjoint of polynomial b. a and b MUST NOT
* overlap. This function works only in FFT representation.
*/
void PQCLEAN_FALCON512_CLEAN_poly_muladj_fft(fpr *restrict a, const fpr *restrict b, unsigned logn);

/*
* Multiply polynomial with its own adjoint. This function works only in FFT
* representation.
*/
void PQCLEAN_FALCON512_CLEAN_poly_mulselfadj_fft(fpr *a, unsigned logn);

/*
* Multiply polynomial with a real constant. This function works in both
* normal and FFT representations.
*/
void PQCLEAN_FALCON512_CLEAN_poly_mulconst(fpr *a, fpr x, unsigned logn);

/*
* Divide polynomial a by polynomial b, modulo X^N+1 (FFT representation).
* a and b MUST NOT overlap.
*/
void PQCLEAN_FALCON512_CLEAN_poly_div_fft(fpr *restrict a, const fpr *restrict b, unsigned logn);

/*
* Given f and g (in FFT representation), compute 1/(f*adj(f)+g*adj(g))
* (also in FFT representation). Since the result is auto-adjoint, all its
* coordinates in FFT representation are real; as such, only the first N/2
* values of d[] are filled (the imaginary parts are skipped).
*
* Array d MUST NOT overlap with either a or b.
*/
void PQCLEAN_FALCON512_CLEAN_poly_invnorm2_fft(fpr *restrict d,
const fpr *restrict a, const fpr *restrict b, unsigned logn);

/*
* Given F, G, f and g (in FFT representation), compute F*adj(f)+G*adj(g)
* (also in FFT representation). Destination d MUST NOT overlap with
* any of the source arrays.
*/
void PQCLEAN_FALCON512_CLEAN_poly_add_muladj_fft(fpr *restrict d,
const fpr *restrict F, const fpr *restrict G,
const fpr *restrict f, const fpr *restrict g, unsigned logn);

/*
* Multiply polynomial a by polynomial b, where b is autoadjoint. Both
* a and b are in FFT representation. Since b is autoadjoint, all its
* FFT coefficients are real, and the array b contains only N/2 elements.
* a and b MUST NOT overlap.
*/
void PQCLEAN_FALCON512_CLEAN_poly_mul_autoadj_fft(fpr *restrict a,
const fpr *restrict b, unsigned logn);

/*
* Divide polynomial a by polynomial b, where b is autoadjoint. Both
* a and b are in FFT representation. Since b is autoadjoint, all its
* FFT coefficients are real, and the array b contains only N/2 elements.
* a and b MUST NOT overlap.
*/
void PQCLEAN_FALCON512_CLEAN_poly_div_autoadj_fft(fpr *restrict a,
const fpr *restrict b, unsigned logn);

/*
* Perform an LDL decomposition of an auto-adjoint matrix G, in FFT
* representation. On input, g00, g01 and g11 are provided (where the
* matrix G = [[g00, g01], [adj(g01), g11]]). On output, the d00, l10
* and d11 values are written in g00, g01 and g11, respectively
* (with D = [[d00, 0], [0, d11]] and L = [[1, 0], [l10, 1]]).
* (In fact, d00 = g00, so the g00 operand is left unmodified.)
*/
void PQCLEAN_FALCON512_CLEAN_poly_LDL_fft(const fpr *restrict g00,
fpr *restrict g01, fpr *restrict g11, unsigned logn);

/*
* Perform an LDL decomposition of an auto-adjoint matrix G, in FFT
* representation. This is identical to poly_LDL_fft() except that
* g00, g01 and g11 are unmodified; the outputs d11 and l10 are written
* in two other separate buffers provided as extra parameters.
*/
void PQCLEAN_FALCON512_CLEAN_poly_LDLmv_fft(fpr *restrict d11, fpr *restrict l10,
const fpr *restrict g00, const fpr *restrict g01,
const fpr *restrict g11, unsigned logn);

/*
* Apply "split" operation on a polynomial in FFT representation:
* f = f0(x^2) + x*f1(x^2), for half-size polynomials f0 and f1
* (polynomials modulo X^(N/2)+1). f0, f1 and f MUST NOT overlap.
*/
void PQCLEAN_FALCON512_CLEAN_poly_split_fft(fpr *restrict t0, fpr *restrict t1,
const fpr *restrict f, unsigned logn);

/*
* Apply "merge" operation on two polynomials in FFT representation:
* given f0 and f1, polynomials moduo X^(N/2)+1, this function computes
* f = f0(x^2) + x*f1(x^2), in FFT representation modulo X^N+1.
* f MUST NOT overlap with either f0 or f1.
*/
void PQCLEAN_FALCON512_CLEAN_poly_merge_fft(fpr *restrict f,
const fpr *restrict f0, const fpr *restrict f1, unsigned logn);

/* ==================================================================== */
/*
* Key pair generation.
*/

/*
* Required sizes of the temporary buffer (in bytes).
*/
#define FALCON_KEYGEN_TEMP_1 136
#define FALCON_KEYGEN_TEMP_2 272
#define FALCON_KEYGEN_TEMP_3 224
#define FALCON_KEYGEN_TEMP_4 448
#define FALCON_KEYGEN_TEMP_5 896
#define FALCON_KEYGEN_TEMP_6 1792
#define FALCON_KEYGEN_TEMP_7 3584
#define FALCON_KEYGEN_TEMP_8 7168
#define FALCON_KEYGEN_TEMP_9 14336
#define FALCON_KEYGEN_TEMP_10 28672

/*
* Generate a new key pair. Randomness is extracted from the provided
* SHAKE256 context, which must have already been seeded and flipped.
* The tmp[] array must have suitable size (see FALCON_KEYGEN_TEMP_*
* macros) and be aligned for the uint32_t, uint64_t and fpr types.
*
* The private key elements are written in f, g, F and G, and the
* public key is written in h. Either or both of G and h may be NULL,
* in which case the corresponding element is not returned (they can
* be recomputed from f, g and F).
*/
void PQCLEAN_FALCON512_CLEAN_keygen(shake256_context *rng,
int8_t *f, int8_t *g, int8_t *F, int8_t *G, uint16_t *h,
unsigned logn, uint8_t *tmp);

/* ==================================================================== */
/*
* Signature generation.
*/

/*
* Expand a private key into the B0 matrix in FFT representation and
* the LDL tree. All the values are written in 'expanded_key', for
* a total of (8*logn+40)*2^logn bytes.
*
* The tmp[] array must have room for at least 48*2^logn bytes.
*/
void PQCLEAN_FALCON512_CLEAN_expand_privkey(fpr *restrict expanded_key,
const int8_t *f, const int8_t *g, const int8_t *F, const int8_t *G,
unsigned logn, uint8_t *restrict tmp);

/*
* Compute a signature over the provided hashed message (hm); the
* signature value is one short vector. This function uses an
* expanded key (as generated by PQCLEAN_FALCON512_CLEAN_expand_privkey()).
*
* The sig[] and hm[] buffers may overlap.
*
* The minimal size (in bytes) of tmp[] is 48*2^logn bytes.
*/
void PQCLEAN_FALCON512_CLEAN_sign_tree(int16_t *sig, shake256_context *rng,
const fpr *restrict expanded_key,
const uint16_t *hm, unsigned logn, uint8_t *tmp);

/*
* Compute a signature over the provided hashed message (hm); the
* signature value is one short vector. This function uses a raw
* key and dynamically recompute the B0 matrix and LDL tree; this
* saves RAM since there is no needed for an expanded key, but
* increases the signature cost.
*
* The sig[] and hm[] buffers may overlap.
*
* The minimal size (in bytes) of tmp[] is 72*2^logn bytes.
*/
void PQCLEAN_FALCON512_CLEAN_sign_dyn(int16_t *sig, shake256_context *rng,
const int8_t *restrict f, const int8_t *restrict g,
const int8_t *restrict F, const int8_t *restrict G,
const uint16_t *hm, unsigned logn, uint8_t *tmp);

/* ==================================================================== */

#endif

+ 4201
- 0
crypto_sign/falcon-512/clean/keygen.c
La diferencia del archivo ha sido suprimido porque es demasiado grande
Ver fichero


+ 381
- 0
crypto_sign/falcon-512/clean/pqclean.c Ver fichero

@@ -0,0 +1,381 @@
/*
* Wrapper for implementing the PQClean API.
*/

#include <stddef.h>
#include <string.h>

#include "api.h"
#include "inner.h"

#define NONCELEN 40

#include "randombytes.h"

/*
* Encoding formats (nnnn = log of degree, 9 for Falcon-512, 10 for Falcon-1024)
*
* private key:
* header byte: 0101nnnn
* private f (6 or 5 bits by element, depending on degree)
* private g (6 or 5 bits by element, depending on degree)
* private F (8 bits by element)
*
* public key:
* header byte: 0000nnnn
* public h (14 bits by element)
*
* signature:
* header byte: 0011nnnn
* nonce 40 bytes
* value (12 bits by element)
*
* message + signature:
* signature length (2 bytes, big-endian)
* nonce 40 bytes
* message
* header byte: 0010nnnn
* value (12 bits by element)
* (signature length is 1+len(value), not counting the nonce)
*/

/* see api.h */
int
PQCLEAN_FALCON512_CLEAN_crypto_sign_keypair(
uint8_t *pk, uint8_t *sk) {
union {
uint8_t b[FALCON_KEYGEN_TEMP_9];
uint64_t dummy_u64;
fpr dummy_fpr;
} tmp;
int8_t f[512], g[512], F[512];
uint16_t h[512];
unsigned char seed[48];
shake256_context rng;
size_t u, v;

/*
* Generate key pair.
*/
randombytes(seed, sizeof seed);
shake256_init(&rng);
shake256_inject(&rng, seed, sizeof seed);
shake256_flip(&rng);
PQCLEAN_FALCON512_CLEAN_keygen(&rng, f, g, F, NULL, h, 9, tmp.b);

/*
* Encode private key.
*/
sk[0] = 0x50 + 9;
u = 1;
v = PQCLEAN_FALCON512_CLEAN_trim_i8_encode(
sk + u, PQCLEAN_FALCON512_CLEAN_CRYPTO_SECRETKEYBYTES - u,
f, 9, PQCLEAN_FALCON512_CLEAN_max_fg_bits[9]);
if (v == 0) {
return -1;
}
u += v;
v = PQCLEAN_FALCON512_CLEAN_trim_i8_encode(
sk + u, PQCLEAN_FALCON512_CLEAN_CRYPTO_SECRETKEYBYTES - u,
g, 9, PQCLEAN_FALCON512_CLEAN_max_fg_bits[9]);
if (v == 0) {
return -1;
}
u += v;
v = PQCLEAN_FALCON512_CLEAN_trim_i8_encode(
sk + u, PQCLEAN_FALCON512_CLEAN_CRYPTO_SECRETKEYBYTES - u,
F, 9, PQCLEAN_FALCON512_CLEAN_max_FG_bits[9]);
if (v == 0) {
return -1;
}
u += v;
if (u != PQCLEAN_FALCON512_CLEAN_CRYPTO_SECRETKEYBYTES) {
return -1;
}

/*
* Encode public key.
*/
pk[0] = 0x00 + 9;
v = PQCLEAN_FALCON512_CLEAN_modq_encode(
pk + 1, PQCLEAN_FALCON512_CLEAN_CRYPTO_PUBLICKEYBYTES - 1,
h, 9);
if (v != PQCLEAN_FALCON512_CLEAN_CRYPTO_PUBLICKEYBYTES - 1) {
return -1;
}

return 0;
}

/*
* Compute the signature. nonce[] receives the nonce and must have length
* NONCELEN bytes. sigbuf[] receives the signature value (without nonce
* or header byte), with *sigbuflen providing the maximum value length and
* receiving the actual value length.
*
* If a signature could be computed but not encoded because it would
* exceed the output buffer size, then a new signature is computed. If
* the provided buffer size is too low, this could loop indefinitely, so
* the caller must provide a size that can accommodate signatures with a
* large enough probability.
*
* Return value: 0 on success, -1 on error.
*/
static int
do_sign(uint8_t *nonce, uint8_t *sigbuf, size_t *sigbuflen,
const uint8_t *m, size_t mlen, const uint8_t *sk) {
union {
uint8_t b[72 * 512];
uint64_t dummy_u64;
fpr dummy_fpr;
} tmp;
int8_t f[512], g[512], F[512], G[512];
union {
int16_t sig[512];
uint16_t hm[512];
} r;
unsigned char seed[48];
shake256_context sc;
size_t u, v;

/*
* Decode the private key.
*/
if (sk[0] != 0x50 + 9) {
return -1;
}
u = 1;
v = PQCLEAN_FALCON512_CLEAN_trim_i8_decode(
f, 9, PQCLEAN_FALCON512_CLEAN_max_fg_bits[9],
sk + u, PQCLEAN_FALCON512_CLEAN_CRYPTO_SECRETKEYBYTES - u);
if (v == 0) {
return -1;
}
u += v;
v = PQCLEAN_FALCON512_CLEAN_trim_i8_decode(
g, 9, PQCLEAN_FALCON512_CLEAN_max_fg_bits[9],
sk + u, PQCLEAN_FALCON512_CLEAN_CRYPTO_SECRETKEYBYTES - u);
if (v == 0) {
return -1;
}
u += v;
v = PQCLEAN_FALCON512_CLEAN_trim_i8_decode(
F, 9, PQCLEAN_FALCON512_CLEAN_max_FG_bits[9],
sk + u, PQCLEAN_FALCON512_CLEAN_CRYPTO_SECRETKEYBYTES - u);
if (v == 0) {
return -1;
}
u += v;
if (u != PQCLEAN_FALCON512_CLEAN_CRYPTO_SECRETKEYBYTES) {
return -1;
}
if (!PQCLEAN_FALCON512_CLEAN_complete_private(G, f, g, F, 9, tmp.b)) {
return -1;
}

/*
* Create a random nonce (40 bytes).
*/
randombytes(nonce, NONCELEN);

/*
* Hash message nonce + message into a vector.
*/
shake256_init(&sc);
shake256_inject(&sc, nonce, NONCELEN);
shake256_inject(&sc, m, mlen);
shake256_flip(&sc);
PQCLEAN_FALCON512_CLEAN_hash_to_point(&sc, r.hm, 9, tmp.b);

/*
* Initialize a RNG.
*/
randombytes(seed, sizeof seed);
shake256_init(&sc);
shake256_inject(&sc, seed, sizeof seed);
shake256_flip(&sc);

/*
* Compute and return the signature. This loops until a signature
* value is found that fits in the provided buffer.
*/
for (;;) {
PQCLEAN_FALCON512_CLEAN_sign_dyn(r.sig, &sc, f, g, F, G, r.hm, 9, tmp.b);
v = PQCLEAN_FALCON512_CLEAN_comp_encode(sigbuf, *sigbuflen, r.sig, 9);
if (v != 0) {
*sigbuflen = v;
return 0;
}
}
}

/*
* Verify a sigature. The nonce has size NONCELEN bytes. sigbuf[]
* (of size sigbuflen) contains the signature value, not including the
* header byte or nonce. Return value is 0 on success, -1 on error.
*/
static int
do_verify(
const uint8_t *nonce, const uint8_t *sigbuf, size_t sigbuflen,
const uint8_t *m, size_t mlen, const uint8_t *pk) {
union {
uint8_t b[2 * 512];
uint64_t dummy_u64;
fpr dummy_fpr;
} tmp;
uint16_t h[512], hm[512];
int16_t sig[512];
shake256_context sc;

/*
* Decode public key.
*/
if (pk[0] != 0x00 + 9) {
return -1;
}
if (PQCLEAN_FALCON512_CLEAN_modq_decode(h, 9,
pk + 1, PQCLEAN_FALCON512_CLEAN_CRYPTO_PUBLICKEYBYTES - 1)
!= PQCLEAN_FALCON512_CLEAN_CRYPTO_PUBLICKEYBYTES - 1) {
return -1;
}
PQCLEAN_FALCON512_CLEAN_to_ntt_monty(h, 9);

/*
* Decode signature.
*/
if (sigbuflen == 0) {
return -1;
}
if (PQCLEAN_FALCON512_CLEAN_comp_decode(sig, 9, sigbuf, sigbuflen) != sigbuflen) {
return -1;
}

/*
* Hash nonce + message into a vector.
*/
shake256_init(&sc);
shake256_inject(&sc, nonce, NONCELEN);
shake256_inject(&sc, m, mlen);
shake256_flip(&sc);
PQCLEAN_FALCON512_CLEAN_hash_to_point(&sc, hm, 9, tmp.b);

/*
* Verify signature.
*/
if (!PQCLEAN_FALCON512_CLEAN_verify_raw(hm, sig, h, 9, tmp.b)) {
return -1;
}
return 0;
}

/* see api.h */
int
PQCLEAN_FALCON512_CLEAN_crypto_sign_signature(
uint8_t *sig, size_t *siglen,
const uint8_t *m, size_t mlen, const uint8_t *sk) {
/*
* The PQCLEAN_FALCON512_CLEAN_CRYPTO_BYTES constant is used for
* the signed message object (as produced by crypto_sign())
* and includes a two-byte length value, so we take care here
* to only generate signatures that are two bytes shorter than
* the maximum. This is done to ensure that crypto_sign()
* and crypto_sign_signature() produce the exact same signature
* value, if used on the same message, with the same private key,
* and using the same output from randombytes() (this is for
* reproducibility of tests).
*/
size_t vlen;

vlen = PQCLEAN_FALCON512_CLEAN_CRYPTO_BYTES - NONCELEN - 3;
if (do_sign(sig + 1, sig + 1 + NONCELEN, &vlen, m, mlen, sk) < 0) {
return -1;
}
sig[0] = 0x30 + 9;
*siglen = 1 + NONCELEN + vlen;
return 0;
}

/* see api.h */
int
PQCLEAN_FALCON512_CLEAN_crypto_sign_verify(
const uint8_t *sig, size_t siglen,
const uint8_t *m, size_t mlen, const uint8_t *pk) {
if (siglen < 1 + NONCELEN) {
return -1;
}
if (sig[0] != 0x30 + 9) {
return -1;
}
return do_verify(sig + 1,
sig + 1 + NONCELEN, siglen - 1 - NONCELEN, m, mlen, pk);
}

/* see api.h */
int
PQCLEAN_FALCON512_CLEAN_crypto_sign(
uint8_t *sm, size_t *smlen,
const uint8_t *m, size_t mlen, const uint8_t *sk) {
uint8_t *pm, *sigbuf;
size_t sigbuflen;

/*
* Move the message to its final location; this is a memmove() so
* it handles overlaps properly.
*/
memmove(sm + 2 + NONCELEN, m, mlen);
pm = sm + 2 + NONCELEN;
sigbuf = pm + 1 + mlen;
sigbuflen = PQCLEAN_FALCON512_CLEAN_CRYPTO_BYTES - NONCELEN - 3;
if (do_sign(sm + 2, sigbuf, &sigbuflen, pm, mlen, sk) < 0) {
return -1;
}
pm[mlen] = 0x20 + 9;
sigbuflen ++;
sm[0] = (uint8_t)(sigbuflen >> 8);
sm[1] = (uint8_t)sigbuflen;
*smlen = mlen + 2 + NONCELEN + sigbuflen;
return 0;
}

/* see api.h */
int
PQCLEAN_FALCON512_CLEAN_crypto_sign_open(
uint8_t *m, size_t *mlen,
const uint8_t *sm, size_t smlen, const uint8_t *pk) {
const uint8_t *sigbuf;
size_t pmlen, sigbuflen;

if (smlen < 3 + NONCELEN) {
return -1;
}
sigbuflen = ((size_t)sm[0] << 8) | (size_t)sm[1];
if (sigbuflen < 2 || sigbuflen > (smlen - NONCELEN - 2)) {
return -1;
}
sigbuflen --;
pmlen = smlen - NONCELEN - 3 - sigbuflen;
if (sm[2 + NONCELEN + pmlen] != 0x20 + 9) {
return -1;
}
sigbuf = sm + 2 + NONCELEN + pmlen + 1;

/*
* The 2-byte length header and the one-byte signature header
* have been verified. Nonce is at sm+2, followed by the message
* itself. Message length is in pmlen. sigbuf/sigbuflen point to
* the signature value (excluding the header byte).
*/
if (do_verify(sm + 2, sigbuf, sigbuflen,
sm + 2 + NONCELEN, pmlen, pk) < 0) {
return -1;
}

/*
* Signature is correct, we just have to copy/move the message
* to its final destination. The memmove() properly handles
* overlaps.
*/
memmove(m, sm + 2 + NONCELEN, pmlen);
*mlen = pmlen;
return 0;
}

+ 187
- 0
crypto_sign/falcon-512/clean/rng.c Ver fichero

@@ -0,0 +1,187 @@
/*
* PRNG and interface to the system RNG.
*
* ==========================(LICENSE BEGIN)============================
*
* Copyright (c) 2017-2019 Falcon Project
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* ===========================(LICENSE END)=============================
*
* @author Thomas Pornin <thomas.pornin@nccgroup.com>
*/

#include <assert.h>

#include "inner.h"


/* see inner.h */
void
PQCLEAN_FALCON512_CLEAN_prng_init(prng *p, shake256_context *src) {
/*
* To ensure reproducibility for a given seed, we
* must enforce little-endian interpretation of
* the state words.
*/
unsigned char tmp[56];
uint64_t th, tl;
int i;

shake256_extract(src, tmp, 56);
for (i = 0; i < 14; i ++) {
uint32_t w;

w = (uint32_t)tmp[(i << 2) + 0]
| ((uint32_t)tmp[(i << 2) + 1] << 8)
| ((uint32_t)tmp[(i << 2) + 2] << 16)
| ((uint32_t)tmp[(i << 2) + 3] << 24);
*(uint32_t *)(p->state.d + (i << 2)) = w;
}
tl = *(uint32_t *)(p->state.d + 48);
th = *(uint32_t *)(p->state.d + 52);
*(uint64_t *)(p->state.d + 48) = tl + (th << 32);
PQCLEAN_FALCON512_CLEAN_prng_refill(p);
}

/*
* PRNG based on ChaCha20.
*
* State consists in key (32 bytes) then IV (16 bytes) and block counter
* (8 bytes). Normally, we should not care about local endianness (this
* is for a PRNG), but for the NIST competition we need reproducible KAT
* vectors that work across architectures, so we enforce little-endian
* interpretation where applicable. Moreover, output words are "spread
* out" over the output buffer with the interleaving pattern that is
* naturally obtained from the AVX2 implementation that runs eight
* ChaCha20 instances in parallel.
*
* The block counter is XORed into the first 8 bytes of the IV.
*/
void
PQCLEAN_FALCON512_CLEAN_prng_refill(prng *p) {

static const uint32_t CW[] = {
0x61707865, 0x3320646e, 0x79622d32, 0x6b206574
};

uint64_t cc;
size_t u;

/*
* State uses local endianness. Only the output bytes must be
* converted to little endian (if used on a big-endian machine).
*/
cc = *(uint64_t *)(p->state.d + 48);
for (u = 0; u < 8; u ++) {
uint32_t state[16];
size_t v;
int i;

memcpy(&state[0], CW, sizeof CW);
memcpy(&state[4], p->state.d, 48);
state[14] ^= (uint32_t)cc;
state[15] ^= (uint32_t)(cc >> 32);
for (i = 0; i < 10; i ++) {

#define QROUND(a, b, c, d) do { \
state[a] += state[b]; \
state[d] ^= state[a]; \
state[d] = (state[d] << 16) | (state[d] >> 16); \
state[c] += state[d]; \
state[b] ^= state[c]; \
state[b] = (state[b] << 12) | (state[b] >> 20); \
state[a] += state[b]; \
state[d] ^= state[a]; \
state[d] = (state[d] << 8) | (state[d] >> 24); \
state[c] += state[d]; \
state[b] ^= state[c]; \
state[b] = (state[b] << 7) | (state[b] >> 25); \
} while (0)

QROUND( 0, 4, 8, 12);
QROUND( 1, 5, 9, 13);
QROUND( 2, 6, 10, 14);
QROUND( 3, 7, 11, 15);
QROUND( 0, 5, 10, 15);
QROUND( 1, 6, 11, 12);
QROUND( 2, 7, 8, 13);
QROUND( 3, 4, 9, 14);

#undef QROUND

}

for (v = 0; v < 4; v ++) {
state[v] += CW[v];
}
for (v = 4; v < 14; v ++) {
state[v] += ((uint32_t *)p->state.d)[v - 4];
}
state[14] += ((uint32_t *)p->state.d)[10]
^ (uint32_t)cc;
state[15] += ((uint32_t *)p->state.d)[11]
^ (uint32_t)(cc >> 32);
cc ++;

/*
* We mimic the interleaving that is used in the AVX2
* implementation.
*/
for (v = 0; v < 16; v ++) {
p->buf.d[(u << 2) + (v << 5) + 0] =
(unsigned char)state[v];
p->buf.d[(u << 2) + (v << 5) + 1] =
(unsigned char)(state[v] >> 8);
p->buf.d[(u << 2) + (v << 5) + 2] =
(unsigned char)(state[v] >> 16);
p->buf.d[(u << 2) + (v << 5) + 3] =
(unsigned char)(state[v] >> 24);
}
}
*(uint64_t *)(p->state.d + 48) = cc;


p->ptr = 0;
}

/* see inner.h */
void
PQCLEAN_FALCON512_CLEAN_prng_get_bytes(prng *p, void *dst, size_t len) {
unsigned char *buf;

buf = dst;
while (len > 0) {
size_t clen;

clen = (sizeof p->buf.d) - p->ptr;
if (clen > len) {
clen = len;
}
memcpy(buf, p->buf.d, clen);
buf += clen;
len -= clen;
p->ptr += clen;
if (p->ptr == sizeof p->buf.d) {
PQCLEAN_FALCON512_CLEAN_prng_refill(p);
}
}
}

+ 1072
- 0
crypto_sign/falcon-512/clean/sign.c
La diferencia del archivo ha sido suprimido porque es demasiado grande
Ver fichero


+ 745
- 0
crypto_sign/falcon-512/clean/vrfy.c Ver fichero

@@ -0,0 +1,745 @@
/*
* Falcon signature verification.
*
* ==========================(LICENSE BEGIN)============================
*
* Copyright (c) 2017-2019 Falcon Project
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* ===========================(LICENSE END)=============================
*
* @author Thomas Pornin <thomas.pornin@nccgroup.com>
*/

#include "inner.h"

/* ===================================================================== */
/*
* Constants for NTT.
*
* n = 2^logn (2 <= n <= 1024)
* phi = X^n + 1
* q = 12289
* q0i = -1/q mod 2^16
* R = 2^16 mod q
* R2 = 2^32 mod q
*/

#define Q 12289
#define Q0I 12287
#define R 4091
#define R2 10952

/*
* Table for NTT, binary case:
* GMb[x] = R*(g^rev(x)) mod q
* where g = 7 (it is a 2048-th primitive root of 1 modulo q)
* and rev() is the bit-reversal function over 10 bits.
*/
static const uint16_t GMb[] = {
4091, 7888, 11060, 11208, 6960, 4342, 6275, 9759,
1591, 6399, 9477, 5266, 586, 5825, 7538, 9710,
1134, 6407, 1711, 965, 7099, 7674, 3743, 6442,
10414, 8100, 1885, 1688, 1364, 10329, 10164, 9180,
12210, 6240, 997, 117, 4783, 4407, 1549, 7072,
2829, 6458, 4431, 8877, 7144, 2564, 5664, 4042,
12189, 432, 10751, 1237, 7610, 1534, 3983, 7863,
2181, 6308, 8720, 6570, 4843, 1690, 14, 3872,
5569, 9368, 12163, 2019, 7543, 2315, 4673, 7340,
1553, 1156, 8401, 11389, 1020, 2967, 10772, 7045,
3316, 11236, 5285, 11578, 10637, 10086, 9493, 6180,
9277, 6130, 3323, 883, 10469, 489, 1502, 2851,
11061, 9729, 2742, 12241, 4970, 10481, 10078, 1195,
730, 1762, 3854, 2030, 5892, 10922, 9020, 5274,
9179, 3604, 3782, 10206, 3180, 3467, 4668, 2446,
7613, 9386, 834, 7703, 6836, 3403, 5351, 12276,
3580, 1739, 10820, 9787, 10209, 4070, 12250, 8525,
10401, 2749, 7338, 10574, 6040, 943, 9330, 1477,
6865, 9668, 3585, 6633, 12145, 4063, 3684, 7680,
8188, 6902, 3533, 9807, 6090, 727, 10099, 7003,
6945, 1949, 9731, 10559, 6057, 378, 7871, 8763,
8901, 9229, 8846, 4551, 9589, 11664, 7630, 8821,
5680, 4956, 6251, 8388, 10156, 8723, 2341, 3159,
1467, 5460, 8553, 7783, 2649, 2320, 9036, 6188,
737, 3698, 4699, 5753, 9046, 3687, 16, 914,
5186, 10531, 4552, 1964, 3509, 8436, 7516, 5381,
10733, 3281, 7037, 1060, 2895, 7156, 8887, 5357,
6409, 8197, 2962, 6375, 5064, 6634, 5625, 278,
932, 10229, 8927, 7642, 351, 9298, 237, 5858,
7692, 3146, 12126, 7586, 2053, 11285, 3802, 5204,
4602, 1748, 11300, 340, 3711, 4614, 300, 10993,
5070, 10049, 11616, 12247, 7421, 10707, 5746, 5654,
3835, 5553, 1224, 8476, 9237, 3845, 250, 11209,
4225, 6326, 9680, 12254, 4136, 2778, 692, 8808,
6410, 6718, 10105, 10418, 3759, 7356, 11361, 8433,
6437, 3652, 6342, 8978, 5391, 2272, 6476, 7416,
8418, 10824, 11986, 5733, 876, 7030, 2167, 2436,
3442, 9217, 8206, 4858, 5964, 2746, 7178, 1434,
7389, 8879, 10661, 11457, 4220, 1432, 10832, 4328,
8557, 1867, 9454, 2416, 3816, 9076, 686, 5393,
2523, 4339, 6115, 619, 937, 2834, 7775, 3279,
2363, 7488, 6112, 5056, 824, 10204, 11690, 1113,
2727, 9848, 896, 2028, 5075, 2654, 10464, 7884,
12169, 5434, 3070, 6400, 9132, 11672, 12153, 4520,
1273, 9739, 11468, 9937, 10039, 9720, 2262, 9399,
11192, 315, 4511, 1158, 6061, 6751, 11865, 357,
7367, 4550, 983, 8534, 8352, 10126, 7530, 9253,
4367, 5221, 3999, 8777, 3161, 6990, 4130, 11652,
3374, 11477, 1753, 292, 8681, 2806, 10378, 12188,
5800, 11811, 3181, 1988, 1024, 9340, 2477, 10928,
4582, 6750, 3619, 5503, 5233, 2463, 8470, 7650,
7964, 6395, 1071, 1272, 3474, 11045, 3291, 11344,
8502, 9478, 9837, 1253, 1857, 6233, 4720, 11561,
6034, 9817, 3339, 1797, 2879, 6242, 5200, 2114,
7962, 9353, 11363, 5475, 6084, 9601, 4108, 7323,
10438, 9471, 1271, 408, 6911, 3079, 360, 8276,
11535, 9156, 9049, 11539, 850, 8617, 784, 7919,
8334, 12170, 1846, 10213, 12184, 7827, 11903, 5600,
9779, 1012, 721, 2784, 6676, 6552, 5348, 4424,
6816, 8405, 9959, 5150, 2356, 5552, 5267, 1333,
8801, 9661, 7308, 5788, 4910, 909, 11613, 4395,
8238, 6686, 4302, 3044, 2285, 12249, 1963, 9216,
4296, 11918, 695, 4371, 9793, 4884, 2411, 10230,
2650, 841, 3890, 10231, 7248, 8505, 11196, 6688,
4059, 6060, 3686, 4722, 11853, 5816, 7058, 6868,
11137, 7926, 4894, 12284, 4102, 3908, 3610, 6525,
7938, 7982, 11977, 6755, 537, 4562, 1623, 8227,
11453, 7544, 906, 11816, 9548, 10858, 9703, 2815,
11736, 6813, 6979, 819, 8903, 6271, 10843, 348,
7514, 8339, 6439, 694, 852, 5659, 2781, 3716,
11589, 3024, 1523, 8659, 4114, 10738, 3303, 5885,
2978, 7289, 11884, 9123, 9323, 11830, 98, 2526,
2116, 4131, 11407, 1844, 3645, 3916, 8133, 2224,
10871, 8092, 9651, 5989, 7140, 8480, 1670, 159,
10923, 4918, 128, 7312, 725, 9157, 5006, 6393,
3494, 6043, 10972, 6181, 11838, 3423, 10514, 7668,
3693, 6658, 6905, 11953, 10212, 11922, 9101, 8365,
5110, 45, 2400, 1921, 4377, 2720, 1695, 51,
2808, 650, 1896, 9997, 9971, 11980, 8098, 4833,
4135, 4257, 5838, 4765, 10985, 11532, 590, 12198,
482, 12173, 2006, 7064, 10018, 3912, 12016, 10519,
11362, 6954, 2210, 284, 5413, 6601, 3865, 10339,
11188, 6231, 517, 9564, 11281, 3863, 1210, 4604,
8160, 11447, 153, 7204, 5763, 5089, 9248, 12154,
11748, 1354, 6672, 179, 5532, 2646, 5941, 12185,
862, 3158, 477, 7279, 5678, 7914, 4254, 302,
2893, 10114, 6890, 9560, 9647, 11905, 4098, 9824,
10269, 1353, 10715, 5325, 6254, 3951, 1807, 6449,
5159, 1308, 8315, 3404, 1877, 1231, 112, 6398,
11724, 12272, 7286, 1459, 12274, 9896, 3456, 800,
1397, 10678, 103, 7420, 7976, 936, 764, 632,
7996, 8223, 8445, 7758, 10870, 9571, 2508, 1946,
6524, 10158, 1044, 4338, 2457, 3641, 1659, 4139,
4688, 9733, 11148, 3946, 2082, 5261, 2036, 11850,
7636, 12236, 5366, 2380, 1399, 7720, 2100, 3217,
10912, 8898, 7578, 11995, 2791, 1215, 3355, 2711,
2267, 2004, 8568, 10176, 3214, 2337, 1750, 4729,
4997, 7415, 6315, 12044, 4374, 7157, 4844, 211,
8003, 10159, 9290, 11481, 1735, 2336, 5793, 9875,
8192, 986, 7527, 1401, 870, 3615, 8465, 2756,
9770, 2034, 10168, 3264, 6132, 54, 2880, 4763,
11805, 3074, 8286, 9428, 4881, 6933, 1090, 10038,
2567, 708, 893, 6465, 4962, 10024, 2090, 5718,
10743, 780, 4733, 4623, 2134, 2087, 4802, 884,
5372, 5795, 5938, 4333, 6559, 7549, 5269, 10664,
4252, 3260, 5917, 10814, 5768, 9983, 8096, 7791,
6800, 7491, 6272, 1907, 10947, 6289, 11803, 6032,
11449, 1171, 9201, 7933, 2479, 7970, 11337, 7062,
8911, 6728, 6542, 8114, 8828, 6595, 3545, 4348,
4610, 2205, 6999, 8106, 5560, 10390, 9321, 2499,
2413, 7272, 6881, 10582, 9308, 9437, 3554, 3326,
5991, 11969, 3415, 12283, 9838, 12063, 4332, 7830,
11329, 6605, 12271, 2044, 11611, 7353, 11201, 11582,
3733, 8943, 9978, 1627, 7168, 3935, 5050, 2762,
7496, 10383, 755, 1654, 12053, 4952, 10134, 4394,
6592, 7898, 7497, 8904, 12029, 3581, 10748, 5674,
10358, 4901, 7414, 8771, 710, 6764, 8462, 7193,
5371, 7274, 11084, 290, 7864, 6827, 11822, 2509,
6578, 4026, 5807, 1458, 5721, 5762, 4178, 2105,
11621, 4852, 8897, 2856, 11510, 9264, 2520, 8776,
7011, 2647, 1898, 7039, 5950, 11163, 5488, 6277,
9182, 11456, 633, 10046, 11554, 5633, 9587, 2333,
7008, 7084, 5047, 7199, 9865, 8997, 569, 6390,
10845, 9679, 8268, 11472, 4203, 1997, 2, 9331,
162, 6182, 2000, 3649, 9792, 6363, 7557, 6187,
8510, 9935, 5536, 9019, 3706, 12009, 1452, 3067,
5494, 9692, 4865, 6019, 7106, 9610, 4588, 10165,
6261, 5887, 2652, 10172, 1580, 10379, 4638, 9949
};

/*
* Table for inverse NTT, binary case:
* iGMb[x] = R*((1/g)^rev(x)) mod q
* Since g = 7, 1/g = 8778 mod 12289.
*/
static const uint16_t iGMb[] = {
4091, 4401, 1081, 1229, 2530, 6014, 7947, 5329,
2579, 4751, 6464, 11703, 7023, 2812, 5890, 10698,
3109, 2125, 1960, 10925, 10601, 10404, 4189, 1875,
5847, 8546, 4615, 5190, 11324, 10578, 5882, 11155,
8417, 12275, 10599, 7446, 5719, 3569, 5981, 10108,
4426, 8306, 10755, 4679, 11052, 1538, 11857, 100,
8247, 6625, 9725, 5145, 3412, 7858, 5831, 9460,
5217, 10740, 7882, 7506, 12172, 11292, 6049, 79,
13, 6938, 8886, 5453, 4586, 11455, 2903, 4676,
9843, 7621, 8822, 9109, 2083, 8507, 8685, 3110,
7015, 3269, 1367, 6397, 10259, 8435, 10527, 11559,
11094, 2211, 1808, 7319, 48, 9547, 2560, 1228,
9438, 10787, 11800, 1820, 11406, 8966, 6159, 3012,
6109, 2796, 2203, 1652, 711, 7004, 1053, 8973,
5244, 1517, 9322, 11269, 900, 3888, 11133, 10736,
4949, 7616, 9974, 4746, 10270, 126, 2921, 6720,
6635, 6543, 1582, 4868, 42, 673, 2240, 7219,
1296, 11989, 7675, 8578, 11949, 989, 10541, 7687,
7085, 8487, 1004, 10236, 4703, 163, 9143, 4597,
6431, 12052, 2991, 11938, 4647, 3362, 2060, 11357,
12011, 6664, 5655, 7225, 5914, 9327, 4092, 5880,
6932, 3402, 5133, 9394, 11229, 5252, 9008, 1556,
6908, 4773, 3853, 8780, 10325, 7737, 1758, 7103,
11375, 12273, 8602, 3243, 6536, 7590, 8591, 11552,
6101, 3253, 9969, 9640, 4506, 3736, 6829, 10822,
9130, 9948, 3566, 2133, 3901, 6038, 7333, 6609,
3468, 4659, 625, 2700, 7738, 3443, 3060, 3388,
3526, 4418, 11911, 6232, 1730, 2558, 10340, 5344,
5286, 2190, 11562, 6199, 2482, 8756, 5387, 4101,
4609, 8605, 8226, 144, 5656, 8704, 2621, 5424,
10812, 2959, 11346, 6249, 1715, 4951, 9540, 1888,
3764, 39, 8219, 2080, 2502, 1469, 10550, 8709,
5601, 1093, 3784, 5041, 2058, 8399, 11448, 9639,
2059, 9878, 7405, 2496, 7918, 11594, 371, 7993,
3073, 10326, 40, 10004, 9245, 7987, 5603, 4051,
7894, 676, 11380, 7379, 6501, 4981, 2628, 3488,
10956, 7022, 6737, 9933, 7139, 2330, 3884, 5473,
7865, 6941, 5737, 5613, 9505, 11568, 11277, 2510,
6689, 386, 4462, 105, 2076, 10443, 119, 3955,
4370, 11505, 3672, 11439, 750, 3240, 3133, 754,
4013, 11929, 9210, 5378, 11881, 11018, 2818, 1851,
4966, 8181, 2688, 6205, 6814, 926, 2936, 4327,
10175, 7089, 6047, 9410, 10492, 8950, 2472, 6255,
728, 7569, 6056, 10432, 11036, 2452, 2811, 3787,
945, 8998, 1244, 8815, 11017, 11218, 5894, 4325,
4639, 3819, 9826, 7056, 6786, 8670, 5539, 7707,
1361, 9812, 2949, 11265, 10301, 9108, 478, 6489,
101, 1911, 9483, 3608, 11997, 10536, 812, 8915,
637, 8159, 5299, 9128, 3512, 8290, 7068, 7922,
3036, 4759, 2163, 3937, 3755, 11306, 7739, 4922,
11932, 424, 5538, 6228, 11131, 7778, 11974, 1097,
2890, 10027, 2569, 2250, 2352, 821, 2550, 11016,
7769, 136, 617, 3157, 5889, 9219, 6855, 120,
4405, 1825, 9635, 7214, 10261, 11393, 2441, 9562,
11176, 599, 2085, 11465, 7233, 6177, 4801, 9926,
9010, 4514, 9455, 11352, 11670, 6174, 7950, 9766,
6896, 11603, 3213, 8473, 9873, 2835, 10422, 3732,
7961, 1457, 10857, 8069, 832, 1628, 3410, 4900,
10855, 5111, 9543, 6325, 7431, 4083, 3072, 8847,
9853, 10122, 5259, 11413, 6556, 303, 1465, 3871,
4873, 5813, 10017, 6898, 3311, 5947, 8637, 5852,
3856, 928, 4933, 8530, 1871, 2184, 5571, 5879,
3481, 11597, 9511, 8153, 35, 2609, 5963, 8064,
1080, 12039, 8444, 3052, 3813, 11065, 6736, 8454,
2340, 7651, 1910, 10709, 2117, 9637, 6402, 6028,
2124, 7701, 2679, 5183, 6270, 7424, 2597, 6795,
9222, 10837, 280, 8583, 3270, 6753, 2354, 3779,
6102, 4732, 5926, 2497, 8640, 10289, 6107, 12127,
2958, 12287, 10292, 8086, 817, 4021, 2610, 1444,
5899, 11720, 3292, 2424, 5090, 7242, 5205, 5281,
9956, 2702, 6656, 735, 2243, 11656, 833, 3107,
6012, 6801, 1126, 6339, 5250, 10391, 9642, 5278,
3513, 9769, 3025, 779, 9433, 3392, 7437, 668,
10184, 8111, 6527, 6568, 10831, 6482, 8263, 5711,
9780, 467, 5462, 4425, 11999, 1205, 5015, 6918,
5096, 3827, 5525, 11579, 3518, 4875, 7388, 1931,
6615, 1541, 8708, 260, 3385, 4792, 4391, 5697,
7895, 2155, 7337, 236, 10635, 11534, 1906, 4793,
9527, 7239, 8354, 5121, 10662, 2311, 3346, 8556,
707, 1088, 4936, 678, 10245, 18, 5684, 960,
4459, 7957, 226, 2451, 6, 8874, 320, 6298,
8963, 8735, 2852, 2981, 1707, 5408, 5017, 9876,
9790, 2968, 1899, 6729, 4183, 5290, 10084, 7679,
7941, 8744, 5694, 3461, 4175, 5747, 5561, 3378,
5227, 952, 4319, 9810, 4356, 3088, 11118, 840,
6257, 486, 6000, 1342, 10382, 6017, 4798, 5489,
4498, 4193, 2306, 6521, 1475, 6372, 9029, 8037,
1625, 7020, 4740, 5730, 7956, 6351, 6494, 6917,
11405, 7487, 10202, 10155, 7666, 7556, 11509, 1546,
6571, 10199, 2265, 7327, 5824, 11396, 11581, 9722,
2251, 11199, 5356, 7408, 2861, 4003, 9215, 484,
7526, 9409, 12235, 6157, 9025, 2121, 10255, 2519,
9533, 3824, 8674, 11419, 10888, 4762, 11303, 4097,
2414, 6496, 9953, 10554, 808, 2999, 2130, 4286,
12078, 7445, 5132, 7915, 245, 5974, 4874, 7292,
7560, 10539, 9952, 9075, 2113, 3721, 10285, 10022,
9578, 8934, 11074, 9498, 294, 4711, 3391, 1377,
9072, 10189, 4569, 10890, 9909, 6923, 53, 4653,
439, 10253, 7028, 10207, 8343, 1141, 2556, 7601,
8150, 10630, 8648, 9832, 7951, 11245, 2131, 5765,
10343, 9781, 2718, 1419, 4531, 3844, 4066, 4293,
11657, 11525, 11353, 4313, 4869, 12186, 1611, 10892,
11489, 8833, 2393, 15, 10830, 5003, 17, 565,
5891, 12177, 11058, 10412, 8885, 3974, 10981, 7130,
5840, 10482, 8338, 6035, 6964, 1574, 10936, 2020,
2465, 8191, 384, 2642, 2729, 5399, 2175, 9396,
11987, 8035, 4375, 6611, 5010, 11812, 9131, 11427,
104, 6348, 9643, 6757, 12110, 5617, 10935, 541,
135, 3041, 7200, 6526, 5085, 12136, 842, 4129,
7685, 11079, 8426, 1008, 2725, 11772, 6058, 1101,
1950, 8424, 5688, 6876, 12005, 10079, 5335, 927,
1770, 273, 8377, 2271, 5225, 10283, 116, 11807,
91, 11699, 757, 1304, 7524, 6451, 8032, 8154,
7456, 4191, 309, 2318, 2292, 10393, 11639, 9481,
12238, 10594, 9569, 7912, 10368, 9889, 12244, 7179,
3924, 3188, 367, 2077, 336, 5384, 5631, 8596,
4621, 1775, 8866, 451, 6108, 1317, 6246, 8795,
5896, 7283, 3132, 11564, 4977, 12161, 7371, 1366,
12130, 10619, 3809, 5149, 6300, 2638, 4197, 1418,
10065, 4156, 8373, 8644, 10445, 882, 8158, 10173,
9763, 12191, 459, 2966, 3166, 405, 5000, 9311,
6404, 8986, 1551, 8175, 3630, 10766, 9265, 700,
8573, 9508, 6630, 11437, 11595, 5850, 3950, 4775,
11941, 1446, 6018, 3386, 11470, 5310, 5476, 553,
9474, 2586, 1431, 2741, 473, 11383, 4745, 836,
4062, 10666, 7727, 11752, 5534, 312, 4307, 4351,
5764, 8679, 8381, 8187, 5, 7395, 4363, 1152,
5421, 5231, 6473, 436, 7567, 8603, 6229, 8230
};

/*
* Reduce a small signed integer modulo q. The source integer MUST
* be between -q/2 and +q/2.
*/
static inline uint32_t
mq_conv_small(int x) {
/*
* If x < 0, the cast to uint32_t will set the high bit to 1.
*/
uint32_t y;

y = (uint32_t)x;
y += Q & -(y >> 31);
return y;
}

/*
* Addition modulo q. Operands must be in the 0..q-1 range.
*/
static inline uint32_t
mq_add(uint32_t x, uint32_t y) {
/*
* We compute x + y - q. If the result is negative, then the
* high bit will be set, and 'd >> 31' will be equal to 1;
* thus '-(d >> 31)' will be an all-one pattern. Otherwise,
* it will be an all-zero pattern. In other words, this
* implements a conditional addition of q.
*/
uint32_t d;

d = x + y - Q;
d += Q & -(d >> 31);
return d;
}

/*
* Subtraction modulo q. Operands must be in the 0..q-1 range.
*/
static inline uint32_t
mq_sub(uint32_t x, uint32_t y) {
/*
* As in mq_add(), we use a conditional addition to ensure the
* result is in the 0..q-1 range.
*/
uint32_t d;

d = x - y;
d += Q & -(d >> 31);
return d;
}

/*
* Division by 2 modulo q. Operand must be in the 0..q-1 range.
*/
static inline uint32_t
mq_rshift1(uint32_t x) {
x += Q & -(x & 1);
return (x >> 1);
}

/*
* Montgomery multiplication modulo q. If we set R = 2^16 mod q, then
* this function computes: x * y / R mod q
* Operands must be in the 0..q-1 range.
*/
static inline uint32_t
mq_montymul(uint32_t x, uint32_t y) {
uint32_t z, w;

/*
* We compute x*y + k*q with a value of k chosen so that the 16
* low bits of the result are 0. We can then shift the value.
* After the shift, result may still be larger than q, but it
* will be lower than 2*q, so a conditional subtraction works.
*/

z = x * y;
w = ((z * Q0I) & 0xFFFF) * Q;

/*
* When adding z and w, the result will have its low 16 bits
* equal to 0. Since x, y and z are lower than q, the sum will
* be no more than (2^15 - 1) * q + (q - 1)^2, which will
* fit on 29 bits.
*/
z = (z + w) >> 16;

/*
* After the shift, analysis shows that the value will be less
* than 2q. We do a subtraction then conditional subtraction to
* ensure the result is in the expected range.
*/
z -= Q;
z += Q & -(z >> 31);
return z;
}

/*
* Montgomery squaring (computes (x^2)/R).
*/
static inline uint32_t
mq_montysqr(uint32_t x) {
return mq_montymul(x, x);
}

/*
* Divide x by y modulo q = 12289.
*/
static inline uint32_t
mq_div_12289(uint32_t x, uint32_t y) {
/*
* We invert y by computing y^(q-2) mod q.
*
* We use the following addition chain for exponent e = 12287:
*
* e0 = 1
* e1 = 2 * e0 = 2
* e2 = e1 + e0 = 3
* e3 = e2 + e1 = 5
* e4 = 2 * e3 = 10
* e5 = 2 * e4 = 20
* e6 = 2 * e5 = 40
* e7 = 2 * e6 = 80
* e8 = 2 * e7 = 160
* e9 = e8 + e2 = 163
* e10 = e9 + e8 = 323
* e11 = 2 * e10 = 646
* e12 = 2 * e11 = 1292
* e13 = e12 + e9 = 1455
* e14 = 2 * e13 = 2910
* e15 = 2 * e14 = 5820
* e16 = e15 + e10 = 6143
* e17 = 2 * e16 = 12286
* e18 = e17 + e0 = 12287
*
* Additions on exponents are converted to Montgomery
* multiplications. We define all intermediate results as so
* many local variables, and let the C compiler work out which
* must be kept around.
*/
uint32_t y0, y1, y2, y3, y4, y5, y6, y7, y8, y9;
uint32_t y10, y11, y12, y13, y14, y15, y16, y17, y18;

y0 = mq_montymul(y, R2);
y1 = mq_montysqr(y0);
y2 = mq_montymul(y1, y0);
y3 = mq_montymul(y2, y1);
y4 = mq_montysqr(y3);
y5 = mq_montysqr(y4);
y6 = mq_montysqr(y5);
y7 = mq_montysqr(y6);
y8 = mq_montysqr(y7);
y9 = mq_montymul(y8, y2);
y10 = mq_montymul(y9, y8);
y11 = mq_montysqr(y10);
y12 = mq_montysqr(y11);
y13 = mq_montymul(y12, y9);
y14 = mq_montysqr(y13);
y15 = mq_montysqr(y14);
y16 = mq_montymul(y15, y10);
y17 = mq_montysqr(y16);
y18 = mq_montymul(y17, y0);

/*
* Final multiplication with x, which is not in Montgomery
* representation, computes the correct division result.
*/
return mq_montymul(y18, x);
}

/*
* Compute NTT on a ring element.
*/
static void
mq_NTT(uint16_t *a, unsigned logn) {
size_t n, t, m;

n = (size_t)1 << logn;
t = n;
for (m = 1; m < n; m <<= 1) {
size_t ht, i, j1;

ht = t >> 1;
for (i = 0, j1 = 0; i < m; i ++, j1 += t) {
size_t j, j2;
uint32_t s;

s = GMb[m + i];
j2 = j1 + ht;
for (j = j1; j < j2; j ++) {
uint32_t u, v;

u = a[j];
v = mq_montymul(a[j + ht], s);
a[j] = (uint16_t)mq_add(u, v);
a[j + ht] = (uint16_t)mq_sub(u, v);
}
}
t = ht;
}
}

/*
* Compute the inverse NTT on a ring element, binary case.
*/
static void
mq_iNTT(uint16_t *a, unsigned logn) {
size_t n, t, m;
uint32_t ni;

n = (size_t)1 << logn;
t = 1;
m = n;
while (m > 1) {
size_t hm, dt, i, j1;

hm = m >> 1;
dt = t << 1;
for (i = 0, j1 = 0; i < hm; i ++, j1 += dt) {
size_t j, j2;
uint32_t s;

j2 = j1 + t;
s = iGMb[hm + i];
for (j = j1; j < j2; j ++) {
uint32_t u, v, w;

u = a[j];
v = a[j + t];
a[j] = (uint16_t)mq_add(u, v);
w = mq_sub(u, v);
a[j + t] = (uint16_t)
mq_montymul(w, s);
}
}
t = dt;
m = hm;
}

/*
* To complete the inverse NTT, we must now divide all values by
* n (the vector size). We thus need the inverse of n, i.e. we
* need to divide 1 by 2 logn times. But we also want it in
* Montgomery representation, i.e. we also want to multiply it
* by R = 2^16. In the common case, this should be a simple right
* shift. The loop below is generic and works also in corner cases;
* its computation time is negligible.
*/
ni = R;
for (m = n; m > 1; m >>= 1) {
ni = mq_rshift1(ni);
}
for (m = 0; m < n; m ++) {
a[m] = (uint16_t)mq_montymul(a[m], ni);
}
}

/*
* Convert a polynomial (mod q) to Montgomery representation.
*/
static void
mq_poly_tomonty(uint16_t *f, unsigned logn) {
size_t u, n;

n = (size_t)1 << logn;
for (u = 0; u < n; u ++) {
f[u] = (uint16_t)mq_montymul(f[u], R2);
}
}

/*
* Multiply two polynomials together (NTT representation, and using
* a Montgomery multiplication). Result f*g is written over f.
*/
static void
mq_poly_montymul_ntt(uint16_t *f, const uint16_t *g, unsigned logn) {
size_t u, n;

n = (size_t)1 << logn;
for (u = 0; u < n; u ++) {
f[u] = (uint16_t)mq_montymul(f[u], g[u]);
}
}

/*
* Subtract polynomial g from polynomial f.
*/
static void
mq_poly_sub(uint16_t *f, const uint16_t *g, unsigned logn) {
size_t u, n;

n = (size_t)1 << logn;
for (u = 0; u < n; u ++) {
f[u] = (uint16_t)mq_sub(f[u], g[u]);
}
}

/* ===================================================================== */

/* see inner.h */
void
PQCLEAN_FALCON512_CLEAN_to_ntt_monty(uint16_t *h, unsigned logn) {
mq_NTT(h, logn);
mq_poly_tomonty(h, logn);
}

/* see inner.h */
int
PQCLEAN_FALCON512_CLEAN_verify_raw(const uint16_t *c0, const int16_t *s2,
const uint16_t *h, unsigned logn, uint8_t *tmp) {
size_t u, n;
uint16_t *tt;

n = (size_t)1 << logn;
tt = (uint16_t *)tmp;

/*
* Reduce s2 elements modulo q ([0..q-1] range).
*/
for (u = 0; u < n; u ++) {
uint32_t w;

w = (uint32_t)s2[u];
w += Q & -(w >> 31);
tt[u] = (uint16_t)w;
}

/*
* Compute s1 = s2*h - c0 mod phi mod q (in tt[]).
*/
mq_NTT(tt, logn);
mq_poly_montymul_ntt(tt, h, logn);
mq_iNTT(tt, logn);
mq_poly_sub(tt, c0, logn);

/*
* Normalize s1 elements into the [-q/2..q/2] range.
*/
for (u = 0; u < n; u ++) {
int32_t w;

w = (int32_t)tt[u];
w -= (int32_t)(Q & -(((Q >> 1) - (uint32_t)w) >> 31));
((int16_t *)tt)[u] = (int16_t)w;
}

/*
* Signature is valid if and only if the aggregate (s1,s2) vector
* is short enough.
*/
return PQCLEAN_FALCON512_CLEAN_is_short((int16_t *)tt, s2, logn);
}

/* see inner.h */
int
PQCLEAN_FALCON512_CLEAN_compute_public(uint16_t *h,
const int8_t *f, const int8_t *g, unsigned logn, uint8_t *tmp) {
size_t u, n;
uint16_t *tt;

n = (size_t)1 << logn;
tt = (uint16_t *)tmp;
for (u = 0; u < n; u ++) {
tt[u] = (uint16_t)mq_conv_small(f[u]);
h[u] = (uint16_t)mq_conv_small(g[u]);
}
mq_NTT(h, logn);
mq_NTT(tt, logn);
for (u = 0; u < n; u ++) {
if (tt[u] == 0) {
return 0;
}
h[u] = (uint16_t)mq_div_12289(h[u], tt[u]);
}
mq_iNTT(h, logn);
return 1;
}

/* see internal.h */
int
PQCLEAN_FALCON512_CLEAN_complete_private(int8_t *G,
const int8_t *f, const int8_t *g, const int8_t *F,
unsigned logn, uint8_t *tmp) {
size_t u, n;
uint16_t *t1, *t2;

n = (size_t)1 << logn;
t1 = (uint16_t *)tmp;
t2 = t1 + n;
for (u = 0; u < n; u ++) {
t1[u] = (uint16_t)mq_conv_small(g[u]);
t2[u] = (uint16_t)mq_conv_small(F[u]);
}
mq_NTT(t1, logn);
mq_NTT(t2, logn);
mq_poly_tomonty(t1, logn);
mq_poly_montymul_ntt(t1, t2, logn);
for (u = 0; u < n; u ++) {
t2[u] = (uint16_t)mq_conv_small(f[u]);
}
mq_NTT(t2, logn);
for (u = 0; u < n; u ++) {
if (t2[u] == 0) {
return 0;
}
t1[u] = (uint16_t)mq_div_12289(t1[u], t2[u]);
}
mq_iNTT(t1, logn);
for (u = 0; u < n; u ++) {
uint32_t w;
int32_t gi;

w = t1[u];
w -= (Q & ~ -((w - (Q >> 1)) >> 31));
gi = *(int32_t *)&w;
if (gi < -127 || gi > +127) {
return 0;
}
G[u] = (int8_t)gi;
}
return 1;
}

Cargando…
Cancelar
Guardar