NIST announced the Round 3 finalists and alternate candidates today: https://groups.google.com/a/list.nist.gov/d/msg/pqc-forum/0ieuPB-b8eg/Cl7Ji8TpCwAJ Some of the schemes in PQClean did not make it to Round 3 and this commit removes them.kyber
@@ -1,14 +0,0 @@ | |||
name: BabyBearEphem | |||
type: kem | |||
claimed-nist-level: 1 | |||
claimed-security: IND-CPA | |||
length-public-key: 804 | |||
length-ciphertext: 917 | |||
length-secret-key: 40 | |||
length-shared-secret: 32 | |||
nistkat-sha256: 1caf1dc65c7b2923c936ed464574694a8983ed5508dadfc554fd98e1095652e9 | |||
principal-submitters: | |||
- Mike Hamburg | |||
implementations: | |||
- name: clean | |||
version: https://sourceforge.net/p/threebears/code/ci/f4ce0ebfc84a5e01a75bfc8297b6d175e993cfa4/ |
@@ -1,24 +0,0 @@ | |||
Copyright (c) 2016-2019 Rambus, Inc. | |||
and licensed under the following MIT license. | |||
The MIT License (MIT) | |||
Copyright (c) 2016-2019 Rambus Inc. | |||
Permission is hereby granted, free of charge, to any person obtaining a copy | |||
of this software and associated documentation files (the "Software"), to deal | |||
in the Software without restriction, including without limitation the rights | |||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |||
copies of the Software, and to permit persons to whom the Software is | |||
furnished to do so, subject to the following conditions: | |||
The above copyright notice and this permission notice shall be included in | |||
all copies or substantial portions of the Software. | |||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | |||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN | |||
THE SOFTWARE. |
@@ -1,21 +0,0 @@ | |||
# This Makefile can be used with GNU Make or BSD Make | |||
LIB=libbabybear-ephem_clean.a | |||
HEADERS = api.h melas_fec.h params.h ring.h threebears.h | |||
OBJECTS = kem.o melas_fec.o ring.o threebears.o | |||
CFLAGS=-O3 -Wall -Wextra -Wpedantic -Werror -Wmissing-prototypes -Wredundant-decls -std=c99 -I../../../common $(EXTRAFLAGS) | |||
all: $(LIB) | |||
%.o: %.c $(HEADERS) | |||
$(CC) $(CFLAGS) -c -o $@ $< | |||
$(LIB): $(OBJECTS) | |||
$(AR) -r $@ $(OBJECTS) | |||
clean: | |||
$(RM) $(OBJECTS) | |||
$(RM) $(LIB) |
@@ -1,19 +0,0 @@ | |||
# This Makefile can be used with Microsoft Visual Studio's nmake using the command: | |||
# nmake /f Makefile.Microsoft_nmake | |||
LIBRARY=libbabybear-ephem_clean.lib | |||
OBJECTS = kem.obj melas_fec.obj ring.obj threebears.obj | |||
CFLAGS=/nologo /I ..\..\..\common /W4 /WX | |||
all: $(LIBRARY) | |||
# Make sure objects are recompiled if headers change. | |||
$(OBJECTS): *.h | |||
$(LIBRARY): $(OBJECTS) | |||
LIB.EXE /NOLOGO /WX /OUT:$@ $** | |||
clean: | |||
-DEL $(OBJECTS) | |||
-DEL $(LIBRARY) |
@@ -1,18 +0,0 @@ | |||
#ifndef PQCLEAN_BABYBEAREPHEM_CLEAN_API_H | |||
#define PQCLEAN_BABYBEAREPHEM_CLEAN_API_H | |||
#include <stddef.h> | |||
#include <stdint.h> | |||
#include <string.h> | |||
#define PQCLEAN_BABYBEAREPHEM_CLEAN_CRYPTO_SECRETKEYBYTES 40 | |||
#define PQCLEAN_BABYBEAREPHEM_CLEAN_CRYPTO_PUBLICKEYBYTES 804 | |||
#define PQCLEAN_BABYBEAREPHEM_CLEAN_CRYPTO_BYTES 32 | |||
#define PQCLEAN_BABYBEAREPHEM_CLEAN_CRYPTO_CIPHERTEXTBYTES 917 | |||
#define PQCLEAN_BABYBEAREPHEM_CLEAN_CRYPTO_ALGNAME "BabyBearEphem" | |||
int PQCLEAN_BABYBEAREPHEM_CLEAN_crypto_kem_keypair(uint8_t *pk, uint8_t *sk); | |||
int PQCLEAN_BABYBEAREPHEM_CLEAN_crypto_kem_enc(uint8_t *ct, uint8_t *ss, const uint8_t *pk); | |||
int PQCLEAN_BABYBEAREPHEM_CLEAN_crypto_kem_dec(uint8_t *ss, const uint8_t *ct, const uint8_t *sk); | |||
#endif |
@@ -1,22 +0,0 @@ | |||
#include "api.h" | |||
#include "params.h" | |||
#include "randombytes.h" | |||
#include "threebears.h" | |||
int PQCLEAN_BABYBEAREPHEM_CLEAN_crypto_kem_keypair(uint8_t *pk, uint8_t *sk) { | |||
randombytes(sk, PRIVATE_KEY_BYTES); | |||
PQCLEAN_BABYBEAREPHEM_CLEAN_get_pubkey(pk, sk); | |||
return 0; | |||
} | |||
int PQCLEAN_BABYBEAREPHEM_CLEAN_crypto_kem_enc(uint8_t *ct, uint8_t *ss, const uint8_t *pk) { | |||
uint8_t seed[ENC_SEED_BYTES + IV_BYTES]; | |||
randombytes(seed, sizeof(seed)); | |||
encapsulate(ss, ct, pk, seed); | |||
return 0; | |||
} | |||
int PQCLEAN_BABYBEAREPHEM_CLEAN_crypto_kem_dec(uint8_t *ss, const uint8_t *ct, const uint8_t *sk) { | |||
PQCLEAN_BABYBEAREPHEM_CLEAN_decapsulate(ss, ct, sk); | |||
return 0; | |||
} |
@@ -1,87 +0,0 @@ | |||
/* Melas forward error correction, reference code (as implemented in the paper) */ | |||
#include "melas_fec.h" | |||
/* Return s/2^n mod R */ | |||
static fec_gf_t step(size_t n, fec_gf_t R, fec_gf_t s) { | |||
for (; n; n--) { | |||
s = (s ^ ((s & 1) * R)) >> 1; | |||
} | |||
return s; | |||
} | |||
/* Compute syndrome(data), where data has length len */ | |||
#define syndrome18(data,len) s18update(0,data,len) | |||
static fec_gf_t s18update(fec_gf_t r, const uint8_t *data, size_t len) { | |||
for (size_t i = 0; i < len; i++) { | |||
r = step(8, 0x46231, r ^ data[i]); | |||
} | |||
return r; | |||
} | |||
/* Append 3 bytes of FEC(data) to data, so that the FEC becomes 0 */ | |||
void PQCLEAN_BABYBEAREPHEM_CLEAN_melas_fec_set( | |||
uint8_t out[MELAS_FEC_BYTES], | |||
const uint8_t *data, | |||
size_t len | |||
) { | |||
fec_gf_t fec = syndrome18(data, len); | |||
for (size_t i = 0; i < MELAS_FEC_BYTES; i++, fec >>= 8) { | |||
out[i] = (uint8_t)fec; | |||
} | |||
} | |||
/* Return a*b mod Q */ | |||
static fec_gf_t mul(fec_gf_t a, fec_gf_t b) { | |||
fec_gf_t r = 0; | |||
for (size_t i = 0; i < 9; i++) { | |||
r ^= ((b >> (8 - i)) & 1) * a; | |||
a = step(1, Q, a); | |||
} | |||
return r; | |||
} | |||
/* Reverse an 18-bit number x */ | |||
static fec_gf_t reverse18(fec_gf_t x) { | |||
fec_gf_t ret = 0; | |||
for (size_t i = 0; i < 18; i++) { | |||
ret ^= ((x >> i) & 1) << (17 - i); | |||
} | |||
return ret; | |||
} | |||
/* Correct data to have the given FEC */ | |||
void PQCLEAN_BABYBEAREPHEM_CLEAN_melas_fec_correct ( | |||
uint8_t *data, | |||
size_t len, | |||
const uint8_t fec[MELAS_FEC_BYTES] | |||
) { | |||
fec_gf_t a = s18update(syndrome18(data, len), fec, MELAS_FEC_BYTES); | |||
fec_gf_t c, r, htr; | |||
size_t i; | |||
const uint8_t table[9] = {36, 10, 43, 215, 52, 11, 116, 244, 0}; | |||
fec_gf_t e0, e1; | |||
/* Form a quadratic equation from the syndrome */ | |||
c = mul(step(9, Q, a), step(9, Q, reverse18(a))); | |||
for (i = 0, r = 0x100; i < 510; i++) { | |||
r = mul(r, c); | |||
} | |||
r = step(17, Q, r); | |||
a = step(511 - (len + MELAS_FEC_BYTES) * 8, Q, a); | |||
/* Solve using the half trace */ | |||
for (i = 0, htr = 0; i < 9; i++) { | |||
htr ^= ((r >> i) & 1) * table[i]; | |||
} | |||
e0 = mul(a, htr); | |||
e1 = e0 ^ a; | |||
/* Correct the errors using the locators */ | |||
for (i = 0; i < len; i++) { | |||
data[i] ^= (uint8_t)(e0 & (((e0 & (e0 - 1)) - 1) >> 9)); | |||
data[i] ^= (uint8_t)(e1 & (((e1 & (e1 - 1)) - 1) >> 9)); | |||
e0 = step(8, Q, e0); | |||
e1 = step(8, Q, e1); | |||
} | |||
} |
@@ -1,26 +0,0 @@ | |||
#ifndef __THREEBEARS_MELAS_FEC_H__ | |||
#define __THREEBEARS_MELAS_FEC_H__ | |||
#include "api.h" | |||
#define MELAS_FEC_BYTES 3 | |||
#define MELAS_FEC_BITS 18 | |||
typedef uint32_t fec_gf_t; | |||
static const fec_gf_t Q = 0x211; | |||
/* Append 3 bytes of FEC(data) to data, so that the FEC becomes 0 */ | |||
void PQCLEAN_BABYBEAREPHEM_CLEAN_melas_fec_set( | |||
uint8_t out[MELAS_FEC_BYTES], | |||
const uint8_t *data, | |||
size_t len | |||
); | |||
/* Append 3 bytes of FEC(data) to data, so that the FEC becomes 0 */ | |||
void PQCLEAN_BABYBEAREPHEM_CLEAN_melas_fec_correct( | |||
uint8_t *data, | |||
size_t len, | |||
const uint8_t fec[MELAS_FEC_BYTES] | |||
); | |||
#endif |
@@ -1,29 +0,0 @@ | |||
#ifndef __THREEBEARS_PARAMS_H__ | |||
#define __THREEBEARS_PARAMS_H__ | |||
#define VERSION 1 | |||
#define MATRIX_SEED_BYTES 24 | |||
#define ENC_SEED_BYTES 32 | |||
#define IV_BYTES 0 | |||
#define LGX 10 | |||
#define DIGITS 312 | |||
#define DIM 2 | |||
#define VAR_TIMES_128 128 | |||
#define LPR_BITS 4 | |||
#define FEC_BITS 18 | |||
#define CCA 0 | |||
#define SHARED_SECRET_BYTES 32 | |||
#define PRIVATE_KEY_BYTES 40 | |||
#define PRF_KEY_BYTES PRIVATE_KEY_BYTES | |||
#define BEAR_NAME "BabyBearEphem" | |||
#define encapsulate PQCLEAN_BABYBEAREPHEM_CLEAN_encapsulate | |||
#define decapsulate PQCLEAN_BABYBEAREPHEM_CLEAN_decapsulate | |||
#define get_pubkey PQCLEAN_BABYBEAREPHEM_CLEAN_get_pubkey | |||
#define GF_BYTES ((LGX*DIGITS+7)/8) | |||
#define PUBLIC_KEY_BYTES (MATRIX_SEED_BYTES + DIM*GF_BYTES) | |||
#define CAPSULE_BYTES \ | |||
(DIM*GF_BYTES + IV_BYTES + ((ENC_SEED_BYTES*8+FEC_BITS)*LPR_BITS+7)/8) | |||
#endif |
@@ -1,107 +0,0 @@ | |||
/** Ring arithmetic implementation */ | |||
#include "ring.h" | |||
/** Return the i'th limb of the modulus */ | |||
limb_t PQCLEAN_BABYBEAREPHEM_CLEAN_modulus(size_t i) { | |||
return (i == DIGITS / 2) ? LMASK - 1 : LMASK; | |||
} | |||
/** Multiply and accumulate c += a*b */ | |||
void PQCLEAN_BABYBEAREPHEM_CLEAN_mac(gf_t c, const gf_t a, const gf_t b) { | |||
/* Reference non-Karatsuba MAC */ | |||
dslimb_t accum[2 * DIGITS] = {0}; | |||
dslimb_t chain; | |||
size_t i, j; | |||
/* Initialize accumulator = unclarify(c) */ | |||
for (i = 0; i < DIGITS; i++) { | |||
accum[i + DIGITS / 2] = c[i]; | |||
} | |||
/* Multiply */ | |||
for (i = 0; i < DIGITS; i++) { | |||
for (j = 0; j < DIGITS; j++) { | |||
accum[i + j] += (dslimb_t)a[i] * b[j]; | |||
} | |||
} | |||
/* Clarify and reduce */ | |||
for (i = 0; i < DIGITS / 2; i++) { | |||
accum[i + DIGITS / 2] -= accum[i]; | |||
accum[i + DIGITS] += accum[i]; | |||
accum[i + DIGITS / 2] += accum[i + 3 * DIGITS / 2]; | |||
accum[i + DIGITS] += accum[i + 3 * DIGITS / 2]; | |||
} | |||
/* Carry propagate */ | |||
chain = accum[3 * DIGITS / 2 - 1]; | |||
accum[3 * DIGITS / 2 - 1] = chain & LMASK; | |||
chain >>= LGX; | |||
accum[DIGITS] += chain; | |||
for (i = DIGITS / 2; i < 3 * DIGITS / 2; i++) { | |||
chain += accum[i]; | |||
c[i - DIGITS / 2] = chain & LMASK; | |||
chain >>= LGX; | |||
} | |||
c[0] = (limb_t) (c[0] + chain); | |||
c[DIGITS / 2] = (limb_t) (c[DIGITS / 2] + chain); | |||
} | |||
/** Reduce a gf_t to canonical form, i.e. strictly less than N. */ | |||
void PQCLEAN_BABYBEAREPHEM_CLEAN_canon(gf_t c) { | |||
const limb_t DELTA = (limb_t)1 << (LGX - 1); | |||
slimb_t hi; | |||
dslimb_t scarry; | |||
dlimb_t carry; | |||
/* Reduce to 0..2p */ | |||
hi = (slimb_t) (c[DIGITS - 1] - DELTA); | |||
c[DIGITS - 1] = (limb_t) ((hi & LMASK) + DELTA); | |||
c[DIGITS / 2] = (limb_t) (c[DIGITS / 2] + (hi >> LGX)); | |||
/* Strong reduce. First subtract modulus */ | |||
scarry = hi >> LGX; | |||
for (size_t i = 0; i < DIGITS; i++) { | |||
scarry = scarry + (slimb_t)c[i] - PQCLEAN_BABYBEAREPHEM_CLEAN_modulus(i); | |||
c[i] = scarry & LMASK; | |||
scarry >>= LGX; | |||
} | |||
/* add it back */ | |||
carry = 0; | |||
for (size_t i = 0; i < DIGITS; i++) { | |||
carry = carry + c[i] + ((dlimb_t)scarry & PQCLEAN_BABYBEAREPHEM_CLEAN_modulus(i)); | |||
c[i] = carry & LMASK; | |||
carry >>= LGX; | |||
} | |||
} | |||
/** Serialize a gf_t to bytes */ | |||
void PQCLEAN_BABYBEAREPHEM_CLEAN_contract(uint8_t ch[GF_BYTES], gf_t a) { | |||
size_t pos; | |||
PQCLEAN_BABYBEAREPHEM_CLEAN_canon(a); | |||
for (size_t i = 0; i < GF_BYTES; i++) { | |||
pos = (i * 8) / LGX; | |||
ch[i] = (uint8_t)(a[pos] >> ((i * 8) % LGX)); | |||
if (i < GF_BYTES - 1) { | |||
ch[i] |= (uint8_t)(a[pos + 1] << (LGX - ((i * 8) % LGX))); | |||
} | |||
} | |||
} | |||
/** Deserialize a gf_t from bytes */ | |||
void PQCLEAN_BABYBEAREPHEM_CLEAN_expand(gf_t ll, const uint8_t ch[GF_BYTES]) { | |||
limb_t tmp, buffer = 0; | |||
for (size_t i = 0, j = 0, bbits = 0; i < GF_BYTES; i++) { | |||
tmp = ch[i]; | |||
buffer |= (limb_t)(tmp << bbits); | |||
bbits += 8; | |||
if (bbits >= LGX) { | |||
ll[j++] = buffer & LMASK; | |||
buffer = (limb_t)(tmp >> (LGX - (bbits - 8))); | |||
bbits = bbits - LGX; | |||
} | |||
} | |||
} |
@@ -1,29 +0,0 @@ | |||
#ifndef __THREEBEARS_RING_H__ | |||
#define __THREEBEARS_RING_H__ | |||
#include "api.h" | |||
#include "params.h" | |||
typedef uint16_t limb_t; | |||
typedef int16_t slimb_t; | |||
typedef uint32_t dlimb_t; | |||
typedef int32_t dslimb_t; | |||
#define LMASK (((limb_t)1<<LGX)-1) | |||
typedef limb_t gf_t[DIGITS]; | |||
/* Serialize a gf_t */ | |||
void PQCLEAN_BABYBEAREPHEM_CLEAN_contract(uint8_t ch[GF_BYTES], gf_t a); | |||
/* Deserialize a gf_t */ | |||
void PQCLEAN_BABYBEAREPHEM_CLEAN_expand(gf_t ll, const uint8_t ch[GF_BYTES]); | |||
/* Multiply and accumulate c = c + a*b */ | |||
void PQCLEAN_BABYBEAREPHEM_CLEAN_mac(gf_t c, const gf_t a, const gf_t b); | |||
/* Reduce ring element to canonical form */ | |||
void PQCLEAN_BABYBEAREPHEM_CLEAN_canon(gf_t c); | |||
/** Return the i'th limb of the modulus */ | |||
limb_t PQCLEAN_BABYBEAREPHEM_CLEAN_modulus(size_t i); | |||
#endif |
@@ -1,219 +0,0 @@ | |||
/** ThreeBears reference implementation */ | |||
#include "api.h" | |||
#include "melas_fec.h" | |||
#include "params.h" | |||
#include "ring.h" | |||
#include "sp800-185.h" | |||
#include "threebears.h" | |||
#define FEC_BYTES ((FEC_BITS+7)/8) | |||
#define ENC_BITS (ENC_SEED_BYTES*8 + FEC_BITS) | |||
enum { HASH_PURPOSE_UNIFORM = 0, HASH_PURPOSE_KEYGEN = 1, HASH_PURPOSE_ENCAPS = 2, HASH_PURPOSE_PRF = 3 }; | |||
/** Initialize the hash function with a given purpose */ | |||
static void threebears_hash_init( | |||
shake256incctx *ctx, | |||
uint8_t purpose | |||
) { | |||
const unsigned char S[] = "ThreeBears"; | |||
const uint8_t pblock[15] = { | |||
VERSION, PRIVATE_KEY_BYTES, MATRIX_SEED_BYTES, ENC_SEED_BYTES, | |||
IV_BYTES, SHARED_SECRET_BYTES, LGX, DIGITS & 0xFF, DIGITS >> 8, DIM, | |||
VAR_TIMES_128 - 1, LPR_BITS, FEC_BITS, CCA, 0 /* padding */ | |||
}; | |||
cshake256_inc_init(ctx, NULL, 0, (const uint8_t *)S, sizeof(S) - 1); | |||
cshake256_inc_absorb(ctx, (const uint8_t *)pblock, sizeof(pblock)); | |||
cshake256_inc_absorb(ctx, &purpose, 1); | |||
} | |||
/** Sample n gf_t's uniformly from a seed */ | |||
static void uniform(gf_t matrix, const uint8_t *seed, uint8_t iv) { | |||
uint8_t c[GF_BYTES]; | |||
shake256incctx ctx; | |||
threebears_hash_init(&ctx, HASH_PURPOSE_UNIFORM); | |||
cshake256_inc_absorb(&ctx, seed, MATRIX_SEED_BYTES); | |||
cshake256_inc_absorb(&ctx, &iv, 1); | |||
cshake256_inc_finalize(&ctx); | |||
cshake256_inc_squeeze(c, sizeof(c), &ctx); | |||
cshake256_inc_ctx_release(&ctx); | |||
PQCLEAN_BABYBEAREPHEM_CLEAN_expand(matrix, c); | |||
} | |||
/** The ThreeBears error distribution */ | |||
static slimb_t psi(uint8_t ci) { | |||
int sample = 0, var = VAR_TIMES_128; | |||
for (; var > 64; var -= 64, ci = (uint8_t)(ci << 2)) { | |||
sample += ((ci + 64) >> 8) + ((ci - 64) >> 8); | |||
} | |||
return (slimb_t)(sample + ((ci + var) >> 8) + ((ci - var) >> 8)); | |||
} | |||
/** Sample a vector of n noise elements */ | |||
static void noise(gf_t x, const shake256incctx *ctx, uint8_t iv) { | |||
uint8_t c[DIGITS]; | |||
shake256incctx ctx2; | |||
cshake256_inc_ctx_clone(&ctx2, ctx); | |||
cshake256_inc_absorb(&ctx2, &iv, 1); | |||
cshake256_inc_finalize(&ctx2); | |||
cshake256_inc_squeeze(c, DIGITS, &ctx2); | |||
for (size_t i = 0; i < DIGITS; i++) { | |||
x[i] = (limb_t)(psi(c[i]) + PQCLEAN_BABYBEAREPHEM_CLEAN_modulus(i)); | |||
} | |||
cshake256_inc_ctx_release(&ctx2); | |||
} | |||
/* Expand public key from private key */ | |||
void PQCLEAN_BABYBEAREPHEM_CLEAN_get_pubkey(uint8_t *pk, const uint8_t *sk) { | |||
shake256incctx ctx; | |||
shake256incctx ctx2; | |||
gf_t sk_expanded[DIM], b, c; | |||
threebears_hash_init(&ctx, HASH_PURPOSE_KEYGEN); | |||
cshake256_inc_absorb(&ctx, sk, PRIVATE_KEY_BYTES); | |||
cshake256_inc_ctx_clone(&ctx2, &ctx); | |||
cshake256_inc_finalize(&ctx2); | |||
cshake256_inc_squeeze(pk, MATRIX_SEED_BYTES, &ctx2); | |||
cshake256_inc_ctx_release(&ctx2); | |||
for (uint8_t i = 0; i < DIM; i++) { | |||
noise(sk_expanded[i], &ctx, i); | |||
} | |||
for (uint8_t i = 0; i < DIM; i++) { | |||
noise(c, &ctx, (uint8_t)(i + DIM)); | |||
for (uint8_t j = 0; j < DIM; j++) { | |||
uniform(b, pk, (uint8_t) (i + DIM * j)); | |||
PQCLEAN_BABYBEAREPHEM_CLEAN_mac(c, b, sk_expanded[j]); | |||
} | |||
PQCLEAN_BABYBEAREPHEM_CLEAN_contract(&pk[MATRIX_SEED_BYTES + i * GF_BYTES], c); | |||
} | |||
cshake256_inc_ctx_release(&ctx); | |||
} | |||
/* Encapsulate a shared secret and return it */ | |||
void PQCLEAN_BABYBEAREPHEM_CLEAN_encapsulate( | |||
uint8_t *shared_secret, | |||
uint8_t *capsule, | |||
const uint8_t *pk, | |||
const uint8_t *seed | |||
) { | |||
uint8_t *lpr_data = &capsule[GF_BYTES * DIM]; | |||
shake256incctx ctx; | |||
gf_t sk_expanded[DIM], b, c; | |||
uint8_t tbi[ENC_SEED_BYTES + FEC_BYTES]; | |||
dlimb_t rlimb0, rlimb1; | |||
limb_t h; | |||
uint8_t *iv = &lpr_data[(ENC_BITS * LPR_BITS + 7) / 8]; | |||
memcpy(iv, &seed[ENC_SEED_BYTES], IV_BYTES); | |||
threebears_hash_init(&ctx, HASH_PURPOSE_ENCAPS); | |||
cshake256_inc_absorb(&ctx, pk, MATRIX_SEED_BYTES); | |||
cshake256_inc_absorb(&ctx, seed, ENC_SEED_BYTES + IV_BYTES); | |||
for (uint8_t i = 0; i < DIM; i++) { | |||
noise(sk_expanded[i], &ctx, i); | |||
} | |||
for (uint8_t i = 0; i < DIM; i++) { | |||
noise(c, &ctx, (uint8_t)(i + DIM)); | |||
for (uint8_t j = 0; j < DIM; j++) { | |||
uniform(b, pk, (uint8_t)(j + DIM * i)); | |||
PQCLEAN_BABYBEAREPHEM_CLEAN_mac(c, b, sk_expanded[j]); | |||
} | |||
PQCLEAN_BABYBEAREPHEM_CLEAN_contract(&capsule[i * GF_BYTES], c); | |||
} | |||
noise(c, &ctx, (uint8_t)(2 * DIM)); | |||
/* Calculate approximate shared secret */ | |||
for (uint8_t i = 0; i < DIM; i++) { | |||
PQCLEAN_BABYBEAREPHEM_CLEAN_expand(b, &pk[MATRIX_SEED_BYTES + i * GF_BYTES]); | |||
PQCLEAN_BABYBEAREPHEM_CLEAN_mac(c, b, sk_expanded[i]); | |||
} | |||
PQCLEAN_BABYBEAREPHEM_CLEAN_canon(c); | |||
cshake256_inc_finalize(&ctx); | |||
cshake256_inc_squeeze(tbi, ENC_SEED_BYTES, &ctx); | |||
cshake256_inc_ctx_release(&ctx); | |||
threebears_hash_init(&ctx, HASH_PURPOSE_ENCAPS); | |||
cshake256_inc_absorb(&ctx, pk, MATRIX_SEED_BYTES); | |||
cshake256_inc_absorb(&ctx, tbi, ENC_SEED_BYTES); | |||
cshake256_inc_absorb(&ctx, iv, IV_BYTES); | |||
PQCLEAN_BABYBEAREPHEM_CLEAN_melas_fec_set(&tbi[ENC_SEED_BYTES], tbi, ENC_SEED_BYTES); | |||
/* Export with rounding */ | |||
for (size_t i = 0; i < ENC_BITS; i += 2) { | |||
h = (limb_t)(tbi[i / 8] >> (i % 8)); | |||
rlimb0 = (dlimb_t)((c[i / 2] >> (LGX - LPR_BITS)) + (h << 3)); | |||
rlimb1 = (dlimb_t)((c[DIGITS - i / 2 - 1] >> (LGX - LPR_BITS)) + ((h >> 1) << 3)); | |||
lpr_data[i / 2] = (uint8_t)((rlimb0 & 0xF) | rlimb1 << 4); | |||
} | |||
cshake256_inc_finalize(&ctx); | |||
cshake256_inc_squeeze(shared_secret, SHARED_SECRET_BYTES, &ctx); | |||
cshake256_inc_ctx_release(&ctx); | |||
} | |||
/* Decapsulate a shared secret and return it */ | |||
void PQCLEAN_BABYBEAREPHEM_CLEAN_decapsulate( | |||
uint8_t shared_secret[SHARED_SECRET_BYTES], | |||
const uint8_t capsule[CAPSULE_BYTES], | |||
const uint8_t sk[PRIVATE_KEY_BYTES] | |||
) { | |||
const uint8_t *lpr_data = &capsule[GF_BYTES * DIM]; | |||
shake256incctx ctx; | |||
gf_t ska, b, c = {0}; | |||
uint8_t seed[ENC_SEED_BYTES + FEC_BYTES + IV_BYTES]; | |||
limb_t rounding, out; | |||
size_t j; | |||
limb_t our_rlimb, their_rlimb, delta; | |||
uint8_t matrix_seed[MATRIX_SEED_BYTES]; | |||
/* Calculate approximate shared secret */ | |||
threebears_hash_init(&ctx, HASH_PURPOSE_KEYGEN); | |||
cshake256_inc_absorb(&ctx, sk, PRIVATE_KEY_BYTES); | |||
for (uint8_t i = 0; i < DIM; i++) { | |||
PQCLEAN_BABYBEAREPHEM_CLEAN_expand(b, &capsule[i * GF_BYTES]); | |||
noise(ska, &ctx, i); | |||
PQCLEAN_BABYBEAREPHEM_CLEAN_mac(c, ska, b); | |||
} | |||
/* Recover seed from LPR data */ | |||
PQCLEAN_BABYBEAREPHEM_CLEAN_canon(c); | |||
rounding = 1 << (LPR_BITS - 1); | |||
out = 0; | |||
for (int32_t i = ENC_BITS - 1; i >= 0; i--) { | |||
j = (size_t) ((i & 1) ? DIGITS - i / 2 - 1 : i / 2); | |||
our_rlimb = (limb_t)(c[j] >> (LGX - LPR_BITS - 1)); | |||
their_rlimb = (limb_t)(lpr_data[i * LPR_BITS / 8] >> ((i * LPR_BITS) % 8)); | |||
delta = (limb_t)(their_rlimb * 2 - our_rlimb + rounding); | |||
out |= (limb_t)(((delta >> LPR_BITS) & 1) << (i % 8)); | |||
if (i % 8 == 0) { | |||
seed[i / 8] = (uint8_t)out; | |||
out = 0; | |||
} | |||
} | |||
PQCLEAN_BABYBEAREPHEM_CLEAN_melas_fec_correct(seed, ENC_SEED_BYTES, &seed[ENC_SEED_BYTES]); | |||
/* Recalculate matrix seed */ | |||
cshake256_inc_finalize(&ctx); | |||
cshake256_inc_squeeze(matrix_seed, MATRIX_SEED_BYTES, &ctx); | |||
cshake256_inc_ctx_release(&ctx); | |||
/* Re-run the key derivation from encaps */ | |||
threebears_hash_init(&ctx, HASH_PURPOSE_ENCAPS); | |||
cshake256_inc_absorb(&ctx, matrix_seed, MATRIX_SEED_BYTES); | |||
cshake256_inc_absorb(&ctx, seed, ENC_SEED_BYTES); | |||
cshake256_inc_absorb(&ctx, &lpr_data[(ENC_BITS * LPR_BITS + 7) / 8], IV_BYTES); | |||
cshake256_inc_finalize(&ctx); | |||
cshake256_inc_squeeze(shared_secret, SHARED_SECRET_BYTES, &ctx); | |||
cshake256_inc_ctx_release(&ctx); | |||
} |
@@ -1,60 +0,0 @@ | |||
#ifndef __THREE_BEARS_BABYBEAREPHEM_H__ | |||
#define __THREE_BEARS_BABYBEAREPHEM_H__ | |||
#include <stddef.h> /* for size_t */ | |||
#include <stdint.h> | |||
#define BABYBEAREPHEM_KEYGEN_SEED_BYTES 40 | |||
#define BABYBEAREPHEM_PRIVATE_KEY_BYTES BABYBEAREPHEM_KEYGEN_SEED_BYTES | |||
#define BABYBEAREPHEM_SHARED_SECRET_BYTES 32 | |||
#define BABYBEAREPHEM_ENC_SEED_AND_IV_BYTES 32 | |||
#define BABYBEAREPHEM_PUBLIC_KEY_BYTES 804 | |||
#define BABYBEAREPHEM_CAPSULE_BYTES 917 | |||
/** | |||
* Expand a secret seed to a public/private keypair. | |||
* | |||
* @param[out] pk The public key. | |||
* @param[in] sk The private key, which must be uniformly random. | |||
*/ | |||
void PQCLEAN_BABYBEAREPHEM_CLEAN_get_pubkey ( | |||
uint8_t pk[BABYBEAREPHEM_PUBLIC_KEY_BYTES], | |||
const uint8_t sk[BABYBEAREPHEM_PRIVATE_KEY_BYTES] | |||
); | |||
/** | |||
* Create a shared secret using a random seed and another party's public key. | |||
* | |||
* Input and output parameters may not alias. | |||
* | |||
* @param[out] shared_secret The shared secret key. | |||
* @param[out] capsule A ciphertext to send to the other party. | |||
* @param[in] pk The other party's public key. | |||
* @param[in] seed A random seed. | |||
*/ | |||
void PQCLEAN_BABYBEAREPHEM_CLEAN_encapsulate ( | |||
uint8_t shared_secret[BABYBEAREPHEM_SHARED_SECRET_BYTES], | |||
uint8_t capsule[BABYBEAREPHEM_CAPSULE_BYTES], | |||
const uint8_t pk[BABYBEAREPHEM_PUBLIC_KEY_BYTES], | |||
const uint8_t seed[BABYBEAREPHEM_ENC_SEED_AND_IV_BYTES] | |||
); | |||
/** | |||
* Extract the shared secret from a capsule using the private key. | |||
* Has a negligible but nonzero probability of failure. | |||
* | |||
* Input and output parameters may not alias. | |||
* | |||
* @param[out] shared_secret The shared secret. | |||
* @param[in] capsule The capsule produced by encapsulate_cca2. | |||
* @param[in] sk The private key. | |||
* @return -1 on failure, 0 on success. | |||
* @warning The value of shared_secret must not be used on failure | |||
*/ | |||
void PQCLEAN_BABYBEAREPHEM_CLEAN_decapsulate ( | |||
uint8_t shared_secret[BABYBEAREPHEM_SHARED_SECRET_BYTES], | |||
const uint8_t capsule[BABYBEAREPHEM_CAPSULE_BYTES], | |||
const uint8_t sk[BABYBEAREPHEM_PRIVATE_KEY_BYTES] | |||
); | |||
#endif |
@@ -1,14 +0,0 @@ | |||
name: BabyBear | |||
type: kem | |||
claimed-nist-level: 1 | |||
claimed-security: IND-CCA2 | |||
length-public-key: 804 | |||
length-ciphertext: 917 | |||
length-secret-key: 40 | |||
length-shared-secret: 32 | |||
nistkat-sha256: b8442ffaad8e74c6ebfd75d02e13f8db017a7a6dd8458f5d1a5011de6057d775 | |||
principal-submitters: | |||
- Mike Hamburg | |||
implementations: | |||
- name: clean | |||
version: https://sourceforge.net/p/threebears/code/ci/f4ce0ebfc84a5e01a75bfc8297b6d175e993cfa4/ |
@@ -1,24 +0,0 @@ | |||
Copyright (c) 2016-2019 Rambus, Inc. | |||
and licensed under the following MIT license. | |||
The MIT License (MIT) | |||
Copyright (c) 2016-2019 Rambus Inc. | |||
Permission is hereby granted, free of charge, to any person obtaining a copy | |||
of this software and associated documentation files (the "Software"), to deal | |||
in the Software without restriction, including without limitation the rights | |||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |||
copies of the Software, and to permit persons to whom the Software is | |||
furnished to do so, subject to the following conditions: | |||
The above copyright notice and this permission notice shall be included in | |||
all copies or substantial portions of the Software. | |||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | |||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN | |||
THE SOFTWARE. |
@@ -1,21 +0,0 @@ | |||
# This Makefile can be used with GNU Make or BSD Make | |||
LIB=libbabybear_clean.a | |||
HEADERS = api.h melas_fec.h params.h ring.h threebears.h | |||
OBJECTS = kem.o melas_fec.o ring.o threebears.o | |||
CFLAGS=-O3 -Wall -Wextra -Wpedantic -Werror -Wmissing-prototypes -Wredundant-decls -std=c99 -I../../../common $(EXTRAFLAGS) | |||
all: $(LIB) | |||
%.o: %.c $(HEADERS) | |||
$(CC) $(CFLAGS) -c -o $@ $< | |||
$(LIB): $(OBJECTS) | |||
$(AR) -r $@ $(OBJECTS) | |||
clean: | |||
$(RM) $(OBJECTS) | |||
$(RM) $(LIB) |
@@ -1,19 +0,0 @@ | |||
# This Makefile can be used with Microsoft Visual Studio's nmake using the command: | |||
# nmake /f Makefile.Microsoft_nmake | |||
LIBRARY=libbabybear_clean.lib | |||
OBJECTS = kem.obj melas_fec.obj ring.obj threebears.obj | |||
CFLAGS=/nologo /I ..\..\..\common /W4 /WX | |||
all: $(LIBRARY) | |||
# Make sure objects are recompiled if headers change. | |||
$(OBJECTS): *.h | |||
$(LIBRARY): $(OBJECTS) | |||
LIB.EXE /NOLOGO /WX /OUT:$@ $** | |||
clean: | |||
-DEL $(OBJECTS) | |||
-DEL $(LIBRARY) |
@@ -1,18 +0,0 @@ | |||
#ifndef PQCLEAN_BABYBEAR_CLEAN_API_H | |||
#define PQCLEAN_BABYBEAR_CLEAN_API_H | |||
#include <stddef.h> | |||
#include <stdint.h> | |||
#include <string.h> | |||
#define PQCLEAN_BABYBEAR_CLEAN_CRYPTO_SECRETKEYBYTES 40 | |||
#define PQCLEAN_BABYBEAR_CLEAN_CRYPTO_PUBLICKEYBYTES 804 | |||
#define PQCLEAN_BABYBEAR_CLEAN_CRYPTO_BYTES 32 | |||
#define PQCLEAN_BABYBEAR_CLEAN_CRYPTO_CIPHERTEXTBYTES 917 | |||
#define PQCLEAN_BABYBEAR_CLEAN_CRYPTO_ALGNAME "BabyBear" | |||
int PQCLEAN_BABYBEAR_CLEAN_crypto_kem_keypair(uint8_t *pk, uint8_t *sk); | |||
int PQCLEAN_BABYBEAR_CLEAN_crypto_kem_enc(uint8_t *ct, uint8_t *ss, const uint8_t *pk); | |||
int PQCLEAN_BABYBEAR_CLEAN_crypto_kem_dec(uint8_t *ss, const uint8_t *ct, const uint8_t *sk); | |||
#endif |
@@ -1,22 +0,0 @@ | |||
#include "api.h" | |||
#include "params.h" | |||
#include "randombytes.h" | |||
#include "threebears.h" | |||
int PQCLEAN_BABYBEAR_CLEAN_crypto_kem_keypair(uint8_t *pk, uint8_t *sk) { | |||
randombytes(sk, PRIVATE_KEY_BYTES); | |||
PQCLEAN_BABYBEAR_CLEAN_get_pubkey(pk, sk); | |||
return 0; | |||
} | |||
int PQCLEAN_BABYBEAR_CLEAN_crypto_kem_enc(uint8_t *ct, uint8_t *ss, const uint8_t *pk) { | |||
uint8_t seed[ENC_SEED_BYTES + IV_BYTES]; | |||
randombytes(seed, sizeof(seed)); | |||
encapsulate(ss, ct, pk, seed); | |||
return 0; | |||
} | |||
int PQCLEAN_BABYBEAR_CLEAN_crypto_kem_dec(uint8_t *ss, const uint8_t *ct, const uint8_t *sk) { | |||
PQCLEAN_BABYBEAR_CLEAN_decapsulate(ss, ct, sk); | |||
return 0; | |||
} |
@@ -1,87 +0,0 @@ | |||
/* Melas forward error correction, reference code (as implemented in the paper) */ | |||
#include "melas_fec.h" | |||
/* Return s/2^n mod R */ | |||
static fec_gf_t step(size_t n, fec_gf_t R, fec_gf_t s) { | |||
for (; n; n--) { | |||
s = (s ^ ((s & 1) * R)) >> 1; | |||
} | |||
return s; | |||
} | |||
/* Compute syndrome(data), where data has length len */ | |||
#define syndrome18(data,len) s18update(0,data,len) | |||
static fec_gf_t s18update(fec_gf_t r, const uint8_t *data, size_t len) { | |||
for (size_t i = 0; i < len; i++) { | |||
r = step(8, 0x46231, r ^ data[i]); | |||
} | |||
return r; | |||
} | |||
/* Append 3 bytes of FEC(data) to data, so that the FEC becomes 0 */ | |||
void PQCLEAN_BABYBEAR_CLEAN_melas_fec_set( | |||
uint8_t out[MELAS_FEC_BYTES], | |||
const uint8_t *data, | |||
size_t len | |||
) { | |||
fec_gf_t fec = syndrome18(data, len); | |||
for (size_t i = 0; i < MELAS_FEC_BYTES; i++, fec >>= 8) { | |||
out[i] = (uint8_t)fec; | |||
} | |||
} | |||
/* Return a*b mod Q */ | |||
static fec_gf_t mul(fec_gf_t a, fec_gf_t b) { | |||
fec_gf_t r = 0; | |||
for (size_t i = 0; i < 9; i++) { | |||
r ^= ((b >> (8 - i)) & 1) * a; | |||
a = step(1, Q, a); | |||
} | |||
return r; | |||
} | |||
/* Reverse an 18-bit number x */ | |||
static fec_gf_t reverse18(fec_gf_t x) { | |||
fec_gf_t ret = 0; | |||
for (size_t i = 0; i < 18; i++) { | |||
ret ^= ((x >> i) & 1) << (17 - i); | |||
} | |||
return ret; | |||
} | |||
/* Correct data to have the given FEC */ | |||
void PQCLEAN_BABYBEAR_CLEAN_melas_fec_correct ( | |||
uint8_t *data, | |||
size_t len, | |||
const uint8_t fec[MELAS_FEC_BYTES] | |||
) { | |||
fec_gf_t a = s18update(syndrome18(data, len), fec, MELAS_FEC_BYTES); | |||
fec_gf_t c, r, htr; | |||
size_t i; | |||
const uint8_t table[9] = {36, 10, 43, 215, 52, 11, 116, 244, 0}; | |||
fec_gf_t e0, e1; | |||
/* Form a quadratic equation from the syndrome */ | |||
c = mul(step(9, Q, a), step(9, Q, reverse18(a))); | |||
for (i = 0, r = 0x100; i < 510; i++) { | |||
r = mul(r, c); | |||
} | |||
r = step(17, Q, r); | |||
a = step(511 - (len + MELAS_FEC_BYTES) * 8, Q, a); | |||
/* Solve using the half trace */ | |||
for (i = 0, htr = 0; i < 9; i++) { | |||
htr ^= ((r >> i) & 1) * table[i]; | |||
} | |||
e0 = mul(a, htr); | |||
e1 = e0 ^ a; | |||
/* Correct the errors using the locators */ | |||
for (i = 0; i < len; i++) { | |||
data[i] ^= (uint8_t)(e0 & (((e0 & (e0 - 1)) - 1) >> 9)); | |||
data[i] ^= (uint8_t)(e1 & (((e1 & (e1 - 1)) - 1) >> 9)); | |||
e0 = step(8, Q, e0); | |||
e1 = step(8, Q, e1); | |||
} | |||
} |
@@ -1,26 +0,0 @@ | |||
#ifndef __THREEBEARS_MELAS_FEC_H__ | |||
#define __THREEBEARS_MELAS_FEC_H__ | |||
#include "api.h" | |||
#define MELAS_FEC_BYTES 3 | |||
#define MELAS_FEC_BITS 18 | |||
typedef uint32_t fec_gf_t; | |||
static const fec_gf_t Q = 0x211; | |||
/* Append 3 bytes of FEC(data) to data, so that the FEC becomes 0 */ | |||
void PQCLEAN_BABYBEAR_CLEAN_melas_fec_set( | |||
uint8_t out[MELAS_FEC_BYTES], | |||
const uint8_t *data, | |||
size_t len | |||
); | |||
/* Append 3 bytes of FEC(data) to data, so that the FEC becomes 0 */ | |||
void PQCLEAN_BABYBEAR_CLEAN_melas_fec_correct( | |||
uint8_t *data, | |||
size_t len, | |||
const uint8_t fec[MELAS_FEC_BYTES] | |||
); | |||
#endif |
@@ -1,29 +0,0 @@ | |||
#ifndef __THREEBEARS_PARAMS_H__ | |||
#define __THREEBEARS_PARAMS_H__ | |||
#define VERSION 1 | |||
#define MATRIX_SEED_BYTES 24 | |||
#define ENC_SEED_BYTES 32 | |||
#define IV_BYTES 0 | |||
#define LGX 10 | |||
#define DIGITS 312 | |||
#define DIM 2 | |||
#define VAR_TIMES_128 72 | |||
#define LPR_BITS 4 | |||
#define FEC_BITS 18 | |||
#define CCA 1 | |||
#define SHARED_SECRET_BYTES 32 | |||
#define PRIVATE_KEY_BYTES 40 | |||
#define PRF_KEY_BYTES PRIVATE_KEY_BYTES | |||
#define BEAR_NAME "BabyBear" | |||
#define encapsulate PQCLEAN_BABYBEAR_CLEAN_encapsulate | |||
#define decapsulate PQCLEAN_BABYBEAR_CLEAN_decapsulate | |||
#define get_pubkey PQCLEAN_BABYBEAR_CLEAN_get_pubkey | |||
#define GF_BYTES ((LGX*DIGITS+7)/8) | |||
#define PUBLIC_KEY_BYTES (MATRIX_SEED_BYTES + DIM*GF_BYTES) | |||
#define CAPSULE_BYTES \ | |||
(DIM*GF_BYTES + IV_BYTES + ((ENC_SEED_BYTES*8+FEC_BITS)*LPR_BITS+7)/8) | |||
#endif |
@@ -1,107 +0,0 @@ | |||
/** Ring arithmetic implementation */ | |||
#include "ring.h" | |||
/** Return the i'th limb of the modulus */ | |||
limb_t PQCLEAN_BABYBEAR_CLEAN_modulus(size_t i) { | |||
return (i == DIGITS / 2) ? LMASK - 1 : LMASK; | |||
} | |||
/** Multiply and accumulate c += a*b */ | |||
void PQCLEAN_BABYBEAR_CLEAN_mac(gf_t c, const gf_t a, const gf_t b) { | |||
/* Reference non-Karatsuba MAC */ | |||
dslimb_t accum[2 * DIGITS] = {0}; | |||
dslimb_t chain; | |||
size_t i, j; | |||
/* Initialize accumulator = unclarify(c) */ | |||
for (i = 0; i < DIGITS; i++) { | |||
accum[i + DIGITS / 2] = c[i]; | |||
} | |||
/* Multiply */ | |||
for (i = 0; i < DIGITS; i++) { | |||
for (j = 0; j < DIGITS; j++) { | |||
accum[i + j] += (dslimb_t)a[i] * b[j]; | |||
} | |||
} | |||
/* Clarify and reduce */ | |||
for (i = 0; i < DIGITS / 2; i++) { | |||
accum[i + DIGITS / 2] -= accum[i]; | |||
accum[i + DIGITS] += accum[i]; | |||
accum[i + DIGITS / 2] += accum[i + 3 * DIGITS / 2]; | |||
accum[i + DIGITS] += accum[i + 3 * DIGITS / 2]; | |||
} | |||
/* Carry propagate */ | |||
chain = accum[3 * DIGITS / 2 - 1]; | |||
accum[3 * DIGITS / 2 - 1] = chain & LMASK; | |||
chain >>= LGX; | |||
accum[DIGITS] += chain; | |||
for (i = DIGITS / 2; i < 3 * DIGITS / 2; i++) { | |||
chain += accum[i]; | |||
c[i - DIGITS / 2] = chain & LMASK; | |||
chain >>= LGX; | |||
} | |||
c[0] = (limb_t) (c[0] + chain); | |||
c[DIGITS / 2] = (limb_t) (c[DIGITS / 2] + chain); | |||
} | |||
/** Reduce a gf_t to canonical form, i.e. strictly less than N. */ | |||
void PQCLEAN_BABYBEAR_CLEAN_canon(gf_t c) { | |||
const limb_t DELTA = (limb_t)1 << (LGX - 1); | |||
slimb_t hi; | |||
dslimb_t scarry; | |||
dlimb_t carry; | |||
/* Reduce to 0..2p */ | |||
hi = (slimb_t) (c[DIGITS - 1] - DELTA); | |||
c[DIGITS - 1] = (limb_t) ((hi & LMASK) + DELTA); | |||
c[DIGITS / 2] = (limb_t) (c[DIGITS / 2] + (hi >> LGX)); | |||
/* Strong reduce. First subtract modulus */ | |||
scarry = hi >> LGX; | |||
for (size_t i = 0; i < DIGITS; i++) { | |||
scarry = scarry + (slimb_t)c[i] - PQCLEAN_BABYBEAR_CLEAN_modulus(i); | |||
c[i] = scarry & LMASK; | |||
scarry >>= LGX; | |||
} | |||
/* add it back */ | |||
carry = 0; | |||
for (size_t i = 0; i < DIGITS; i++) { | |||
carry = carry + c[i] + ((dlimb_t)scarry & PQCLEAN_BABYBEAR_CLEAN_modulus(i)); | |||
c[i] = carry & LMASK; | |||
carry >>= LGX; | |||
} | |||
} | |||
/** Serialize a gf_t to bytes */ | |||
void PQCLEAN_BABYBEAR_CLEAN_contract(uint8_t ch[GF_BYTES], gf_t a) { | |||
size_t pos; | |||
PQCLEAN_BABYBEAR_CLEAN_canon(a); | |||
for (size_t i = 0; i < GF_BYTES; i++) { | |||
pos = (i * 8) / LGX; | |||
ch[i] = (uint8_t)(a[pos] >> ((i * 8) % LGX)); | |||
if (i < GF_BYTES - 1) { | |||
ch[i] |= (uint8_t)(a[pos + 1] << (LGX - ((i * 8) % LGX))); | |||
} | |||
} | |||
} | |||
/** Deserialize a gf_t from bytes */ | |||
void PQCLEAN_BABYBEAR_CLEAN_expand(gf_t ll, const uint8_t ch[GF_BYTES]) { | |||
limb_t tmp, buffer = 0; | |||
for (size_t i = 0, j = 0, bbits = 0; i < GF_BYTES; i++) { | |||
tmp = ch[i]; | |||
buffer |= (limb_t)(tmp << bbits); | |||
bbits += 8; | |||
if (bbits >= LGX) { | |||
ll[j++] = buffer & LMASK; | |||
buffer = (limb_t)(tmp >> (LGX - (bbits - 8))); | |||
bbits = bbits - LGX; | |||
} | |||
} | |||
} |
@@ -1,29 +0,0 @@ | |||
#ifndef __THREEBEARS_RING_H__ | |||
#define __THREEBEARS_RING_H__ | |||
#include "api.h" | |||
#include "params.h" | |||
typedef uint16_t limb_t; | |||
typedef int16_t slimb_t; | |||
typedef uint32_t dlimb_t; | |||
typedef int32_t dslimb_t; | |||
#define LMASK (((limb_t)1<<LGX)-1) | |||
typedef limb_t gf_t[DIGITS]; | |||
/* Serialize a gf_t */ | |||
void PQCLEAN_BABYBEAR_CLEAN_contract(uint8_t ch[GF_BYTES], gf_t a); | |||
/* Deserialize a gf_t */ | |||
void PQCLEAN_BABYBEAR_CLEAN_expand(gf_t ll, const uint8_t ch[GF_BYTES]); | |||
/* Multiply and accumulate c = c + a*b */ | |||
void PQCLEAN_BABYBEAR_CLEAN_mac(gf_t c, const gf_t a, const gf_t b); | |||
/* Reduce ring element to canonical form */ | |||
void PQCLEAN_BABYBEAR_CLEAN_canon(gf_t c); | |||
/** Return the i'th limb of the modulus */ | |||
limb_t PQCLEAN_BABYBEAR_CLEAN_modulus(size_t i); | |||
#endif |
@@ -1,231 +0,0 @@ | |||
/** ThreeBears reference implementation */ | |||
#include "api.h" | |||
#include "melas_fec.h" | |||
#include "params.h" | |||
#include "ring.h" | |||
#include "sp800-185.h" | |||
#include "threebears.h" | |||
#define FEC_BYTES ((FEC_BITS+7)/8) | |||
#define ENC_BITS (ENC_SEED_BYTES*8 + FEC_BITS) | |||
enum { HASH_PURPOSE_UNIFORM = 0, HASH_PURPOSE_KEYGEN = 1, HASH_PURPOSE_ENCAPS = 2, HASH_PURPOSE_PRF = 3 }; | |||
/** Initialize the hash function with a given purpose */ | |||
static void threebears_hash_init( | |||
shake256incctx *ctx, | |||
uint8_t purpose | |||
) { | |||
const unsigned char S[] = "ThreeBears"; | |||
const uint8_t pblock[15] = { | |||
VERSION, PRIVATE_KEY_BYTES, MATRIX_SEED_BYTES, ENC_SEED_BYTES, | |||
IV_BYTES, SHARED_SECRET_BYTES, LGX, DIGITS & 0xFF, DIGITS >> 8, DIM, | |||
VAR_TIMES_128 - 1, LPR_BITS, FEC_BITS, CCA, 0 /* padding */ | |||
}; | |||
cshake256_inc_init(ctx, NULL, 0, (const uint8_t *)S, sizeof(S) - 1); | |||
cshake256_inc_absorb(ctx, (const uint8_t *)pblock, sizeof(pblock)); | |||
cshake256_inc_absorb(ctx, &purpose, 1); | |||
} | |||
/** Sample n gf_t's uniformly from a seed */ | |||
static void uniform(gf_t matrix, const uint8_t *seed, uint8_t iv) { | |||
uint8_t c[GF_BYTES]; | |||
shake256incctx ctx; | |||
threebears_hash_init(&ctx, HASH_PURPOSE_UNIFORM); | |||
cshake256_inc_absorb(&ctx, seed, MATRIX_SEED_BYTES); | |||
cshake256_inc_absorb(&ctx, &iv, 1); | |||
cshake256_inc_finalize(&ctx); | |||
cshake256_inc_squeeze(c, sizeof(c), &ctx); | |||
cshake256_inc_ctx_release(&ctx); | |||
PQCLEAN_BABYBEAR_CLEAN_expand(matrix, c); | |||
} | |||
/** The ThreeBears error distribution */ | |||
static slimb_t psi(uint8_t ci) { | |||
int sample = 0, var = VAR_TIMES_128; | |||
for (; var > 64; var -= 64, ci = (uint8_t)(ci << 2)) { | |||
sample += ((ci + 64) >> 8) + ((ci - 64) >> 8); | |||
} | |||
return (slimb_t)(sample + ((ci + var) >> 8) + ((ci - var) >> 8)); | |||
} | |||
/** Sample a vector of n noise elements */ | |||
static void noise(gf_t x, const shake256incctx *ctx, uint8_t iv) { | |||
uint8_t c[DIGITS]; | |||
shake256incctx ctx2; | |||
cshake256_inc_ctx_clone(&ctx2, ctx); | |||
cshake256_inc_absorb(&ctx2, &iv, 1); | |||
cshake256_inc_finalize(&ctx2); | |||
cshake256_inc_squeeze(c, DIGITS, &ctx2); | |||
for (size_t i = 0; i < DIGITS; i++) { | |||
x[i] = (limb_t)(psi(c[i]) + PQCLEAN_BABYBEAR_CLEAN_modulus(i)); | |||
} | |||
cshake256_inc_ctx_release(&ctx2); | |||
} | |||
/* Expand public key from private key */ | |||
void PQCLEAN_BABYBEAR_CLEAN_get_pubkey(uint8_t *pk, const uint8_t *sk) { | |||
shake256incctx ctx; | |||
shake256incctx ctx2; | |||
gf_t sk_expanded[DIM], b, c; | |||
threebears_hash_init(&ctx, HASH_PURPOSE_KEYGEN); | |||
cshake256_inc_absorb(&ctx, sk, PRIVATE_KEY_BYTES); | |||
cshake256_inc_ctx_clone(&ctx2, &ctx); | |||
cshake256_inc_finalize(&ctx2); | |||
cshake256_inc_squeeze(pk, MATRIX_SEED_BYTES, &ctx2); | |||
cshake256_inc_ctx_release(&ctx2); | |||
for (uint8_t i = 0; i < DIM; i++) { | |||
noise(sk_expanded[i], &ctx, i); | |||
} | |||
for (uint8_t i = 0; i < DIM; i++) { | |||
noise(c, &ctx, (uint8_t)(i + DIM)); | |||
for (uint8_t j = 0; j < DIM; j++) { | |||
uniform(b, pk, (uint8_t) (i + DIM * j)); | |||
PQCLEAN_BABYBEAR_CLEAN_mac(c, b, sk_expanded[j]); | |||
} | |||
PQCLEAN_BABYBEAR_CLEAN_contract(&pk[MATRIX_SEED_BYTES + i * GF_BYTES], c); | |||
} | |||
cshake256_inc_ctx_release(&ctx); | |||
} | |||
/* Encapsulate a shared secret and return it */ | |||
void PQCLEAN_BABYBEAR_CLEAN_encapsulate( | |||
uint8_t *shared_secret, | |||
uint8_t *capsule, | |||
const uint8_t *pk, | |||
const uint8_t *seed | |||
) { | |||
uint8_t *lpr_data = &capsule[GF_BYTES * DIM]; | |||
shake256incctx ctx; | |||
gf_t sk_expanded[DIM], b, c; | |||
uint8_t tbi[ENC_SEED_BYTES + FEC_BYTES]; | |||
dlimb_t rlimb0, rlimb1; | |||
limb_t h; | |||
uint8_t *iv = &lpr_data[(ENC_BITS * LPR_BITS + 7) / 8]; | |||
memcpy(iv, &seed[ENC_SEED_BYTES], IV_BYTES); | |||
threebears_hash_init(&ctx, HASH_PURPOSE_ENCAPS); | |||
cshake256_inc_absorb(&ctx, pk, MATRIX_SEED_BYTES); | |||
cshake256_inc_absorb(&ctx, seed, ENC_SEED_BYTES + IV_BYTES); | |||
for (uint8_t i = 0; i < DIM; i++) { | |||
noise(sk_expanded[i], &ctx, i); | |||
} | |||
for (uint8_t i = 0; i < DIM; i++) { | |||
noise(c, &ctx, (uint8_t)(i + DIM)); | |||
for (uint8_t j = 0; j < DIM; j++) { | |||
uniform(b, pk, (uint8_t)(j + DIM * i)); | |||
PQCLEAN_BABYBEAR_CLEAN_mac(c, b, sk_expanded[j]); | |||
} | |||
PQCLEAN_BABYBEAR_CLEAN_contract(&capsule[i * GF_BYTES], c); | |||
} | |||
noise(c, &ctx, (uint8_t)(2 * DIM)); | |||
/* Calculate approximate shared secret */ | |||
for (uint8_t i = 0; i < DIM; i++) { | |||
PQCLEAN_BABYBEAR_CLEAN_expand(b, &pk[MATRIX_SEED_BYTES + i * GF_BYTES]); | |||
PQCLEAN_BABYBEAR_CLEAN_mac(c, b, sk_expanded[i]); | |||
} | |||
PQCLEAN_BABYBEAR_CLEAN_canon(c); | |||
memcpy(tbi, seed, ENC_SEED_BYTES); | |||
PQCLEAN_BABYBEAR_CLEAN_melas_fec_set(&tbi[ENC_SEED_BYTES], tbi, ENC_SEED_BYTES); | |||
/* Export with rounding */ | |||
for (size_t i = 0; i < ENC_BITS; i += 2) { | |||
h = (limb_t)(tbi[i / 8] >> (i % 8)); | |||
rlimb0 = (dlimb_t)((c[i / 2] >> (LGX - LPR_BITS)) + (h << 3)); | |||
rlimb1 = (dlimb_t)((c[DIGITS - i / 2 - 1] >> (LGX - LPR_BITS)) + ((h >> 1) << 3)); | |||
lpr_data[i / 2] = (uint8_t)((rlimb0 & 0xF) | rlimb1 << 4); | |||
} | |||
cshake256_inc_finalize(&ctx); | |||
cshake256_inc_squeeze(shared_secret, SHARED_SECRET_BYTES, &ctx); | |||
cshake256_inc_ctx_release(&ctx); | |||
} | |||
/* Decapsulate a shared secret and return it */ | |||
void PQCLEAN_BABYBEAR_CLEAN_decapsulate( | |||
uint8_t shared_secret[SHARED_SECRET_BYTES], | |||
const uint8_t capsule[CAPSULE_BYTES], | |||
const uint8_t sk[PRIVATE_KEY_BYTES] | |||
) { | |||
const uint8_t *lpr_data = &capsule[GF_BYTES * DIM]; | |||
shake256incctx ctx; | |||
gf_t ska, b, c = {0}; | |||
uint8_t seed[ENC_SEED_BYTES + FEC_BYTES + IV_BYTES]; | |||
limb_t rounding, out; | |||
size_t j; | |||
limb_t our_rlimb, their_rlimb, delta; | |||
uint8_t pk[PUBLIC_KEY_BYTES], capsule2[CAPSULE_BYTES]; | |||
uint8_t ret, ok, sep, prfk[PRF_KEY_BYTES]; | |||
uint8_t prfout[SHARED_SECRET_BYTES]; | |||
/* Calculate approximate shared secret */ | |||
threebears_hash_init(&ctx, HASH_PURPOSE_KEYGEN); | |||
cshake256_inc_absorb(&ctx, sk, PRIVATE_KEY_BYTES); | |||
for (uint8_t i = 0; i < DIM; i++) { | |||
PQCLEAN_BABYBEAR_CLEAN_expand(b, &capsule[i * GF_BYTES]); | |||
noise(ska, &ctx, i); | |||
PQCLEAN_BABYBEAR_CLEAN_mac(c, ska, b); | |||
} | |||
/* Recover seed from LPR data */ | |||
PQCLEAN_BABYBEAR_CLEAN_canon(c); | |||
rounding = 1 << (LPR_BITS - 1); | |||
out = 0; | |||
for (int32_t i = ENC_BITS - 1; i >= 0; i--) { | |||
j = (size_t) ((i & 1) ? DIGITS - i / 2 - 1 : i / 2); | |||
our_rlimb = (limb_t)(c[j] >> (LGX - LPR_BITS - 1)); | |||
their_rlimb = (limb_t)(lpr_data[i * LPR_BITS / 8] >> ((i * LPR_BITS) % 8)); | |||
delta = (limb_t)(their_rlimb * 2 - our_rlimb + rounding); | |||
out |= (limb_t)(((delta >> LPR_BITS) & 1) << (i % 8)); | |||
if (i % 8 == 0) { | |||
seed[i / 8] = (uint8_t)out; | |||
out = 0; | |||
} | |||
} | |||
PQCLEAN_BABYBEAR_CLEAN_melas_fec_correct(seed, ENC_SEED_BYTES, &seed[ENC_SEED_BYTES]); | |||
/* Re-encapsulate and check; encapsulate will compute the shared secret */ | |||
PQCLEAN_BABYBEAR_CLEAN_get_pubkey(pk, sk); | |||
memcpy(&seed[ENC_SEED_BYTES], &lpr_data[(ENC_BITS * LPR_BITS + 7) / 8], IV_BYTES); | |||
PQCLEAN_BABYBEAR_CLEAN_encapsulate(shared_secret, capsule2, pk, seed); | |||
/* Check capsule == capsule2 in constant time */ | |||
ret = 0; | |||
for (size_t i = 0; i < CAPSULE_BYTES; i++) { | |||
ret |= capsule[i] ^ capsule2[i]; | |||
} | |||
ok = (uint8_t)(((int)ret - 1) >> 8); | |||
/* Calculate PRF key */ | |||
sep = 0xFF; | |||
cshake256_inc_absorb(&ctx, &sep, 1); | |||
cshake256_inc_finalize(&ctx); | |||
cshake256_inc_squeeze(prfk, PRF_KEY_BYTES, &ctx); | |||
cshake256_inc_ctx_release(&ctx); | |||
/* Calculate PRF */ | |||
threebears_hash_init(&ctx, HASH_PURPOSE_PRF); | |||
cshake256_inc_absorb(&ctx, prfk, PRF_KEY_BYTES); | |||
cshake256_inc_absorb(&ctx, capsule, CAPSULE_BYTES); | |||
cshake256_inc_finalize(&ctx); | |||
cshake256_inc_squeeze(prfout, SHARED_SECRET_BYTES, &ctx); | |||
cshake256_inc_ctx_release(&ctx); | |||
for (size_t i = 0; i < SHARED_SECRET_BYTES; i++) { | |||
shared_secret[i] = (uint8_t)((shared_secret[i] & ok) | (prfout[i] & ~ok)); | |||
} | |||
} |
@@ -1,58 +0,0 @@ | |||
#ifndef __THREE_BEARS_BABYBEAR_H__ | |||
#define __THREE_BEARS_BABYBEAR_H__ | |||
#include <stddef.h> /* for size_t */ | |||
#include <stdint.h> | |||
#define BABYBEAR_KEYGEN_SEED_BYTES 40 | |||
#define BABYBEAR_PRIVATE_KEY_BYTES BABYBEAR_KEYGEN_SEED_BYTES | |||
#define BABYBEAR_SHARED_SECRET_BYTES 32 | |||
#define BABYBEAR_ENC_SEED_AND_IV_BYTES 32 | |||
#define BABYBEAR_PUBLIC_KEY_BYTES 804 | |||
#define BABYBEAR_CAPSULE_BYTES 917 | |||
/** | |||
* Expand a secret seed to a public/private keypair. | |||
* | |||
* @param[out] pk The public key. | |||
* @param[in] sk The private key, which must be uniformly random. | |||
*/ | |||
void PQCLEAN_BABYBEAR_CLEAN_get_pubkey ( | |||
uint8_t pk[BABYBEAR_PUBLIC_KEY_BYTES], | |||
const uint8_t sk[BABYBEAR_PRIVATE_KEY_BYTES] | |||
); | |||
/** | |||
* Create a shared secret using a random seed and another party's public key. | |||
* | |||
* Input and output parameters may not alias. | |||
* | |||
* @param[out] shared_secret The shared secret key. | |||
* @param[out] capsule A ciphertext to send to the other party. | |||
* @param[in] pk The other party's public key. | |||
* @param[in] seed A random seed. | |||
*/ | |||
void PQCLEAN_BABYBEAR_CLEAN_encapsulate ( | |||
uint8_t shared_secret[BABYBEAR_SHARED_SECRET_BYTES], | |||
uint8_t capsule[BABYBEAR_CAPSULE_BYTES], | |||
const uint8_t pk[BABYBEAR_PUBLIC_KEY_BYTES], | |||
const uint8_t seed[BABYBEAR_ENC_SEED_AND_IV_BYTES] | |||
); | |||
/** | |||
* Extract the shared secret from a capsule using the private key. | |||
* Has a negligible but nonzero probability of failure. | |||
* | |||
* Input and output parameters may not alias. | |||
* | |||
* @param[out] shared_secret The shared secret. | |||
* @param[in] capsule The capsule produced by encapsulate_cca2. | |||
* @param[in] sk The private key. | |||
*/ | |||
void PQCLEAN_BABYBEAR_CLEAN_decapsulate ( | |||
uint8_t shared_secret[BABYBEAR_SHARED_SECRET_BYTES], | |||
const uint8_t capsule[BABYBEAR_CAPSULE_BYTES], | |||
const uint8_t sk[BABYBEAR_PRIVATE_KEY_BYTES] | |||
); | |||
#endif |
@@ -1,19 +0,0 @@ | |||
name: LEDAKEMLT12 | |||
type: kem | |||
claimed-nist-level: 1 | |||
claimed-security: IND-CCA2 | |||
length-public-key: 6520 | |||
length-secret-key: 50 | |||
length-ciphertext: 6544 | |||
length-shared-secret: 32 | |||
nistkat-sha256: c0bd75093e2bbae8bf5717939c59c3c695ee9a60d765fcf6fb06d8db385b04c7 | |||
principal-submitters: | |||
- Marco Baldi | |||
auxiliary-submitters: | |||
- Alessandro Barenghi | |||
- Franco Chiaraluce | |||
- Gerardo Pelosi | |||
- Paolo Santini | |||
implementations: | |||
- name: leaktime | |||
version: 2.1 |
@@ -1,52 +0,0 @@ | |||
#include "H_Q_matrices_generation.h" | |||
#include "gf2x_arith_mod_xPplusOne.h" | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_generateHPosOnes(POSITION_T HPosOnes[N0][DV], AES_XOF_struct *keys_expander) { | |||
for (size_t i = 0; i < N0; i++) { | |||
/* Generate a random block of Htr */ | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_rand_circulant_sparse_block(&HPosOnes[i][0], DV, keys_expander); | |||
} | |||
} | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_generateQPosOnes(POSITION_T QPosOnes[N0][M], AES_XOF_struct *keys_expander) { | |||
size_t placed_ones; | |||
for (size_t i = 0; i < N0; i++) { | |||
placed_ones = 0; | |||
for (size_t j = 0; j < N0; j++) { | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_rand_circulant_sparse_block(&QPosOnes[i][placed_ones], | |||
qBlockWeights[i][j], | |||
keys_expander); | |||
placed_ones += qBlockWeights[i][j]; | |||
} | |||
} | |||
} | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_transposeHPosOnes(POSITION_T HtrPosOnes[N0][DV], POSITION_T HPosOnes[N0][DV]) { | |||
for (size_t i = 0; i < N0; i++) { | |||
/* Obtain directly the sparse representation of the block of H */ | |||
for (size_t k = 0; k < DV; k++) { | |||
HtrPosOnes[i][k] = (P - HPosOnes[i][k]) % P; /* transposes indexes */ | |||
} | |||
} | |||
} | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_transposeQPosOnes(POSITION_T QtrPosOnes[N0][M], POSITION_T QPosOnes[N0][M]) { | |||
POSITION_T transposed_ones_idx[N0] = {0x00}; | |||
size_t currQoneIdx, endQblockIdx; | |||
for (size_t source_row_idx = 0; source_row_idx < N0 ; source_row_idx++) { | |||
currQoneIdx = 0; // position in the column of QtrPosOnes[][...] | |||
endQblockIdx = 0; | |||
for (int blockIdx = 0; blockIdx < N0; blockIdx++) { | |||
endQblockIdx += qBlockWeights[source_row_idx][blockIdx]; | |||
for (; currQoneIdx < endQblockIdx; currQoneIdx++) { | |||
QtrPosOnes[blockIdx][transposed_ones_idx[blockIdx]] = | |||
(P - QPosOnes[source_row_idx][currQoneIdx]) % P; | |||
transposed_ones_idx[blockIdx]++; | |||
} | |||
} | |||
} | |||
} | |||
@@ -1,13 +0,0 @@ | |||
#ifndef H_Q_MATRICES_GENERATION_H | |||
#define H_Q_MATRICES_GENERATION_H | |||
#include "gf2x_arith.h" | |||
#include "qc_ldpc_parameters.h" | |||
#include "rng.h" | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_generateHPosOnes(POSITION_T HPosOnes[N0][DV], AES_XOF_struct *keys_expander); | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_generateQPosOnes(POSITION_T QPosOnes[N0][M], AES_XOF_struct *keys_expander); | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_transposeHPosOnes(POSITION_T HtrPosOnes[N0][DV], POSITION_T HPosOnes[N0][DV]); | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_transposeQPosOnes(POSITION_T QtrPosOnes[N0][M], POSITION_T QPosOnes[N0][M]); | |||
#endif |
@@ -1,31 +0,0 @@ | |||
/** | |||
* | |||
* LEDAcryptKEM | |||
* | |||
* @version 2.0 (March 2019) | |||
* | |||
* Adapted code from reference ISO-C11 Implementation of the LEDAcrypt KEM-LT cipher. | |||
* | |||
* In alphabetical order: | |||
* | |||
* @author Marco Baldi <m.baldi@univpm.it> | |||
* @author Alessandro Barenghi <alessandro.barenghi@polimi.it> | |||
* @author Franco Chiaraluce <f.chiaraluce@univpm.it> | |||
* @author Gerardo Pelosi <gerardo.pelosi@polimi.it> | |||
* @author Paolo Santini <p.santini@pm.univpm.it> | |||
* | |||
* This code is hereby placed in the public domain. | |||
* | |||
* THIS SOFTWARE IS PROVIDED BY THE AUTHORS ''AS IS'' AND ANY EXPRESS | |||
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED | |||
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |||
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE | |||
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | |||
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | |||
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR | |||
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, | |||
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE | |||
* OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, | |||
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |||
* | |||
**/ |
@@ -1,24 +0,0 @@ | |||
# This Makefile can be used with GNU Make or BSD Make | |||
LIB=libledakemlt12_leaktime.a | |||
HEADERS=api.h bf_decoding.h dfr_test.h gf2x_arith_mod_xPplusOne.h \ | |||
gf2x_arith.h H_Q_matrices_generation.h \ | |||
niederreiter.h qc_ldpc_parameters.h rng.h sort.h utils.h | |||
OBJECTS=bf_decoding.o dfr_test.o gf2x_arith_mod_xPplusOne.o \ | |||
gf2x_arith.o H_Q_matrices_generation.o kem.o niederreiter.o rng.o sort.o utils.o | |||
CFLAGS=-O3 -Wall -Werror -Wextra -Wvla -Wpedantic -Wmissing-prototypes -std=c99 \ | |||
-I../../../common $(EXTRAFLAGS) | |||
all: $(LIB) | |||
%.o: %.c $(HEADERS) | |||
$(CC) $(CFLAGS) -c -o $@ $< | |||
$(LIB): $(OBJECTS) | |||
$(AR) -r $@ $(OBJECTS) | |||
clean: | |||
$(RM) $(OBJECTS) | |||
$(RM) $(LIB) |
@@ -1,19 +0,0 @@ | |||
# This Makefile can be used with Microsoft Visual Studio's nmake using the command: | |||
# nmake /f Makefile.Microsoft_nmake | |||
LIBRARY=libledakemlt12_leaktime.lib | |||
OBJECTS=bf_decoding.obj dfr_test.obj gf2x_arith_mod_xPplusOne.obj gf2x_arith.obj H_Q_matrices_generation.obj kem.obj niederreiter.obj rng.obj sort.obj utils.obj | |||
CFLAGS=/nologo /O2 /I ..\..\..\common /W4 /WX | |||
all: $(LIBRARY) | |||
# Make sure objects are recompiled if headers change. | |||
$(OBJECTS): *.h | |||
$(LIBRARY): $(OBJECTS) | |||
LIB.EXE /NOLOGO /WX /OUT:$@ $** | |||
clean: | |||
-DEL $(OBJECTS) | |||
-DEL $(LIBRARY) |
@@ -1,18 +0,0 @@ | |||
#ifndef PQCLEAN_LEDAKEMLT12_LEAKTIME_API_H | |||
#define PQCLEAN_LEDAKEMLT12_LEAKTIME_API_H | |||
#include <stdint.h> | |||
#define PQCLEAN_LEDAKEMLT12_LEAKTIME_CRYPTO_SECRETKEYBYTES 50 | |||
#define PQCLEAN_LEDAKEMLT12_LEAKTIME_CRYPTO_PUBLICKEYBYTES 6520 | |||
#define PQCLEAN_LEDAKEMLT12_LEAKTIME_CRYPTO_CIPHERTEXTBYTES 6544 | |||
#define PQCLEAN_LEDAKEMLT12_LEAKTIME_CRYPTO_BYTES 32 | |||
#define PQCLEAN_LEDAKEMLT12_LEAKTIME_CRYPTO_ALGNAME "LEDAKEMLT12" | |||
int PQCLEAN_LEDAKEMLT12_LEAKTIME_crypto_kem_keypair(uint8_t *pk, uint8_t *sk); | |||
int PQCLEAN_LEDAKEMLT12_LEAKTIME_crypto_kem_enc(uint8_t *ct, uint8_t *ss, const uint8_t *pk); | |||
int PQCLEAN_LEDAKEMLT12_LEAKTIME_crypto_kem_dec(uint8_t *ss, const uint8_t *ct, const uint8_t *sk); | |||
#endif |
@@ -1,79 +0,0 @@ | |||
#include "bf_decoding.h" | |||
#include "gf2x_arith_mod_xPplusOne.h" | |||
#include <string.h> | |||
int PQCLEAN_LEDAKEMLT12_LEAKTIME_bf_decoding(DIGIT err[], | |||
const POSITION_T HtrPosOnes[N0][DV], | |||
const POSITION_T QtrPosOnes[N0][M], | |||
DIGIT privateSyndrome[], | |||
uint8_t secondIterThreshold) { | |||
DIGIT currSyndrome[NUM_DIGITS_GF2X_ELEMENT]; | |||
uint8_t unsatParityChecks[N0 * P]; | |||
POSITION_T currQBlkPos[M], currQBitPos[M]; | |||
POSITION_T syndromePosToFlip, tmp; | |||
uint32_t correlation, corrt_syndrome_based; | |||
size_t currQoneIdx, endQblockIdx, currblockoffset; | |||
int check; | |||
int iteration = 0; | |||
do { | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_copy(currSyndrome, privateSyndrome); | |||
memset(unsatParityChecks, 0x00, N0 * P * sizeof(uint8_t)); | |||
for (size_t i = 0; i < N0; i++) { | |||
for (POSITION_T valueIdx = 0; valueIdx < P; valueIdx++) { | |||
for (size_t HtrOneIdx = 0; HtrOneIdx < DV; HtrOneIdx++) { | |||
tmp = (HtrPosOnes[i][HtrOneIdx] + valueIdx) >= P ? | |||
(HtrPosOnes[i][HtrOneIdx] + valueIdx) - P : | |||
(HtrPosOnes[i][HtrOneIdx] + valueIdx); | |||
if (PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_get_coeff(currSyndrome, tmp)) { | |||
unsatParityChecks[i * P + valueIdx]++; | |||
} | |||
} | |||
} | |||
} | |||
/* iteration based threshold determination*/ | |||
corrt_syndrome_based = iteration * secondIterThreshold + (1 - iteration) * B0; | |||
// Computation of correlation with a full Q matrix | |||
for (size_t i = 0; i < N0; i++) { | |||
for (POSITION_T j = 0; j < P; j++) { | |||
currQoneIdx = endQblockIdx = 0; | |||
correlation = 0; | |||
for (size_t blockIdx = 0; blockIdx < N0; blockIdx++) { | |||
endQblockIdx += qBlockWeights[blockIdx][i]; | |||
currblockoffset = blockIdx * P; | |||
for (; currQoneIdx < endQblockIdx; currQoneIdx++) { | |||
tmp = QtrPosOnes[i][currQoneIdx] + j; | |||
tmp = tmp >= P ? tmp - P : tmp; | |||
currQBitPos[currQoneIdx] = tmp; | |||
currQBlkPos[currQoneIdx] = (POSITION_T)blockIdx; | |||
correlation += unsatParityChecks[tmp + currblockoffset]; | |||
} | |||
} | |||
/* Correlation based flipping */ | |||
if (correlation >= corrt_syndrome_based) { | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_toggle_coeff(err + NUM_DIGITS_GF2X_ELEMENT * i, j); | |||
for (size_t v = 0; v < M; v++) { | |||
for (size_t HtrOneIdx = 0; HtrOneIdx < DV; HtrOneIdx++) { | |||
syndromePosToFlip = (HtrPosOnes[currQBlkPos[v]][HtrOneIdx] + currQBitPos[v]); | |||
syndromePosToFlip = syndromePosToFlip >= P ? syndromePosToFlip - P : syndromePosToFlip; | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_toggle_coeff(privateSyndrome, syndromePosToFlip); | |||
} | |||
} // end for v | |||
} // end if | |||
} // end for j | |||
} // end for i | |||
iteration = iteration + 1; | |||
check = 0; | |||
while (check < NUM_DIGITS_GF2X_ELEMENT && privateSyndrome[check++] == 0) {}; | |||
} while (iteration < ITERATIONS_MAX && check < NUM_DIGITS_GF2X_ELEMENT); | |||
return (check == NUM_DIGITS_GF2X_ELEMENT); | |||
} |
@@ -1,18 +0,0 @@ | |||
#ifndef BF_DECODING_H | |||
#define BF_DECODING_H | |||
#include "gf2x_arith.h" | |||
#include "qc_ldpc_parameters.h" | |||
/* Definitions for DFR level 2^-SL with SL=128 */ | |||
#define ITERATIONS_MAX (2) | |||
#define B0 (43) | |||
#define T_BAR (4) | |||
int PQCLEAN_LEDAKEMLT12_LEAKTIME_bf_decoding(DIGIT err[], | |||
const POSITION_T HtrPosOnes[N0][DV], | |||
const POSITION_T QtrPosOnes[N0][M], | |||
DIGIT privateSyndrome[], | |||
uint8_t threshold); // B2 | |||
#endif |
@@ -1,88 +0,0 @@ | |||
#include "bf_decoding.h" | |||
#include "dfr_test.h" | |||
#include "gf2x_arith_mod_xPplusOne.h" | |||
#include "qc_ldpc_parameters.h" | |||
#include "sort.h" | |||
#include <string.h> | |||
int PQCLEAN_LEDAKEMLT12_LEAKTIME_DFR_test(POSITION_T LSparse[N0][DV * M], uint8_t *secondIterThreshold) { | |||
POSITION_T LSparse_loc[N0][DV * M]; /* vector of N_0 sparse blocks */ | |||
uint8_t gamma[N0][N0][P] = {{{0}}}; | |||
uint32_t gammaHist[N0][DV * M + 1] = {{0}}; | |||
size_t maxMut[N0], maxMutMinusOne[N0]; | |||
size_t allBlockMaxSumst, allBlockMaxSumstMinusOne; | |||
size_t histIdx, toAdd; | |||
for (size_t i = 0; i < N0; i++) { | |||
for (size_t j = 0; j < DV * M; j++) { | |||
if (LSparse[i][j] != 0) { | |||
LSparse_loc[i][j] = (P - LSparse[i][j]); | |||
} | |||
} | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_uint32_sort(LSparse_loc[i], DV * M); | |||
} | |||
for (size_t i = 0; i < N0; i++ ) { | |||
for (size_t j = 0; j < N0; j++) { | |||
for (size_t k = 0; k < (DV * M); k++) { | |||
for (size_t l = 0; l < (DV * M); l++) { | |||
gamma[i][j][(P + LSparse_loc[i][k] - LSparse_loc[j][l]) % P]++; | |||
} | |||
} | |||
} | |||
} | |||
for (size_t i = 0; i < N0; i++ ) { | |||
for (size_t j = 0; j < N0; j++ ) { | |||
gamma[i][j][0] = 0; | |||
} | |||
} | |||
/* build histogram of values in gamma */ | |||
for (size_t i = 0; i < N0; i++ ) { | |||
for (size_t j = 0; j < N0; j++ ) { | |||
for (size_t k = 0; k < P; k++) { | |||
gammaHist[i][gamma[i][j][k]]++; | |||
} | |||
} | |||
} | |||
for (size_t gammaBlockRowIdx = 0; gammaBlockRowIdx < N0; gammaBlockRowIdx++) { | |||
maxMutMinusOne[gammaBlockRowIdx] = 0; | |||
histIdx = DV * M; | |||
toAdd = T_BAR - 1; | |||
while ( (histIdx > 0) && (toAdd > 0)) { | |||
if (gammaHist[gammaBlockRowIdx][histIdx] > toAdd ) { | |||
maxMutMinusOne[gammaBlockRowIdx] += histIdx * toAdd; | |||
toAdd = 0; | |||
} else { | |||
maxMutMinusOne[gammaBlockRowIdx] += histIdx * gammaHist[gammaBlockRowIdx][histIdx]; | |||
toAdd -= gammaHist[gammaBlockRowIdx][histIdx]; | |||
histIdx--; | |||
} | |||
} | |||
maxMut[gammaBlockRowIdx] = histIdx + maxMutMinusOne[gammaBlockRowIdx]; | |||
} | |||
/*seek max values across all gamma blocks */ | |||
allBlockMaxSumst = maxMut[0]; | |||
allBlockMaxSumstMinusOne = maxMutMinusOne[0]; | |||
for (size_t gammaBlockRowIdx = 0; gammaBlockRowIdx < N0; gammaBlockRowIdx++) { | |||
allBlockMaxSumst = allBlockMaxSumst < maxMut[gammaBlockRowIdx] ? | |||
maxMut[gammaBlockRowIdx] : | |||
allBlockMaxSumst; | |||
allBlockMaxSumstMinusOne = allBlockMaxSumstMinusOne < maxMutMinusOne[gammaBlockRowIdx] ? | |||
maxMutMinusOne[gammaBlockRowIdx] : | |||
allBlockMaxSumstMinusOne; | |||
} | |||
if (DV * M > (allBlockMaxSumstMinusOne + allBlockMaxSumst)) { | |||
*secondIterThreshold = (uint8_t) (allBlockMaxSumst + 1); | |||
return 1; | |||
} | |||
return 0; | |||
} |
@@ -1,6 +0,0 @@ | |||
#ifndef DFR_TEST_H | |||
#define DFR_TEST_H | |||
int PQCLEAN_LEDAKEMLT12_LEAKTIME_DFR_test(POSITION_T LSparse[N0][DV * M], uint8_t *secondIterThreshold); | |||
#endif |
@@ -1,252 +0,0 @@ | |||
#include "gf2x_arith.h" | |||
#include <string.h> // memset(...) | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_add(DIGIT Res[], const DIGIT A[], const DIGIT B[], size_t n) { | |||
for (size_t i = 0; i < n; i++) { | |||
Res[i] = A[i] ^ B[i]; | |||
} | |||
} | |||
/* copies len digits from a to r if b == 1 */ | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_cmov(DIGIT *r, const DIGIT *a, size_t len, int c) { | |||
DIGIT mask = (DIGIT)(-c); | |||
for (size_t i = 0; i < len; i++) { | |||
r[i] ^= mask & (a[i] ^ r[i]); | |||
} | |||
} | |||
/* PRE: MAX ALLOWED ROTATION AMOUNT : DIGIT_SIZE_b */ | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_right_bit_shift_n(size_t length, DIGIT in[], size_t amount) { | |||
if ( amount == 0 ) { | |||
return; | |||
} | |||
size_t j; | |||
DIGIT mask; | |||
mask = ((DIGIT)0x01 << amount) - 1; | |||
for (j = length - 1; j > 0; j--) { | |||
in[j] >>= amount; | |||
in[j] |= (in[j - 1] & mask) << (DIGIT_SIZE_b - amount); | |||
} | |||
in[j] >>= amount; | |||
} | |||
/* PRE: MAX ALLOWED ROTATION AMOUNT : DIGIT_SIZE_b */ | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_left_bit_shift_n(size_t length, DIGIT in[], size_t amount) { | |||
if ( amount == 0 ) { | |||
return; | |||
} | |||
size_t j; | |||
DIGIT mask; | |||
mask = ~(((DIGIT)0x01 << (DIGIT_SIZE_b - amount)) - 1); | |||
for (j = 0 ; j < length - 1; j++) { | |||
in[j] <<= amount; | |||
in[j] |= (in[j + 1] & mask) >> (DIGIT_SIZE_b - amount); | |||
} | |||
in[j] <<= amount; | |||
} | |||
static void gf2x_mul1(DIGIT *R, const DIGIT A, const DIGIT B) { | |||
DIGIT tmp; | |||
R[0] = 0; | |||
R[1] = (A & 1) * B; | |||
for (uint8_t i = 1; i < DIGIT_SIZE_b; i++) { | |||
tmp = ((A >> i) & 1) * B; | |||
R[1] ^= tmp << i; | |||
R[0] ^= tmp >> (DIGIT_SIZE_b - i); | |||
} | |||
} | |||
static void gf2x_mul_n(DIGIT *R, const DIGIT *A, const DIGIT *B, size_t n) { | |||
DIGIT tmp[2]; | |||
memset(R, 0x00, 2 * n * sizeof(DIGIT)); | |||
for (size_t i = 0; i < n; i++) { | |||
for (size_t j = 0; j < n; j++) { | |||
gf2x_mul1(tmp, A[i], B[j]); | |||
R[i + j] ^= tmp[0]; | |||
R[i + j + 1] ^= tmp[1]; | |||
} | |||
} | |||
} | |||
static void gf2x_cpy(DIGIT *R, const DIGIT *A, size_t len) { | |||
for (size_t i = 0; i < len; i++) { | |||
R[i] = A[i]; | |||
} | |||
} | |||
/* Accumulate */ | |||
#define gf2x_add(R, A, B, n) PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_add(R, A, B, n) | |||
#define gf2x_acc(R, B, n) PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_add(R, R, B, n) | |||
/* allows the operands to be of different size | |||
* first operand must be the bigger one. | |||
* aligns last array elements */ | |||
static inline void gf2x_add_asymm(DIGIT *R, | |||
size_t na, const DIGIT *A, | |||
size_t nb, const DIGIT *B) { | |||
size_t delta = na - nb; | |||
gf2x_cpy(R, A, delta); | |||
gf2x_add(R + delta, A + delta, B, nb);; | |||
} | |||
/* aligns first array elements */ | |||
static inline void gf2x_add_asymm2(DIGIT *R, | |||
size_t na, const DIGIT *A, | |||
size_t nb, const DIGIT *B) { | |||
size_t delta = na - nb; | |||
gf2x_add(R, A, B, nb); | |||
gf2x_cpy(R + nb, A + nb, delta); | |||
} | |||
/* Karatsuba with lowered space complexity | |||
* T(n) = 3 * ceil(n/2) + T(ceil(n / 2)) */ | |||
static void gf2x_mul_kar(DIGIT *R, | |||
const DIGIT *A, | |||
const DIGIT *B, | |||
size_t n, | |||
DIGIT *stack) { | |||
if (n < MIN_KAR_DIGITS) { | |||
gf2x_mul_n(R, A, B, n); | |||
return; | |||
} | |||
size_t l = (n + 1) / 2; // limb size = ceil(n / 2) | |||
size_t d = n & 1; | |||
const DIGIT *a1 = A; // length n - d | |||
const DIGIT *a0 = A + l - d; // length n | |||
const DIGIT *b1 = B; | |||
const DIGIT *b0 = B + l - d; | |||
DIGIT *aa = stack; | |||
DIGIT *bb = aa + l; | |||
DIGIT *cc = bb + l; | |||
stack = cc + l; // 3l space requirement at each level | |||
DIGIT *c3 = R + l - 2 * d; | |||
DIGIT *c2 = c3 + l; | |||
DIGIT *c1 = c2 + l; | |||
gf2x_mul_kar(c2, a0, b0, l, stack); // L in low part of R | |||
gf2x_mul_kar(R, a1, b1, l - d, stack); // H in higher part of R | |||
gf2x_add_asymm(aa, l, a0, l - d, a1); // AH + AL | |||
gf2x_add_asymm(bb, l, b0, l - d, b1); // BH + BL | |||
gf2x_add(cc, c3, c2, l); // HL + LH in cc | |||
gf2x_mul_kar(c3, aa, bb, l, stack); // M = (AH + AL) x (BH + BL) | |||
gf2x_add_asymm(c3, l, c3, l - 2 * d, R); // add HH | |||
gf2x_acc(c2, c1, l); // add LL | |||
gf2x_acc(c3, cc, l); // add HL + LH | |||
gf2x_acc(c2, cc, l); // add HL + LH | |||
} | |||
static void gf2x_div_w_plus_one(DIGIT *A, size_t n) { | |||
size_t i; | |||
for (i = 0; i < n - 2; i++) { | |||
A[i + 1] ^= A[i]; // runs n - 2 times | |||
} | |||
} | |||
static void gf2x_shift_left_w(DIGIT *A, size_t n) { | |||
size_t i; | |||
for (i = 0; i < n - 1; i++) { | |||
A[i] = A[i + 1]; | |||
} | |||
A[i] = 0; | |||
} | |||
/* Word-aligned Toom-Cook 3, source: | |||
* Brent, Richard P., et al. "Faster multiplication in GF (2)[x]." | |||
* International Algorithmic Number Theory Symposium. | |||
* Springer, Berlin, Heidelberg, 2008. */ | |||
static void gf2x_mul_tc3w(DIGIT *R, | |||
const DIGIT *A, | |||
const DIGIT *B, | |||
size_t n, | |||
DIGIT *stack) { | |||
if (n < MIN_TOOM_DIGITS) { | |||
gf2x_mul_kar(R, A, B, n, stack); | |||
return; | |||
} | |||
size_t l = (n + 2) / 3; // size of a0, a1, b0, b1 | |||
size_t r = n - 2 * l; // remaining sizes (a2, b2) | |||
size_t x = 2 * l + 4; // size of c1, c2, c3, c4 | |||
size_t z = r + 2 > l + 1 ? r + 2 : l + 1; // size of c5 | |||
const DIGIT *a0 = A; | |||
const DIGIT *a1 = A + l; | |||
const DIGIT *a2 = A + 2 * l; | |||
const DIGIT *b0 = B; | |||
const DIGIT *b1 = B + l; | |||
const DIGIT *b2 = B + 2 * l; | |||
DIGIT *c0 = R; // c0 and c4 in the result | |||
DIGIT *c4 = R + 4 * l; | |||
DIGIT *c1 = stack; // the rest in the stack | |||
DIGIT *c2 = c1 + x; | |||
DIGIT *c3 = c2 + x; | |||
DIGIT *c5 = c3 + x; | |||
stack = c5 + z; // Worst-case 7l + 14 | |||
// Evaluation | |||
c0[0] = 0; // c0[z] = a1*W + a2*W^2 | |||
c0[l + 1] = 0; | |||
gf2x_cpy(c0 + 1, a1, l); | |||
gf2x_acc(c0 + 2, a2, r); | |||
c4[0] = 0; // c4[z] = b1*W + b2*W^2 | |||
c4[l + 1] = 0; | |||
gf2x_cpy(c4 + 1, b1, l); | |||
gf2x_acc(c4 + 2, b2, r); | |||
gf2x_cpy(c5, a0, l); // c5[l] = a0 + a1 + a2 | |||
gf2x_acc(c5, a1, l); | |||
gf2x_acc(c5, a2, r); | |||
gf2x_cpy(c2, b0, l); // c2[l] = b0 + b1 + b2 | |||
gf2x_acc(c2, b1, l); | |||
gf2x_acc(c2, b2, r); | |||
gf2x_mul_tc3w(c1, c2, c5, l, stack); // c1[2l] = c2 * c5 | |||
gf2x_add_asymm2(c5, z, c0, l, c5); // c5[z] += c0, z >= l | |||
gf2x_add_asymm2(c2, z, c4, l, c2); // c2[z] += c4, idem | |||
gf2x_acc(c0, a0, l); // c0[l] += a0 | |||
gf2x_acc(c4, b0, l); // c4[l] += b0 | |||
gf2x_mul_tc3w(c3, c2, c5, z, stack); // c3[2z] = c2 * c5 | |||
gf2x_mul_tc3w(c2, c0, c4, z, stack); // c2[2z] = c0 * c4 | |||
gf2x_mul_tc3w(c0, a0, b0, l, stack); // c0[2l] = a0 * b0 | |||
gf2x_mul_tc3w(c4, a2, b2, r, stack); // c4[2r] = a2 * b2 | |||
// Interpolation | |||
gf2x_acc(c3, c2, 2 * z); // c3[2z] += c2 | |||
gf2x_acc(c2, c0, 2 * l); // c2[2z] += c0 | |||
gf2x_shift_left_w(c2, 2 * z); // c2[2z] = c2/y + c3 | |||
gf2x_acc(c2, c3, 2 * z); | |||
gf2x_acc(c2, c4, 2 * r); // c2[2z] += c4 + c4**3 | |||
gf2x_acc(c2 + 3, c4, 2 * r); | |||
gf2x_div_w_plus_one(c2, 2 * z); // c2[2z-1] = c2/(W+1) | |||
gf2x_acc(c1, c0, 2 * l); // c1[2l] += c0 | |||
gf2x_acc(c3, c1, 2 * l); // c3[2z] += c1 | |||
gf2x_shift_left_w(c3, 2 * z); // c3[2z-2] = c3/(W^2 + W) | |||
gf2x_div_w_plus_one(c3, 2 * z - 1); | |||
gf2x_add_asymm2(c1, 2 * z, c2, 2 * l, c1); // c1[2z-1] += c2 + c4 | |||
gf2x_acc(c1, c4, 2 * r); // size c2 >= c1 >= c4 | |||
gf2x_acc(c2, c3, 2 * z - 1); // c2[2z-1] += c3 | |||
// Recombination | |||
gf2x_cpy(R + 2 * l, c2, 2 * l); | |||
gf2x_acc(R + l, c1, 2 * z - 1); | |||
gf2x_acc(R + 3 * l, c3, 2 * z - 1); | |||
} | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mul(DIGIT *R, const DIGIT *A, const DIGIT *B, size_t n) { | |||
DIGIT stack[STACK_WORDS]; | |||
gf2x_mul_tc3w(R, A, B, n, stack); | |||
} | |||
@@ -1,63 +0,0 @@ | |||
#ifndef GF2X_ARITH_H | |||
#define GF2X_ARITH_H | |||
#include <inttypes.h> | |||
#include <stddef.h> | |||
/* | |||
* Elements of GF(2)[x] are stored in compact dense binary form. | |||
* | |||
* Each bit in a byte is assumed to be the coefficient of a binary | |||
* polynomial f(x), in Big-Endian format (i.e., reading everything from | |||
* left to right, the most significant element is met first): | |||
* | |||
* byte:(0000 0000) == 0x00 ... f(x) == 0 | |||
* byte:(0000 0001) == 0x01 ... f(x) == 1 | |||
* byte:(0000 0010) == 0x02 ... f(x) == x | |||
* byte:(0000 0011) == 0x03 ... f(x) == x+1 | |||
* ... ... ... | |||
* byte:(0000 1111) == 0x0F ... f(x) == x^{3}+x^{2}+x+1 | |||
* ... ... ... | |||
* byte:(1111 1111) == 0xFF ... f(x) == x^{7}+x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+1 | |||
* | |||
* | |||
* A "machine word" (A_i) is considered as a DIGIT. | |||
* Bytes in a DIGIT are assumed in Big-Endian format: | |||
* E.g., if sizeof(DIGIT) == 4: | |||
* A_i: A_{i,3} A_{i,2} A_{i,1} A_{i,0}. | |||
* A_{i,3} denotes the most significant byte, A_{i,0} the least significant one. | |||
* f(x) == x^{31} + ... + x^{24} + | |||
* + x^{23} + ... + x^{16} + | |||
* + x^{15} + ... + x^{8} + | |||
* + x^{7} + ... + x^{0} | |||
* | |||
* | |||
* Multi-precision elements (i.e., with multiple DIGITs) are stored in | |||
* Big-endian format: | |||
* A = A_{n-1} A_{n-2} ... A_1 A_0 | |||
* | |||
* position[A_{n-1}] == 0 | |||
* position[A_{n-2}] == 1 | |||
* ... | |||
* position[A_{1}] == n-2 | |||
* position[A_{0}] == n-1 | |||
*/ | |||
typedef uint64_t DIGIT; | |||
#define DIGIT_SIZE_B (8) | |||
#define DIGIT_SIZE_b (DIGIT_SIZE_B << 3) | |||
#define POSITION_T uint32_t | |||
#define MIN_KAR_DIGITS 10 | |||
#define MIN_TOOM_DIGITS 42 | |||
#define STACK_KAR_ONLY 2433 | |||
#define STACK_WORDS 2892 | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_add(DIGIT Res[], const DIGIT A[], const DIGIT B[], size_t n); | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_cmov(DIGIT *r, const DIGIT *a, size_t len, int c); | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_right_bit_shift_n(size_t length, DIGIT in[], size_t amount); | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_left_bit_shift_n(size_t length, DIGIT in[], size_t amount); | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mul(DIGIT *R, const DIGIT *A, const DIGIT *B, size_t n); | |||
#endif |
@@ -1,531 +0,0 @@ | |||
#include "gf2x_arith_mod_xPplusOne.h" | |||
#include "rng.h" | |||
#include "sort.h" | |||
#include <string.h> // memcpy(...), memset(...) | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_copy(DIGIT dest[], const DIGIT in[]) { | |||
for (size_t i = 0; i < NUM_DIGITS_GF2X_ELEMENT; i++) { | |||
dest[i] = in[i]; | |||
} | |||
} | |||
/* returns the coefficient of the x^exponent term as the LSB of a digit */ | |||
DIGIT PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_get_coeff(const DIGIT poly[], size_t exponent) { | |||
size_t straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent; | |||
size_t digitIdx = straightIdx / DIGIT_SIZE_b; | |||
size_t inDigitIdx = straightIdx % DIGIT_SIZE_b; | |||
return (poly[digitIdx] >> (DIGIT_SIZE_b - 1 - inDigitIdx)) & ((DIGIT) 1) ; | |||
} | |||
/* sets the coefficient of the x^exponent term as the LSB of a digit */ | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_set_coeff(DIGIT poly[], size_t exponent, DIGIT value) { | |||
size_t straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent; | |||
size_t digitIdx = straightIdx / DIGIT_SIZE_b; | |||
size_t inDigitIdx = straightIdx % DIGIT_SIZE_b; | |||
/* clear given coefficient */ | |||
DIGIT mask = ~(((DIGIT) 1) << (DIGIT_SIZE_b - 1 - inDigitIdx)); | |||
poly[digitIdx] = poly[digitIdx] & mask; | |||
poly[digitIdx] = poly[digitIdx] | ((value & ((DIGIT) 1)) << (DIGIT_SIZE_b - 1 - inDigitIdx)); | |||
} | |||
/* toggles (flips) the coefficient of the x^exponent term as the LSB of a digit */ | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_toggle_coeff(DIGIT poly[], size_t exponent) { | |||
size_t straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent; | |||
size_t digitIdx = straightIdx / DIGIT_SIZE_b; | |||
size_t inDigitIdx = straightIdx % DIGIT_SIZE_b; | |||
/* clear given coefficient */ | |||
DIGIT mask = (((DIGIT) 1) << (DIGIT_SIZE_b - 1 - inDigitIdx)); | |||
poly[digitIdx] = poly[digitIdx] ^ mask; | |||
} | |||
/* population count for an unsigned 64-bit integer | |||
Source: Hacker's delight, p.66 */ | |||
static int popcount_uint64t(uint64_t x) { | |||
x -= (x >> 1) & 0x5555555555555555; | |||
x = (x & 0x3333333333333333) + ((x >> 2) & 0x3333333333333333); | |||
x = (x + (x >> 4)) & 0x0f0f0f0f0f0f0f0f; | |||
return (int)((x * 0x0101010101010101) >> 56); | |||
} | |||
/* population count for a single polynomial */ | |||
int PQCLEAN_LEDAKEMLT12_LEAKTIME_population_count(const DIGIT *poly) { | |||
int ret = 0; | |||
for (int i = NUM_DIGITS_GF2X_ELEMENT - 1; i >= 0; i--) { | |||
ret += popcount_uint64t(poly[i]); | |||
} | |||
return ret; | |||
} | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_add(DIGIT Res[], const DIGIT A[], const DIGIT B[]) { | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_add(Res, A, B, NUM_DIGITS_GF2X_ELEMENT); | |||
} | |||
static void gf2x_mod(DIGIT out[], const DIGIT in[]) { | |||
DIGIT aux[NUM_DIGITS_GF2X_ELEMENT + 1]; | |||
memcpy(aux, in, (NUM_DIGITS_GF2X_ELEMENT + 1)*DIGIT_SIZE_B); | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_right_bit_shift_n(NUM_DIGITS_GF2X_ELEMENT + 1, aux, | |||
MSb_POSITION_IN_MSB_DIGIT_OF_MODULUS); | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_add(out, aux + 1, in + NUM_DIGITS_GF2X_ELEMENT, | |||
NUM_DIGITS_GF2X_ELEMENT); | |||
out[0] &= ((DIGIT)1 << MSb_POSITION_IN_MSB_DIGIT_OF_MODULUS) - 1; | |||
} | |||
static void right_bit_shift(size_t length, DIGIT in[]) { | |||
size_t j; | |||
for (j = length - 1; j > 0; j--) { | |||
in[j] >>= 1; | |||
in[j] |= (in[j - 1] & (DIGIT)0x01) << (DIGIT_SIZE_b - 1); | |||
} | |||
in[j] >>= 1; | |||
} | |||
/* shifts by whole digits */ | |||
static void left_DIGIT_shift_n(size_t length, DIGIT in[], size_t amount) { | |||
size_t j; | |||
for (j = 0; (j + amount) < length; j++) { | |||
in[j] = in[j + amount]; | |||
} | |||
for (; j < length; j++) { | |||
in[j] = (DIGIT)0; | |||
} | |||
} | |||
/* may shift by an arbitrary amount*/ | |||
static void left_bit_shift_wide_n(size_t length, DIGIT in[], size_t amount) { | |||
left_DIGIT_shift_n(length, in, amount / DIGIT_SIZE_b); | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_left_bit_shift_n(length, in, amount % DIGIT_SIZE_b); | |||
} | |||
/* Hackers delight, reverses a uint64_t */ | |||
static DIGIT reverse_digit(DIGIT x) { | |||
uint64_t t; | |||
x = (x << 31) | (x >> 33); | |||
t = (x ^ (x >> 20)) & 0x00000FFF800007FFLL; | |||
x = (t | (t << 20)) ^ x; | |||
t = (x ^ (x >> 8)) & 0x00F8000F80700807LL; | |||
x = (t | (t << 8)) ^ x; | |||
t = (x ^ (x >> 4)) & 0x0808708080807008LL; | |||
x = (t | (t << 4)) ^ x; | |||
t = (x ^ (x >> 2)) & 0x1111111111111111LL; | |||
x = (t | (t << 2)) ^ x; | |||
return x; | |||
} | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_transpose_in_place(DIGIT A[]) { | |||
/* it keeps the lsb in the same position and | |||
* inverts the sequence of the remaining bits */ | |||
DIGIT mask = (DIGIT)0x1; | |||
DIGIT rev1, rev2, a00; | |||
int slack_bits_amount = NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - P; | |||
a00 = A[NUM_DIGITS_GF2X_ELEMENT - 1] & mask; | |||
right_bit_shift(NUM_DIGITS_GF2X_ELEMENT, A); | |||
for (size_t i = NUM_DIGITS_GF2X_ELEMENT - 1; i >= (NUM_DIGITS_GF2X_ELEMENT + 1) / 2; i--) { | |||
rev1 = reverse_digit(A[i]); | |||
rev2 = reverse_digit(A[NUM_DIGITS_GF2X_ELEMENT - 1 - i]); | |||
A[i] = rev2; | |||
A[NUM_DIGITS_GF2X_ELEMENT - 1 - i] = rev1; | |||
} | |||
A[NUM_DIGITS_GF2X_ELEMENT / 2] = reverse_digit(A[NUM_DIGITS_GF2X_ELEMENT / 2]); | |||
if (slack_bits_amount) { | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_right_bit_shift_n(NUM_DIGITS_GF2X_ELEMENT, A, slack_bits_amount); | |||
} | |||
A[NUM_DIGITS_GF2X_ELEMENT - 1] = (A[NUM_DIGITS_GF2X_ELEMENT - 1] & (~mask)) | a00; | |||
} | |||
static void rotate_bit_right(DIGIT in[]) { /* x^{-1} * in(x) mod x^P+1 */ | |||
DIGIT rotated_bit = in[NUM_DIGITS_GF2X_ELEMENT - 1] & ((DIGIT)0x1); | |||
right_bit_shift(NUM_DIGITS_GF2X_ELEMENT, in); | |||
int msb_offset_in_digit = MSb_POSITION_IN_MSB_DIGIT_OF_MODULUS - 1; | |||
rotated_bit = rotated_bit << msb_offset_in_digit; | |||
in[0] |= rotated_bit; | |||
} | |||
/* cond swap: swaps digits A and B if swap_mask == -1 */ | |||
static void gf2x_cswap(DIGIT *a, DIGIT *b, int32_t swap_mask) { | |||
DIGIT t; | |||
for (size_t i = 0; i < NUM_DIGITS_GF2X_ELEMENT; i++) { | |||
t = swap_mask & (a[i] ^ b[i]); | |||
a[i] ^= t; | |||
b[i] ^= t; | |||
} | |||
} | |||
/* returns -1 mask if x != 0, otherwise 0 */ | |||
static inline int32_t nonzero(DIGIT x) { | |||
DIGIT t = x; | |||
t = (~t) + 1; | |||
t >>= DIGIT_SIZE_b - 1; | |||
return -((int32_t)t); | |||
} | |||
/* returns -1 mask if x < 0 else 0 */ | |||
static inline int32_t negative(int x) { | |||
uint32_t u = x; | |||
u >>= 31; | |||
return -((int32_t)u); | |||
} | |||
/* return f(0) as digit */ | |||
static inline DIGIT lsb(const DIGIT *p) { | |||
DIGIT mask = (DIGIT)1; | |||
return p[NUM_DIGITS_GF2X_ELEMENT - 1] & mask; | |||
} | |||
/* multiply poly with scalar and accumulate, expects s all-zero of all-one mask */ | |||
static void gf2x_mult_scalar_acc(DIGIT *f, const DIGIT *g, const DIGIT s) { | |||
for (size_t i = 0; i < NUM_DIGITS_GF2X_ELEMENT; i++) { | |||
f[i] = f[i] ^ (s & g[i]); | |||
} | |||
} | |||
/* constant-time inverse, source: gcd.cr.yp.to */ | |||
int PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_inverse(DIGIT out[], const DIGIT in[]) { | |||
int32_t swap, delta = 1; | |||
DIGIT g0_mask; | |||
DIGIT f[NUM_DIGITS_GF2X_MODULUS] = {0}; // f = x^P + 1 | |||
DIGIT g[NUM_DIGITS_GF2X_ELEMENT]; // g = in | |||
DIGIT *v = out; // v = 0, save space | |||
DIGIT r[NUM_DIGITS_GF2X_ELEMENT] = {0}; // r = 1 | |||
f[NUM_DIGITS_GF2X_MODULUS - 1] = 1; | |||
f[0] |= ((DIGIT)1 << MSb_POSITION_IN_MSB_DIGIT_OF_MODULUS); | |||
for (size_t i = 0; i < NUM_DIGITS_GF2X_ELEMENT; i++) { | |||
g[i] = in[i]; | |||
} | |||
for (size_t i = 0; i < NUM_DIGITS_GF2X_ELEMENT; i++) { | |||
v[i] = 0; | |||
} | |||
r[NUM_DIGITS_GF2X_ELEMENT - 1] = 1; | |||
for (int loop = 0; loop < 2 * P - 1; ++loop) { | |||
swap = negative(-delta) & nonzero(lsb(g)); // swap = -1 if -delta < 0 AND g(0) != 0 | |||
delta ^= swap & (delta ^ -delta); // cond swap delta with -delta if swap | |||
delta++; | |||
gf2x_cswap(f, g, swap); | |||
gf2x_cswap(v, r, swap); | |||
g0_mask = ~lsb(g) + 1; | |||
// g = (g - g0 * f) / x | |||
gf2x_mult_scalar_acc(g, f, g0_mask); | |||
right_bit_shift(NUM_DIGITS_GF2X_ELEMENT, g); | |||
// r = (r - g0 * v) / x | |||
gf2x_mult_scalar_acc(r, v, g0_mask); | |||
rotate_bit_right(r); | |||
} | |||
return nonzero(delta); // -1 if fail, 0 if success | |||
} | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_mul(DIGIT Res[], const DIGIT A[], const DIGIT B[]) { | |||
DIGIT aux[2 * NUM_DIGITS_GF2X_ELEMENT]; | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mul(aux, A, B, NUM_DIGITS_GF2X_ELEMENT); | |||
gf2x_mod(Res, aux); | |||
} | |||
/*PRE: the representation of the sparse coefficients is sorted in increasing | |||
order of the coefficients themselves */ | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_mul_dense_to_sparse(DIGIT Res[], const DIGIT dense[], | |||
POSITION_T sparse[], size_t nPos) { | |||
DIGIT aux[2 * NUM_DIGITS_GF2X_ELEMENT] = {0x00}; | |||
DIGIT resDouble[2 * NUM_DIGITS_GF2X_ELEMENT] = {0x00}; | |||
memcpy(aux + NUM_DIGITS_GF2X_ELEMENT, dense, NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B); | |||
memcpy(resDouble + NUM_DIGITS_GF2X_ELEMENT, dense, NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B); | |||
if (sparse[0] != INVALID_POS_VALUE) { | |||
left_bit_shift_wide_n(2 * NUM_DIGITS_GF2X_ELEMENT, resDouble, sparse[0]); | |||
left_bit_shift_wide_n(2 * NUM_DIGITS_GF2X_ELEMENT, aux, sparse[0]); | |||
for (size_t i = 1; i < nPos; i++) { | |||
if (sparse[i] != INVALID_POS_VALUE) { | |||
left_bit_shift_wide_n(2 * NUM_DIGITS_GF2X_ELEMENT, aux, (sparse[i] - sparse[i - 1]) ); | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_add(resDouble, aux, resDouble, 2 * NUM_DIGITS_GF2X_ELEMENT); | |||
} | |||
} | |||
} | |||
gf2x_mod(Res, resDouble); | |||
} | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_transpose_in_place_sparse(size_t sizeA, POSITION_T A[]) { | |||
POSITION_T t; | |||
size_t i = 0, j; | |||
if (A[i] == 0) { | |||
i = 1; | |||
} | |||
j = i; | |||
for (; i < sizeA && A[i] != INVALID_POS_VALUE; i++) { | |||
A[i] = P - A[i]; | |||
} | |||
for (i -= 1; j < i; j++, i--) { | |||
t = A[j]; | |||
A[j] = A[i]; | |||
A[i] = t; | |||
} | |||
} | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_mul_sparse(size_t sizeR, POSITION_T Res[], | |||
size_t sizeA, const POSITION_T A[], | |||
size_t sizeB, const POSITION_T B[]) { | |||
POSITION_T prod; | |||
POSITION_T lastReadPos; | |||
size_t duplicateCount; | |||
size_t write_idx, read_idx; | |||
/* compute all the coefficients, filling invalid positions with P*/ | |||
size_t lastFilledPos = 0; | |||
for (size_t i = 0 ; i < sizeA ; i++) { | |||
for (size_t j = 0 ; j < sizeB ; j++) { | |||
prod = A[i] + B[j]; | |||
prod = ( (prod >= P) ? prod - P : prod); | |||
if ((A[i] != INVALID_POS_VALUE) && | |||
(B[j] != INVALID_POS_VALUE)) { | |||
Res[lastFilledPos] = prod; | |||
} else { | |||
Res[lastFilledPos] = INVALID_POS_VALUE; | |||
} | |||
lastFilledPos++; | |||
} | |||
} | |||
while (lastFilledPos < sizeR) { | |||
Res[lastFilledPos] = INVALID_POS_VALUE; | |||
lastFilledPos++; | |||
} | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_uint32_sort(Res, sizeR); | |||
/* eliminate duplicates */ | |||
write_idx = read_idx = 0; | |||
while (read_idx < sizeR && Res[read_idx] != INVALID_POS_VALUE) { | |||
lastReadPos = Res[read_idx]; | |||
read_idx++; | |||
duplicateCount = 1; | |||
while ( (Res[read_idx] == lastReadPos) && (Res[read_idx] != INVALID_POS_VALUE)) { | |||
read_idx++; | |||
duplicateCount++; | |||
} | |||
if (duplicateCount % 2) { | |||
Res[write_idx] = lastReadPos; | |||
write_idx++; | |||
} | |||
} | |||
/* fill remaining cells with INVALID_POS_VALUE */ | |||
for (; write_idx < sizeR; write_idx++) { | |||
Res[write_idx] = INVALID_POS_VALUE; | |||
} | |||
} | |||
/* the implementation is safe even in case A or B alias with the result | |||
* PRE: A and B should be sorted, disjunct arrays ending with INVALID_POS_VALUE */ | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_add_sparse(size_t sizeR, POSITION_T Res[], | |||
size_t sizeA, const POSITION_T A[], | |||
size_t sizeB, const POSITION_T B[]) { | |||
POSITION_T tmpRes[DV * M]; | |||
size_t idxA = 0, idxB = 0, idxR = 0; | |||
while ( idxA < sizeA && | |||
idxB < sizeB && | |||
A[idxA] != INVALID_POS_VALUE && | |||
B[idxB] != INVALID_POS_VALUE ) { | |||
if (A[idxA] == B[idxB]) { | |||
idxA++; | |||
idxB++; | |||
} else { | |||
if (A[idxA] < B[idxB]) { | |||
tmpRes[idxR] = A[idxA]; | |||
idxA++; | |||
} else { | |||
tmpRes[idxR] = B[idxB]; | |||
idxB++; | |||
} | |||
idxR++; | |||
} | |||
} | |||
while (idxA < sizeA && A[idxA] != INVALID_POS_VALUE) { | |||
tmpRes[idxR] = A[idxA]; | |||
idxA++; | |||
idxR++; | |||
} | |||
while (idxB < sizeB && B[idxB] != INVALID_POS_VALUE) { | |||
tmpRes[idxR] = B[idxB]; | |||
idxB++; | |||
idxR++; | |||
} | |||
while (idxR < sizeR) { | |||
tmpRes[idxR] = INVALID_POS_VALUE; | |||
idxR++; | |||
} | |||
memcpy(Res, tmpRes, sizeof(POSITION_T)*sizeR); | |||
} | |||
/* Return a uniform random value in the range 0..n-1 inclusive, | |||
* applying a rejection sampling strategy and exploiting as a random source | |||
* the NIST seedexpander seeded with the proper key. | |||
* Assumes that the maximum value for the range n is 2^32-1 | |||
*/ | |||
static uint32_t rand_range(const unsigned int n, const int logn, AES_XOF_struct *seed_expander_ctx) { | |||
unsigned long required_rnd_bytes = (logn + 7) / 8; | |||
unsigned char rnd_char_buffer[4]; | |||
uint32_t rnd_value; | |||
uint32_t mask = ( (uint32_t)1 << logn) - 1; | |||
do { | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_seedexpander(seed_expander_ctx, rnd_char_buffer, required_rnd_bytes); | |||
/* obtain an endianness independent representation of the generated random | |||
bytes into an unsigned integer */ | |||
rnd_value = ((uint32_t)rnd_char_buffer[3] << 24) + | |||
((uint32_t)rnd_char_buffer[2] << 16) + | |||
((uint32_t)rnd_char_buffer[1] << 8) + | |||
((uint32_t)rnd_char_buffer[0] << 0) ; | |||
rnd_value = mask & rnd_value; | |||
} while (rnd_value >= n); | |||
return rnd_value; | |||
} | |||
/* Obtains fresh randomness and seed-expands it until all the required positions | |||
* for the '1's in the circulant block are obtained */ | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_rand_circulant_sparse_block(POSITION_T *pos_ones, | |||
size_t countOnes, | |||
AES_XOF_struct *seed_expander_ctx) { | |||
size_t duplicated, placedOnes = 0; | |||
POSITION_T p; | |||
while (placedOnes < countOnes) { | |||
p = rand_range(NUM_BITS_GF2X_ELEMENT, | |||
P_BITS, | |||
seed_expander_ctx); | |||
duplicated = 0; | |||
for (size_t j = 0; j < placedOnes; j++) { | |||
if (pos_ones[j] == p) { | |||
duplicated = 1; | |||
} | |||
} | |||
if (duplicated == 0) { | |||
pos_ones[placedOnes] = p; | |||
placedOnes++; | |||
} | |||
} | |||
} | |||
/* Returns random weight-t circulant block */ | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_rand_circulant_blocks_sequence(DIGIT sequence[N0 * NUM_DIGITS_GF2X_ELEMENT], | |||
AES_XOF_struct *seed_expander_ctx) { | |||
size_t polyIndex, duplicated, counter = 0; | |||
POSITION_T p, exponent, rndPos[NUM_ERRORS_T]; | |||
memset(sequence, 0x00, N0 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B); | |||
while (counter < NUM_ERRORS_T) { | |||
p = rand_range(N0 * NUM_BITS_GF2X_ELEMENT, P_BITS, seed_expander_ctx); | |||
duplicated = 0; | |||
for (size_t j = 0; j < counter; j++) { | |||
if (rndPos[j] == p) { | |||
duplicated = 1; | |||
} | |||
} | |||
if (duplicated == 0) { | |||
rndPos[counter] = p; | |||
counter++; | |||
} | |||
} | |||
for (size_t j = 0; j < counter; j++) { | |||
polyIndex = rndPos[j] / P; | |||
exponent = rndPos[j] % P; | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_set_coeff( sequence + NUM_DIGITS_GF2X_ELEMENT * polyIndex, exponent, | |||
( (DIGIT) 1)); | |||
} | |||
} | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_rand_error_pos(POSITION_T errorPos[NUM_ERRORS_T], | |||
AES_XOF_struct *seed_expander_ctx) { | |||
int duplicated; | |||
size_t counter = 0; | |||
while (counter < NUM_ERRORS_T) { | |||
POSITION_T p = rand_range(N0 * NUM_BITS_GF2X_ELEMENT, P_BITS, seed_expander_ctx); | |||
duplicated = 0; | |||
for (size_t j = 0; j < counter; j++) { | |||
if (errorPos[j] == p) { | |||
duplicated = 1; | |||
} | |||
} | |||
if (duplicated == 0) { | |||
errorPos[counter] = p; | |||
counter++; | |||
} | |||
} | |||
} | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_expand_error(DIGIT sequence[N0 * NUM_DIGITS_GF2X_ELEMENT], | |||
const POSITION_T errorPos[NUM_ERRORS_T]) { | |||
size_t polyIndex; | |||
POSITION_T exponent; | |||
memset(sequence, 0x00, N0 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B); | |||
for (int j = 0; j < NUM_ERRORS_T; j++) { | |||
polyIndex = errorPos[j] / P; | |||
exponent = errorPos[j] % P; | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_set_coeff( sequence + NUM_DIGITS_GF2X_ELEMENT * polyIndex, exponent, | |||
( (DIGIT) 1)); | |||
} | |||
} | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_tobytes(uint8_t *bytes, const DIGIT *poly) { | |||
size_t i, j; | |||
for (i = 0; i < NUM_DIGITS_GF2X_ELEMENT; i++) { | |||
for (j = 0; j < DIGIT_SIZE_B; j++) { | |||
bytes[i * DIGIT_SIZE_B + j] = (uint8_t) (poly[i] >> 8 * j); | |||
} | |||
} | |||
} | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_frombytes(DIGIT *poly, const uint8_t *poly_bytes) { | |||
size_t i, j; | |||
for (i = 0; i < NUM_DIGITS_GF2X_ELEMENT; i++) { | |||
poly[i] = (DIGIT) 0; | |||
for (j = 0; j < DIGIT_SIZE_B; j++) { | |||
poly[i] |= (DIGIT) poly_bytes[i * DIGIT_SIZE_B + j] << 8 * j; | |||
} | |||
} | |||
} |
@@ -1,39 +0,0 @@ | |||
#ifndef GF2X_ARITH_MOD_XPLUSONE_H | |||
#define GF2X_ARITH_MOD_XPLUSONE_H | |||
#include "qc_ldpc_parameters.h" | |||
#include "gf2x_arith.h" | |||
#include "rng.h" | |||
#define NUM_BITS_GF2X_ELEMENT (P) // 52147 | |||
#define NUM_DIGITS_GF2X_ELEMENT ((P+DIGIT_SIZE_b-1)/DIGIT_SIZE_b) | |||
#define MSb_POSITION_IN_MSB_DIGIT_OF_ELEMENT ((P % DIGIT_SIZE_b) ? (P % DIGIT_SIZE_b)-1 : DIGIT_SIZE_b-1) | |||
#define NUM_BITS_GF2X_MODULUS (P+1) | |||
#define NUM_DIGITS_GF2X_MODULUS ((P+1+DIGIT_SIZE_b-1)/DIGIT_SIZE_b) | |||
#define MSb_POSITION_IN_MSB_DIGIT_OF_MODULUS (P-DIGIT_SIZE_b*(NUM_DIGITS_GF2X_MODULUS-1)) | |||
#define INVALID_POS_VALUE (P) | |||
#define P_BITS (16) // log_2(p) = 15.6703 | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_copy(DIGIT dest[], const DIGIT in[]); | |||
DIGIT PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_get_coeff(const DIGIT poly[], size_t exponent); | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_set_coeff(DIGIT poly[], size_t exponent, DIGIT value); | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_toggle_coeff(DIGIT poly[], size_t exponent); | |||
int PQCLEAN_LEDAKEMLT12_LEAKTIME_population_count(const DIGIT *poly); | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_add(DIGIT Res[], const DIGIT A[], const DIGIT B[]); | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_mul(DIGIT Res[], const DIGIT A[], const DIGIT B[]); | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_transpose_in_place(DIGIT A[]); | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_rand_circulant_sparse_block(POSITION_T *pos_ones, size_t countOnes, AES_XOF_struct *seed_expander_ctx); | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_rand_circulant_blocks_sequence(DIGIT *sequence, AES_XOF_struct *seed_expander_ctx); | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_rand_error_pos(POSITION_T errorPos[NUM_ERRORS_T], AES_XOF_struct *seed_expander_ctx); | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_expand_error(DIGIT sequence[N0 * NUM_DIGITS_GF2X_ELEMENT], const POSITION_T errorPos[NUM_ERRORS_T]); | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_add_sparse(size_t sizeR, POSITION_T Res[], size_t sizeA, const POSITION_T A[], size_t sizeB, const POSITION_T B[]); | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_transpose_in_place_sparse(size_t sizeA, POSITION_T A[]); | |||
int PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_inverse(DIGIT out[], const DIGIT in[]); | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_mul_sparse(size_t sizeR, POSITION_T Res[], size_t sizeA, const POSITION_T A[], size_t sizeB, const POSITION_T B[]); | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_mul_dense_to_sparse(DIGIT Res[], const DIGIT dense[], POSITION_T sparse[], size_t nPos); | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_tobytes(uint8_t *bytes, const DIGIT *poly); | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_frombytes(DIGIT *poly, const uint8_t *poly_bytes); | |||
#endif |
@@ -1,157 +0,0 @@ | |||
#include "api.h" | |||
#include "niederreiter.h" | |||
#include "randombytes.h" | |||
#include "rng.h" | |||
#include "utils.h" | |||
#include <string.h> | |||
#define pack_ct(sk_bytes, ct) PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_tobytes(sk_bytes, ct); | |||
#define unpack_ct(ct, ct_bytes) PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_frombytes(ct, ct_bytes) | |||
static void pack_pk(uint8_t *pk_bytes, publicKeyNiederreiter_t *pk) { | |||
for (size_t i = 0; i < N0 - 1; i++) { | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_tobytes(pk_bytes + i * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B, | |||
pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT); | |||
} | |||
} | |||
static void unpack_pk(publicKeyNiederreiter_t *pk, const uint8_t *pk_bytes) { | |||
for (size_t i = 0; i < N0 - 1; i++) { | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_frombytes(pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT, | |||
pk_bytes + i * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B); | |||
} | |||
} | |||
static void pack_error(uint8_t *error_bytes, DIGIT *error_digits) { | |||
size_t i; | |||
for (i = 0; i < N0; i++) { | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_tobytes(error_bytes + i * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B, | |||
error_digits + i * NUM_DIGITS_GF2X_ELEMENT); | |||
} | |||
} | |||
/* IND-CCA2 Keygen */ | |||
int PQCLEAN_LEDAKEMLT12_LEAKTIME_crypto_kem_keypair(uint8_t *pk, uint8_t *sk) { | |||
publicKeyNiederreiter_t niederreiter_pk; | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_niederreiter_keygen(&niederreiter_pk, (privateKeyNiederreiter_t *) sk); | |||
pack_pk(pk, &niederreiter_pk); | |||
return 0; | |||
} | |||
/* IND-CCA2 Encapsulation */ | |||
int PQCLEAN_LEDAKEMLT12_LEAKTIME_crypto_kem_enc(uint8_t *ct, uint8_t *ss, const uint8_t *pk) { | |||
publicKeyNiederreiter_t niederreiter_pk; | |||
DIGIT syndrome[NUM_DIGITS_GF2X_ELEMENT]; | |||
AES_XOF_struct hashedAndTruncatedSeed_expander; | |||
POSITION_T errorPos[NUM_ERRORS_T]; | |||
DIGIT error_vector[N0 * NUM_DIGITS_GF2X_ELEMENT]; | |||
uint8_t error_bytes[N0 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B]; | |||
uint8_t seed[TRNG_BYTE_LENGTH]; | |||
uint8_t ss_input[2 * TRNG_BYTE_LENGTH] = {0}; | |||
uint8_t hashedSeed[HASH_BYTE_LENGTH]; | |||
uint8_t hashedAndTruncatedSeed[TRNG_BYTE_LENGTH] = {0}; | |||
uint8_t hashedErrorVector[HASH_BYTE_LENGTH]; | |||
uint8_t hashedAndTruncatedErrorVector[TRNG_BYTE_LENGTH] = {0}; | |||
uint8_t maskedSeed[TRNG_BYTE_LENGTH]; | |||
unpack_pk(&niederreiter_pk, pk); | |||
randombytes(seed, TRNG_BYTE_LENGTH); | |||
memcpy(ss_input, seed, TRNG_BYTE_LENGTH); | |||
HASH_FUNCTION(ss, ss_input, 2 * TRNG_BYTE_LENGTH); | |||
HASH_FUNCTION(hashedSeed, seed, TRNG_BYTE_LENGTH); | |||
memcpy(hashedAndTruncatedSeed, hashedSeed, TRNG_BYTE_LENGTH); | |||
memset(&hashedAndTruncatedSeed_expander, 0x00, sizeof(AES_XOF_struct)); | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_seedexpander_from_trng(&hashedAndTruncatedSeed_expander, hashedAndTruncatedSeed); | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_rand_error_pos(errorPos, &hashedAndTruncatedSeed_expander); | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_expand_error(error_vector, errorPos); | |||
pack_error(error_bytes, error_vector); | |||
HASH_FUNCTION(hashedErrorVector, error_bytes, (N0 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B)); | |||
memcpy(hashedAndTruncatedErrorVector, hashedErrorVector, TRNG_BYTE_LENGTH); | |||
for (size_t i = 0; i < TRNG_BYTE_LENGTH; ++i) { | |||
maskedSeed[i] = seed[i] ^ hashedAndTruncatedErrorVector[i]; | |||
} | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_niederreiter_encrypt(syndrome, | |||
(const publicKeyNiederreiter_t *) &niederreiter_pk, error_vector); | |||
pack_ct(ct, syndrome); | |||
memcpy(ct + (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B), maskedSeed, TRNG_BYTE_LENGTH); | |||
return 0; | |||
} | |||
/* IND-CCA2 Decapsulation */ | |||
int PQCLEAN_LEDAKEMLT12_LEAKTIME_crypto_kem_dec(uint8_t *ss, const uint8_t *ct, const uint8_t *sk) { | |||
DIGIT syndrome[NUM_DIGITS_GF2X_ELEMENT]; | |||
AES_XOF_struct hashedAndTruncatedSeed_expander; | |||
POSITION_T reconstructed_errorPos[NUM_ERRORS_T]; | |||
DIGIT reconstructed_error_vector[N0 * NUM_DIGITS_GF2X_ELEMENT]; | |||
DIGIT decoded_error_vector[N0 * NUM_DIGITS_GF2X_ELEMENT]; | |||
uint8_t decoded_error_bytes[N0 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B]; | |||
uint8_t hashedErrorVector[HASH_BYTE_LENGTH]; | |||
uint8_t hashedAndTruncatedErrorVector[TRNG_BYTE_LENGTH] = {0}; | |||
uint8_t decoded_seed[TRNG_BYTE_LENGTH]; | |||
uint8_t hashed_decoded_seed[HASH_BYTE_LENGTH]; | |||
uint8_t hashedAndTruncated_decoded_seed[TRNG_BYTE_LENGTH] = {0}; | |||
uint8_t ss_input[2 * TRNG_BYTE_LENGTH], tail[TRNG_BYTE_LENGTH] = {0}; | |||
int decode_ok, decrypt_ok, equal; | |||
unpack_ct(syndrome, ct); | |||
decode_ok = PQCLEAN_LEDAKEMLT12_LEAKTIME_niederreiter_decrypt(decoded_error_vector, | |||
(const privateKeyNiederreiter_t *)sk, syndrome); | |||
pack_error(decoded_error_bytes, decoded_error_vector); | |||
HASH_FUNCTION(hashedErrorVector, decoded_error_bytes, N0 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B); | |||
memcpy(hashedAndTruncatedErrorVector, hashedErrorVector, TRNG_BYTE_LENGTH); | |||
for (size_t i = 0; i < TRNG_BYTE_LENGTH; ++i) { | |||
decoded_seed[i] = ct[(NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B) + i] ^ | |||
hashedAndTruncatedErrorVector[i]; | |||
} | |||
HASH_FUNCTION(hashed_decoded_seed, decoded_seed, TRNG_BYTE_LENGTH); | |||
memcpy(hashedAndTruncated_decoded_seed, hashed_decoded_seed, TRNG_BYTE_LENGTH); | |||
memset(&hashedAndTruncatedSeed_expander, 0x00, sizeof(AES_XOF_struct)); | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_seedexpander_from_trng(&hashedAndTruncatedSeed_expander, | |||
hashed_decoded_seed); | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_rand_error_pos(reconstructed_errorPos, &hashedAndTruncatedSeed_expander); | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_expand_error(reconstructed_error_vector, reconstructed_errorPos); | |||
equal = PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_verify(decoded_error_vector, | |||
reconstructed_error_vector, N0 * NUM_DIGITS_GF2X_ELEMENT); | |||
// equal == 0, if the reconstructed error vector match !!! | |||
decrypt_ok = (decode_ok == 1 && equal == 0); | |||
memcpy(ss_input, decoded_seed, TRNG_BYTE_LENGTH); | |||
memcpy(ss_input + sizeof(decoded_seed), tail, TRNG_BYTE_LENGTH); | |||
// Overwrite on failure | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_cmov(ss_input + sizeof(decoded_seed), | |||
((const privateKeyNiederreiter_t *) sk)->decryption_failure_secret, | |||
TRNG_BYTE_LENGTH, | |||
!decrypt_ok); | |||
HASH_FUNCTION(ss, ss_input, 2 * TRNG_BYTE_LENGTH); | |||
return 0; | |||
} |
@@ -1,192 +0,0 @@ | |||
#include "H_Q_matrices_generation.h" | |||
#include "bf_decoding.h" | |||
#include "dfr_test.h" | |||
#include "gf2x_arith_mod_xPplusOne.h" | |||
#include "niederreiter.h" | |||
#include "qc_ldpc_parameters.h" | |||
#include "randombytes.h" | |||
#include "rng.h" | |||
#include <string.h> | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_niederreiter_keygen(publicKeyNiederreiter_t *pk, privateKeyNiederreiter_t *sk) { | |||
AES_XOF_struct keys_expander; | |||
POSITION_T HPosOnes[N0][DV]; | |||
POSITION_T QPosOnes[N0][M]; | |||
POSITION_T LPosOnes[N0][DV * M]; | |||
POSITION_T auxPosOnes[DV * M]; | |||
unsigned char processedQOnes[N0]; | |||
DIGIT Ln0dense[NUM_DIGITS_GF2X_ELEMENT] = {0}; | |||
DIGIT Ln0Inv[NUM_DIGITS_GF2X_ELEMENT] = {0}; | |||
int is_L_full; | |||
int isDFRok = 0; | |||
memset(&keys_expander, 0x00, sizeof(AES_XOF_struct)); | |||
randombytes(sk->prng_seed, TRNG_BYTE_LENGTH); | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_seedexpander_from_trng(&keys_expander, sk->prng_seed); | |||
sk->rejections = (uint8_t) 0; | |||
do { | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_generateHPosOnes(HPosOnes, &keys_expander); | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_generateQPosOnes(QPosOnes, &keys_expander); | |||
for (int i = 0; i < N0; i++) { | |||
for (int j = 0; j < DV * M; j++) { | |||
LPosOnes[i][j] = INVALID_POS_VALUE; | |||
} | |||
} | |||
memset(processedQOnes, 0x00, sizeof(processedQOnes)); | |||
for (int colQ = 0; colQ < N0; colQ++) { | |||
for (int i = 0; i < N0; i++) { | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_mul_sparse(DV * M, auxPosOnes, | |||
DV, HPosOnes[i], | |||
qBlockWeights[i][colQ], QPosOnes[i] + processedQOnes[i]); | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_add_sparse(DV * M, LPosOnes[colQ], | |||
DV * M, LPosOnes[colQ], | |||
DV * M, auxPosOnes); | |||
processedQOnes[i] += qBlockWeights[i][colQ]; | |||
} | |||
} | |||
is_L_full = 1; | |||
for (size_t i = 0; i < N0; i++) { | |||
is_L_full = is_L_full && (LPosOnes[i][DV * M - 1] != INVALID_POS_VALUE); | |||
} | |||
sk->rejections = sk->rejections + 1; | |||
if (is_L_full) { | |||
isDFRok = PQCLEAN_LEDAKEMLT12_LEAKTIME_DFR_test(LPosOnes, &(sk->secondIterThreshold)); | |||
} | |||
} while (!is_L_full || !isDFRok); | |||
sk->rejections = sk->rejections - 1; | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_seedexpander(&keys_expander, | |||
sk->decryption_failure_secret, | |||
(unsigned long)TRNG_BYTE_LENGTH); | |||
for (size_t j = 0; j < DV * M; j++) { | |||
if (LPosOnes[N0 - 1][j] != INVALID_POS_VALUE) { | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_set_coeff(Ln0dense, LPosOnes[N0 - 1][j], 1); | |||
} | |||
} | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_inverse(Ln0Inv, Ln0dense); | |||
for (size_t i = 0; i < N0 - 1; i++) { | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_mul_dense_to_sparse(pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT, | |||
Ln0Inv, | |||
LPosOnes[i], | |||
DV * M); | |||
} | |||
for (size_t i = 0; i < N0 - 1; i++) { | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_transpose_in_place(pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT); | |||
} | |||
} | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_niederreiter_encrypt(DIGIT syndrome[], | |||
const publicKeyNiederreiter_t *pk, | |||
const DIGIT err[]) { | |||
DIGIT saux[NUM_DIGITS_GF2X_ELEMENT]; | |||
memset(syndrome, 0x00, NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B); | |||
for (size_t i = 0; i < N0 - 1; i++) { | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_mul(saux, | |||
pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT, | |||
err + i * NUM_DIGITS_GF2X_ELEMENT); | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_add(syndrome, syndrome, saux); | |||
} | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_add(syndrome, syndrome, err + (N0 - 1)*NUM_DIGITS_GF2X_ELEMENT); | |||
} | |||
int PQCLEAN_LEDAKEMLT12_LEAKTIME_niederreiter_decrypt(DIGIT *err, const privateKeyNiederreiter_t *sk, const DIGIT *syndrome) { | |||
AES_XOF_struct niederreiter_decrypt_expander; | |||
POSITION_T HPosOnes[N0][DV]; | |||
POSITION_T QPosOnes[N0][M]; | |||
POSITION_T LPosOnes[N0][DV * M]; | |||
POSITION_T auxPosOnes[DV * M]; | |||
POSITION_T HtrPosOnes[N0][DV]; | |||
POSITION_T QtrPosOnes[N0][M]; | |||
POSITION_T auxSparse[DV * M]; | |||
POSITION_T Ln0trSparse[DV * M]; | |||
DIGIT err_computed[N0 * NUM_DIGITS_GF2X_ELEMENT] = {0}; | |||
DIGIT err_mockup[N0 * NUM_DIGITS_GF2X_ELEMENT]; | |||
DIGIT privateSyndrome[NUM_DIGITS_GF2X_ELEMENT]; | |||
uint8_t processedQOnes[N0]; | |||
int rejections = sk->rejections; | |||
int decrypt_ok = 0; | |||
int err_weight; | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_seedexpander_from_trng(&niederreiter_decrypt_expander, sk->prng_seed); | |||
do { | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_generateHPosOnes(HPosOnes, &niederreiter_decrypt_expander); | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_generateQPosOnes(QPosOnes, &niederreiter_decrypt_expander); | |||
for (size_t i = 0; i < N0; i++) { | |||
for (size_t j = 0; j < DV * M; j++) { | |||
LPosOnes[i][j] = INVALID_POS_VALUE; | |||
} | |||
} | |||
memset(processedQOnes, 0x00, sizeof(processedQOnes)); | |||
for (size_t colQ = 0; colQ < N0; colQ++) { | |||
for (size_t i = 0; i < N0; i++) { | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_mul_sparse(DV * M, auxPosOnes, | |||
DV, HPosOnes[i], | |||
qBlockWeights[i][colQ], QPosOnes[i] + processedQOnes[i]); | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_add_sparse(DV * M, LPosOnes[colQ], | |||
DV * M, LPosOnes[colQ], | |||
DV * M, auxPosOnes); | |||
processedQOnes[i] += qBlockWeights[i][colQ]; | |||
} | |||
} | |||
rejections--; | |||
} while (rejections >= 0); | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_transposeHPosOnes(HtrPosOnes, HPosOnes); | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_transposeQPosOnes(QtrPosOnes, QPosOnes); | |||
for (size_t i = 0; i < DV * M; i++) { | |||
Ln0trSparse[i] = INVALID_POS_VALUE; | |||
auxSparse[i] = INVALID_POS_VALUE; | |||
} | |||
for (size_t i = 0; i < N0; i++) { | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_mul_sparse(DV * M, auxSparse, | |||
DV, HPosOnes[i], | |||
qBlockWeights[i][N0 - 1], &QPosOnes[i][M - qBlockWeights[i][N0 - 1]]); | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_add_sparse(DV * M, Ln0trSparse, | |||
DV * M, Ln0trSparse, | |||
DV * M, auxSparse); | |||
} | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_transpose_in_place_sparse(DV * M, Ln0trSparse); | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_mul_dense_to_sparse(privateSyndrome, | |||
syndrome, | |||
Ln0trSparse, | |||
DV * M); | |||
decrypt_ok = PQCLEAN_LEDAKEMLT12_LEAKTIME_bf_decoding(err_computed, | |||
(const POSITION_T (*)[DV]) HtrPosOnes, | |||
(const POSITION_T (*)[M]) QtrPosOnes, | |||
privateSyndrome, sk->secondIterThreshold); | |||
err_weight = 0; | |||
for (size_t i = 0 ; i < N0; i++) { | |||
err_weight += PQCLEAN_LEDAKEMLT12_LEAKTIME_population_count(err_computed + (NUM_DIGITS_GF2X_ELEMENT * i)); | |||
} | |||
decrypt_ok = decrypt_ok && (err_weight == NUM_ERRORS_T); | |||
/* prepare mockup error vector in case a decoding failure occurs */ | |||
memcpy(err_mockup, syndrome, NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B); | |||
memcpy(err_mockup + NUM_DIGITS_GF2X_ELEMENT, sk->decryption_failure_secret, TRNG_BYTE_LENGTH); | |||
memset(((unsigned char *) err_mockup) + (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B) + TRNG_BYTE_LENGTH, 0x00, | |||
(N0 - 1)*NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B - TRNG_BYTE_LENGTH); | |||
memcpy(err, err_computed, N0 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B); | |||
// Overwrite on decryption failure | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_cmov(err, err_mockup, N0 * NUM_DIGITS_GF2X_ELEMENT, !decrypt_ok); | |||
return decrypt_ok; | |||
} |
@@ -1,24 +0,0 @@ | |||
#ifndef NIEDERREITER_H | |||
#define NIEDERREITER_H | |||
#include "gf2x_arith_mod_xPplusOne.h" | |||
#include "qc_ldpc_parameters.h" | |||
#include "rng.h" | |||
typedef struct { | |||
unsigned char prng_seed[TRNG_BYTE_LENGTH]; | |||
uint8_t rejections; | |||
uint8_t secondIterThreshold; | |||
uint8_t decryption_failure_secret[TRNG_BYTE_LENGTH]; | |||
} privateKeyNiederreiter_t; | |||
typedef struct { | |||
DIGIT Mtr[(N0 - 1)*NUM_DIGITS_GF2X_ELEMENT]; | |||
} publicKeyNiederreiter_t; | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_niederreiter_keygen(publicKeyNiederreiter_t *pk, privateKeyNiederreiter_t *sk); | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_niederreiter_encrypt(DIGIT syndrome[], const publicKeyNiederreiter_t *pk, const DIGIT err[]); | |||
int PQCLEAN_LEDAKEMLT12_LEAKTIME_niederreiter_decrypt(DIGIT *err, const privateKeyNiederreiter_t *sk, const DIGIT *syndrome); | |||
#endif |
@@ -1,27 +0,0 @@ | |||
#ifndef QC_LDPC_PARAMETERS_H | |||
#define QC_LDPC_PARAMETERS_H | |||
#include "fips202.h" | |||
#define TRNG_BYTE_LENGTH (24) | |||
#define HASH_BYTE_LENGTH (32) | |||
#define HASH_FUNCTION sha3_256 | |||
#define N0 (2) | |||
#define P (52147) // modulus(x) = x^P-1 | |||
#define DV (9) // odd number | |||
#define M (9) | |||
#define M0 (5) | |||
#define M1 (4) | |||
#define NUM_ERRORS_T (136) | |||
// Derived parameters, they are useful for QC-LDPC algorithms | |||
#define HASH_BIT_LENGTH (HASH_BYTE_LENGTH << 3) | |||
#define K ((N0-1)*P) | |||
#define N (N0*P) | |||
#define DC (N0*DV) | |||
#define Q_BLOCK_WEIGHTS {{M0,M1},{M1,M0}} | |||
static const unsigned char qBlockWeights[N0][N0] = Q_BLOCK_WEIGHTS; | |||
#endif |
@@ -1,110 +0,0 @@ | |||
#include "rng.h" | |||
#include <string.h> // void *memset(void *s, int c, size_t n); | |||
#include "aes.h" | |||
#include "qc_ldpc_parameters.h" | |||
/* | |||
seedexpander_init() | |||
ctx - stores the current state of an instance of the seed expander | |||
seed - a 32 byte random value | |||
diversifier - an 8 byte diversifier | |||
maxlen - maximum number of bytes (less than 2**32) generated under this seed and diversifier | |||
*/ | |||
static void seedexpander_init(AES_XOF_struct *ctx, | |||
uint8_t *seed, | |||
uint8_t *diversifier, | |||
size_t maxlen) { | |||
ctx->length_remaining = maxlen; | |||
memset(ctx->key, 0, 32); | |||
int max_accessible_seed_len = TRNG_BYTE_LENGTH < 32 ? 32 : TRNG_BYTE_LENGTH; | |||
memcpy(ctx->key, seed, max_accessible_seed_len); | |||
memcpy(ctx->ctr, diversifier, 8); | |||
ctx->ctr[11] = maxlen % 256; | |||
maxlen >>= 8; | |||
ctx->ctr[10] = maxlen % 256; | |||
maxlen >>= 8; | |||
ctx->ctr[9] = maxlen % 256; | |||
maxlen >>= 8; | |||
ctx->ctr[8] = maxlen % 256; | |||
memset(ctx->ctr + 12, 0x00, 4); | |||
ctx->buffer_pos = 16; | |||
memset(ctx->buffer, 0x00, 16); | |||
} | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_seedexpander_from_trng(AES_XOF_struct *ctx, | |||
const uint8_t *trng_entropy | |||
/* TRNG_BYTE_LENGTH wide buffer */) { | |||
/*the NIST seedexpander will however access 32B from this buffer */ | |||
unsigned int prng_buffer_size = TRNG_BYTE_LENGTH < 32 ? 32 : TRNG_BYTE_LENGTH; | |||
uint8_t prng_buffer[TRNG_BYTE_LENGTH < 32 ? 32 : TRNG_BYTE_LENGTH] = {0x00}; | |||
uint8_t diversifier[8] = {0}; | |||
memcpy(prng_buffer, | |||
trng_entropy, | |||
TRNG_BYTE_LENGTH < prng_buffer_size ? TRNG_BYTE_LENGTH : prng_buffer_size); | |||
/* the required seed expansion will be quite small, set the max number of | |||
* bytes conservatively to 10 MiB*/ | |||
seedexpander_init(ctx, prng_buffer, diversifier, RNG_MAXLEN); | |||
} | |||
/* | |||
seedexpander() | |||
ctx - stores the current state of an instance of the seed expander | |||
x - returns the XOF data | |||
xlen - number of bytes to return | |||
*/ | |||
int PQCLEAN_LEDAKEMLT12_LEAKTIME_seedexpander(AES_XOF_struct *ctx, uint8_t *x, size_t xlen) { | |||
size_t offset; | |||
aes256ctx ctx256; | |||
if ( x == NULL ) { | |||
return RNG_BAD_OUTBUF; | |||
} | |||
if ( xlen >= ctx->length_remaining ) { | |||
return RNG_BAD_REQ_LEN; | |||
} | |||
aes256_ecb_keyexp(&ctx256, ctx->key); | |||
ctx->length_remaining -= xlen; | |||
offset = 0; | |||
while ( xlen > 0 ) { | |||
if ( xlen <= (16 - ctx->buffer_pos) ) { // buffer has what we need | |||
memcpy(x + offset, ctx->buffer + ctx->buffer_pos, xlen); | |||
ctx->buffer_pos += xlen; | |||
goto end; | |||
} | |||
// take what's in the buffer | |||
memcpy(x + offset, ctx->buffer + ctx->buffer_pos, 16 - ctx->buffer_pos); | |||
xlen -= 16 - ctx->buffer_pos; | |||
offset += 16 - ctx->buffer_pos; | |||
aes256_ecb(ctx->buffer, ctx->ctr, 16 / AES_BLOCKBYTES, &ctx256); | |||
ctx->buffer_pos = 0; | |||
//increment the counter | |||
for (int i = 15; i >= 12; i--) { | |||
if ( ctx->ctr[i] == 0xff ) { | |||
ctx->ctr[i] = 0x00; | |||
} else { | |||
ctx->ctr[i]++; | |||
break; | |||
} | |||
} | |||
} | |||
end: | |||
aes256_ctx_release(&ctx256); | |||
return RNG_SUCCESS; | |||
} |
@@ -1,24 +0,0 @@ | |||
#ifndef RNG_H | |||
#define RNG_H | |||
#include <stddef.h> | |||
#include <stdint.h> | |||
#define RNG_SUCCESS ( 0) | |||
#define RNG_BAD_MAXLEN (-1) | |||
#define RNG_BAD_OUTBUF (-2) | |||
#define RNG_BAD_REQ_LEN (-3) | |||
#define RNG_MAXLEN (10 * 1024 * 1024) | |||
typedef struct { | |||
unsigned char buffer[16]; | |||
size_t buffer_pos; | |||
size_t length_remaining; | |||
unsigned char key[32]; | |||
unsigned char ctr[16]; | |||
} AES_XOF_struct; | |||
int PQCLEAN_LEDAKEMLT12_LEAKTIME_seedexpander(AES_XOF_struct *ctx, unsigned char *x, size_t xlen); | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_seedexpander_from_trng(AES_XOF_struct *ctx, const unsigned char *trng_entropy); | |||
#endif |
@@ -1,98 +0,0 @@ | |||
#include "sort.h" | |||
/* | |||
Constant-time uint32_t sorting by Daniel J. Bernstein | |||
Source: https://sorting.cr.yp.to | |||
*/ | |||
#define int32_MINMAX(a,b) \ | |||
do { \ | |||
int32 ab = (b) ^ (a); \ | |||
int32 c = (b) - (a); \ | |||
c ^= ab & (c ^ (b)); \ | |||
c >>= 31; \ | |||
c &= ab; \ | |||
(a) ^= c; \ | |||
(b) ^= c; \ | |||
} while(0) | |||
static void int32_sort(int32 *x, size_t n) { | |||
size_t top, p, q, r, i, j; | |||
if (n < 2) { | |||
return; | |||
} | |||
top = 1; | |||
while (top < n - top) { | |||
top += top; | |||
} | |||
for (p = top; p >= 1; p >>= 1) { | |||
i = 0; | |||
while (i + 2 * p <= n) { | |||
for (j = i; j < i + p; ++j) { | |||
int32_MINMAX(x[j], x[j + p]); | |||
} | |||
i += 2 * p; | |||
} | |||
for (j = i; j < n - p; ++j) { | |||
int32_MINMAX(x[j], x[j + p]); | |||
} | |||
i = 0; | |||
j = 0; | |||
for (q = top; q > p; q >>= 1) { | |||
if (j != i) { | |||
for (;;) { | |||
if (j == n - q) { | |||
goto done; | |||
} | |||
int32 a = x[j + p]; | |||
for (r = q; r > p; r >>= 1) { | |||
int32_MINMAX(a, x[j + r]); | |||
} | |||
x[j + p] = a; | |||
++j; | |||
if (j == i + p) { | |||
i += 2 * p; | |||
break; | |||
} | |||
} | |||
} | |||
while (i + p <= n - q) { | |||
for (j = i; j < i + p; ++j) { | |||
int32 a = x[j + p]; | |||
for (r = q; r > p; r >>= 1) { | |||
int32_MINMAX(a, x[j + r]); | |||
} | |||
x[j + p] = a; | |||
} | |||
i += 2 * p; | |||
} | |||
/* now i + p > n - q */ | |||
j = i; | |||
while (j < n - q) { | |||
int32 a = x[j + p]; | |||
for (r = q; r > p; r >>= 1) { | |||
int32_MINMAX(a, x[j + r]); | |||
} | |||
x[j + p] = a; | |||
++j; | |||
} | |||
done: | |||
; | |||
} | |||
} | |||
} | |||
/* can save time by integrating xor loops with int32_sort */ | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_uint32_sort(uint32_t *x, size_t n) { | |||
size_t j; | |||
for (j = 0; j < n; ++j) { | |||
x[j] ^= 0x80000000; | |||
} | |||
int32_sort((int32_t *) x, n); | |||
for (j = 0; j < n; ++j) { | |||
x[j] ^= 0x80000000; | |||
} | |||
} |
@@ -1,11 +0,0 @@ | |||
#ifndef SORT_H | |||
#define SORT_H | |||
#include <stddef.h> | |||
#include <stdint.h> | |||
#define int32 int32_t | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_uint32_sort(uint32_t *x, size_t n); | |||
#endif |
@@ -1,21 +0,0 @@ | |||
#include "gf2x_arith.h" | |||
#include "utils.h" | |||
/* compares DIGIT sequences, returns 0 if they are equal */ | |||
int PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_verify(const DIGIT *a, const DIGIT *b, size_t len) { | |||
DIGIT x = 0; | |||
for (size_t i = 0; i < len; i++) { | |||
x |= a[i] ^ b[i]; | |||
} | |||
x = (~x) + 1; | |||
x >>= (DIGIT_SIZE_b - 1); | |||
return (int)x; | |||
} | |||
/* conditionally move a into r if cond */ | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_cmov(uint8_t *r, const uint8_t *a, size_t len, int cond) { | |||
uint8_t mask = (uint8_t)(-cond); | |||
for (size_t i = 0; i < len; i++) { | |||
r[i] ^= mask & (r[i] ^ a[i]); | |||
} | |||
} |
@@ -1,9 +0,0 @@ | |||
#ifndef UTILS_H | |||
#define UTILS_H | |||
#include <stdint.h> | |||
int PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_verify(const DIGIT *a, const DIGIT *b, size_t len); | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_cmov(uint8_t *r, const uint8_t *a, size_t len, int cond); | |||
#endif |
@@ -1,19 +0,0 @@ | |||
name: LEDAKEMLT32 | |||
type: kem | |||
claimed-nist-level: 3 | |||
claimed-security: IND-CCA2 | |||
length-public-key: 12032 | |||
length-secret-key: 66 | |||
length-ciphertext: 12064 | |||
length-shared-secret: 48 | |||
nistkat-sha256: b8b17dbb77aa3c3c77f738be053b355185388859ae6baa5655bf7e8413020b7f | |||
principal-submitters: | |||
- Marco Baldi | |||
auxiliary-submitters: | |||
- Alessandro Barenghi | |||
- Franco Chiaraluce | |||
- Gerardo Pelosi | |||
- Paolo Santini | |||
implementations: | |||
- name: leaktime | |||
version: 2.1 |
@@ -1,52 +0,0 @@ | |||
#include "H_Q_matrices_generation.h" | |||
#include "gf2x_arith_mod_xPplusOne.h" | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_generateHPosOnes(POSITION_T HPosOnes[N0][DV], AES_XOF_struct *keys_expander) { | |||
for (size_t i = 0; i < N0; i++) { | |||
/* Generate a random block of Htr */ | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_rand_circulant_sparse_block(&HPosOnes[i][0], DV, keys_expander); | |||
} | |||
} | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_generateQPosOnes(POSITION_T QPosOnes[N0][M], AES_XOF_struct *keys_expander) { | |||
size_t placed_ones; | |||
for (size_t i = 0; i < N0; i++) { | |||
placed_ones = 0; | |||
for (size_t j = 0; j < N0; j++) { | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_rand_circulant_sparse_block(&QPosOnes[i][placed_ones], | |||
qBlockWeights[i][j], | |||
keys_expander); | |||
placed_ones += qBlockWeights[i][j]; | |||
} | |||
} | |||
} | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_transposeHPosOnes(POSITION_T HtrPosOnes[N0][DV], POSITION_T HPosOnes[N0][DV]) { | |||
for (size_t i = 0; i < N0; i++) { | |||
/* Obtain directly the sparse representation of the block of H */ | |||
for (size_t k = 0; k < DV; k++) { | |||
HtrPosOnes[i][k] = (P - HPosOnes[i][k]) % P; /* transposes indexes */ | |||
} | |||
} | |||
} | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_transposeQPosOnes(POSITION_T QtrPosOnes[N0][M], POSITION_T QPosOnes[N0][M]) { | |||
POSITION_T transposed_ones_idx[N0] = {0x00}; | |||
size_t currQoneIdx, endQblockIdx; | |||
for (size_t source_row_idx = 0; source_row_idx < N0 ; source_row_idx++) { | |||
currQoneIdx = 0; // position in the column of QtrPosOnes[][...] | |||
endQblockIdx = 0; | |||
for (int blockIdx = 0; blockIdx < N0; blockIdx++) { | |||
endQblockIdx += qBlockWeights[source_row_idx][blockIdx]; | |||
for (; currQoneIdx < endQblockIdx; currQoneIdx++) { | |||
QtrPosOnes[blockIdx][transposed_ones_idx[blockIdx]] = | |||
(P - QPosOnes[source_row_idx][currQoneIdx]) % P; | |||
transposed_ones_idx[blockIdx]++; | |||
} | |||
} | |||
} | |||
} | |||
@@ -1,13 +0,0 @@ | |||
#ifndef H_Q_MATRICES_GENERATION_H | |||
#define H_Q_MATRICES_GENERATION_H | |||
#include "gf2x_arith.h" | |||
#include "qc_ldpc_parameters.h" | |||
#include "rng.h" | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_generateHPosOnes(POSITION_T HPosOnes[N0][DV], AES_XOF_struct *keys_expander); | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_generateQPosOnes(POSITION_T QPosOnes[N0][M], AES_XOF_struct *keys_expander); | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_transposeHPosOnes(POSITION_T HtrPosOnes[N0][DV], POSITION_T HPosOnes[N0][DV]); | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_transposeQPosOnes(POSITION_T QtrPosOnes[N0][M], POSITION_T QPosOnes[N0][M]); | |||
#endif |
@@ -1,31 +0,0 @@ | |||
/** | |||
* | |||
* LEDAcryptKEM | |||
* | |||
* @version 2.0 (March 2019) | |||
* | |||
* Adapted code from reference ISO-C11 Implementation of the LEDAcrypt KEM-LT cipher. | |||
* | |||
* In alphabetical order: | |||
* | |||
* @author Marco Baldi <m.baldi@univpm.it> | |||
* @author Alessandro Barenghi <alessandro.barenghi@polimi.it> | |||
* @author Franco Chiaraluce <f.chiaraluce@univpm.it> | |||
* @author Gerardo Pelosi <gerardo.pelosi@polimi.it> | |||
* @author Paolo Santini <p.santini@pm.univpm.it> | |||
* | |||
* This code is hereby placed in the public domain. | |||
* | |||
* THIS SOFTWARE IS PROVIDED BY THE AUTHORS ''AS IS'' AND ANY EXPRESS | |||
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED | |||
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |||
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE | |||
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | |||
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | |||
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR | |||
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, | |||
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE | |||
* OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, | |||
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |||
* | |||
**/ |
@@ -1,24 +0,0 @@ | |||
# This Makefile can be used with GNU Make or BSD Make | |||
LIB=libledakemlt32_leaktime.a | |||
HEADERS=api.h bf_decoding.h dfr_test.h gf2x_arith_mod_xPplusOne.h \ | |||
gf2x_arith.h H_Q_matrices_generation.h \ | |||
niederreiter.h qc_ldpc_parameters.h rng.h sort.h utils.h | |||
OBJECTS=bf_decoding.o dfr_test.o gf2x_arith_mod_xPplusOne.o \ | |||
gf2x_arith.o H_Q_matrices_generation.o kem.o niederreiter.o rng.o sort.o utils.o | |||
CFLAGS=-O3 -Wall -Werror -Wextra -Wvla -Wpedantic -Wmissing-prototypes -std=c99 \ | |||
-I../../../common $(EXTRAFLAGS) | |||
all: $(LIB) | |||
%.o: %.c $(HEADERS) | |||
$(CC) $(CFLAGS) -c -o $@ $< | |||
$(LIB): $(OBJECTS) | |||
$(AR) -r $@ $(OBJECTS) | |||
clean: | |||
$(RM) $(OBJECTS) | |||
$(RM) $(LIB) |
@@ -1,19 +0,0 @@ | |||
# This Makefile can be used with Microsoft Visual Studio's nmake using the command: | |||
# nmake /f Makefile.Microsoft_nmake | |||
LIBRARY=libledakemlt32_leaktime.lib | |||
OBJECTS=bf_decoding.obj dfr_test.obj gf2x_arith_mod_xPplusOne.obj gf2x_arith.obj H_Q_matrices_generation.obj kem.obj niederreiter.obj rng.obj sort.obj utils.obj | |||
CFLAGS=/nologo /O2 /I ..\..\..\common /W4 /WX | |||
all: $(LIBRARY) | |||
# Make sure objects are recompiled if headers change. | |||
$(OBJECTS): *.h | |||
$(LIBRARY): $(OBJECTS) | |||
LIB.EXE /NOLOGO /WX /OUT:$@ $** | |||
clean: | |||
-DEL $(OBJECTS) | |||
-DEL $(LIBRARY) |
@@ -1,18 +0,0 @@ | |||
#ifndef PQCLEAN_LEDAKEMLT32_LEAKTIME_API_H | |||
#define PQCLEAN_LEDAKEMLT32_LEAKTIME_API_H | |||
#include <stdint.h> | |||
#define PQCLEAN_LEDAKEMLT32_LEAKTIME_CRYPTO_SECRETKEYBYTES 66 | |||
#define PQCLEAN_LEDAKEMLT32_LEAKTIME_CRYPTO_PUBLICKEYBYTES 12032 | |||
#define PQCLEAN_LEDAKEMLT32_LEAKTIME_CRYPTO_CIPHERTEXTBYTES 12064 | |||
#define PQCLEAN_LEDAKEMLT32_LEAKTIME_CRYPTO_BYTES 48 | |||
#define PQCLEAN_LEDAKEMLT32_LEAKTIME_CRYPTO_ALGNAME "LEDAKEMLT32" | |||
int PQCLEAN_LEDAKEMLT32_LEAKTIME_crypto_kem_keypair(uint8_t *pk, uint8_t *sk); | |||
int PQCLEAN_LEDAKEMLT32_LEAKTIME_crypto_kem_enc(uint8_t *ct, uint8_t *ss, const uint8_t *pk); | |||
int PQCLEAN_LEDAKEMLT32_LEAKTIME_crypto_kem_dec(uint8_t *ss, const uint8_t *ct, const uint8_t *sk); | |||
#endif |
@@ -1,79 +0,0 @@ | |||
#include "bf_decoding.h" | |||
#include "gf2x_arith_mod_xPplusOne.h" | |||
#include <string.h> | |||
int PQCLEAN_LEDAKEMLT32_LEAKTIME_bf_decoding(DIGIT err[], | |||
const POSITION_T HtrPosOnes[N0][DV], | |||
const POSITION_T QtrPosOnes[N0][M], | |||
DIGIT privateSyndrome[], | |||
uint8_t secondIterThreshold) { | |||
DIGIT currSyndrome[NUM_DIGITS_GF2X_ELEMENT]; | |||
uint8_t unsatParityChecks[N0 * P]; | |||
POSITION_T currQBlkPos[M], currQBitPos[M]; | |||
POSITION_T syndromePosToFlip, tmp; | |||
uint32_t correlation, corrt_syndrome_based; | |||
size_t currQoneIdx, endQblockIdx, currblockoffset; | |||
int check; | |||
int iteration = 0; | |||
do { | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_copy(currSyndrome, privateSyndrome); | |||
memset(unsatParityChecks, 0x00, N0 * P * sizeof(uint8_t)); | |||
for (size_t i = 0; i < N0; i++) { | |||
for (POSITION_T valueIdx = 0; valueIdx < P; valueIdx++) { | |||
for (size_t HtrOneIdx = 0; HtrOneIdx < DV; HtrOneIdx++) { | |||
tmp = (HtrPosOnes[i][HtrOneIdx] + valueIdx) >= P ? | |||
(HtrPosOnes[i][HtrOneIdx] + valueIdx) - P : | |||
(HtrPosOnes[i][HtrOneIdx] + valueIdx); | |||
if (PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_get_coeff(currSyndrome, tmp)) { | |||
unsatParityChecks[i * P + valueIdx]++; | |||
} | |||
} | |||
} | |||
} | |||
/* iteration based threshold determination*/ | |||
corrt_syndrome_based = iteration * secondIterThreshold + (1 - iteration) * B0; | |||
// Computation of correlation with a full Q matrix | |||
for (size_t i = 0; i < N0; i++) { | |||
for (POSITION_T j = 0; j < P; j++) { | |||
currQoneIdx = endQblockIdx = 0; | |||
correlation = 0; | |||
for (size_t blockIdx = 0; blockIdx < N0; blockIdx++) { | |||
endQblockIdx += qBlockWeights[blockIdx][i]; | |||
currblockoffset = blockIdx * P; | |||
for (; currQoneIdx < endQblockIdx; currQoneIdx++) { | |||
tmp = QtrPosOnes[i][currQoneIdx] + j; | |||
tmp = tmp >= P ? tmp - P : tmp; | |||
currQBitPos[currQoneIdx] = tmp; | |||
currQBlkPos[currQoneIdx] = (POSITION_T)blockIdx; | |||
correlation += unsatParityChecks[tmp + currblockoffset]; | |||
} | |||
} | |||
/* Correlation based flipping */ | |||
if (correlation >= corrt_syndrome_based) { | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_toggle_coeff(err + NUM_DIGITS_GF2X_ELEMENT * i, j); | |||
for (size_t v = 0; v < M; v++) { | |||
for (size_t HtrOneIdx = 0; HtrOneIdx < DV; HtrOneIdx++) { | |||
syndromePosToFlip = (HtrPosOnes[currQBlkPos[v]][HtrOneIdx] + currQBitPos[v]); | |||
syndromePosToFlip = syndromePosToFlip >= P ? syndromePosToFlip - P : syndromePosToFlip; | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_toggle_coeff(privateSyndrome, syndromePosToFlip); | |||
} | |||
} // end for v | |||
} // end if | |||
} // end for j | |||
} // end for i | |||
iteration = iteration + 1; | |||
check = 0; | |||
while (check < NUM_DIGITS_GF2X_ELEMENT && privateSyndrome[check++] == 0) {}; | |||
} while (iteration < ITERATIONS_MAX && check < NUM_DIGITS_GF2X_ELEMENT); | |||
return (check == NUM_DIGITS_GF2X_ELEMENT); | |||
} |
@@ -1,18 +0,0 @@ | |||
#ifndef BF_DECODING_H | |||
#define BF_DECODING_H | |||
#include "gf2x_arith.h" | |||
#include "qc_ldpc_parameters.h" | |||
/* Definitions for DFR level 2^-SL with SL=128 */ | |||
#define ITERATIONS_MAX (2) | |||
#define B0 (64) | |||
#define T_BAR (5) | |||
int PQCLEAN_LEDAKEMLT32_LEAKTIME_bf_decoding(DIGIT err[], | |||
const POSITION_T HtrPosOnes[N0][DV], | |||
const POSITION_T QtrPosOnes[N0][M], | |||
DIGIT privateSyndrome[], | |||
uint8_t threshold); | |||
#endif |
@@ -1,88 +0,0 @@ | |||
#include "bf_decoding.h" | |||
#include "dfr_test.h" | |||
#include "gf2x_arith_mod_xPplusOne.h" | |||
#include "qc_ldpc_parameters.h" | |||
#include "sort.h" | |||
#include <string.h> | |||
int PQCLEAN_LEDAKEMLT32_LEAKTIME_DFR_test(POSITION_T LSparse[N0][DV * M], uint8_t *secondIterThreshold) { | |||
POSITION_T LSparse_loc[N0][DV * M]; /* vector of N_0 sparse blocks */ | |||
uint8_t gamma[N0][N0][P] = {{{0}}}; | |||
uint32_t gammaHist[N0][DV * M + 1] = {{0}}; | |||
size_t maxMut[N0], maxMutMinusOne[N0]; | |||
size_t allBlockMaxSumst, allBlockMaxSumstMinusOne; | |||
size_t histIdx, toAdd; | |||
for (size_t i = 0; i < N0; i++) { | |||
for (size_t j = 0; j < DV * M; j++) { | |||
if (LSparse[i][j] != 0) { | |||
LSparse_loc[i][j] = (P - LSparse[i][j]); | |||
} | |||
} | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_uint32_sort(LSparse_loc[i], DV * M); | |||
} | |||
for (size_t i = 0; i < N0; i++ ) { | |||
for (size_t j = 0; j < N0; j++) { | |||
for (size_t k = 0; k < (DV * M); k++) { | |||
for (size_t l = 0; l < (DV * M); l++) { | |||
gamma[i][j][(P + LSparse_loc[i][k] - LSparse_loc[j][l]) % P]++; | |||
} | |||
} | |||
} | |||
} | |||
for (size_t i = 0; i < N0; i++ ) { | |||
for (size_t j = 0; j < N0; j++ ) { | |||
gamma[i][j][0] = 0; | |||
} | |||
} | |||
/* build histogram of values in gamma */ | |||
for (size_t i = 0; i < N0; i++ ) { | |||
for (size_t j = 0; j < N0; j++ ) { | |||
for (size_t k = 0; k < P; k++) { | |||
gammaHist[i][gamma[i][j][k]]++; | |||
} | |||
} | |||
} | |||
for (size_t gammaBlockRowIdx = 0; gammaBlockRowIdx < N0; gammaBlockRowIdx++) { | |||
maxMutMinusOne[gammaBlockRowIdx] = 0; | |||
histIdx = DV * M; | |||
toAdd = T_BAR - 1; | |||
while ( (histIdx > 0) && (toAdd > 0)) { | |||
if (gammaHist[gammaBlockRowIdx][histIdx] > toAdd ) { | |||
maxMutMinusOne[gammaBlockRowIdx] += histIdx * toAdd; | |||
toAdd = 0; | |||
} else { | |||
maxMutMinusOne[gammaBlockRowIdx] += histIdx * gammaHist[gammaBlockRowIdx][histIdx]; | |||
toAdd -= gammaHist[gammaBlockRowIdx][histIdx]; | |||
histIdx--; | |||
} | |||
} | |||
maxMut[gammaBlockRowIdx] = histIdx + maxMutMinusOne[gammaBlockRowIdx]; | |||
} | |||
/*seek max values across all gamma blocks */ | |||
allBlockMaxSumst = maxMut[0]; | |||
allBlockMaxSumstMinusOne = maxMutMinusOne[0]; | |||
for (size_t gammaBlockRowIdx = 0; gammaBlockRowIdx < N0; gammaBlockRowIdx++) { | |||
allBlockMaxSumst = allBlockMaxSumst < maxMut[gammaBlockRowIdx] ? | |||
maxMut[gammaBlockRowIdx] : | |||
allBlockMaxSumst; | |||
allBlockMaxSumstMinusOne = allBlockMaxSumstMinusOne < maxMutMinusOne[gammaBlockRowIdx] ? | |||
maxMutMinusOne[gammaBlockRowIdx] : | |||
allBlockMaxSumstMinusOne; | |||
} | |||
if (DV * M > (allBlockMaxSumstMinusOne + allBlockMaxSumst)) { | |||
*secondIterThreshold = (uint8_t) (allBlockMaxSumst + 1); | |||
return 1; | |||
} | |||
return 0; | |||
} |
@@ -1,6 +0,0 @@ | |||
#ifndef DFR_TEST_H | |||
#define DFR_TEST_H | |||
int PQCLEAN_LEDAKEMLT32_LEAKTIME_DFR_test(POSITION_T LSparse[N0][DV * M], uint8_t *secondIterThreshold); | |||
#endif |
@@ -1,252 +0,0 @@ | |||
#include "gf2x_arith.h" | |||
#include <string.h> // memset(...) | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_add(DIGIT Res[], const DIGIT A[], const DIGIT B[], size_t n) { | |||
for (size_t i = 0; i < n; i++) { | |||
Res[i] = A[i] ^ B[i]; | |||
} | |||
} | |||
/* copies len digits from a to r if b == 1 */ | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_cmov(DIGIT *r, const DIGIT *a, size_t len, int c) { | |||
DIGIT mask = (DIGIT)(-c); | |||
for (size_t i = 0; i < len; i++) { | |||
r[i] ^= mask & (a[i] ^ r[i]); | |||
} | |||
} | |||
/* PRE: MAX ALLOWED ROTATION AMOUNT : DIGIT_SIZE_b */ | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_right_bit_shift_n(size_t length, DIGIT in[], size_t amount) { | |||
if ( amount == 0 ) { | |||
return; | |||
} | |||
size_t j; | |||
DIGIT mask; | |||
mask = ((DIGIT)0x01 << amount) - 1; | |||
for (j = length - 1; j > 0; j--) { | |||
in[j] >>= amount; | |||
in[j] |= (in[j - 1] & mask) << (DIGIT_SIZE_b - amount); | |||
} | |||
in[j] >>= amount; | |||
} | |||
/* PRE: MAX ALLOWED ROTATION AMOUNT : DIGIT_SIZE_b */ | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_left_bit_shift_n(size_t length, DIGIT in[], size_t amount) { | |||
if ( amount == 0 ) { | |||
return; | |||
} | |||
size_t j; | |||
DIGIT mask; | |||
mask = ~(((DIGIT)0x01 << (DIGIT_SIZE_b - amount)) - 1); | |||
for (j = 0 ; j < length - 1; j++) { | |||
in[j] <<= amount; | |||
in[j] |= (in[j + 1] & mask) >> (DIGIT_SIZE_b - amount); | |||
} | |||
in[j] <<= amount; | |||
} | |||
static void gf2x_mul1(DIGIT *R, const DIGIT A, const DIGIT B) { | |||
DIGIT tmp; | |||
R[0] = 0; | |||
R[1] = (A & 1) * B; | |||
for (uint8_t i = 1; i < DIGIT_SIZE_b; i++) { | |||
tmp = ((A >> i) & 1) * B; | |||
R[1] ^= tmp << i; | |||
R[0] ^= tmp >> (DIGIT_SIZE_b - i); | |||
} | |||
} | |||
static void gf2x_mul_n(DIGIT *R, const DIGIT *A, const DIGIT *B, size_t n) { | |||
DIGIT tmp[2]; | |||
memset(R, 0x00, 2 * n * sizeof(DIGIT)); | |||
for (size_t i = 0; i < n; i++) { | |||
for (size_t j = 0; j < n; j++) { | |||
gf2x_mul1(tmp, A[i], B[j]); | |||
R[i + j] ^= tmp[0]; | |||
R[i + j + 1] ^= tmp[1]; | |||
} | |||
} | |||
} | |||
static void gf2x_cpy(DIGIT *R, const DIGIT *A, size_t len) { | |||
for (size_t i = 0; i < len; i++) { | |||
R[i] = A[i]; | |||
} | |||
} | |||
/* Accumulate */ | |||
#define gf2x_add(R, A, B, n) PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_add(R, A, B, n) | |||
#define gf2x_acc(R, B, n) PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_add(R, R, B, n) | |||
/* allows the operands to be of different size | |||
* first operand must be the bigger one. | |||
* aligns last array elements */ | |||
static inline void gf2x_add_asymm(DIGIT *R, | |||
size_t na, const DIGIT *A, | |||
size_t nb, const DIGIT *B) { | |||
size_t delta = na - nb; | |||
gf2x_cpy(R, A, delta); | |||
gf2x_add(R + delta, A + delta, B, nb);; | |||
} | |||
/* aligns first array elements */ | |||
static inline void gf2x_add_asymm2(DIGIT *R, | |||
size_t na, const DIGIT *A, | |||
size_t nb, const DIGIT *B) { | |||
size_t delta = na - nb; | |||
gf2x_add(R, A, B, nb); | |||
gf2x_cpy(R + nb, A + nb, delta); | |||
} | |||
/* Karatsuba with lowered space complexity | |||
* T(n) = 3 * ceil(n/2) + T(ceil(n / 2)) */ | |||
static void gf2x_mul_kar(DIGIT *R, | |||
const DIGIT *A, | |||
const DIGIT *B, | |||
size_t n, | |||
DIGIT *stack) { | |||
if (n < MIN_KAR_DIGITS) { | |||
gf2x_mul_n(R, A, B, n); | |||
return; | |||
} | |||
size_t l = (n + 1) / 2; // limb size = ceil(n / 2) | |||
size_t d = n & 1; | |||
const DIGIT *a1 = A; // length n - d | |||
const DIGIT *a0 = A + l - d; // length n | |||
const DIGIT *b1 = B; | |||
const DIGIT *b0 = B + l - d; | |||
DIGIT *aa = stack; | |||
DIGIT *bb = aa + l; | |||
DIGIT *cc = bb + l; | |||
stack = cc + l; // 3l space requirement at each level | |||
DIGIT *c3 = R + l - 2 * d; | |||
DIGIT *c2 = c3 + l; | |||
DIGIT *c1 = c2 + l; | |||
gf2x_mul_kar(c2, a0, b0, l, stack); // L in low part of R | |||
gf2x_mul_kar(R, a1, b1, l - d, stack); // H in higher part of R | |||
gf2x_add_asymm(aa, l, a0, l - d, a1); // AH + AL | |||
gf2x_add_asymm(bb, l, b0, l - d, b1); // BH + BL | |||
gf2x_add(cc, c3, c2, l); // HL + LH in cc | |||
gf2x_mul_kar(c3, aa, bb, l, stack); // M = (AH + AL) x (BH + BL) | |||
gf2x_add_asymm(c3, l, c3, l - 2 * d, R); // add HH | |||
gf2x_acc(c2, c1, l); // add LL | |||
gf2x_acc(c3, cc, l); // add HL + LH | |||
gf2x_acc(c2, cc, l); // add HL + LH | |||
} | |||
static void gf2x_div_w_plus_one(DIGIT *A, size_t n) { | |||
size_t i; | |||
for (i = 0; i < n - 2; i++) { | |||
A[i + 1] ^= A[i]; // runs n - 2 times | |||
} | |||
} | |||
static void gf2x_shift_left_w(DIGIT *A, size_t n) { | |||
size_t i; | |||
for (i = 0; i < n - 1; i++) { | |||
A[i] = A[i + 1]; | |||
} | |||
A[i] = 0; | |||
} | |||
/* Word-aligned Toom-Cook 3, source: | |||
* Brent, Richard P., et al. "Faster multiplication in GF (2)[x]." | |||
* International Algorithmic Number Theory Symposium. | |||
* Springer, Berlin, Heidelberg, 2008. */ | |||
static void gf2x_mul_tc3w(DIGIT *R, | |||
const DIGIT *A, | |||
const DIGIT *B, | |||
size_t n, | |||
DIGIT *stack) { | |||
if (n < MIN_TOOM_DIGITS) { | |||
gf2x_mul_kar(R, A, B, n, stack); | |||
return; | |||
} | |||
size_t l = (n + 2) / 3; // size of a0, a1, b0, b1 | |||
size_t r = n - 2 * l; // remaining sizes (a2, b2) | |||
size_t x = 2 * l + 4; // size of c1, c2, c3, c4 | |||
size_t z = r + 2 > l + 1 ? r + 2 : l + 1; // size of c5 | |||
const DIGIT *a0 = A; | |||
const DIGIT *a1 = A + l; | |||
const DIGIT *a2 = A + 2 * l; | |||
const DIGIT *b0 = B; | |||
const DIGIT *b1 = B + l; | |||
const DIGIT *b2 = B + 2 * l; | |||
DIGIT *c0 = R; // c0 and c4 in the result | |||
DIGIT *c4 = R + 4 * l; | |||
DIGIT *c1 = stack; // the rest in the stack | |||
DIGIT *c2 = c1 + x; | |||
DIGIT *c3 = c2 + x; | |||
DIGIT *c5 = c3 + x; | |||
stack = c5 + z; // Worst-case 7l + 14 | |||
// Evaluation | |||
c0[0] = 0; // c0[z] = a1*W + a2*W^2 | |||
c0[l + 1] = 0; | |||
gf2x_cpy(c0 + 1, a1, l); | |||
gf2x_acc(c0 + 2, a2, r); | |||
c4[0] = 0; // c4[z] = b1*W + b2*W^2 | |||
c4[l + 1] = 0; | |||
gf2x_cpy(c4 + 1, b1, l); | |||
gf2x_acc(c4 + 2, b2, r); | |||
gf2x_cpy(c5, a0, l); // c5[l] = a0 + a1 + a2 | |||
gf2x_acc(c5, a1, l); | |||
gf2x_acc(c5, a2, r); | |||
gf2x_cpy(c2, b0, l); // c2[l] = b0 + b1 + b2 | |||
gf2x_acc(c2, b1, l); | |||
gf2x_acc(c2, b2, r); | |||
gf2x_mul_tc3w(c1, c2, c5, l, stack); // c1[2l] = c2 * c5 | |||
gf2x_add_asymm2(c5, z, c0, l, c5); // c5[z] += c0, z >= l | |||
gf2x_add_asymm2(c2, z, c4, l, c2); // c2[z] += c4, idem | |||
gf2x_acc(c0, a0, l); // c0[l] += a0 | |||
gf2x_acc(c4, b0, l); // c4[l] += b0 | |||
gf2x_mul_tc3w(c3, c2, c5, z, stack); // c3[2z] = c2 * c5 | |||
gf2x_mul_tc3w(c2, c0, c4, z, stack); // c2[2z] = c0 * c4 | |||
gf2x_mul_tc3w(c0, a0, b0, l, stack); // c0[2l] = a0 * b0 | |||
gf2x_mul_tc3w(c4, a2, b2, r, stack); // c4[2r] = a2 * b2 | |||
// Interpolation | |||
gf2x_acc(c3, c2, 2 * z); // c3[2z] += c2 | |||
gf2x_acc(c2, c0, 2 * l); // c2[2z] += c0 | |||
gf2x_shift_left_w(c2, 2 * z); // c2[2z] = c2/y + c3 | |||
gf2x_acc(c2, c3, 2 * z); | |||
gf2x_acc(c2, c4, 2 * r); // c2[2z] += c4 + c4**3 | |||
gf2x_acc(c2 + 3, c4, 2 * r); | |||
gf2x_div_w_plus_one(c2, 2 * z); // c2[2z-1] = c2/(W+1) | |||
gf2x_acc(c1, c0, 2 * l); // c1[2l] += c0 | |||
gf2x_acc(c3, c1, 2 * l); // c3[2z] += c1 | |||
gf2x_shift_left_w(c3, 2 * z); // c3[2z-2] = c3/(W^2 + W) | |||
gf2x_div_w_plus_one(c3, 2 * z - 1); | |||
gf2x_add_asymm2(c1, 2 * z, c2, 2 * l, c1); // c1[2z-1] += c2 + c4 | |||
gf2x_acc(c1, c4, 2 * r); // size c2 >= c1 >= c4 | |||
gf2x_acc(c2, c3, 2 * z - 1); // c2[2z-1] += c3 | |||
// Recombination | |||
gf2x_cpy(R + 2 * l, c2, 2 * l); | |||
gf2x_acc(R + l, c1, 2 * z - 1); | |||
gf2x_acc(R + 3 * l, c3, 2 * z - 1); | |||
} | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mul(DIGIT *R, const DIGIT *A, const DIGIT *B, size_t n) { | |||
DIGIT stack[STACK_WORDS]; | |||
gf2x_mul_tc3w(R, A, B, n, stack); | |||
} | |||
@@ -1,63 +0,0 @@ | |||
#ifndef GF2X_ARITH_H | |||
#define GF2X_ARITH_H | |||
#include <inttypes.h> | |||
#include <stddef.h> | |||
/* | |||
* Elements of GF(2)[x] are stored in compact dense binary form. | |||
* | |||
* Each bit in a byte is assumed to be the coefficient of a binary | |||
* polynomial f(x), in Big-Endian format (i.e., reading everything from | |||
* left to right, the most significant element is met first): | |||
* | |||
* byte:(0000 0000) == 0x00 ... f(x) == 0 | |||
* byte:(0000 0001) == 0x01 ... f(x) == 1 | |||
* byte:(0000 0010) == 0x02 ... f(x) == x | |||
* byte:(0000 0011) == 0x03 ... f(x) == x+1 | |||
* ... ... ... | |||
* byte:(0000 1111) == 0x0F ... f(x) == x^{3}+x^{2}+x+1 | |||
* ... ... ... | |||
* byte:(1111 1111) == 0xFF ... f(x) == x^{7}+x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+1 | |||
* | |||
* | |||
* A "machine word" (A_i) is considered as a DIGIT. | |||
* Bytes in a DIGIT are assumed in Big-Endian format: | |||
* E.g., if sizeof(DIGIT) == 4: | |||
* A_i: A_{i,3} A_{i,2} A_{i,1} A_{i,0}. | |||
* A_{i,3} denotes the most significant byte, A_{i,0} the least significant one. | |||
* f(x) == x^{31} + ... + x^{24} + | |||
* + x^{23} + ... + x^{16} + | |||
* + x^{15} + ... + x^{8} + | |||
* + x^{7} + ... + x^{0} | |||
* | |||
* | |||
* Multi-precision elements (i.e., with multiple DIGITs) are stored in | |||
* Big-endian format: | |||
* A = A_{n-1} A_{n-2} ... A_1 A_0 | |||
* | |||
* position[A_{n-1}] == 0 | |||
* position[A_{n-2}] == 1 | |||
* ... | |||
* position[A_{1}] == n-2 | |||
* position[A_{0}] == n-1 | |||
*/ | |||
typedef uint64_t DIGIT; | |||
#define DIGIT_SIZE_B (8) | |||
#define DIGIT_SIZE_b (DIGIT_SIZE_B << 3) | |||
#define POSITION_T uint32_t | |||
#define MIN_KAR_DIGITS 10 | |||
#define MIN_TOOM_DIGITS 42 | |||
#define STACK_KAR_ONLY 4497 | |||
#define STACK_WORDS 5336 | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_add(DIGIT Res[], const DIGIT A[], const DIGIT B[], size_t n); | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_cmov(DIGIT *r, const DIGIT *a, size_t len, int c); | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_right_bit_shift_n(size_t length, DIGIT in[], size_t amount); | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_left_bit_shift_n(size_t length, DIGIT in[], size_t amount); | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mul(DIGIT *R, const DIGIT *A, const DIGIT *B, size_t n); | |||
#endif |
@@ -1,529 +0,0 @@ | |||
#include "gf2x_arith_mod_xPplusOne.h" | |||
#include "rng.h" | |||
#include "sort.h" | |||
#include <string.h> // memcpy(...), memset(...) | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_copy(DIGIT dest[], const DIGIT in[]) { | |||
for (size_t i = 0; i < NUM_DIGITS_GF2X_ELEMENT; i++) { | |||
dest[i] = in[i]; | |||
} | |||
} | |||
/* returns the coefficient of the x^exponent term as the LSB of a digit */ | |||
DIGIT PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_get_coeff(const DIGIT poly[], size_t exponent) { | |||
size_t straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent; | |||
size_t digitIdx = straightIdx / DIGIT_SIZE_b; | |||
size_t inDigitIdx = straightIdx % DIGIT_SIZE_b; | |||
return (poly[digitIdx] >> (DIGIT_SIZE_b - 1 - inDigitIdx)) & ((DIGIT) 1) ; | |||
} | |||
/* sets the coefficient of the x^exponent term as the LSB of a digit */ | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_set_coeff(DIGIT poly[], size_t exponent, DIGIT value) { | |||
size_t straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent; | |||
size_t digitIdx = straightIdx / DIGIT_SIZE_b; | |||
size_t inDigitIdx = straightIdx % DIGIT_SIZE_b; | |||
/* clear given coefficient */ | |||
DIGIT mask = ~(((DIGIT) 1) << (DIGIT_SIZE_b - 1 - inDigitIdx)); | |||
poly[digitIdx] = poly[digitIdx] & mask; | |||
poly[digitIdx] = poly[digitIdx] | ((value & ((DIGIT) 1)) << (DIGIT_SIZE_b - 1 - inDigitIdx)); | |||
} | |||
/* toggles (flips) the coefficient of the x^exponent term as the LSB of a digit */ | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_toggle_coeff(DIGIT poly[], size_t exponent) { | |||
size_t straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent; | |||
size_t digitIdx = straightIdx / DIGIT_SIZE_b; | |||
size_t inDigitIdx = straightIdx % DIGIT_SIZE_b; | |||
/* clear given coefficient */ | |||
DIGIT mask = (((DIGIT) 1) << (DIGIT_SIZE_b - 1 - inDigitIdx)); | |||
poly[digitIdx] = poly[digitIdx] ^ mask; | |||
} | |||
/* population count for an unsigned 64-bit integer | |||
Source: Hacker's delight, p.66 */ | |||
static int popcount_uint64t(uint64_t x) { | |||
x -= (x >> 1) & 0x5555555555555555; | |||
x = (x & 0x3333333333333333) + ((x >> 2) & 0x3333333333333333); | |||
x = (x + (x >> 4)) & 0x0f0f0f0f0f0f0f0f; | |||
return (int)((x * 0x0101010101010101) >> 56); | |||
} | |||
/* population count for a single polynomial */ | |||
int PQCLEAN_LEDAKEMLT32_LEAKTIME_population_count(const DIGIT *poly) { | |||
int ret = 0; | |||
for (int i = NUM_DIGITS_GF2X_ELEMENT - 1; i >= 0; i--) { | |||
ret += popcount_uint64t(poly[i]); | |||
} | |||
return ret; | |||
} | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_add(DIGIT Res[], const DIGIT A[], const DIGIT B[]) { | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_add(Res, A, B, NUM_DIGITS_GF2X_ELEMENT); | |||
} | |||
static void gf2x_mod(DIGIT out[], const DIGIT in[]) { | |||
DIGIT aux[NUM_DIGITS_GF2X_ELEMENT + 1]; | |||
memcpy(aux, in, (NUM_DIGITS_GF2X_ELEMENT + 1)*DIGIT_SIZE_B); | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_right_bit_shift_n(NUM_DIGITS_GF2X_ELEMENT + 1, aux, | |||
MSb_POSITION_IN_MSB_DIGIT_OF_MODULUS); | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_add(out, aux + 1, in + NUM_DIGITS_GF2X_ELEMENT, | |||
NUM_DIGITS_GF2X_ELEMENT); | |||
out[0] &= ((DIGIT)1 << MSb_POSITION_IN_MSB_DIGIT_OF_MODULUS) - 1; | |||
} | |||
static void right_bit_shift(size_t length, DIGIT in[]) { | |||
size_t j; | |||
for (j = length - 1; j > 0; j--) { | |||
in[j] >>= 1; | |||
in[j] |= (in[j - 1] & (DIGIT)0x01) << (DIGIT_SIZE_b - 1); | |||
} | |||
in[j] >>= 1; | |||
} | |||
/* shifts by whole digits */ | |||
static void left_DIGIT_shift_n(size_t length, DIGIT in[], size_t amount) { | |||
size_t j; | |||
for (j = 0; (j + amount) < length; j++) { | |||
in[j] = in[j + amount]; | |||
} | |||
for (; j < length; j++) { | |||
in[j] = (DIGIT)0; | |||
} | |||
} | |||
/* may shift by an arbitrary amount*/ | |||
static void left_bit_shift_wide_n(size_t length, DIGIT in[], size_t amount) { | |||
left_DIGIT_shift_n(length, in, amount / DIGIT_SIZE_b); | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_left_bit_shift_n(length, in, amount % DIGIT_SIZE_b); | |||
} | |||
/* Hackers delight, reverses a uint64_t */ | |||
static DIGIT reverse_digit(DIGIT x) { | |||
uint64_t t; | |||
x = (x << 31) | (x >> 33); | |||
t = (x ^ (x >> 20)) & 0x00000FFF800007FFLL; | |||
x = (t | (t << 20)) ^ x; | |||
t = (x ^ (x >> 8)) & 0x00F8000F80700807LL; | |||
x = (t | (t << 8)) ^ x; | |||
t = (x ^ (x >> 4)) & 0x0808708080807008LL; | |||
x = (t | (t << 4)) ^ x; | |||
t = (x ^ (x >> 2)) & 0x1111111111111111LL; | |||
x = (t | (t << 2)) ^ x; | |||
return x; | |||
} | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_transpose_in_place(DIGIT A[]) { | |||
/* it keeps the lsb in the same position and | |||
* inverts the sequence of the remaining bits */ | |||
DIGIT mask = (DIGIT)0x1; | |||
DIGIT rev1, rev2, a00; | |||
int slack_bits_amount = NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - P; | |||
a00 = A[NUM_DIGITS_GF2X_ELEMENT - 1] & mask; | |||
right_bit_shift(NUM_DIGITS_GF2X_ELEMENT, A); | |||
for (size_t i = NUM_DIGITS_GF2X_ELEMENT - 1; i >= (NUM_DIGITS_GF2X_ELEMENT + 1) / 2; i--) { | |||
rev1 = reverse_digit(A[i]); | |||
rev2 = reverse_digit(A[NUM_DIGITS_GF2X_ELEMENT - 1 - i]); | |||
A[i] = rev2; | |||
A[NUM_DIGITS_GF2X_ELEMENT - 1 - i] = rev1; | |||
} | |||
if (slack_bits_amount) { | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_right_bit_shift_n(NUM_DIGITS_GF2X_ELEMENT, A, slack_bits_amount); | |||
} | |||
A[NUM_DIGITS_GF2X_ELEMENT - 1] = (A[NUM_DIGITS_GF2X_ELEMENT - 1] & (~mask)) | a00; | |||
} | |||
static void rotate_bit_right(DIGIT in[]) { /* x^{-1} * in(x) mod x^P+1 */ | |||
DIGIT rotated_bit = in[NUM_DIGITS_GF2X_ELEMENT - 1] & ((DIGIT)0x1); | |||
right_bit_shift(NUM_DIGITS_GF2X_ELEMENT, in); | |||
int msb_offset_in_digit = MSb_POSITION_IN_MSB_DIGIT_OF_MODULUS - 1; | |||
rotated_bit = rotated_bit << msb_offset_in_digit; | |||
in[0] |= rotated_bit; | |||
} | |||
/* cond swap: swaps digits A and B if swap_mask == -1 */ | |||
static void gf2x_cswap(DIGIT *a, DIGIT *b, int32_t swap_mask) { | |||
DIGIT t; | |||
for (size_t i = 0; i < NUM_DIGITS_GF2X_ELEMENT; i++) { | |||
t = swap_mask & (a[i] ^ b[i]); | |||
a[i] ^= t; | |||
b[i] ^= t; | |||
} | |||
} | |||
/* returns -1 mask if x != 0, otherwise 0 */ | |||
static inline int32_t nonzero(DIGIT x) { | |||
DIGIT t = x; | |||
t = (~t) + 1; | |||
t >>= DIGIT_SIZE_b - 1; | |||
return -((int32_t)t); | |||
} | |||
/* returns -1 mask if x < 0 else 0 */ | |||
static inline int32_t negative(int x) { | |||
uint32_t u = x; | |||
u >>= 31; | |||
return -((int32_t)u); | |||
} | |||
/* return f(0) as digit */ | |||
static inline DIGIT lsb(const DIGIT *p) { | |||
DIGIT mask = (DIGIT)1; | |||
return p[NUM_DIGITS_GF2X_ELEMENT - 1] & mask; | |||
} | |||
/* multiply poly with scalar and accumulate, expects s all-zero of all-one mask */ | |||
static void gf2x_mult_scalar_acc(DIGIT *f, const DIGIT *g, const DIGIT s) { | |||
for (size_t i = 0; i < NUM_DIGITS_GF2X_ELEMENT; i++) { | |||
f[i] = f[i] ^ (s & g[i]); | |||
} | |||
} | |||
/* constant-time inverse, source: gcd.cr.yp.to */ | |||
int PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_inverse(DIGIT out[], const DIGIT in[]) { | |||
int32_t swap, delta = 1; | |||
DIGIT g0_mask; | |||
DIGIT f[NUM_DIGITS_GF2X_MODULUS] = {0}; // f = x^P + 1 | |||
DIGIT g[NUM_DIGITS_GF2X_ELEMENT]; // g = in | |||
DIGIT *v = out; // v = 0, save space | |||
DIGIT r[NUM_DIGITS_GF2X_ELEMENT] = {0}; // r = 1 | |||
f[NUM_DIGITS_GF2X_MODULUS - 1] = 1; | |||
f[0] |= ((DIGIT)1 << MSb_POSITION_IN_MSB_DIGIT_OF_MODULUS); | |||
for (size_t i = 0; i < NUM_DIGITS_GF2X_ELEMENT; i++) { | |||
g[i] = in[i]; | |||
} | |||
for (size_t i = 0; i < NUM_DIGITS_GF2X_ELEMENT; i++) { | |||
v[i] = 0; | |||
} | |||
r[NUM_DIGITS_GF2X_ELEMENT - 1] = 1; | |||
for (int loop = 0; loop < 2 * P - 1; ++loop) { | |||
swap = negative(-delta) & nonzero(lsb(g)); // swap = -1 if -delta < 0 AND g(0) != 0 | |||
delta ^= swap & (delta ^ -delta); // cond swap delta with -delta if swap | |||
delta++; | |||
gf2x_cswap(f, g, swap); | |||
gf2x_cswap(v, r, swap); | |||
g0_mask = ~lsb(g) + 1; | |||
// g = (g - g0 * f) / x | |||
gf2x_mult_scalar_acc(g, f, g0_mask); | |||
right_bit_shift(NUM_DIGITS_GF2X_ELEMENT, g); | |||
// r = (r - g0 * v) / x | |||
gf2x_mult_scalar_acc(r, v, g0_mask); | |||
rotate_bit_right(r); | |||
} | |||
return nonzero(delta); // -1 if fail, 0 if success | |||
} | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_mul(DIGIT Res[], const DIGIT A[], const DIGIT B[]) { | |||
DIGIT aux[2 * NUM_DIGITS_GF2X_ELEMENT]; | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mul(aux, A, B, NUM_DIGITS_GF2X_ELEMENT); | |||
gf2x_mod(Res, aux); | |||
} | |||
/*PRE: the representation of the sparse coefficients is sorted in increasing | |||
order of the coefficients themselves */ | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_mul_dense_to_sparse(DIGIT Res[], const DIGIT dense[], | |||
POSITION_T sparse[], size_t nPos) { | |||
DIGIT aux[2 * NUM_DIGITS_GF2X_ELEMENT] = {0x00}; | |||
DIGIT resDouble[2 * NUM_DIGITS_GF2X_ELEMENT] = {0x00}; | |||
memcpy(aux + NUM_DIGITS_GF2X_ELEMENT, dense, NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B); | |||
memcpy(resDouble + NUM_DIGITS_GF2X_ELEMENT, dense, NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B); | |||
if (sparse[0] != INVALID_POS_VALUE) { | |||
left_bit_shift_wide_n(2 * NUM_DIGITS_GF2X_ELEMENT, resDouble, sparse[0]); | |||
left_bit_shift_wide_n(2 * NUM_DIGITS_GF2X_ELEMENT, aux, sparse[0]); | |||
for (size_t i = 1; i < nPos; i++) { | |||
if (sparse[i] != INVALID_POS_VALUE) { | |||
left_bit_shift_wide_n(2 * NUM_DIGITS_GF2X_ELEMENT, aux, (sparse[i] - sparse[i - 1]) ); | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_add(resDouble, aux, resDouble, 2 * NUM_DIGITS_GF2X_ELEMENT); | |||
} | |||
} | |||
} | |||
gf2x_mod(Res, resDouble); | |||
} | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_transpose_in_place_sparse(size_t sizeA, POSITION_T A[]) { | |||
POSITION_T t; | |||
size_t i = 0, j; | |||
if (A[i] == 0) { | |||
i = 1; | |||
} | |||
j = i; | |||
for (; i < sizeA && A[i] != INVALID_POS_VALUE; i++) { | |||
A[i] = P - A[i]; | |||
} | |||
for (i -= 1; j < i; j++, i--) { | |||
t = A[j]; | |||
A[j] = A[i]; | |||
A[i] = t; | |||
} | |||
} | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_mul_sparse(size_t sizeR, POSITION_T Res[], | |||
size_t sizeA, const POSITION_T A[], | |||
size_t sizeB, const POSITION_T B[]) { | |||
POSITION_T prod; | |||
POSITION_T lastReadPos; | |||
size_t duplicateCount; | |||
size_t write_idx, read_idx; | |||
/* compute all the coefficients, filling invalid positions with P*/ | |||
size_t lastFilledPos = 0; | |||
for (size_t i = 0 ; i < sizeA ; i++) { | |||
for (size_t j = 0 ; j < sizeB ; j++) { | |||
prod = A[i] + B[j]; | |||
prod = ( (prod >= P) ? prod - P : prod); | |||
if ((A[i] != INVALID_POS_VALUE) && | |||
(B[j] != INVALID_POS_VALUE)) { | |||
Res[lastFilledPos] = prod; | |||
} else { | |||
Res[lastFilledPos] = INVALID_POS_VALUE; | |||
} | |||
lastFilledPos++; | |||
} | |||
} | |||
while (lastFilledPos < sizeR) { | |||
Res[lastFilledPos] = INVALID_POS_VALUE; | |||
lastFilledPos++; | |||
} | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_uint32_sort(Res, sizeR); | |||
/* eliminate duplicates */ | |||
write_idx = read_idx = 0; | |||
while (read_idx < sizeR && Res[read_idx] != INVALID_POS_VALUE) { | |||
lastReadPos = Res[read_idx]; | |||
read_idx++; | |||
duplicateCount = 1; | |||
while ( (Res[read_idx] == lastReadPos) && (Res[read_idx] != INVALID_POS_VALUE)) { | |||
read_idx++; | |||
duplicateCount++; | |||
} | |||
if (duplicateCount % 2) { | |||
Res[write_idx] = lastReadPos; | |||
write_idx++; | |||
} | |||
} | |||
/* fill remaining cells with INVALID_POS_VALUE */ | |||
for (; write_idx < sizeR; write_idx++) { | |||
Res[write_idx] = INVALID_POS_VALUE; | |||
} | |||
} | |||
/* the implementation is safe even in case A or B alias with the result | |||
* PRE: A and B should be sorted, disjunct arrays ending with INVALID_POS_VALUE */ | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_add_sparse(size_t sizeR, POSITION_T Res[], | |||
size_t sizeA, const POSITION_T A[], | |||
size_t sizeB, const POSITION_T B[]) { | |||
POSITION_T tmpRes[DV * M]; | |||
size_t idxA = 0, idxB = 0, idxR = 0; | |||
while ( idxA < sizeA && | |||
idxB < sizeB && | |||
A[idxA] != INVALID_POS_VALUE && | |||
B[idxB] != INVALID_POS_VALUE ) { | |||
if (A[idxA] == B[idxB]) { | |||
idxA++; | |||
idxB++; | |||
} else { | |||
if (A[idxA] < B[idxB]) { | |||
tmpRes[idxR] = A[idxA]; | |||
idxA++; | |||
} else { | |||
tmpRes[idxR] = B[idxB]; | |||
idxB++; | |||
} | |||
idxR++; | |||
} | |||
} | |||
while (idxA < sizeA && A[idxA] != INVALID_POS_VALUE) { | |||
tmpRes[idxR] = A[idxA]; | |||
idxA++; | |||
idxR++; | |||
} | |||
while (idxB < sizeB && B[idxB] != INVALID_POS_VALUE) { | |||
tmpRes[idxR] = B[idxB]; | |||
idxB++; | |||
idxR++; | |||
} | |||
while (idxR < sizeR) { | |||
tmpRes[idxR] = INVALID_POS_VALUE; | |||
idxR++; | |||
} | |||
memcpy(Res, tmpRes, sizeof(POSITION_T)*sizeR); | |||
} | |||
/* Return a uniform random value in the range 0..n-1 inclusive, | |||
* applying a rejection sampling strategy and exploiting as a random source | |||
* the NIST seedexpander seeded with the proper key. | |||
* Assumes that the maximum value for the range n is 2^32-1 | |||
*/ | |||
static uint32_t rand_range(const unsigned int n, const int logn, AES_XOF_struct *seed_expander_ctx) { | |||
unsigned long required_rnd_bytes = (logn + 7) / 8; | |||
unsigned char rnd_char_buffer[4]; | |||
uint32_t rnd_value; | |||
uint32_t mask = ( (uint32_t)1 << logn) - 1; | |||
do { | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_seedexpander(seed_expander_ctx, rnd_char_buffer, required_rnd_bytes); | |||
/* obtain an endianness independent representation of the generated random | |||
bytes into an unsigned integer */ | |||
rnd_value = ((uint32_t)rnd_char_buffer[3] << 24) + | |||
((uint32_t)rnd_char_buffer[2] << 16) + | |||
((uint32_t)rnd_char_buffer[1] << 8) + | |||
((uint32_t)rnd_char_buffer[0] << 0) ; | |||
rnd_value = mask & rnd_value; | |||
} while (rnd_value >= n); | |||
return rnd_value; | |||
} | |||
/* Obtains fresh randomness and seed-expands it until all the required positions | |||
* for the '1's in the circulant block are obtained */ | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_rand_circulant_sparse_block(POSITION_T *pos_ones, | |||
size_t countOnes, | |||
AES_XOF_struct *seed_expander_ctx) { | |||
size_t duplicated, placedOnes = 0; | |||
POSITION_T p; | |||
while (placedOnes < countOnes) { | |||
p = rand_range(NUM_BITS_GF2X_ELEMENT, | |||
P_BITS, | |||
seed_expander_ctx); | |||
duplicated = 0; | |||
for (size_t j = 0; j < placedOnes; j++) { | |||
if (pos_ones[j] == p) { | |||
duplicated = 1; | |||
} | |||
} | |||
if (duplicated == 0) { | |||
pos_ones[placedOnes] = p; | |||
placedOnes++; | |||
} | |||
} | |||
} | |||
/* Returns random weight-t circulant block */ | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_rand_circulant_blocks_sequence(DIGIT sequence[N0 * NUM_DIGITS_GF2X_ELEMENT], | |||
AES_XOF_struct *seed_expander_ctx) { | |||
size_t polyIndex, duplicated, counter = 0; | |||
POSITION_T p, exponent, rndPos[NUM_ERRORS_T]; | |||
memset(sequence, 0x00, N0 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B); | |||
while (counter < NUM_ERRORS_T) { | |||
p = rand_range(N0 * NUM_BITS_GF2X_ELEMENT, P_BITS, seed_expander_ctx); | |||
duplicated = 0; | |||
for (size_t j = 0; j < counter; j++) { | |||
if (rndPos[j] == p) { | |||
duplicated = 1; | |||
} | |||
} | |||
if (duplicated == 0) { | |||
rndPos[counter] = p; | |||
counter++; | |||
} | |||
} | |||
for (size_t j = 0; j < counter; j++) { | |||
polyIndex = rndPos[j] / P; | |||
exponent = rndPos[j] % P; | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_set_coeff( sequence + NUM_DIGITS_GF2X_ELEMENT * polyIndex, exponent, | |||
( (DIGIT) 1)); | |||
} | |||
} | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_rand_error_pos(POSITION_T errorPos[NUM_ERRORS_T], | |||
AES_XOF_struct *seed_expander_ctx) { | |||
int duplicated; | |||
size_t counter = 0; | |||
while (counter < NUM_ERRORS_T) { | |||
POSITION_T p = rand_range(N0 * NUM_BITS_GF2X_ELEMENT, P_BITS, seed_expander_ctx); | |||
duplicated = 0; | |||
for (size_t j = 0; j < counter; j++) { | |||
if (errorPos[j] == p) { | |||
duplicated = 1; | |||
} | |||
} | |||
if (duplicated == 0) { | |||
errorPos[counter] = p; | |||
counter++; | |||
} | |||
} | |||
} | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_expand_error(DIGIT sequence[N0 * NUM_DIGITS_GF2X_ELEMENT], | |||
const POSITION_T errorPos[NUM_ERRORS_T]) { | |||
size_t polyIndex; | |||
POSITION_T exponent; | |||
memset(sequence, 0x00, N0 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B); | |||
for (int j = 0; j < NUM_ERRORS_T; j++) { | |||
polyIndex = errorPos[j] / P; | |||
exponent = errorPos[j] % P; | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_set_coeff( sequence + NUM_DIGITS_GF2X_ELEMENT * polyIndex, exponent, | |||
( (DIGIT) 1)); | |||
} | |||
} | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_tobytes(uint8_t *bytes, const DIGIT *poly) { | |||
size_t i, j; | |||
for (i = 0; i < NUM_DIGITS_GF2X_ELEMENT; i++) { | |||
for (j = 0; j < DIGIT_SIZE_B; j++) { | |||
bytes[i * DIGIT_SIZE_B + j] = (uint8_t) (poly[i] >> 8 * j); | |||
} | |||
} | |||
} | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_frombytes(DIGIT *poly, const uint8_t *poly_bytes) { | |||
size_t i, j; | |||
for (i = 0; i < NUM_DIGITS_GF2X_ELEMENT; i++) { | |||
poly[i] = (DIGIT) 0; | |||
for (j = 0; j < DIGIT_SIZE_B; j++) { | |||
poly[i] |= (DIGIT) poly_bytes[i * DIGIT_SIZE_B + j] << 8 * j; | |||
} | |||
} | |||
} |
@@ -1,39 +0,0 @@ | |||
#ifndef GF2X_ARITH_MOD_XPLUSONE_H | |||
#define GF2X_ARITH_MOD_XPLUSONE_H | |||
#include "qc_ldpc_parameters.h" | |||
#include "gf2x_arith.h" | |||
#include "rng.h" | |||
#define NUM_BITS_GF2X_ELEMENT (P) | |||
#define NUM_DIGITS_GF2X_ELEMENT ((P+DIGIT_SIZE_b-1)/DIGIT_SIZE_b) | |||
#define MSb_POSITION_IN_MSB_DIGIT_OF_ELEMENT ((P % DIGIT_SIZE_b) ? (P % DIGIT_SIZE_b)-1 : DIGIT_SIZE_b-1) | |||
#define NUM_BITS_GF2X_MODULUS (P+1) | |||
#define NUM_DIGITS_GF2X_MODULUS ((P+1+DIGIT_SIZE_b-1)/DIGIT_SIZE_b) | |||
#define MSb_POSITION_IN_MSB_DIGIT_OF_MODULUS (P-DIGIT_SIZE_b*(NUM_DIGITS_GF2X_MODULUS-1)) | |||
#define INVALID_POS_VALUE (P) | |||
#define P_BITS (17) | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_copy(DIGIT dest[], const DIGIT in[]); | |||
DIGIT PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_get_coeff(const DIGIT poly[], size_t exponent); | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_set_coeff(DIGIT poly[], size_t exponent, DIGIT value); | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_toggle_coeff(DIGIT poly[], size_t exponent); | |||
int PQCLEAN_LEDAKEMLT32_LEAKTIME_population_count(const DIGIT *poly); | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_add(DIGIT Res[], const DIGIT A[], const DIGIT B[]); | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_mul(DIGIT Res[], const DIGIT A[], const DIGIT B[]); | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_transpose_in_place(DIGIT A[]); | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_rand_circulant_sparse_block(POSITION_T *pos_ones, size_t countOnes, AES_XOF_struct *seed_expander_ctx); | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_rand_circulant_blocks_sequence(DIGIT *sequence, AES_XOF_struct *seed_expander_ctx); | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_rand_error_pos(POSITION_T errorPos[NUM_ERRORS_T], AES_XOF_struct *seed_expander_ctx); | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_expand_error(DIGIT sequence[N0 * NUM_DIGITS_GF2X_ELEMENT], const POSITION_T errorPos[NUM_ERRORS_T]); | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_add_sparse(size_t sizeR, POSITION_T Res[], size_t sizeA, const POSITION_T A[], size_t sizeB, const POSITION_T B[]); | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_transpose_in_place_sparse(size_t sizeA, POSITION_T A[]); | |||
int PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_inverse(DIGIT out[], const DIGIT in[]); | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_mul_sparse(size_t sizeR, POSITION_T Res[], size_t sizeA, const POSITION_T A[], size_t sizeB, const POSITION_T B[]); | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_mul_dense_to_sparse(DIGIT Res[], const DIGIT dense[], POSITION_T sparse[], size_t nPos); | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_tobytes(uint8_t *bytes, const DIGIT *poly); | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_frombytes(DIGIT *poly, const uint8_t *poly_bytes); | |||
#endif |
@@ -1,157 +0,0 @@ | |||
#include "api.h" | |||
#include "niederreiter.h" | |||
#include "randombytes.h" | |||
#include "rng.h" | |||
#include "utils.h" | |||
#include <string.h> | |||
#define pack_ct(sk_bytes, ct) PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_tobytes(sk_bytes, ct); | |||
#define unpack_ct(ct, ct_bytes) PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_frombytes(ct, ct_bytes) | |||
static void pack_pk(uint8_t *pk_bytes, publicKeyNiederreiter_t *pk) { | |||
for (size_t i = 0; i < N0 - 1; i++) { | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_tobytes(pk_bytes + i * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B, | |||
pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT); | |||
} | |||
} | |||
static void unpack_pk(publicKeyNiederreiter_t *pk, const uint8_t *pk_bytes) { | |||
for (size_t i = 0; i < N0 - 1; i++) { | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_frombytes(pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT, | |||
pk_bytes + i * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B); | |||
} | |||
} | |||
static void pack_error(uint8_t *error_bytes, DIGIT *error_digits) { | |||
size_t i; | |||
for (i = 0; i < N0; i++) { | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_tobytes(error_bytes + i * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B, | |||
error_digits + i * NUM_DIGITS_GF2X_ELEMENT); | |||
} | |||
} | |||
/* IND-CCA2 Keygen */ | |||
int PQCLEAN_LEDAKEMLT32_LEAKTIME_crypto_kem_keypair(uint8_t *pk, uint8_t *sk) { | |||
publicKeyNiederreiter_t niederreiter_pk; | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_niederreiter_keygen(&niederreiter_pk, (privateKeyNiederreiter_t *) sk); | |||
pack_pk(pk, &niederreiter_pk); | |||
return 0; | |||
} | |||
/* IND-CCA2 Encapsulation */ | |||
int PQCLEAN_LEDAKEMLT32_LEAKTIME_crypto_kem_enc(uint8_t *ct, uint8_t *ss, const uint8_t *pk) { | |||
publicKeyNiederreiter_t niederreiter_pk; | |||
DIGIT syndrome[NUM_DIGITS_GF2X_ELEMENT]; | |||
AES_XOF_struct hashedAndTruncatedSeed_expander; | |||
POSITION_T errorPos[NUM_ERRORS_T]; | |||
DIGIT error_vector[N0 * NUM_DIGITS_GF2X_ELEMENT]; | |||
uint8_t error_bytes[N0 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B]; | |||
uint8_t seed[TRNG_BYTE_LENGTH]; | |||
uint8_t ss_input[2 * TRNG_BYTE_LENGTH] = {0}; | |||
uint8_t hashedSeed[HASH_BYTE_LENGTH]; | |||
uint8_t hashedAndTruncatedSeed[TRNG_BYTE_LENGTH] = {0}; | |||
uint8_t hashedErrorVector[HASH_BYTE_LENGTH]; | |||
uint8_t hashedAndTruncatedErrorVector[TRNG_BYTE_LENGTH] = {0}; | |||
uint8_t maskedSeed[TRNG_BYTE_LENGTH]; | |||
unpack_pk(&niederreiter_pk, pk); | |||
randombytes(seed, TRNG_BYTE_LENGTH); | |||
memcpy(ss_input, seed, TRNG_BYTE_LENGTH); | |||
HASH_FUNCTION(ss, ss_input, 2 * TRNG_BYTE_LENGTH); | |||
HASH_FUNCTION(hashedSeed, seed, TRNG_BYTE_LENGTH); | |||
memcpy(hashedAndTruncatedSeed, hashedSeed, TRNG_BYTE_LENGTH); | |||
memset(&hashedAndTruncatedSeed_expander, 0x00, sizeof(AES_XOF_struct)); | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_seedexpander_from_trng(&hashedAndTruncatedSeed_expander, hashedAndTruncatedSeed); | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_rand_error_pos(errorPos, &hashedAndTruncatedSeed_expander); | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_expand_error(error_vector, errorPos); | |||
pack_error(error_bytes, error_vector); | |||
HASH_FUNCTION(hashedErrorVector, error_bytes, (N0 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B)); | |||
memcpy(hashedAndTruncatedErrorVector, hashedErrorVector, TRNG_BYTE_LENGTH); | |||
for (size_t i = 0; i < TRNG_BYTE_LENGTH; ++i) { | |||
maskedSeed[i] = seed[i] ^ hashedAndTruncatedErrorVector[i]; | |||
} | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_niederreiter_encrypt(syndrome, | |||
(const publicKeyNiederreiter_t *) &niederreiter_pk, error_vector); | |||
pack_ct(ct, syndrome); | |||
memcpy(ct + (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B), maskedSeed, TRNG_BYTE_LENGTH); | |||
return 0; | |||
} | |||
/* IND-CCA2 Decapsulation */ | |||
int PQCLEAN_LEDAKEMLT32_LEAKTIME_crypto_kem_dec(uint8_t *ss, const uint8_t *ct, const uint8_t *sk) { | |||
DIGIT syndrome[NUM_DIGITS_GF2X_ELEMENT]; | |||
AES_XOF_struct hashedAndTruncatedSeed_expander; | |||
POSITION_T reconstructed_errorPos[NUM_ERRORS_T]; | |||
DIGIT reconstructed_error_vector[N0 * NUM_DIGITS_GF2X_ELEMENT]; | |||
DIGIT decoded_error_vector[N0 * NUM_DIGITS_GF2X_ELEMENT]; | |||
uint8_t decoded_error_bytes[N0 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B]; | |||
uint8_t hashedErrorVector[HASH_BYTE_LENGTH]; | |||
uint8_t hashedAndTruncatedErrorVector[TRNG_BYTE_LENGTH] = {0}; | |||
uint8_t decoded_seed[TRNG_BYTE_LENGTH]; | |||
uint8_t hashed_decoded_seed[HASH_BYTE_LENGTH]; | |||
uint8_t hashedAndTruncated_decoded_seed[TRNG_BYTE_LENGTH] = {0}; | |||
uint8_t ss_input[2 * TRNG_BYTE_LENGTH], tail[TRNG_BYTE_LENGTH] = {0}; | |||
int decode_ok, decrypt_ok, equal; | |||
unpack_ct(syndrome, ct); | |||
decode_ok = PQCLEAN_LEDAKEMLT32_LEAKTIME_niederreiter_decrypt(decoded_error_vector, | |||
(const privateKeyNiederreiter_t *)sk, syndrome); | |||
pack_error(decoded_error_bytes, decoded_error_vector); | |||
HASH_FUNCTION(hashedErrorVector, decoded_error_bytes, N0 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B); | |||
memcpy(hashedAndTruncatedErrorVector, hashedErrorVector, TRNG_BYTE_LENGTH); | |||
for (size_t i = 0; i < TRNG_BYTE_LENGTH; ++i) { | |||
decoded_seed[i] = ct[(NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B) + i] ^ | |||
hashedAndTruncatedErrorVector[i]; | |||
} | |||
HASH_FUNCTION(hashed_decoded_seed, decoded_seed, TRNG_BYTE_LENGTH); | |||
memcpy(hashedAndTruncated_decoded_seed, hashed_decoded_seed, TRNG_BYTE_LENGTH); | |||
memset(&hashedAndTruncatedSeed_expander, 0x00, sizeof(AES_XOF_struct)); | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_seedexpander_from_trng(&hashedAndTruncatedSeed_expander, | |||
hashed_decoded_seed); | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_rand_error_pos(reconstructed_errorPos, &hashedAndTruncatedSeed_expander); | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_expand_error(reconstructed_error_vector, reconstructed_errorPos); | |||
equal = PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_verify(decoded_error_vector, | |||
reconstructed_error_vector, N0 * NUM_DIGITS_GF2X_ELEMENT); | |||
// equal == 0, if the reconstructed error vector match !!! | |||
decrypt_ok = (decode_ok == 1 && equal == 0); | |||
memcpy(ss_input, decoded_seed, TRNG_BYTE_LENGTH); | |||
memcpy(ss_input + sizeof(decoded_seed), tail, TRNG_BYTE_LENGTH); | |||
// Overwrite on failure | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_cmov(ss_input + sizeof(decoded_seed), | |||
((const privateKeyNiederreiter_t *) sk)->decryption_failure_secret, | |||
TRNG_BYTE_LENGTH, | |||
!decrypt_ok); | |||
HASH_FUNCTION(ss, ss_input, 2 * TRNG_BYTE_LENGTH); | |||
return 0; | |||
} |
@@ -1,192 +0,0 @@ | |||
#include "H_Q_matrices_generation.h" | |||
#include "bf_decoding.h" | |||
#include "dfr_test.h" | |||
#include "gf2x_arith_mod_xPplusOne.h" | |||
#include "niederreiter.h" | |||
#include "qc_ldpc_parameters.h" | |||
#include "randombytes.h" | |||
#include "rng.h" | |||
#include <string.h> | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_niederreiter_keygen(publicKeyNiederreiter_t *pk, privateKeyNiederreiter_t *sk) { | |||
AES_XOF_struct keys_expander; | |||
POSITION_T HPosOnes[N0][DV]; | |||
POSITION_T QPosOnes[N0][M]; | |||
POSITION_T LPosOnes[N0][DV * M]; | |||
POSITION_T auxPosOnes[DV * M]; | |||
unsigned char processedQOnes[N0]; | |||
DIGIT Ln0dense[NUM_DIGITS_GF2X_ELEMENT] = {0}; | |||
DIGIT Ln0Inv[NUM_DIGITS_GF2X_ELEMENT] = {0}; | |||
int is_L_full; | |||
int isDFRok = 0; | |||
memset(&keys_expander, 0x00, sizeof(AES_XOF_struct)); | |||
randombytes(sk->prng_seed, TRNG_BYTE_LENGTH); | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_seedexpander_from_trng(&keys_expander, sk->prng_seed); | |||
sk->rejections = (uint8_t) 0; | |||
do { | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_generateHPosOnes(HPosOnes, &keys_expander); | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_generateQPosOnes(QPosOnes, &keys_expander); | |||
for (int i = 0; i < N0; i++) { | |||
for (int j = 0; j < DV * M; j++) { | |||
LPosOnes[i][j] = INVALID_POS_VALUE; | |||
} | |||
} | |||
memset(processedQOnes, 0x00, sizeof(processedQOnes)); | |||
for (int colQ = 0; colQ < N0; colQ++) { | |||
for (int i = 0; i < N0; i++) { | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_mul_sparse(DV * M, auxPosOnes, | |||
DV, HPosOnes[i], | |||
qBlockWeights[i][colQ], QPosOnes[i] + processedQOnes[i]); | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_add_sparse(DV * M, LPosOnes[colQ], | |||
DV * M, LPosOnes[colQ], | |||
DV * M, auxPosOnes); | |||
processedQOnes[i] += qBlockWeights[i][colQ]; | |||
} | |||
} | |||
is_L_full = 1; | |||
for (size_t i = 0; i < N0; i++) { | |||
is_L_full = is_L_full && (LPosOnes[i][DV * M - 1] != INVALID_POS_VALUE); | |||
} | |||
sk->rejections = sk->rejections + 1; | |||
if (is_L_full) { | |||
isDFRok = PQCLEAN_LEDAKEMLT32_LEAKTIME_DFR_test(LPosOnes, &(sk->secondIterThreshold)); | |||
} | |||
} while (!is_L_full || !isDFRok); | |||
sk->rejections = sk->rejections - 1; | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_seedexpander(&keys_expander, | |||
sk->decryption_failure_secret, | |||
(unsigned long)TRNG_BYTE_LENGTH); | |||
for (size_t j = 0; j < DV * M; j++) { | |||
if (LPosOnes[N0 - 1][j] != INVALID_POS_VALUE) { | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_set_coeff(Ln0dense, LPosOnes[N0 - 1][j], 1); | |||
} | |||
} | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_inverse(Ln0Inv, Ln0dense); | |||
for (size_t i = 0; i < N0 - 1; i++) { | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_mul_dense_to_sparse(pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT, | |||
Ln0Inv, | |||
LPosOnes[i], | |||
DV * M); | |||
} | |||
for (size_t i = 0; i < N0 - 1; i++) { | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_transpose_in_place(pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT); | |||
} | |||
} | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_niederreiter_encrypt(DIGIT syndrome[], | |||
const publicKeyNiederreiter_t *pk, | |||
const DIGIT err[]) { | |||
DIGIT saux[NUM_DIGITS_GF2X_ELEMENT]; | |||
memset(syndrome, 0x00, NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B); | |||
for (size_t i = 0; i < N0 - 1; i++) { | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_mul(saux, | |||
pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT, | |||
err + i * NUM_DIGITS_GF2X_ELEMENT); | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_add(syndrome, syndrome, saux); | |||
} | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_add(syndrome, syndrome, err + (N0 - 1)*NUM_DIGITS_GF2X_ELEMENT); | |||
} | |||
int PQCLEAN_LEDAKEMLT32_LEAKTIME_niederreiter_decrypt(DIGIT *err, const privateKeyNiederreiter_t *sk, const DIGIT *syndrome) { | |||
AES_XOF_struct niederreiter_decrypt_expander; | |||
POSITION_T HPosOnes[N0][DV]; | |||
POSITION_T QPosOnes[N0][M]; | |||
POSITION_T LPosOnes[N0][DV * M]; | |||
POSITION_T auxPosOnes[DV * M]; | |||
POSITION_T HtrPosOnes[N0][DV]; | |||
POSITION_T QtrPosOnes[N0][M]; | |||
POSITION_T auxSparse[DV * M]; | |||
POSITION_T Ln0trSparse[DV * M]; | |||
DIGIT err_computed[N0 * NUM_DIGITS_GF2X_ELEMENT] = {0}; | |||
DIGIT err_mockup[N0 * NUM_DIGITS_GF2X_ELEMENT]; | |||
DIGIT privateSyndrome[NUM_DIGITS_GF2X_ELEMENT]; | |||
uint8_t processedQOnes[N0]; | |||
int rejections = sk->rejections; | |||
int decrypt_ok = 0; | |||
int err_weight; | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_seedexpander_from_trng(&niederreiter_decrypt_expander, sk->prng_seed); | |||
do { | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_generateHPosOnes(HPosOnes, &niederreiter_decrypt_expander); | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_generateQPosOnes(QPosOnes, &niederreiter_decrypt_expander); | |||
for (size_t i = 0; i < N0; i++) { | |||
for (size_t j = 0; j < DV * M; j++) { | |||
LPosOnes[i][j] = INVALID_POS_VALUE; | |||
} | |||
} | |||
memset(processedQOnes, 0x00, sizeof(processedQOnes)); | |||
for (size_t colQ = 0; colQ < N0; colQ++) { | |||
for (size_t i = 0; i < N0; i++) { | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_mul_sparse(DV * M, auxPosOnes, | |||
DV, HPosOnes[i], | |||
qBlockWeights[i][colQ], QPosOnes[i] + processedQOnes[i]); | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_add_sparse(DV * M, LPosOnes[colQ], | |||
DV * M, LPosOnes[colQ], | |||
DV * M, auxPosOnes); | |||
processedQOnes[i] += qBlockWeights[i][colQ]; | |||
} | |||
} | |||
rejections--; | |||
} while (rejections >= 0); | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_transposeHPosOnes(HtrPosOnes, HPosOnes); | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_transposeQPosOnes(QtrPosOnes, QPosOnes); | |||
for (size_t i = 0; i < DV * M; i++) { | |||
Ln0trSparse[i] = INVALID_POS_VALUE; | |||
auxSparse[i] = INVALID_POS_VALUE; | |||
} | |||
for (size_t i = 0; i < N0; i++) { | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_mul_sparse(DV * M, auxSparse, | |||
DV, HPosOnes[i], | |||
qBlockWeights[i][N0 - 1], &QPosOnes[i][M - qBlockWeights[i][N0 - 1]]); | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_add_sparse(DV * M, Ln0trSparse, | |||
DV * M, Ln0trSparse, | |||
DV * M, auxSparse); | |||
} | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_transpose_in_place_sparse(DV * M, Ln0trSparse); | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_mul_dense_to_sparse(privateSyndrome, | |||
syndrome, | |||
Ln0trSparse, | |||
DV * M); | |||
decrypt_ok = PQCLEAN_LEDAKEMLT32_LEAKTIME_bf_decoding(err_computed, | |||
(const POSITION_T (*)[DV]) HtrPosOnes, | |||
(const POSITION_T (*)[M]) QtrPosOnes, | |||
privateSyndrome, sk->secondIterThreshold); | |||
err_weight = 0; | |||
for (size_t i = 0 ; i < N0; i++) { | |||
err_weight += PQCLEAN_LEDAKEMLT32_LEAKTIME_population_count(err_computed + (NUM_DIGITS_GF2X_ELEMENT * i)); | |||
} | |||
decrypt_ok = decrypt_ok && (err_weight == NUM_ERRORS_T); | |||
/* prepare mockup error vector in case a decoding failure occurs */ | |||
memcpy(err_mockup, syndrome, NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B); | |||
memcpy(err_mockup + NUM_DIGITS_GF2X_ELEMENT, sk->decryption_failure_secret, TRNG_BYTE_LENGTH); | |||
memset(((unsigned char *) err_mockup) + (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B) + TRNG_BYTE_LENGTH, 0x00, | |||
(N0 - 1)*NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B - TRNG_BYTE_LENGTH); | |||
memcpy(err, err_computed, N0 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B); | |||
// Overwrite on decryption failure | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_cmov(err, err_mockup, N0 * NUM_DIGITS_GF2X_ELEMENT, !decrypt_ok); | |||
return decrypt_ok; | |||
} |
@@ -1,24 +0,0 @@ | |||
#ifndef NIEDERREITER_H | |||
#define NIEDERREITER_H | |||
#include "gf2x_arith_mod_xPplusOne.h" | |||
#include "qc_ldpc_parameters.h" | |||
#include "rng.h" | |||
typedef struct { | |||
unsigned char prng_seed[TRNG_BYTE_LENGTH]; | |||
uint8_t rejections; | |||
uint8_t secondIterThreshold; | |||
uint8_t decryption_failure_secret[TRNG_BYTE_LENGTH]; | |||
} privateKeyNiederreiter_t; | |||
typedef struct { | |||
DIGIT Mtr[(N0 - 1)*NUM_DIGITS_GF2X_ELEMENT]; | |||
} publicKeyNiederreiter_t; | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_niederreiter_keygen(publicKeyNiederreiter_t *pk, privateKeyNiederreiter_t *sk); | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_niederreiter_encrypt(DIGIT syndrome[], const publicKeyNiederreiter_t *pk, const DIGIT err[]); | |||
int PQCLEAN_LEDAKEMLT32_LEAKTIME_niederreiter_decrypt(DIGIT *err, const privateKeyNiederreiter_t *sk, const DIGIT *syndrome); | |||
#endif |
@@ -1,27 +0,0 @@ | |||
#ifndef QC_LDPC_PARAMETERS_H | |||
#define QC_LDPC_PARAMETERS_H | |||
#include "fips202.h" | |||
#define TRNG_BYTE_LENGTH (32) | |||
#define HASH_BYTE_LENGTH (48) | |||
#define HASH_FUNCTION sha3_384 | |||
#define N0 (2) | |||
#define P (96221) // modulus(x) = x^P-1 | |||
#define DV (11) // odd number | |||
#define M (11) | |||
#define M0 (6) | |||
#define M1 (5) | |||
#define NUM_ERRORS_T (199) | |||
// Derived parameters, they are useful for QC-LDPC algorithms | |||
#define HASH_BIT_LENGTH (HASH_BYTE_LENGTH << 3) | |||
#define K ((N0-1)*P) | |||
#define N (N0*P) | |||
#define DC (N0*DV) | |||
#define Q_BLOCK_WEIGHTS {{M0,M1},{M1,M0}} | |||
static const unsigned char qBlockWeights[N0][N0] = Q_BLOCK_WEIGHTS; | |||
#endif |
@@ -1,110 +0,0 @@ | |||
#include "rng.h" | |||
#include <string.h> // void *memset(void *s, int c, size_t n); | |||
#include "aes.h" | |||
#include "qc_ldpc_parameters.h" | |||
/* | |||
seedexpander_init() | |||
ctx - stores the current state of an instance of the seed expander | |||
seed - a 32 byte random value | |||
diversifier - an 8 byte diversifier | |||
maxlen - maximum number of bytes (less than 2**32) generated under this seed and diversifier | |||
*/ | |||
static void seedexpander_init(AES_XOF_struct *ctx, | |||
uint8_t *seed, | |||
uint8_t *diversifier, | |||
size_t maxlen) { | |||
ctx->length_remaining = maxlen; | |||
memset(ctx->key, 0, 32); | |||
int max_accessible_seed_len = TRNG_BYTE_LENGTH < 32 ? 32 : TRNG_BYTE_LENGTH; | |||
memcpy(ctx->key, seed, max_accessible_seed_len); | |||
memcpy(ctx->ctr, diversifier, 8); | |||
ctx->ctr[11] = maxlen % 256; | |||
maxlen >>= 8; | |||
ctx->ctr[10] = maxlen % 256; | |||
maxlen >>= 8; | |||
ctx->ctr[9] = maxlen % 256; | |||
maxlen >>= 8; | |||
ctx->ctr[8] = maxlen % 256; | |||
memset(ctx->ctr + 12, 0x00, 4); | |||
ctx->buffer_pos = 16; | |||
memset(ctx->buffer, 0x00, 16); | |||
} | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_seedexpander_from_trng(AES_XOF_struct *ctx, | |||
const uint8_t *trng_entropy | |||
/* TRNG_BYTE_LENGTH wide buffer */) { | |||
/*the NIST seedexpander will however access 32B from this buffer */ | |||
unsigned int prng_buffer_size = TRNG_BYTE_LENGTH < 32 ? 32 : TRNG_BYTE_LENGTH; | |||
uint8_t prng_buffer[TRNG_BYTE_LENGTH < 32 ? 32 : TRNG_BYTE_LENGTH] = {0x00}; | |||
uint8_t diversifier[8] = {0}; | |||
memcpy(prng_buffer, | |||
trng_entropy, | |||
TRNG_BYTE_LENGTH < prng_buffer_size ? TRNG_BYTE_LENGTH : prng_buffer_size); | |||
/* the required seed expansion will be quite small, set the max number of | |||
* bytes conservatively to 10 MiB*/ | |||
seedexpander_init(ctx, prng_buffer, diversifier, RNG_MAXLEN); | |||
} | |||
/* | |||
seedexpander() | |||
ctx - stores the current state of an instance of the seed expander | |||
x - returns the XOF data | |||
xlen - number of bytes to return | |||
*/ | |||
int PQCLEAN_LEDAKEMLT32_LEAKTIME_seedexpander(AES_XOF_struct *ctx, uint8_t *x, size_t xlen) { | |||
size_t offset; | |||
aes256ctx ctx256; | |||
if ( x == NULL ) { | |||
return RNG_BAD_OUTBUF; | |||
} | |||
if ( xlen >= ctx->length_remaining ) { | |||
return RNG_BAD_REQ_LEN; | |||
} | |||
aes256_ecb_keyexp(&ctx256, ctx->key); | |||
ctx->length_remaining -= xlen; | |||
offset = 0; | |||
while ( xlen > 0 ) { | |||
if ( xlen <= (16 - ctx->buffer_pos) ) { // buffer has what we need | |||
memcpy(x + offset, ctx->buffer + ctx->buffer_pos, xlen); | |||
ctx->buffer_pos += xlen; | |||
goto end; | |||
} | |||
// take what's in the buffer | |||
memcpy(x + offset, ctx->buffer + ctx->buffer_pos, 16 - ctx->buffer_pos); | |||
xlen -= 16 - ctx->buffer_pos; | |||
offset += 16 - ctx->buffer_pos; | |||
aes256_ecb(ctx->buffer, ctx->ctr, 16 / AES_BLOCKBYTES, &ctx256); | |||
ctx->buffer_pos = 0; | |||
//increment the counter | |||
for (int i = 15; i >= 12; i--) { | |||
if ( ctx->ctr[i] == 0xff ) { | |||
ctx->ctr[i] = 0x00; | |||
} else { | |||
ctx->ctr[i]++; | |||
break; | |||
} | |||
} | |||
} | |||
end: | |||
aes256_ctx_release(&ctx256); | |||
return RNG_SUCCESS; | |||
} |
@@ -1,24 +0,0 @@ | |||
#ifndef RNG_H | |||
#define RNG_H | |||
#include <stddef.h> | |||
#include <stdint.h> | |||
#define RNG_SUCCESS ( 0) | |||
#define RNG_BAD_MAXLEN (-1) | |||
#define RNG_BAD_OUTBUF (-2) | |||
#define RNG_BAD_REQ_LEN (-3) | |||
#define RNG_MAXLEN (10 * 1024 * 1024) | |||
typedef struct { | |||
unsigned char buffer[16]; | |||
size_t buffer_pos; | |||
size_t length_remaining; | |||
unsigned char key[32]; | |||
unsigned char ctr[16]; | |||
} AES_XOF_struct; | |||
int PQCLEAN_LEDAKEMLT32_LEAKTIME_seedexpander(AES_XOF_struct *ctx, unsigned char *x, size_t xlen); | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_seedexpander_from_trng(AES_XOF_struct *ctx, const unsigned char *trng_entropy); | |||
#endif |
@@ -1,98 +0,0 @@ | |||
#include "sort.h" | |||
/* | |||
Constant-time uint32_t sorting by Daniel J. Bernstein | |||
Source: https://sorting.cr.yp.to | |||
*/ | |||
#define int32_MINMAX(a,b) \ | |||
do { \ | |||
int32 ab = (b) ^ (a); \ | |||
int32 c = (b) - (a); \ | |||
c ^= ab & (c ^ (b)); \ | |||
c >>= 31; \ | |||
c &= ab; \ | |||
(a) ^= c; \ | |||
(b) ^= c; \ | |||
} while(0) | |||
static void int32_sort(int32 *x, size_t n) { | |||
size_t top, p, q, r, i, j; | |||
if (n < 2) { | |||
return; | |||
} | |||
top = 1; | |||
while (top < n - top) { | |||
top += top; | |||
} | |||
for (p = top; p >= 1; p >>= 1) { | |||
i = 0; | |||
while (i + 2 * p <= n) { | |||
for (j = i; j < i + p; ++j) { | |||
int32_MINMAX(x[j], x[j + p]); | |||
} | |||
i += 2 * p; | |||
} | |||
for (j = i; j < n - p; ++j) { | |||
int32_MINMAX(x[j], x[j + p]); | |||
} | |||
i = 0; | |||
j = 0; | |||
for (q = top; q > p; q >>= 1) { | |||
if (j != i) { | |||
for (;;) { | |||
if (j == n - q) { | |||
goto done; | |||
} | |||
int32 a = x[j + p]; | |||
for (r = q; r > p; r >>= 1) { | |||
int32_MINMAX(a, x[j + r]); | |||
} | |||
x[j + p] = a; | |||
++j; | |||
if (j == i + p) { | |||
i += 2 * p; | |||
break; | |||
} | |||
} | |||
} | |||
while (i + p <= n - q) { | |||
for (j = i; j < i + p; ++j) { | |||
int32 a = x[j + p]; | |||
for (r = q; r > p; r >>= 1) { | |||
int32_MINMAX(a, x[j + r]); | |||
} | |||
x[j + p] = a; | |||
} | |||
i += 2 * p; | |||
} | |||
/* now i + p > n - q */ | |||
j = i; | |||
while (j < n - q) { | |||
int32 a = x[j + p]; | |||
for (r = q; r > p; r >>= 1) { | |||
int32_MINMAX(a, x[j + r]); | |||
} | |||
x[j + p] = a; | |||
++j; | |||
} | |||
done: | |||
; | |||
} | |||
} | |||
} | |||
/* can save time by integrating xor loops with int32_sort */ | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_uint32_sort(uint32_t *x, size_t n) { | |||
size_t j; | |||
for (j = 0; j < n; ++j) { | |||
x[j] ^= 0x80000000; | |||
} | |||
int32_sort((int32_t *) x, n); | |||
for (j = 0; j < n; ++j) { | |||
x[j] ^= 0x80000000; | |||
} | |||
} |
@@ -1,11 +0,0 @@ | |||
#ifndef SORT_H | |||
#define SORT_H | |||
#include <stddef.h> | |||
#include <stdint.h> | |||
#define int32 int32_t | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_uint32_sort(uint32_t *x, size_t n); | |||
#endif |
@@ -1,21 +0,0 @@ | |||
#include "gf2x_arith.h" | |||
#include "utils.h" | |||
/* compares DIGIT sequences, returns 0 if they are equal */ | |||
int PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_verify(const DIGIT *a, const DIGIT *b, size_t len) { | |||
DIGIT x = 0; | |||
for (size_t i = 0; i < len; i++) { | |||
x |= a[i] ^ b[i]; | |||
} | |||
x = (~x) + 1; | |||
x >>= (DIGIT_SIZE_b - 1); | |||
return (int)x; | |||
} | |||
/* conditionally move a into r if cond */ | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_cmov(uint8_t *r, const uint8_t *a, size_t len, int cond) { | |||
uint8_t mask = (uint8_t)(-cond); | |||
for (size_t i = 0; i < len; i++) { | |||
r[i] ^= mask & (r[i] ^ a[i]); | |||
} | |||
} |
@@ -1,9 +0,0 @@ | |||
#ifndef UTILS_H | |||
#define UTILS_H | |||
#include <stdint.h> | |||
int PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_verify(const DIGIT *a, const DIGIT *b, size_t len); | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_cmov(uint8_t *r, const uint8_t *a, size_t len, int cond); | |||
#endif |
@@ -1,19 +0,0 @@ | |||
name: LEDAKEMLT52 | |||
type: kem | |||
claimed-nist-level: 5 | |||
claimed-security: IND-CCA2 | |||
length-public-key: 19040 | |||
length-secret-key: 82 | |||
length-ciphertext: 19080 | |||
length-shared-secret: 64 | |||
nistkat-sha256: 7a8d7c623bd3a8935861ec088e77a6701a254ac521d5e5150dc4537df4da8fd5 | |||
principal-submitters: | |||
- Marco Baldi | |||
auxiliary-submitters: | |||
- Alessandro Barenghi | |||
- Franco Chiaraluce | |||
- Gerardo Pelosi | |||
- Paolo Santini | |||
implementations: | |||
- name: leaktime | |||
version: 2.1 |
@@ -1,52 +0,0 @@ | |||
#include "H_Q_matrices_generation.h" | |||
#include "gf2x_arith_mod_xPplusOne.h" | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_generateHPosOnes(POSITION_T HPosOnes[N0][DV], AES_XOF_struct *keys_expander) { | |||
for (size_t i = 0; i < N0; i++) { | |||
/* Generate a random block of Htr */ | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_rand_circulant_sparse_block(&HPosOnes[i][0], DV, keys_expander); | |||
} | |||
} | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_generateQPosOnes(POSITION_T QPosOnes[N0][M], AES_XOF_struct *keys_expander) { | |||
size_t placed_ones; | |||
for (size_t i = 0; i < N0; i++) { | |||
placed_ones = 0; | |||
for (size_t j = 0; j < N0; j++) { | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_rand_circulant_sparse_block(&QPosOnes[i][placed_ones], | |||
qBlockWeights[i][j], | |||
keys_expander); | |||
placed_ones += qBlockWeights[i][j]; | |||
} | |||
} | |||
} | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_transposeHPosOnes(POSITION_T HtrPosOnes[N0][DV], POSITION_T HPosOnes[N0][DV]) { | |||
for (size_t i = 0; i < N0; i++) { | |||
/* Obtain directly the sparse representation of the block of H */ | |||
for (size_t k = 0; k < DV; k++) { | |||
HtrPosOnes[i][k] = (P - HPosOnes[i][k]) % P; /* transposes indexes */ | |||
} | |||
} | |||
} | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_transposeQPosOnes(POSITION_T QtrPosOnes[N0][M], POSITION_T QPosOnes[N0][M]) { | |||
POSITION_T transposed_ones_idx[N0] = {0x00}; | |||
size_t currQoneIdx, endQblockIdx; | |||
for (size_t source_row_idx = 0; source_row_idx < N0 ; source_row_idx++) { | |||
currQoneIdx = 0; // position in the column of QtrPosOnes[][...] | |||
endQblockIdx = 0; | |||
for (int blockIdx = 0; blockIdx < N0; blockIdx++) { | |||
endQblockIdx += qBlockWeights[source_row_idx][blockIdx]; | |||
for (; currQoneIdx < endQblockIdx; currQoneIdx++) { | |||
QtrPosOnes[blockIdx][transposed_ones_idx[blockIdx]] = | |||
(P - QPosOnes[source_row_idx][currQoneIdx]) % P; | |||
transposed_ones_idx[blockIdx]++; | |||
} | |||
} | |||
} | |||
} | |||
@@ -1,13 +0,0 @@ | |||
#ifndef H_Q_MATRICES_GENERATION_H | |||
#define H_Q_MATRICES_GENERATION_H | |||
#include "gf2x_arith.h" | |||
#include "qc_ldpc_parameters.h" | |||
#include "rng.h" | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_generateHPosOnes(POSITION_T HPosOnes[N0][DV], AES_XOF_struct *keys_expander); | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_generateQPosOnes(POSITION_T QPosOnes[N0][M], AES_XOF_struct *keys_expander); | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_transposeHPosOnes(POSITION_T HtrPosOnes[N0][DV], POSITION_T HPosOnes[N0][DV]); | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_transposeQPosOnes(POSITION_T QtrPosOnes[N0][M], POSITION_T QPosOnes[N0][M]); | |||
#endif |
@@ -1,31 +0,0 @@ | |||
/** | |||
* | |||
* LEDAcryptKEM | |||
* | |||
* @version 2.0 (March 2019) | |||
* | |||
* Adapted code from reference ISO-C11 Implementation of the LEDAcrypt KEM-LT cipher. | |||
* | |||
* In alphabetical order: | |||
* | |||
* @author Marco Baldi <m.baldi@univpm.it> | |||
* @author Alessandro Barenghi <alessandro.barenghi@polimi.it> | |||
* @author Franco Chiaraluce <f.chiaraluce@univpm.it> | |||
* @author Gerardo Pelosi <gerardo.pelosi@polimi.it> | |||
* @author Paolo Santini <p.santini@pm.univpm.it> | |||
* | |||
* This code is hereby placed in the public domain. | |||
* | |||
* THIS SOFTWARE IS PROVIDED BY THE AUTHORS ''AS IS'' AND ANY EXPRESS | |||
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED | |||
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |||
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE | |||
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | |||
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | |||
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR | |||
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, | |||
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE | |||
* OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, | |||
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |||
* | |||
**/ |
@@ -1,24 +0,0 @@ | |||
# This Makefile can be used with GNU Make or BSD Make | |||
LIB=libledakemlt52_leaktime.a | |||
HEADERS=api.h bf_decoding.h dfr_test.h gf2x_arith_mod_xPplusOne.h \ | |||
gf2x_arith.h H_Q_matrices_generation.h \ | |||
niederreiter.h qc_ldpc_parameters.h rng.h sort.h utils.h | |||
OBJECTS=bf_decoding.o dfr_test.o gf2x_arith_mod_xPplusOne.o \ | |||
gf2x_arith.o H_Q_matrices_generation.o kem.o niederreiter.o rng.o sort.o utils.o | |||
CFLAGS=-O3 -Wall -Werror -Wextra -Wvla -Wpedantic -Wmissing-prototypes -std=c99 \ | |||
-I../../../common $(EXTRAFLAGS) | |||
all: $(LIB) | |||
%.o: %.c $(HEADERS) | |||
$(CC) $(CFLAGS) -c -o $@ $< | |||
$(LIB): $(OBJECTS) | |||
$(AR) -r $@ $(OBJECTS) | |||
clean: | |||
$(RM) $(OBJECTS) | |||
$(RM) $(LIB) |
@@ -1,19 +0,0 @@ | |||
# This Makefile can be used with Microsoft Visual Studio's nmake using the command: | |||
# nmake /f Makefile.Microsoft_nmake | |||
LIBRARY=libledakemlt52_leaktime.lib | |||
OBJECTS=bf_decoding.obj dfr_test.obj gf2x_arith_mod_xPplusOne.obj gf2x_arith.obj H_Q_matrices_generation.obj kem.obj niederreiter.obj rng.obj sort.obj utils.obj | |||
CFLAGS=/nologo /O2 /I ..\..\..\common /W4 /WX | |||
all: $(LIBRARY) | |||
# Make sure objects are recompiled if headers change. | |||
$(OBJECTS): *.h | |||
$(LIBRARY): $(OBJECTS) | |||
LIB.EXE /NOLOGO /WX /OUT:$@ $** | |||
clean: | |||
-DEL $(OBJECTS) | |||
-DEL $(LIBRARY) |
@@ -1,18 +0,0 @@ | |||
#ifndef PQCLEAN_LEDAKEMLT52_LEAKTIME_API_H | |||
#define PQCLEAN_LEDAKEMLT52_LEAKTIME_API_H | |||
#include <stdint.h> | |||
#define PQCLEAN_LEDAKEMLT52_LEAKTIME_CRYPTO_SECRETKEYBYTES 82 | |||
#define PQCLEAN_LEDAKEMLT52_LEAKTIME_CRYPTO_PUBLICKEYBYTES 19040 | |||
#define PQCLEAN_LEDAKEMLT52_LEAKTIME_CRYPTO_CIPHERTEXTBYTES 19080 | |||
#define PQCLEAN_LEDAKEMLT52_LEAKTIME_CRYPTO_BYTES 64 | |||
#define PQCLEAN_LEDAKEMLT52_LEAKTIME_CRYPTO_ALGNAME "LEDAKEMLT52" | |||
int PQCLEAN_LEDAKEMLT52_LEAKTIME_crypto_kem_keypair(uint8_t *pk, uint8_t *sk); | |||
int PQCLEAN_LEDAKEMLT52_LEAKTIME_crypto_kem_enc(uint8_t *ct, uint8_t *ss, const uint8_t *pk); | |||
int PQCLEAN_LEDAKEMLT52_LEAKTIME_crypto_kem_dec(uint8_t *ss, const uint8_t *ct, const uint8_t *sk); | |||
#endif |
@@ -1,79 +0,0 @@ | |||
#include "bf_decoding.h" | |||
#include "gf2x_arith_mod_xPplusOne.h" | |||
#include <string.h> | |||
int PQCLEAN_LEDAKEMLT52_LEAKTIME_bf_decoding(DIGIT err[], | |||
const POSITION_T HtrPosOnes[N0][DV], | |||
const POSITION_T QtrPosOnes[N0][M], | |||
DIGIT privateSyndrome[], | |||
uint8_t secondIterThreshold) { | |||
DIGIT currSyndrome[NUM_DIGITS_GF2X_ELEMENT]; | |||
uint8_t unsatParityChecks[N0 * P]; | |||
POSITION_T currQBlkPos[M], currQBitPos[M]; | |||
POSITION_T syndromePosToFlip, tmp; | |||
uint32_t correlation, corrt_syndrome_based; | |||
size_t currQoneIdx, endQblockIdx, currblockoffset; | |||
int check; | |||
int iteration = 0; | |||
do { | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_copy(currSyndrome, privateSyndrome); | |||
memset(unsatParityChecks, 0x00, N0 * P * sizeof(uint8_t)); | |||
for (size_t i = 0; i < N0; i++) { | |||
for (POSITION_T valueIdx = 0; valueIdx < P; valueIdx++) { | |||
for (size_t HtrOneIdx = 0; HtrOneIdx < DV; HtrOneIdx++) { | |||
tmp = (HtrPosOnes[i][HtrOneIdx] + valueIdx) >= P ? | |||
(HtrPosOnes[i][HtrOneIdx] + valueIdx) - P : | |||
(HtrPosOnes[i][HtrOneIdx] + valueIdx); | |||
if (PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_get_coeff(currSyndrome, tmp)) { | |||
unsatParityChecks[i * P + valueIdx]++; | |||
} | |||
} | |||
} | |||
} | |||
/* iteration based threshold determination*/ | |||
corrt_syndrome_based = iteration * secondIterThreshold + (1 - iteration) * B0; | |||
// Computation of correlation with a full Q matrix | |||
for (size_t i = 0; i < N0; i++) { | |||
for (POSITION_T j = 0; j < P; j++) { | |||
currQoneIdx = endQblockIdx = 0; | |||
correlation = 0; | |||
for (size_t blockIdx = 0; blockIdx < N0; blockIdx++) { | |||
endQblockIdx += qBlockWeights[blockIdx][i]; | |||
currblockoffset = blockIdx * P; | |||
for (; currQoneIdx < endQblockIdx; currQoneIdx++) { | |||
tmp = QtrPosOnes[i][currQoneIdx] + j; | |||
tmp = tmp >= P ? tmp - P : tmp; | |||
currQBitPos[currQoneIdx] = tmp; | |||
currQBlkPos[currQoneIdx] = (POSITION_T)blockIdx; | |||
correlation += unsatParityChecks[tmp + currblockoffset]; | |||
} | |||
} | |||
/* Correlation based flipping */ | |||
if (correlation >= corrt_syndrome_based) { | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_toggle_coeff(err + NUM_DIGITS_GF2X_ELEMENT * i, j); | |||
for (size_t v = 0; v < M; v++) { | |||
for (size_t HtrOneIdx = 0; HtrOneIdx < DV; HtrOneIdx++) { | |||
syndromePosToFlip = (HtrPosOnes[currQBlkPos[v]][HtrOneIdx] + currQBitPos[v]); | |||
syndromePosToFlip = syndromePosToFlip >= P ? syndromePosToFlip - P : syndromePosToFlip; | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_toggle_coeff(privateSyndrome, syndromePosToFlip); | |||
} | |||
} // end for v | |||
} // end if | |||
} // end for j | |||
} // end for i | |||
iteration = iteration + 1; | |||
check = 0; | |||
while (check < NUM_DIGITS_GF2X_ELEMENT && privateSyndrome[check++] == 0) {}; | |||
} while (iteration < ITERATIONS_MAX && check < NUM_DIGITS_GF2X_ELEMENT); | |||
return (check == NUM_DIGITS_GF2X_ELEMENT); | |||
} |
@@ -1,18 +0,0 @@ | |||
#ifndef BF_DECODING_H | |||
#define BF_DECODING_H | |||
#include "gf2x_arith.h" | |||
#include "qc_ldpc_parameters.h" | |||
/* Definitions for DFR level 2^-SL with SL=128 */ | |||
#define ITERATIONS_MAX (2) | |||
#define B0 (88) | |||
#define T_BAR (6) | |||
int PQCLEAN_LEDAKEMLT52_LEAKTIME_bf_decoding(DIGIT err[], | |||
const POSITION_T HtrPosOnes[N0][DV], | |||
const POSITION_T QtrPosOnes[N0][M], | |||
DIGIT privateSyndrome[], | |||
uint8_t threshold); | |||
#endif |
@@ -1,88 +0,0 @@ | |||
#include "bf_decoding.h" | |||
#include "dfr_test.h" | |||
#include "gf2x_arith_mod_xPplusOne.h" | |||
#include "qc_ldpc_parameters.h" | |||
#include "sort.h" | |||
#include <string.h> | |||
int PQCLEAN_LEDAKEMLT52_LEAKTIME_DFR_test(POSITION_T LSparse[N0][DV * M], uint8_t *secondIterThreshold) { | |||
POSITION_T LSparse_loc[N0][DV * M]; /* vector of N_0 sparse blocks */ | |||
uint8_t gamma[N0][N0][P] = {{{0}}}; | |||
uint32_t gammaHist[N0][DV * M + 1] = {{0}}; | |||
size_t maxMut[N0], maxMutMinusOne[N0]; | |||
size_t allBlockMaxSumst, allBlockMaxSumstMinusOne; | |||
size_t histIdx, toAdd; | |||
for (size_t i = 0; i < N0; i++) { | |||
for (size_t j = 0; j < DV * M; j++) { | |||
if (LSparse[i][j] != 0) { | |||
LSparse_loc[i][j] = (P - LSparse[i][j]); | |||
} | |||
} | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_uint32_sort(LSparse_loc[i], DV * M); | |||
} | |||
for (size_t i = 0; i < N0; i++ ) { | |||
for (size_t j = 0; j < N0; j++) { | |||
for (size_t k = 0; k < (DV * M); k++) { | |||
for (size_t l = 0; l < (DV * M); l++) { | |||
gamma[i][j][(P + LSparse_loc[i][k] - LSparse_loc[j][l]) % P]++; | |||
} | |||
} | |||
} | |||
} | |||
for (size_t i = 0; i < N0; i++ ) { | |||
for (size_t j = 0; j < N0; j++ ) { | |||
gamma[i][j][0] = 0; | |||
} | |||
} | |||
/* build histogram of values in gamma */ | |||
for (size_t i = 0; i < N0; i++ ) { | |||
for (size_t j = 0; j < N0; j++ ) { | |||
for (size_t k = 0; k < P; k++) { | |||
gammaHist[i][gamma[i][j][k]]++; | |||
} | |||
} | |||
} | |||
for (size_t gammaBlockRowIdx = 0; gammaBlockRowIdx < N0; gammaBlockRowIdx++) { | |||
maxMutMinusOne[gammaBlockRowIdx] = 0; | |||
histIdx = DV * M; | |||
toAdd = T_BAR - 1; | |||
while ( (histIdx > 0) && (toAdd > 0)) { | |||
if (gammaHist[gammaBlockRowIdx][histIdx] > toAdd ) { | |||
maxMutMinusOne[gammaBlockRowIdx] += histIdx * toAdd; | |||
toAdd = 0; | |||
} else { | |||
maxMutMinusOne[gammaBlockRowIdx] += histIdx * gammaHist[gammaBlockRowIdx][histIdx]; | |||
toAdd -= gammaHist[gammaBlockRowIdx][histIdx]; | |||
histIdx--; | |||
} | |||
} | |||
maxMut[gammaBlockRowIdx] = histIdx + maxMutMinusOne[gammaBlockRowIdx]; | |||
} | |||
/*seek max values across all gamma blocks */ | |||
allBlockMaxSumst = maxMut[0]; | |||
allBlockMaxSumstMinusOne = maxMutMinusOne[0]; | |||
for (size_t gammaBlockRowIdx = 0; gammaBlockRowIdx < N0; gammaBlockRowIdx++) { | |||
allBlockMaxSumst = allBlockMaxSumst < maxMut[gammaBlockRowIdx] ? | |||
maxMut[gammaBlockRowIdx] : | |||
allBlockMaxSumst; | |||
allBlockMaxSumstMinusOne = allBlockMaxSumstMinusOne < maxMutMinusOne[gammaBlockRowIdx] ? | |||
maxMutMinusOne[gammaBlockRowIdx] : | |||
allBlockMaxSumstMinusOne; | |||
} | |||
if (DV * M > (allBlockMaxSumstMinusOne + allBlockMaxSumst)) { | |||
*secondIterThreshold = (uint8_t) (allBlockMaxSumst + 1); | |||
return 1; | |||
} | |||
return 0; | |||
} |
@@ -1,6 +0,0 @@ | |||
#ifndef DFR_TEST_H | |||
#define DFR_TEST_H | |||
int PQCLEAN_LEDAKEMLT52_LEAKTIME_DFR_test(POSITION_T LSparse[N0][DV * M], uint8_t *secondIterThreshold); | |||
#endif |
@@ -1,252 +0,0 @@ | |||
#include "gf2x_arith.h" | |||
#include <string.h> // memset(...) | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_add(DIGIT Res[], const DIGIT A[], const DIGIT B[], size_t n) { | |||
for (size_t i = 0; i < n; i++) { | |||
Res[i] = A[i] ^ B[i]; | |||
} | |||
} | |||
/* copies len digits from a to r if b == 1 */ | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_cmov(DIGIT *r, const DIGIT *a, size_t len, int c) { | |||
DIGIT mask = (DIGIT)(-c); | |||
for (size_t i = 0; i < len; i++) { | |||
r[i] ^= mask & (a[i] ^ r[i]); | |||
} | |||
} | |||
/* PRE: MAX ALLOWED ROTATION AMOUNT : DIGIT_SIZE_b */ | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_right_bit_shift_n(size_t length, DIGIT in[], size_t amount) { | |||
if ( amount == 0 ) { | |||
return; | |||
} | |||
size_t j; | |||
DIGIT mask; | |||
mask = ((DIGIT)0x01 << amount) - 1; | |||
for (j = length - 1; j > 0; j--) { | |||
in[j] >>= amount; | |||
in[j] |= (in[j - 1] & mask) << (DIGIT_SIZE_b - amount); | |||
} | |||
in[j] >>= amount; | |||
} | |||
/* PRE: MAX ALLOWED ROTATION AMOUNT : DIGIT_SIZE_b */ | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_left_bit_shift_n(size_t length, DIGIT in[], size_t amount) { | |||
if ( amount == 0 ) { | |||
return; | |||
} | |||
size_t j; | |||
DIGIT mask; | |||
mask = ~(((DIGIT)0x01 << (DIGIT_SIZE_b - amount)) - 1); | |||
for (j = 0 ; j < length - 1; j++) { | |||
in[j] <<= amount; | |||
in[j] |= (in[j + 1] & mask) >> (DIGIT_SIZE_b - amount); | |||
} | |||
in[j] <<= amount; | |||
} | |||
static void gf2x_mul1(DIGIT *R, const DIGIT A, const DIGIT B) { | |||
DIGIT tmp; | |||
R[0] = 0; | |||
R[1] = (A & 1) * B; | |||
for (uint8_t i = 1; i < DIGIT_SIZE_b; i++) { | |||
tmp = ((A >> i) & 1) * B; | |||
R[1] ^= tmp << i; | |||
R[0] ^= tmp >> (DIGIT_SIZE_b - i); | |||
} | |||
} | |||
static void gf2x_mul_n(DIGIT *R, const DIGIT *A, const DIGIT *B, size_t n) { | |||
DIGIT tmp[2]; | |||
memset(R, 0x00, 2 * n * sizeof(DIGIT)); | |||
for (size_t i = 0; i < n; i++) { | |||
for (size_t j = 0; j < n; j++) { | |||
gf2x_mul1(tmp, A[i], B[j]); | |||
R[i + j] ^= tmp[0]; | |||
R[i + j + 1] ^= tmp[1]; | |||
} | |||
} | |||
} | |||
static void gf2x_cpy(DIGIT *R, const DIGIT *A, size_t len) { | |||
for (size_t i = 0; i < len; i++) { | |||
R[i] = A[i]; | |||
} | |||
} | |||
/* Accumulate */ | |||
#define gf2x_add(R, A, B, n) PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_add(R, A, B, n) | |||
#define gf2x_acc(R, B, n) PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_add(R, R, B, n) | |||
/* allows the operands to be of different size | |||
* first operand must be the bigger one. | |||
* aligns last array elements */ | |||
static inline void gf2x_add_asymm(DIGIT *R, | |||
size_t na, const DIGIT *A, | |||
size_t nb, const DIGIT *B) { | |||
size_t delta = na - nb; | |||
gf2x_cpy(R, A, delta); | |||
gf2x_add(R + delta, A + delta, B, nb);; | |||
} | |||
/* aligns first array elements */ | |||
static inline void gf2x_add_asymm2(DIGIT *R, | |||
size_t na, const DIGIT *A, | |||
size_t nb, const DIGIT *B) { | |||
size_t delta = na - nb; | |||
gf2x_add(R, A, B, nb); | |||
gf2x_cpy(R + nb, A + nb, delta); | |||
} | |||
/* Karatsuba with lowered space complexity | |||
* T(n) = 3 * ceil(n/2) + T(ceil(n / 2)) */ | |||
static void gf2x_mul_kar(DIGIT *R, | |||
const DIGIT *A, | |||
const DIGIT *B, | |||
size_t n, | |||
DIGIT *stack) { | |||
if (n < MIN_KAR_DIGITS) { | |||
gf2x_mul_n(R, A, B, n); | |||
return; | |||
} | |||
size_t l = (n + 1) / 2; // limb size = ceil(n / 2) | |||
size_t d = n & 1; | |||
const DIGIT *a1 = A; // length n - d | |||
const DIGIT *a0 = A + l - d; // length n | |||
const DIGIT *b1 = B; | |||
const DIGIT *b0 = B + l - d; | |||
DIGIT *aa = stack; | |||
DIGIT *bb = aa + l; | |||
DIGIT *cc = bb + l; | |||
stack = cc + l; // 3l space requirement at each level | |||
DIGIT *c3 = R + l - 2 * d; | |||
DIGIT *c2 = c3 + l; | |||
DIGIT *c1 = c2 + l; | |||
gf2x_mul_kar(c2, a0, b0, l, stack); // L in low part of R | |||
gf2x_mul_kar(R, a1, b1, l - d, stack); // H in higher part of R | |||
gf2x_add_asymm(aa, l, a0, l - d, a1); // AH + AL | |||
gf2x_add_asymm(bb, l, b0, l - d, b1); // BH + BL | |||
gf2x_add(cc, c3, c2, l); // HL + LH in cc | |||
gf2x_mul_kar(c3, aa, bb, l, stack); // M = (AH + AL) x (BH + BL) | |||
gf2x_add_asymm(c3, l, c3, l - 2 * d, R); // add HH | |||
gf2x_acc(c2, c1, l); // add LL | |||
gf2x_acc(c3, cc, l); // add HL + LH | |||
gf2x_acc(c2, cc, l); // add HL + LH | |||
} | |||
static void gf2x_div_w_plus_one(DIGIT *A, size_t n) { | |||
size_t i; | |||
for (i = 0; i < n - 2; i++) { | |||
A[i + 1] ^= A[i]; // runs n - 2 times | |||
} | |||
} | |||
static void gf2x_shift_left_w(DIGIT *A, size_t n) { | |||
size_t i; | |||
for (i = 0; i < n - 1; i++) { | |||
A[i] = A[i + 1]; | |||
} | |||
A[i] = 0; | |||
} | |||
/* Word-aligned Toom-Cook 3, source: | |||
* Brent, Richard P., et al. "Faster multiplication in GF (2)[x]." | |||
* International Algorithmic Number Theory Symposium. | |||
* Springer, Berlin, Heidelberg, 2008. */ | |||
static void gf2x_mul_tc3w(DIGIT *R, | |||
const DIGIT *A, | |||
const DIGIT *B, | |||
size_t n, | |||
DIGIT *stack) { | |||
if (n < MIN_TOOM_DIGITS) { | |||
gf2x_mul_kar(R, A, B, n, stack); | |||
return; | |||
} | |||
size_t l = (n + 2) / 3; // size of a0, a1, b0, b1 | |||
size_t r = n - 2 * l; // remaining sizes (a2, b2) | |||
size_t x = 2 * l + 4; // size of c1, c2, c3, c4 | |||
size_t z = r + 2 > l + 1 ? r + 2 : l + 1; // size of c5 | |||
const DIGIT *a0 = A; | |||
const DIGIT *a1 = A + l; | |||
const DIGIT *a2 = A + 2 * l; | |||
const DIGIT *b0 = B; | |||
const DIGIT *b1 = B + l; | |||
const DIGIT *b2 = B + 2 * l; | |||
DIGIT *c0 = R; // c0 and c4 in the result | |||
DIGIT *c4 = R + 4 * l; | |||
DIGIT *c1 = stack; // the rest in the stack | |||
DIGIT *c2 = c1 + x; | |||
DIGIT *c3 = c2 + x; | |||
DIGIT *c5 = c3 + x; | |||
stack = c5 + z; // Worst-case 7l + 14 | |||
// Evaluation | |||
c0[0] = 0; // c0[z] = a1*W + a2*W^2 | |||
c0[l + 1] = 0; | |||
gf2x_cpy(c0 + 1, a1, l); | |||
gf2x_acc(c0 + 2, a2, r); | |||
c4[0] = 0; // c4[z] = b1*W + b2*W^2 | |||
c4[l + 1] = 0; | |||
gf2x_cpy(c4 + 1, b1, l); | |||
gf2x_acc(c4 + 2, b2, r); | |||
gf2x_cpy(c5, a0, l); // c5[l] = a0 + a1 + a2 | |||
gf2x_acc(c5, a1, l); | |||
gf2x_acc(c5, a2, r); | |||
gf2x_cpy(c2, b0, l); // c2[l] = b0 + b1 + b2 | |||
gf2x_acc(c2, b1, l); | |||
gf2x_acc(c2, b2, r); | |||
gf2x_mul_tc3w(c1, c2, c5, l, stack); // c1[2l] = c2 * c5 | |||
gf2x_add_asymm2(c5, z, c0, l, c5); // c5[z] += c0, z >= l | |||
gf2x_add_asymm2(c2, z, c4, l, c2); // c2[z] += c4, idem | |||
gf2x_acc(c0, a0, l); // c0[l] += a0 | |||
gf2x_acc(c4, b0, l); // c4[l] += b0 | |||
gf2x_mul_tc3w(c3, c2, c5, z, stack); // c3[2z] = c2 * c5 | |||
gf2x_mul_tc3w(c2, c0, c4, z, stack); // c2[2z] = c0 * c4 | |||
gf2x_mul_tc3w(c0, a0, b0, l, stack); // c0[2l] = a0 * b0 | |||
gf2x_mul_tc3w(c4, a2, b2, r, stack); // c4[2r] = a2 * b2 | |||
// Interpolation | |||
gf2x_acc(c3, c2, 2 * z); // c3[2z] += c2 | |||
gf2x_acc(c2, c0, 2 * l); // c2[2z] += c0 | |||
gf2x_shift_left_w(c2, 2 * z); // c2[2z] = c2/y + c3 | |||
gf2x_acc(c2, c3, 2 * z); | |||
gf2x_acc(c2, c4, 2 * r); // c2[2z] += c4 + c4**3 | |||
gf2x_acc(c2 + 3, c4, 2 * r); | |||
gf2x_div_w_plus_one(c2, 2 * z); // c2[2z-1] = c2/(W+1) | |||
gf2x_acc(c1, c0, 2 * l); // c1[2l] += c0 | |||
gf2x_acc(c3, c1, 2 * l); // c3[2z] += c1 | |||
gf2x_shift_left_w(c3, 2 * z); // c3[2z-2] = c3/(W^2 + W) | |||
gf2x_div_w_plus_one(c3, 2 * z - 1); | |||
gf2x_add_asymm2(c1, 2 * z, c2, 2 * l, c1); // c1[2z-1] += c2 + c4 | |||
gf2x_acc(c1, c4, 2 * r); // size c2 >= c1 >= c4 | |||
gf2x_acc(c2, c3, 2 * z - 1); // c2[2z-1] += c3 | |||
// Recombination | |||
gf2x_cpy(R + 2 * l, c2, 2 * l); | |||
gf2x_acc(R + l, c1, 2 * z - 1); | |||
gf2x_acc(R + 3 * l, c3, 2 * z - 1); | |||
} | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mul(DIGIT *R, const DIGIT *A, const DIGIT *B, size_t n) { | |||
DIGIT stack[STACK_WORDS]; | |||
gf2x_mul_tc3w(R, A, B, n, stack); | |||
} | |||
@@ -1,68 +0,0 @@ | |||
#ifndef GF2X_ARITH_H | |||
#define GF2X_ARITH_H | |||
#include <inttypes.h> | |||
#include <stddef.h> | |||
/* | |||
* Elements of GF(2)[x] are stored in compact dense binary form. | |||
* | |||
* Each bit in a byte is assumed to be the coefficient of a binary | |||
* polynomial f(x), in Big-Endian format (i.e., reading everything from | |||
* left to right, the most significant element is met first): | |||
* | |||
* byte:(0000 0000) == 0x00 ... f(x) == 0 | |||
* byte:(0000 0001) == 0x01 ... f(x) == 1 | |||
* byte:(0000 0010) == 0x02 ... f(x) == x | |||
* byte:(0000 0011) == 0x03 ... f(x) == x+1 | |||
* ... ... ... | |||
* byte:(0000 1111) == 0x0F ... f(x) == x^{3}+x^{2}+x+1 | |||
* ... ... ... | |||
* byte:(1111 1111) == 0xFF ... f(x) == x^{7}+x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+1 | |||
* | |||
* | |||
* A "machine word" (A_i) is considered as a DIGIT. | |||
* Bytes in a DIGIT are assumed in Big-Endian format: | |||
* E.g., if sizeof(DIGIT) == 4: | |||
* A_i: A_{i,3} A_{i,2} A_{i,1} A_{i,0}. | |||
* A_{i,3} denotes the most significant byte, A_{i,0} the least significant one. | |||
* f(x) == x^{31} + ... + x^{24} + | |||
* + x^{23} + ... + x^{16} + | |||
* + x^{15} + ... + x^{8} + | |||
* + x^{7} + ... + x^{0} | |||
* | |||
* | |||
* Multi-precision elements (i.e., with multiple DIGITs) are stored in | |||
* Big-endian format: | |||
* A = A_{n-1} A_{n-2} ... A_1 A_0 | |||
* | |||
* position[A_{n-1}] == 0 | |||
* position[A_{n-2}] == 1 | |||
* ... | |||
* position[A_{1}] == n-2 | |||
* position[A_{0}] == n-1 | |||
*/ | |||
typedef uint64_t DIGIT; | |||
#define DIGIT_SIZE_B (8) | |||
#define DIGIT_SIZE_b (DIGIT_SIZE_B << 3) | |||
#define POSITION_T uint32_t | |||
#define MIN_KAR_DIGITS 10 | |||
#define MIN_TOOM_DIGITS 42 | |||
#define STACK_KAR_ONLY 7137 | |||
#define STACK_WORDS 8401 | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_add(DIGIT Res[], const DIGIT A[], const DIGIT B[], size_t n); | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_cmov(DIGIT *r, const DIGIT *a, size_t len, int c); | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_right_bit_shift_n(size_t length, DIGIT in[], size_t amount); | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_left_bit_shift_n(size_t length, DIGIT in[], size_t amount); | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mul(DIGIT *R, const DIGIT *A, const DIGIT *B, size_t n); | |||
#endif |
@@ -1,529 +0,0 @@ | |||
#include "gf2x_arith_mod_xPplusOne.h" | |||
#include "rng.h" | |||
#include "sort.h" | |||
#include <string.h> // memcpy(...), memset(...) | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_copy(DIGIT dest[], const DIGIT in[]) { | |||
for (size_t i = 0; i < NUM_DIGITS_GF2X_ELEMENT; i++) { | |||
dest[i] = in[i]; | |||
} | |||
} | |||
/* returns the coefficient of the x^exponent term as the LSB of a digit */ | |||
DIGIT PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_get_coeff(const DIGIT poly[], size_t exponent) { | |||
size_t straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent; | |||
size_t digitIdx = straightIdx / DIGIT_SIZE_b; | |||
size_t inDigitIdx = straightIdx % DIGIT_SIZE_b; | |||
return (poly[digitIdx] >> (DIGIT_SIZE_b - 1 - inDigitIdx)) & ((DIGIT) 1) ; | |||
} | |||
/* sets the coefficient of the x^exponent term as the LSB of a digit */ | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_set_coeff(DIGIT poly[], size_t exponent, DIGIT value) { | |||
size_t straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent; | |||
size_t digitIdx = straightIdx / DIGIT_SIZE_b; | |||
size_t inDigitIdx = straightIdx % DIGIT_SIZE_b; | |||
/* clear given coefficient */ | |||
DIGIT mask = ~(((DIGIT) 1) << (DIGIT_SIZE_b - 1 - inDigitIdx)); | |||
poly[digitIdx] = poly[digitIdx] & mask; | |||
poly[digitIdx] = poly[digitIdx] | ((value & ((DIGIT) 1)) << (DIGIT_SIZE_b - 1 - inDigitIdx)); | |||
} | |||
/* toggles (flips) the coefficient of the x^exponent term as the LSB of a digit */ | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_toggle_coeff(DIGIT poly[], size_t exponent) { | |||
size_t straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent; | |||
size_t digitIdx = straightIdx / DIGIT_SIZE_b; | |||
size_t inDigitIdx = straightIdx % DIGIT_SIZE_b; | |||
/* clear given coefficient */ | |||
DIGIT mask = (((DIGIT) 1) << (DIGIT_SIZE_b - 1 - inDigitIdx)); | |||
poly[digitIdx] = poly[digitIdx] ^ mask; | |||
} | |||
/* population count for an unsigned 64-bit integer | |||
Source: Hacker's delight, p.66 */ | |||
static int popcount_uint64t(uint64_t x) { | |||
x -= (x >> 1) & 0x5555555555555555; | |||
x = (x & 0x3333333333333333) + ((x >> 2) & 0x3333333333333333); | |||
x = (x + (x >> 4)) & 0x0f0f0f0f0f0f0f0f; | |||
return (int)((x * 0x0101010101010101) >> 56); | |||
} | |||
/* population count for a single polynomial */ | |||
int PQCLEAN_LEDAKEMLT52_LEAKTIME_population_count(const DIGIT *poly) { | |||
int ret = 0; | |||
for (int i = NUM_DIGITS_GF2X_ELEMENT - 1; i >= 0; i--) { | |||
ret += popcount_uint64t(poly[i]); | |||
} | |||
return ret; | |||
} | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_add(DIGIT Res[], const DIGIT A[], const DIGIT B[]) { | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_add(Res, A, B, NUM_DIGITS_GF2X_ELEMENT); | |||
} | |||
static void gf2x_mod(DIGIT out[], const DIGIT in[]) { | |||
DIGIT aux[NUM_DIGITS_GF2X_ELEMENT + 1]; | |||
memcpy(aux, in, (NUM_DIGITS_GF2X_ELEMENT + 1)*DIGIT_SIZE_B); | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_right_bit_shift_n(NUM_DIGITS_GF2X_ELEMENT + 1, aux, | |||
MSb_POSITION_IN_MSB_DIGIT_OF_MODULUS); | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_add(out, aux + 1, in + NUM_DIGITS_GF2X_ELEMENT, | |||
NUM_DIGITS_GF2X_ELEMENT); | |||
out[0] &= ((DIGIT)1 << MSb_POSITION_IN_MSB_DIGIT_OF_MODULUS) - 1; | |||
} | |||
static void right_bit_shift(size_t length, DIGIT in[]) { | |||
size_t j; | |||
for (j = length - 1; j > 0; j--) { | |||
in[j] >>= 1; | |||
in[j] |= (in[j - 1] & (DIGIT)0x01) << (DIGIT_SIZE_b - 1); | |||
} | |||
in[j] >>= 1; | |||
} | |||
/* shifts by whole digits */ | |||
static void left_DIGIT_shift_n(size_t length, DIGIT in[], size_t amount) { | |||
size_t j; | |||
for (j = 0; (j + amount) < length; j++) { | |||
in[j] = in[j + amount]; | |||
} | |||
for (; j < length; j++) { | |||
in[j] = (DIGIT)0; | |||
} | |||
} | |||
/* may shift by an arbitrary amount*/ | |||
static void left_bit_shift_wide_n(size_t length, DIGIT in[], size_t amount) { | |||
left_DIGIT_shift_n(length, in, amount / DIGIT_SIZE_b); | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_left_bit_shift_n(length, in, amount % DIGIT_SIZE_b); | |||
} | |||
/* Hackers delight, reverses a uint64_t */ | |||
static DIGIT reverse_digit(DIGIT x) { | |||
uint64_t t; | |||
x = (x << 31) | (x >> 33); | |||
t = (x ^ (x >> 20)) & 0x00000FFF800007FFLL; | |||
x = (t | (t << 20)) ^ x; | |||
t = (x ^ (x >> 8)) & 0x00F8000F80700807LL; | |||
x = (t | (t << 8)) ^ x; | |||
t = (x ^ (x >> 4)) & 0x0808708080807008LL; | |||
x = (t | (t << 4)) ^ x; | |||
t = (x ^ (x >> 2)) & 0x1111111111111111LL; | |||
x = (t | (t << 2)) ^ x; | |||
return x; | |||
} | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_transpose_in_place(DIGIT A[]) { | |||
/* it keeps the lsb in the same position and | |||
* inverts the sequence of the remaining bits */ | |||
DIGIT mask = (DIGIT)0x1; | |||
DIGIT rev1, rev2, a00; | |||
int slack_bits_amount = NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - P; | |||
a00 = A[NUM_DIGITS_GF2X_ELEMENT - 1] & mask; | |||
right_bit_shift(NUM_DIGITS_GF2X_ELEMENT, A); | |||
for (size_t i = NUM_DIGITS_GF2X_ELEMENT - 1; i >= (NUM_DIGITS_GF2X_ELEMENT + 1) / 2; i--) { | |||
rev1 = reverse_digit(A[i]); | |||
rev2 = reverse_digit(A[NUM_DIGITS_GF2X_ELEMENT - 1 - i]); | |||
A[i] = rev2; | |||
A[NUM_DIGITS_GF2X_ELEMENT - 1 - i] = rev1; | |||
} | |||
if (slack_bits_amount) { | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_right_bit_shift_n(NUM_DIGITS_GF2X_ELEMENT, A, slack_bits_amount); | |||
} | |||
A[NUM_DIGITS_GF2X_ELEMENT - 1] = (A[NUM_DIGITS_GF2X_ELEMENT - 1] & (~mask)) | a00; | |||
} | |||
static void rotate_bit_right(DIGIT in[]) { /* x^{-1} * in(x) mod x^P+1 */ | |||
DIGIT rotated_bit = in[NUM_DIGITS_GF2X_ELEMENT - 1] & ((DIGIT)0x1); | |||
right_bit_shift(NUM_DIGITS_GF2X_ELEMENT, in); | |||
int msb_offset_in_digit = MSb_POSITION_IN_MSB_DIGIT_OF_MODULUS - 1; | |||
rotated_bit = rotated_bit << msb_offset_in_digit; | |||
in[0] |= rotated_bit; | |||
} | |||
/* cond swap: swaps digits A and B if swap_mask == -1 */ | |||
static void gf2x_cswap(DIGIT *a, DIGIT *b, int32_t swap_mask) { | |||
DIGIT t; | |||
for (size_t i = 0; i < NUM_DIGITS_GF2X_ELEMENT; i++) { | |||
t = swap_mask & (a[i] ^ b[i]); | |||
a[i] ^= t; | |||
b[i] ^= t; | |||
} | |||
} | |||
/* returns -1 mask if x != 0, otherwise 0 */ | |||
static inline int32_t nonzero(DIGIT x) { | |||
DIGIT t = x; | |||
t = (~t) + 1; | |||
t >>= DIGIT_SIZE_b - 1; | |||
return -((int32_t)t); | |||
} | |||
/* returns -1 mask if x < 0 else 0 */ | |||
static inline int32_t negative(int x) { | |||
uint32_t u = x; | |||
u >>= 31; | |||
return -((int32_t)u); | |||
} | |||
/* return f(0) as digit */ | |||
static inline DIGIT lsb(const DIGIT *p) { | |||
DIGIT mask = (DIGIT)1; | |||
return p[NUM_DIGITS_GF2X_ELEMENT - 1] & mask; | |||
} | |||
/* multiply poly with scalar and accumulate, expects s all-zero of all-one mask */ | |||
static void gf2x_mult_scalar_acc(DIGIT *f, const DIGIT *g, const DIGIT s) { | |||
for (size_t i = 0; i < NUM_DIGITS_GF2X_ELEMENT; i++) { | |||
f[i] = f[i] ^ (s & g[i]); | |||
} | |||
} | |||
/* constant-time inverse, source: gcd.cr.yp.to */ | |||
int PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_inverse(DIGIT out[], const DIGIT in[]) { | |||
int32_t swap, delta = 1; | |||
DIGIT g0_mask; | |||
DIGIT f[NUM_DIGITS_GF2X_MODULUS] = {0}; // f = x^P + 1 | |||
DIGIT g[NUM_DIGITS_GF2X_ELEMENT]; // g = in | |||
DIGIT *v = out; // v = 0, save space | |||
DIGIT r[NUM_DIGITS_GF2X_ELEMENT] = {0}; // r = 1 | |||
f[NUM_DIGITS_GF2X_MODULUS - 1] = 1; | |||
f[0] |= ((DIGIT)1 << MSb_POSITION_IN_MSB_DIGIT_OF_MODULUS); | |||
for (size_t i = 0; i < NUM_DIGITS_GF2X_ELEMENT; i++) { | |||
g[i] = in[i]; | |||
} | |||
for (size_t i = 0; i < NUM_DIGITS_GF2X_ELEMENT; i++) { | |||
v[i] = 0; | |||
} | |||
r[NUM_DIGITS_GF2X_ELEMENT - 1] = 1; | |||
for (int loop = 0; loop < 2 * P - 1; ++loop) { | |||
swap = negative(-delta) & nonzero(lsb(g)); // swap = -1 if -delta < 0 AND g(0) != 0 | |||
delta ^= swap & (delta ^ -delta); // cond swap delta with -delta if swap | |||
delta++; | |||
gf2x_cswap(f, g, swap); | |||
gf2x_cswap(v, r, swap); | |||
g0_mask = ~lsb(g) + 1; | |||
// g = (g - g0 * f) / x | |||
gf2x_mult_scalar_acc(g, f, g0_mask); | |||
right_bit_shift(NUM_DIGITS_GF2X_ELEMENT, g); | |||
// r = (r - g0 * v) / x | |||
gf2x_mult_scalar_acc(r, v, g0_mask); | |||
rotate_bit_right(r); | |||
} | |||
return nonzero(delta); // -1 if fail, 0 if success | |||
} | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_mul(DIGIT Res[], const DIGIT A[], const DIGIT B[]) { | |||
DIGIT aux[2 * NUM_DIGITS_GF2X_ELEMENT]; | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mul(aux, A, B, NUM_DIGITS_GF2X_ELEMENT); | |||
gf2x_mod(Res, aux); | |||
} | |||
/*PRE: the representation of the sparse coefficients is sorted in increasing | |||
order of the coefficients themselves */ | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_mul_dense_to_sparse(DIGIT Res[], const DIGIT dense[], | |||
POSITION_T sparse[], size_t nPos) { | |||
DIGIT aux[2 * NUM_DIGITS_GF2X_ELEMENT] = {0x00}; | |||
DIGIT resDouble[2 * NUM_DIGITS_GF2X_ELEMENT] = {0x00}; | |||
memcpy(aux + NUM_DIGITS_GF2X_ELEMENT, dense, NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B); | |||
memcpy(resDouble + NUM_DIGITS_GF2X_ELEMENT, dense, NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B); | |||
if (sparse[0] != INVALID_POS_VALUE) { | |||
left_bit_shift_wide_n(2 * NUM_DIGITS_GF2X_ELEMENT, resDouble, sparse[0]); | |||
left_bit_shift_wide_n(2 * NUM_DIGITS_GF2X_ELEMENT, aux, sparse[0]); | |||
for (size_t i = 1; i < nPos; i++) { | |||
if (sparse[i] != INVALID_POS_VALUE) { | |||
left_bit_shift_wide_n(2 * NUM_DIGITS_GF2X_ELEMENT, aux, (sparse[i] - sparse[i - 1]) ); | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_add(resDouble, aux, resDouble, 2 * NUM_DIGITS_GF2X_ELEMENT); | |||
} | |||
} | |||
} | |||
gf2x_mod(Res, resDouble); | |||
} | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_transpose_in_place_sparse(size_t sizeA, POSITION_T A[]) { | |||
POSITION_T t; | |||
size_t i = 0, j; | |||
if (A[i] == 0) { | |||
i = 1; | |||
} | |||
j = i; | |||
for (; i < sizeA && A[i] != INVALID_POS_VALUE; i++) { | |||
A[i] = P - A[i]; | |||
} | |||
for (i -= 1; j < i; j++, i--) { | |||
t = A[j]; | |||
A[j] = A[i]; | |||
A[i] = t; | |||
} | |||
} | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_mul_sparse(size_t sizeR, POSITION_T Res[], | |||
size_t sizeA, const POSITION_T A[], | |||
size_t sizeB, const POSITION_T B[]) { | |||
POSITION_T prod; | |||
POSITION_T lastReadPos; | |||
size_t duplicateCount; | |||
size_t write_idx, read_idx; | |||
/* compute all the coefficients, filling invalid positions with P*/ | |||
size_t lastFilledPos = 0; | |||
for (size_t i = 0 ; i < sizeA ; i++) { | |||
for (size_t j = 0 ; j < sizeB ; j++) { | |||
prod = A[i] + B[j]; | |||
prod = ( (prod >= P) ? prod - P : prod); | |||
if ((A[i] != INVALID_POS_VALUE) && | |||
(B[j] != INVALID_POS_VALUE)) { | |||
Res[lastFilledPos] = prod; | |||
} else { | |||
Res[lastFilledPos] = INVALID_POS_VALUE; | |||
} | |||
lastFilledPos++; | |||
} | |||
} | |||
while (lastFilledPos < sizeR) { | |||
Res[lastFilledPos] = INVALID_POS_VALUE; | |||
lastFilledPos++; | |||
} | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_uint32_sort(Res, sizeR); | |||
/* eliminate duplicates */ | |||
write_idx = read_idx = 0; | |||
while (read_idx < sizeR && Res[read_idx] != INVALID_POS_VALUE) { | |||
lastReadPos = Res[read_idx]; | |||
read_idx++; | |||
duplicateCount = 1; | |||
while ( (Res[read_idx] == lastReadPos) && (Res[read_idx] != INVALID_POS_VALUE)) { | |||
read_idx++; | |||
duplicateCount++; | |||
} | |||
if (duplicateCount % 2) { | |||
Res[write_idx] = lastReadPos; | |||
write_idx++; | |||
} | |||
} | |||
/* fill remaining cells with INVALID_POS_VALUE */ | |||
for (; write_idx < sizeR; write_idx++) { | |||
Res[write_idx] = INVALID_POS_VALUE; | |||
} | |||
} | |||
/* the implementation is safe even in case A or B alias with the result | |||
* PRE: A and B should be sorted, disjunct arrays ending with INVALID_POS_VALUE */ | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_add_sparse(size_t sizeR, POSITION_T Res[], | |||
size_t sizeA, const POSITION_T A[], | |||
size_t sizeB, const POSITION_T B[]) { | |||
POSITION_T tmpRes[DV * M]; | |||
size_t idxA = 0, idxB = 0, idxR = 0; | |||
while ( idxA < sizeA && | |||
idxB < sizeB && | |||
A[idxA] != INVALID_POS_VALUE && | |||
B[idxB] != INVALID_POS_VALUE ) { | |||
if (A[idxA] == B[idxB]) { | |||
idxA++; | |||
idxB++; | |||
} else { | |||
if (A[idxA] < B[idxB]) { | |||
tmpRes[idxR] = A[idxA]; | |||
idxA++; | |||
} else { | |||
tmpRes[idxR] = B[idxB]; | |||
idxB++; | |||
} | |||
idxR++; | |||
} | |||
} | |||
while (idxA < sizeA && A[idxA] != INVALID_POS_VALUE) { | |||
tmpRes[idxR] = A[idxA]; | |||
idxA++; | |||
idxR++; | |||
} | |||
while (idxB < sizeB && B[idxB] != INVALID_POS_VALUE) { | |||
tmpRes[idxR] = B[idxB]; | |||
idxB++; | |||
idxR++; | |||
} | |||
while (idxR < sizeR) { | |||
tmpRes[idxR] = INVALID_POS_VALUE; | |||
idxR++; | |||
} | |||
memcpy(Res, tmpRes, sizeof(POSITION_T)*sizeR); | |||
} | |||
/* Return a uniform random value in the range 0..n-1 inclusive, | |||
* applying a rejection sampling strategy and exploiting as a random source | |||
* the NIST seedexpander seeded with the proper key. | |||
* Assumes that the maximum value for the range n is 2^32-1 | |||
*/ | |||
static uint32_t rand_range(const unsigned int n, const int logn, AES_XOF_struct *seed_expander_ctx) { | |||
unsigned long required_rnd_bytes = (logn + 7) / 8; | |||
unsigned char rnd_char_buffer[4]; | |||
uint32_t rnd_value; | |||
uint32_t mask = ( (uint32_t)1 << logn) - 1; | |||
do { | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_seedexpander(seed_expander_ctx, rnd_char_buffer, required_rnd_bytes); | |||
/* obtain an endianness independent representation of the generated random | |||
bytes into an unsigned integer */ | |||
rnd_value = ((uint32_t)rnd_char_buffer[3] << 24) + | |||
((uint32_t)rnd_char_buffer[2] << 16) + | |||
((uint32_t)rnd_char_buffer[1] << 8) + | |||
((uint32_t)rnd_char_buffer[0] << 0) ; | |||
rnd_value = mask & rnd_value; | |||
} while (rnd_value >= n); | |||
return rnd_value; | |||
} | |||
/* Obtains fresh randomness and seed-expands it until all the required positions | |||
* for the '1's in the circulant block are obtained */ | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_rand_circulant_sparse_block(POSITION_T *pos_ones, | |||
size_t countOnes, | |||
AES_XOF_struct *seed_expander_ctx) { | |||
size_t duplicated, placedOnes = 0; | |||
POSITION_T p; | |||
while (placedOnes < countOnes) { | |||
p = rand_range(NUM_BITS_GF2X_ELEMENT, | |||
P_BITS, | |||
seed_expander_ctx); | |||
duplicated = 0; | |||
for (size_t j = 0; j < placedOnes; j++) { | |||
if (pos_ones[j] == p) { | |||
duplicated = 1; | |||
} | |||
} | |||
if (duplicated == 0) { | |||
pos_ones[placedOnes] = p; | |||
placedOnes++; | |||
} | |||
} | |||
} | |||
/* Returns random weight-t circulant block */ | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_rand_circulant_blocks_sequence(DIGIT sequence[N0 * NUM_DIGITS_GF2X_ELEMENT], | |||
AES_XOF_struct *seed_expander_ctx) { | |||
size_t polyIndex, duplicated, counter = 0; | |||
POSITION_T p, exponent, rndPos[NUM_ERRORS_T]; | |||
memset(sequence, 0x00, N0 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B); | |||
while (counter < NUM_ERRORS_T) { | |||
p = rand_range(N0 * NUM_BITS_GF2X_ELEMENT, P_BITS, seed_expander_ctx); | |||
duplicated = 0; | |||
for (size_t j = 0; j < counter; j++) { | |||
if (rndPos[j] == p) { | |||
duplicated = 1; | |||
} | |||
} | |||
if (duplicated == 0) { | |||
rndPos[counter] = p; | |||
counter++; | |||
} | |||
} | |||
for (size_t j = 0; j < counter; j++) { | |||
polyIndex = rndPos[j] / P; | |||
exponent = rndPos[j] % P; | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_set_coeff( sequence + NUM_DIGITS_GF2X_ELEMENT * polyIndex, exponent, | |||
( (DIGIT) 1)); | |||
} | |||
} | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_rand_error_pos(POSITION_T errorPos[NUM_ERRORS_T], | |||
AES_XOF_struct *seed_expander_ctx) { | |||
int duplicated; | |||
size_t counter = 0; | |||
while (counter < NUM_ERRORS_T) { | |||
POSITION_T p = rand_range(N0 * NUM_BITS_GF2X_ELEMENT, P_BITS, seed_expander_ctx); | |||
duplicated = 0; | |||
for (size_t j = 0; j < counter; j++) { | |||
if (errorPos[j] == p) { | |||
duplicated = 1; | |||
} | |||
} | |||
if (duplicated == 0) { | |||
errorPos[counter] = p; | |||
counter++; | |||
} | |||
} | |||
} | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_expand_error(DIGIT sequence[N0 * NUM_DIGITS_GF2X_ELEMENT], | |||
const POSITION_T errorPos[NUM_ERRORS_T]) { | |||
size_t polyIndex; | |||
POSITION_T exponent; | |||
memset(sequence, 0x00, N0 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B); | |||
for (int j = 0; j < NUM_ERRORS_T; j++) { | |||
polyIndex = errorPos[j] / P; | |||
exponent = errorPos[j] % P; | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_set_coeff( sequence + NUM_DIGITS_GF2X_ELEMENT * polyIndex, exponent, | |||
( (DIGIT) 1)); | |||
} | |||
} | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_tobytes(uint8_t *bytes, const DIGIT *poly) { | |||
size_t i, j; | |||
for (i = 0; i < NUM_DIGITS_GF2X_ELEMENT; i++) { | |||
for (j = 0; j < DIGIT_SIZE_B; j++) { | |||
bytes[i * DIGIT_SIZE_B + j] = (uint8_t) (poly[i] >> 8 * j); | |||
} | |||
} | |||
} | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_frombytes(DIGIT *poly, const uint8_t *poly_bytes) { | |||
size_t i, j; | |||
for (i = 0; i < NUM_DIGITS_GF2X_ELEMENT; i++) { | |||
poly[i] = (DIGIT) 0; | |||
for (j = 0; j < DIGIT_SIZE_B; j++) { | |||
poly[i] |= (DIGIT) poly_bytes[i * DIGIT_SIZE_B + j] << 8 * j; | |||
} | |||
} | |||
} |
@@ -1,39 +0,0 @@ | |||
#ifndef GF2X_ARITH_MOD_XPLUSONE_H | |||
#define GF2X_ARITH_MOD_XPLUSONE_H | |||
#include "qc_ldpc_parameters.h" | |||
#include "gf2x_arith.h" | |||
#include "rng.h" | |||
#define NUM_BITS_GF2X_ELEMENT (P) | |||
#define NUM_DIGITS_GF2X_ELEMENT ((P+DIGIT_SIZE_b-1)/DIGIT_SIZE_b) | |||
#define MSb_POSITION_IN_MSB_DIGIT_OF_ELEMENT ((P % DIGIT_SIZE_b) ? (P % DIGIT_SIZE_b)-1 : DIGIT_SIZE_b-1) | |||
#define NUM_BITS_GF2X_MODULUS (P+1) | |||
#define NUM_DIGITS_GF2X_MODULUS ((P+1+DIGIT_SIZE_b-1)/DIGIT_SIZE_b) | |||
#define MSb_POSITION_IN_MSB_DIGIT_OF_MODULUS (P-DIGIT_SIZE_b*(NUM_DIGITS_GF2X_MODULUS-1)) | |||
#define INVALID_POS_VALUE (P) | |||
#define P_BITS (18) | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_copy(DIGIT dest[], const DIGIT in[]); | |||
DIGIT PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_get_coeff(const DIGIT poly[], size_t exponent); | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_set_coeff(DIGIT poly[], size_t exponent, DIGIT value); | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_toggle_coeff(DIGIT poly[], size_t exponent); | |||
int PQCLEAN_LEDAKEMLT52_LEAKTIME_population_count(const DIGIT *poly); | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_add(DIGIT Res[], const DIGIT A[], const DIGIT B[]); | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_mul(DIGIT Res[], const DIGIT A[], const DIGIT B[]); | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_transpose_in_place(DIGIT A[]); | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_rand_circulant_sparse_block(POSITION_T *pos_ones, size_t countOnes, AES_XOF_struct *seed_expander_ctx); | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_rand_circulant_blocks_sequence(DIGIT *sequence, AES_XOF_struct *seed_expander_ctx); | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_rand_error_pos(POSITION_T errorPos[NUM_ERRORS_T], AES_XOF_struct *seed_expander_ctx); | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_expand_error(DIGIT sequence[N0 * NUM_DIGITS_GF2X_ELEMENT], const POSITION_T errorPos[NUM_ERRORS_T]); | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_add_sparse(size_t sizeR, POSITION_T Res[], size_t sizeA, const POSITION_T A[], size_t sizeB, const POSITION_T B[]); | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_transpose_in_place_sparse(size_t sizeA, POSITION_T A[]); | |||
int PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_inverse(DIGIT out[], const DIGIT in[]); | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_mul_sparse(size_t sizeR, POSITION_T Res[], size_t sizeA, const POSITION_T A[], size_t sizeB, const POSITION_T B[]); | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_mul_dense_to_sparse(DIGIT Res[], const DIGIT dense[], POSITION_T sparse[], size_t nPos); | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_tobytes(uint8_t *bytes, const DIGIT *poly); | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_frombytes(DIGIT *poly, const uint8_t *poly_bytes); | |||
#endif |
@@ -1,157 +0,0 @@ | |||
#include "api.h" | |||
#include "niederreiter.h" | |||
#include "randombytes.h" | |||
#include "rng.h" | |||
#include "utils.h" | |||
#include <string.h> | |||
#define pack_ct(sk_bytes, ct) PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_tobytes(sk_bytes, ct); | |||
#define unpack_ct(ct, ct_bytes) PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_frombytes(ct, ct_bytes) | |||
static void pack_pk(uint8_t *pk_bytes, publicKeyNiederreiter_t *pk) { | |||
for (size_t i = 0; i < N0 - 1; i++) { | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_tobytes(pk_bytes + i * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B, | |||
pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT); | |||
} | |||
} | |||
static void unpack_pk(publicKeyNiederreiter_t *pk, const uint8_t *pk_bytes) { | |||
for (size_t i = 0; i < N0 - 1; i++) { | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_frombytes(pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT, | |||
pk_bytes + i * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B); | |||
} | |||
} | |||
static void pack_error(uint8_t *error_bytes, DIGIT *error_digits) { | |||
size_t i; | |||
for (i = 0; i < N0; i++) { | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_tobytes(error_bytes + i * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B, | |||
error_digits + i * NUM_DIGITS_GF2X_ELEMENT); | |||
} | |||
} | |||
/* IND-CCA2 Keygen */ | |||
int PQCLEAN_LEDAKEMLT52_LEAKTIME_crypto_kem_keypair(uint8_t *pk, uint8_t *sk) { | |||
publicKeyNiederreiter_t niederreiter_pk; | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_niederreiter_keygen(&niederreiter_pk, (privateKeyNiederreiter_t *) sk); | |||
pack_pk(pk, &niederreiter_pk); | |||
return 0; | |||
} | |||
/* IND-CCA2 Encapsulation */ | |||
int PQCLEAN_LEDAKEMLT52_LEAKTIME_crypto_kem_enc(uint8_t *ct, uint8_t *ss, const uint8_t *pk) { | |||
publicKeyNiederreiter_t niederreiter_pk; | |||
DIGIT syndrome[NUM_DIGITS_GF2X_ELEMENT]; | |||
AES_XOF_struct hashedAndTruncatedSeed_expander; | |||
POSITION_T errorPos[NUM_ERRORS_T]; | |||
DIGIT error_vector[N0 * NUM_DIGITS_GF2X_ELEMENT]; | |||
uint8_t error_bytes[N0 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B]; | |||
uint8_t seed[TRNG_BYTE_LENGTH]; | |||
uint8_t ss_input[2 * TRNG_BYTE_LENGTH] = {0}; | |||
uint8_t hashedSeed[HASH_BYTE_LENGTH]; | |||
uint8_t hashedAndTruncatedSeed[TRNG_BYTE_LENGTH] = {0}; | |||
uint8_t hashedErrorVector[HASH_BYTE_LENGTH]; | |||
uint8_t hashedAndTruncatedErrorVector[TRNG_BYTE_LENGTH] = {0}; | |||
uint8_t maskedSeed[TRNG_BYTE_LENGTH]; | |||
unpack_pk(&niederreiter_pk, pk); | |||
randombytes(seed, TRNG_BYTE_LENGTH); | |||
memcpy(ss_input, seed, TRNG_BYTE_LENGTH); | |||
HASH_FUNCTION(ss, ss_input, 2 * TRNG_BYTE_LENGTH); | |||
HASH_FUNCTION(hashedSeed, seed, TRNG_BYTE_LENGTH); | |||
memcpy(hashedAndTruncatedSeed, hashedSeed, TRNG_BYTE_LENGTH); | |||
memset(&hashedAndTruncatedSeed_expander, 0x00, sizeof(AES_XOF_struct)); | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_seedexpander_from_trng(&hashedAndTruncatedSeed_expander, hashedAndTruncatedSeed); | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_rand_error_pos(errorPos, &hashedAndTruncatedSeed_expander); | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_expand_error(error_vector, errorPos); | |||
pack_error(error_bytes, error_vector); | |||
HASH_FUNCTION(hashedErrorVector, error_bytes, (N0 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B)); | |||
memcpy(hashedAndTruncatedErrorVector, hashedErrorVector, TRNG_BYTE_LENGTH); | |||
for (size_t i = 0; i < TRNG_BYTE_LENGTH; ++i) { | |||
maskedSeed[i] = seed[i] ^ hashedAndTruncatedErrorVector[i]; | |||
} | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_niederreiter_encrypt(syndrome, | |||
(const publicKeyNiederreiter_t *) &niederreiter_pk, error_vector); | |||
pack_ct(ct, syndrome); | |||
memcpy(ct + (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B), maskedSeed, TRNG_BYTE_LENGTH); | |||
return 0; | |||
} | |||
/* IND-CCA2 Decapsulation */ | |||
int PQCLEAN_LEDAKEMLT52_LEAKTIME_crypto_kem_dec(uint8_t *ss, const uint8_t *ct, const uint8_t *sk) { | |||
DIGIT syndrome[NUM_DIGITS_GF2X_ELEMENT]; | |||
AES_XOF_struct hashedAndTruncatedSeed_expander; | |||
POSITION_T reconstructed_errorPos[NUM_ERRORS_T]; | |||
DIGIT reconstructed_error_vector[N0 * NUM_DIGITS_GF2X_ELEMENT]; | |||
DIGIT decoded_error_vector[N0 * NUM_DIGITS_GF2X_ELEMENT]; | |||
uint8_t decoded_error_bytes[N0 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B]; | |||
uint8_t hashedErrorVector[HASH_BYTE_LENGTH]; | |||
uint8_t hashedAndTruncatedErrorVector[TRNG_BYTE_LENGTH] = {0}; | |||
uint8_t decoded_seed[TRNG_BYTE_LENGTH]; | |||
uint8_t hashed_decoded_seed[HASH_BYTE_LENGTH]; | |||
uint8_t hashedAndTruncated_decoded_seed[TRNG_BYTE_LENGTH] = {0}; | |||
uint8_t ss_input[2 * TRNG_BYTE_LENGTH], tail[TRNG_BYTE_LENGTH] = {0}; | |||
int decode_ok, decrypt_ok, equal; | |||
unpack_ct(syndrome, ct); | |||
decode_ok = PQCLEAN_LEDAKEMLT52_LEAKTIME_niederreiter_decrypt(decoded_error_vector, | |||
(const privateKeyNiederreiter_t *)sk, syndrome); | |||
pack_error(decoded_error_bytes, decoded_error_vector); | |||
HASH_FUNCTION(hashedErrorVector, decoded_error_bytes, N0 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B); | |||
memcpy(hashedAndTruncatedErrorVector, hashedErrorVector, TRNG_BYTE_LENGTH); | |||
for (size_t i = 0; i < TRNG_BYTE_LENGTH; ++i) { | |||
decoded_seed[i] = ct[(NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B) + i] ^ | |||
hashedAndTruncatedErrorVector[i]; | |||
} | |||
HASH_FUNCTION(hashed_decoded_seed, decoded_seed, TRNG_BYTE_LENGTH); | |||
memcpy(hashedAndTruncated_decoded_seed, hashed_decoded_seed, TRNG_BYTE_LENGTH); | |||
memset(&hashedAndTruncatedSeed_expander, 0x00, sizeof(AES_XOF_struct)); | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_seedexpander_from_trng(&hashedAndTruncatedSeed_expander, | |||
hashed_decoded_seed); | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_rand_error_pos(reconstructed_errorPos, &hashedAndTruncatedSeed_expander); | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_expand_error(reconstructed_error_vector, reconstructed_errorPos); | |||
equal = PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_verify(decoded_error_vector, | |||
reconstructed_error_vector, N0 * NUM_DIGITS_GF2X_ELEMENT); | |||
// equal == 0, if the reconstructed error vector match !!! | |||
decrypt_ok = (decode_ok == 1 && equal == 0); | |||
memcpy(ss_input, decoded_seed, TRNG_BYTE_LENGTH); | |||
memcpy(ss_input + sizeof(decoded_seed), tail, TRNG_BYTE_LENGTH); | |||
// Overwrite on failure | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_cmov(ss_input + sizeof(decoded_seed), | |||
((const privateKeyNiederreiter_t *) sk)->decryption_failure_secret, | |||
TRNG_BYTE_LENGTH, | |||
!decrypt_ok); | |||
HASH_FUNCTION(ss, ss_input, 2 * TRNG_BYTE_LENGTH); | |||
return 0; | |||
} |
@@ -1,192 +0,0 @@ | |||
#include "H_Q_matrices_generation.h" | |||
#include "bf_decoding.h" | |||
#include "dfr_test.h" | |||
#include "gf2x_arith_mod_xPplusOne.h" | |||
#include "niederreiter.h" | |||
#include "qc_ldpc_parameters.h" | |||
#include "randombytes.h" | |||
#include "rng.h" | |||
#include <string.h> | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_niederreiter_keygen(publicKeyNiederreiter_t *pk, privateKeyNiederreiter_t *sk) { | |||
AES_XOF_struct keys_expander; | |||
POSITION_T HPosOnes[N0][DV]; | |||
POSITION_T QPosOnes[N0][M]; | |||
POSITION_T LPosOnes[N0][DV * M]; | |||
POSITION_T auxPosOnes[DV * M]; | |||
unsigned char processedQOnes[N0]; | |||
DIGIT Ln0dense[NUM_DIGITS_GF2X_ELEMENT] = {0}; | |||
DIGIT Ln0Inv[NUM_DIGITS_GF2X_ELEMENT] = {0}; | |||
int is_L_full; | |||
int isDFRok = 0; | |||
memset(&keys_expander, 0x00, sizeof(AES_XOF_struct)); | |||
randombytes(sk->prng_seed, TRNG_BYTE_LENGTH); | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_seedexpander_from_trng(&keys_expander, sk->prng_seed); | |||
sk->rejections = (uint8_t) 0; | |||
do { | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_generateHPosOnes(HPosOnes, &keys_expander); | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_generateQPosOnes(QPosOnes, &keys_expander); | |||
for (int i = 0; i < N0; i++) { | |||
for (int j = 0; j < DV * M; j++) { | |||
LPosOnes[i][j] = INVALID_POS_VALUE; | |||
} | |||
} | |||
memset(processedQOnes, 0x00, sizeof(processedQOnes)); | |||
for (int colQ = 0; colQ < N0; colQ++) { | |||
for (int i = 0; i < N0; i++) { | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_mul_sparse(DV * M, auxPosOnes, | |||
DV, HPosOnes[i], | |||
qBlockWeights[i][colQ], QPosOnes[i] + processedQOnes[i]); | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_add_sparse(DV * M, LPosOnes[colQ], | |||
DV * M, LPosOnes[colQ], | |||
DV * M, auxPosOnes); | |||
processedQOnes[i] += qBlockWeights[i][colQ]; | |||
} | |||
} | |||
is_L_full = 1; | |||
for (size_t i = 0; i < N0; i++) { | |||
is_L_full = is_L_full && (LPosOnes[i][DV * M - 1] != INVALID_POS_VALUE); | |||
} | |||
sk->rejections = sk->rejections + 1; | |||
if (is_L_full) { | |||
isDFRok = PQCLEAN_LEDAKEMLT52_LEAKTIME_DFR_test(LPosOnes, &(sk->secondIterThreshold)); | |||
} | |||
} while (!is_L_full || !isDFRok); | |||
sk->rejections = sk->rejections - 1; | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_seedexpander(&keys_expander, | |||
sk->decryption_failure_secret, | |||
(unsigned long)TRNG_BYTE_LENGTH); | |||
for (size_t j = 0; j < DV * M; j++) { | |||
if (LPosOnes[N0 - 1][j] != INVALID_POS_VALUE) { | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_set_coeff(Ln0dense, LPosOnes[N0 - 1][j], 1); | |||
} | |||
} | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_inverse(Ln0Inv, Ln0dense); | |||
for (size_t i = 0; i < N0 - 1; i++) { | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_mul_dense_to_sparse(pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT, | |||
Ln0Inv, | |||
LPosOnes[i], | |||
DV * M); | |||
} | |||
for (size_t i = 0; i < N0 - 1; i++) { | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_transpose_in_place(pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT); | |||
} | |||
} | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_niederreiter_encrypt(DIGIT syndrome[], | |||
const publicKeyNiederreiter_t *pk, | |||
const DIGIT err[]) { | |||
DIGIT saux[NUM_DIGITS_GF2X_ELEMENT]; | |||
memset(syndrome, 0x00, NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B); | |||
for (size_t i = 0; i < N0 - 1; i++) { | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_mul(saux, | |||
pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT, | |||
err + i * NUM_DIGITS_GF2X_ELEMENT); | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_add(syndrome, syndrome, saux); | |||
} | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_add(syndrome, syndrome, err + (N0 - 1)*NUM_DIGITS_GF2X_ELEMENT); | |||
} | |||
int PQCLEAN_LEDAKEMLT52_LEAKTIME_niederreiter_decrypt(DIGIT *err, const privateKeyNiederreiter_t *sk, const DIGIT *syndrome) { | |||
AES_XOF_struct niederreiter_decrypt_expander; | |||
POSITION_T HPosOnes[N0][DV]; | |||
POSITION_T QPosOnes[N0][M]; | |||
POSITION_T LPosOnes[N0][DV * M]; | |||
POSITION_T auxPosOnes[DV * M]; | |||
POSITION_T HtrPosOnes[N0][DV]; | |||
POSITION_T QtrPosOnes[N0][M]; | |||
POSITION_T auxSparse[DV * M]; | |||
POSITION_T Ln0trSparse[DV * M]; | |||
DIGIT err_computed[N0 * NUM_DIGITS_GF2X_ELEMENT] = {0}; | |||
DIGIT err_mockup[N0 * NUM_DIGITS_GF2X_ELEMENT]; | |||
DIGIT privateSyndrome[NUM_DIGITS_GF2X_ELEMENT]; | |||
uint8_t processedQOnes[N0]; | |||
int rejections = sk->rejections; | |||
int decrypt_ok = 0; | |||
int err_weight; | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_seedexpander_from_trng(&niederreiter_decrypt_expander, sk->prng_seed); | |||
do { | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_generateHPosOnes(HPosOnes, &niederreiter_decrypt_expander); | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_generateQPosOnes(QPosOnes, &niederreiter_decrypt_expander); | |||
for (size_t i = 0; i < N0; i++) { | |||
for (size_t j = 0; j < DV * M; j++) { | |||
LPosOnes[i][j] = INVALID_POS_VALUE; | |||
} | |||
} | |||
memset(processedQOnes, 0x00, sizeof(processedQOnes)); | |||
for (size_t colQ = 0; colQ < N0; colQ++) { | |||
for (size_t i = 0; i < N0; i++) { | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_mul_sparse(DV * M, auxPosOnes, | |||
DV, HPosOnes[i], | |||
qBlockWeights[i][colQ], QPosOnes[i] + processedQOnes[i]); | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_add_sparse(DV * M, LPosOnes[colQ], | |||
DV * M, LPosOnes[colQ], | |||
DV * M, auxPosOnes); | |||
processedQOnes[i] += qBlockWeights[i][colQ]; | |||
} | |||
} | |||
rejections--; | |||
} while (rejections >= 0); | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_transposeHPosOnes(HtrPosOnes, HPosOnes); | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_transposeQPosOnes(QtrPosOnes, QPosOnes); | |||
for (size_t i = 0; i < DV * M; i++) { | |||
Ln0trSparse[i] = INVALID_POS_VALUE; | |||
auxSparse[i] = INVALID_POS_VALUE; | |||
} | |||
for (size_t i = 0; i < N0; i++) { | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_mul_sparse(DV * M, auxSparse, | |||
DV, HPosOnes[i], | |||
qBlockWeights[i][N0 - 1], &QPosOnes[i][M - qBlockWeights[i][N0 - 1]]); | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_add_sparse(DV * M, Ln0trSparse, | |||
DV * M, Ln0trSparse, | |||
DV * M, auxSparse); | |||
} | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_transpose_in_place_sparse(DV * M, Ln0trSparse); | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_mul_dense_to_sparse(privateSyndrome, | |||
syndrome, | |||
Ln0trSparse, | |||
DV * M); | |||
decrypt_ok = PQCLEAN_LEDAKEMLT52_LEAKTIME_bf_decoding(err_computed, | |||
(const POSITION_T (*)[DV]) HtrPosOnes, | |||
(const POSITION_T (*)[M]) QtrPosOnes, | |||
privateSyndrome, sk->secondIterThreshold); | |||
err_weight = 0; | |||
for (size_t i = 0 ; i < N0; i++) { | |||
err_weight += PQCLEAN_LEDAKEMLT52_LEAKTIME_population_count(err_computed + (NUM_DIGITS_GF2X_ELEMENT * i)); | |||
} | |||
decrypt_ok = decrypt_ok && (err_weight == NUM_ERRORS_T); | |||
/* prepare mockup error vector in case a decoding failure occurs */ | |||
memcpy(err_mockup, syndrome, NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B); | |||
memcpy(err_mockup + NUM_DIGITS_GF2X_ELEMENT, sk->decryption_failure_secret, TRNG_BYTE_LENGTH); | |||
memset(((unsigned char *) err_mockup) + (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B) + TRNG_BYTE_LENGTH, 0x00, | |||
(N0 - 1)*NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B - TRNG_BYTE_LENGTH); | |||
memcpy(err, err_computed, N0 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B); | |||
// Overwrite on decryption failure | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_cmov(err, err_mockup, N0 * NUM_DIGITS_GF2X_ELEMENT, !decrypt_ok); | |||
return decrypt_ok; | |||
} |
@@ -1,24 +0,0 @@ | |||
#ifndef NIEDERREITER_H | |||
#define NIEDERREITER_H | |||
#include "gf2x_arith_mod_xPplusOne.h" | |||
#include "qc_ldpc_parameters.h" | |||
#include "rng.h" | |||
typedef struct { | |||
unsigned char prng_seed[TRNG_BYTE_LENGTH]; | |||
uint8_t rejections; | |||
uint8_t secondIterThreshold; | |||
uint8_t decryption_failure_secret[TRNG_BYTE_LENGTH]; | |||
} privateKeyNiederreiter_t; | |||
typedef struct { | |||
DIGIT Mtr[(N0 - 1)*NUM_DIGITS_GF2X_ELEMENT]; | |||
} publicKeyNiederreiter_t; | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_niederreiter_keygen(publicKeyNiederreiter_t *pk, privateKeyNiederreiter_t *sk); | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_niederreiter_encrypt(DIGIT syndrome[], const publicKeyNiederreiter_t *pk, const DIGIT err[]); | |||
int PQCLEAN_LEDAKEMLT52_LEAKTIME_niederreiter_decrypt(DIGIT *err, const privateKeyNiederreiter_t *sk, const DIGIT *syndrome); | |||
#endif |
@@ -1,27 +0,0 @@ | |||
#ifndef QC_LDPC_PARAMETERS_H | |||
#define QC_LDPC_PARAMETERS_H | |||
#include "fips202.h" | |||
#define TRNG_BYTE_LENGTH (40) | |||
#define HASH_BYTE_LENGTH (64) | |||
#define HASH_FUNCTION sha3_512 | |||
#define N0 (2) | |||
#define P (152267) // modulus(x) = x^P-1 | |||
#define DV (13) // odd number | |||
#define M (13) | |||
#define M0 (7) | |||
#define M1 (6) | |||
#define NUM_ERRORS_T (267) | |||
// Derived parameters, they are useful for QC-LDPC algorithms | |||
#define HASH_BIT_LENGTH (HASH_BYTE_LENGTH << 3) | |||
#define K ((N0-1)*P) | |||
#define N (N0*P) | |||
#define DC (N0*DV) | |||
#define Q_BLOCK_WEIGHTS {{M0,M1},{M1,M0}} | |||
static const unsigned char qBlockWeights[N0][N0] = Q_BLOCK_WEIGHTS; | |||
#endif |
@@ -1,110 +0,0 @@ | |||
#include "rng.h" | |||
#include <string.h> // void *memset(void *s, int c, size_t n); | |||
#include "aes.h" | |||
#include "qc_ldpc_parameters.h" | |||
/* | |||
seedexpander_init() | |||
ctx - stores the current state of an instance of the seed expander | |||
seed - a 32 byte random value | |||
diversifier - an 8 byte diversifier | |||
maxlen - maximum number of bytes (less than 2**32) generated under this seed and diversifier | |||
*/ | |||
static void seedexpander_init(AES_XOF_struct *ctx, | |||
uint8_t *seed, | |||
uint8_t *diversifier, | |||
size_t maxlen) { | |||
ctx->length_remaining = maxlen; | |||
memset(ctx->key, 0, 32); | |||
int max_accessible_seed_len = TRNG_BYTE_LENGTH < 32 ? 32 : TRNG_BYTE_LENGTH; | |||
memcpy(ctx->key, seed, max_accessible_seed_len); | |||
memcpy(ctx->ctr, diversifier, 8); | |||
ctx->ctr[11] = maxlen % 256; | |||
maxlen >>= 8; | |||
ctx->ctr[10] = maxlen % 256; | |||
maxlen >>= 8; | |||
ctx->ctr[9] = maxlen % 256; | |||
maxlen >>= 8; | |||
ctx->ctr[8] = maxlen % 256; | |||
memset(ctx->ctr + 12, 0x00, 4); | |||
ctx->buffer_pos = 16; | |||
memset(ctx->buffer, 0x00, 16); | |||
} | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_seedexpander_from_trng(AES_XOF_struct *ctx, | |||
const uint8_t *trng_entropy | |||
/* TRNG_BYTE_LENGTH wide buffer */) { | |||
/*the NIST seedexpander will however access 32B from this buffer */ | |||
unsigned int prng_buffer_size = TRNG_BYTE_LENGTH < 32 ? 32 : TRNG_BYTE_LENGTH; | |||
uint8_t prng_buffer[TRNG_BYTE_LENGTH < 32 ? 32 : TRNG_BYTE_LENGTH] = {0x00}; | |||
uint8_t *diversifier = (uint8_t *)trng_entropy + 32; | |||
memcpy(prng_buffer, | |||
trng_entropy, | |||
TRNG_BYTE_LENGTH < prng_buffer_size ? TRNG_BYTE_LENGTH : prng_buffer_size); | |||
/* the required seed expansion will be quite small, set the max number of | |||
* bytes conservatively to 10 MiB*/ | |||
seedexpander_init(ctx, prng_buffer, diversifier, RNG_MAXLEN); | |||
} | |||
/* | |||
seedexpander() | |||
ctx - stores the current state of an instance of the seed expander | |||
x - returns the XOF data | |||
xlen - number of bytes to return | |||
*/ | |||
int PQCLEAN_LEDAKEMLT52_LEAKTIME_seedexpander(AES_XOF_struct *ctx, uint8_t *x, size_t xlen) { | |||
size_t offset; | |||
aes256ctx ctx256; | |||
if ( x == NULL ) { | |||
return RNG_BAD_OUTBUF; | |||
} | |||
if ( xlen >= ctx->length_remaining ) { | |||
return RNG_BAD_REQ_LEN; | |||
} | |||
aes256_ecb_keyexp(&ctx256, ctx->key); | |||
ctx->length_remaining -= xlen; | |||
offset = 0; | |||
while ( xlen > 0 ) { | |||
if ( xlen <= (16 - ctx->buffer_pos) ) { // buffer has what we need | |||
memcpy(x + offset, ctx->buffer + ctx->buffer_pos, xlen); | |||
ctx->buffer_pos += xlen; | |||
goto end; | |||
} | |||
// take what's in the buffer | |||
memcpy(x + offset, ctx->buffer + ctx->buffer_pos, 16 - ctx->buffer_pos); | |||
xlen -= 16 - ctx->buffer_pos; | |||
offset += 16 - ctx->buffer_pos; | |||
aes256_ecb(ctx->buffer, ctx->ctr, 16 / AES_BLOCKBYTES, &ctx256); | |||
ctx->buffer_pos = 0; | |||
//increment the counter | |||
for (int i = 15; i >= 12; i--) { | |||
if ( ctx->ctr[i] == 0xff ) { | |||
ctx->ctr[i] = 0x00; | |||
} else { | |||
ctx->ctr[i]++; | |||
break; | |||
} | |||
} | |||
} | |||
end: | |||
aes256_ctx_release(&ctx256); | |||
return RNG_SUCCESS; | |||
} |
@@ -1,24 +0,0 @@ | |||
#ifndef RNG_H | |||
#define RNG_H | |||
#include <stddef.h> | |||
#include <stdint.h> | |||
#define RNG_SUCCESS ( 0) | |||
#define RNG_BAD_MAXLEN (-1) | |||
#define RNG_BAD_OUTBUF (-2) | |||
#define RNG_BAD_REQ_LEN (-3) | |||
#define RNG_MAXLEN (10 * 1024 * 1024) | |||
typedef struct { | |||
unsigned char buffer[16]; | |||
size_t buffer_pos; | |||
size_t length_remaining; | |||
unsigned char key[32]; | |||
unsigned char ctr[16]; | |||
} AES_XOF_struct; | |||
int PQCLEAN_LEDAKEMLT52_LEAKTIME_seedexpander(AES_XOF_struct *ctx, unsigned char *x, size_t xlen); | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_seedexpander_from_trng(AES_XOF_struct *ctx, const unsigned char *trng_entropy); | |||
#endif |
@@ -1,98 +0,0 @@ | |||
#include "sort.h" | |||
/* | |||
Constant-time uint32_t sorting by Daniel J. Bernstein | |||
Source: https://sorting.cr.yp.to | |||
*/ | |||
#define int32_MINMAX(a,b) \ | |||
do { \ | |||
int32 ab = (b) ^ (a); \ | |||
int32 c = (b) - (a); \ | |||
c ^= ab & (c ^ (b)); \ | |||
c >>= 31; \ | |||
c &= ab; \ | |||
(a) ^= c; \ | |||
(b) ^= c; \ | |||
} while(0) | |||
static void int32_sort(int32 *x, size_t n) { | |||
size_t top, p, q, r, i, j; | |||
if (n < 2) { | |||
return; | |||
} | |||
top = 1; | |||
while (top < n - top) { | |||
top += top; | |||
} | |||
for (p = top; p >= 1; p >>= 1) { | |||
i = 0; | |||
while (i + 2 * p <= n) { | |||
for (j = i; j < i + p; ++j) { | |||
int32_MINMAX(x[j], x[j + p]); | |||
} | |||
i += 2 * p; | |||
} | |||
for (j = i; j < n - p; ++j) { | |||
int32_MINMAX(x[j], x[j + p]); | |||
} | |||
i = 0; | |||
j = 0; | |||
for (q = top; q > p; q >>= 1) { | |||
if (j != i) { | |||
for (;;) { | |||
if (j == n - q) { | |||
goto done; | |||
} | |||
int32 a = x[j + p]; | |||
for (r = q; r > p; r >>= 1) { | |||
int32_MINMAX(a, x[j + r]); | |||
} | |||
x[j + p] = a; | |||
++j; | |||
if (j == i + p) { | |||
i += 2 * p; | |||
break; | |||
} | |||
} | |||
} | |||
while (i + p <= n - q) { | |||
for (j = i; j < i + p; ++j) { | |||
int32 a = x[j + p]; | |||
for (r = q; r > p; r >>= 1) { | |||
int32_MINMAX(a, x[j + r]); | |||
} | |||
x[j + p] = a; | |||
} | |||
i += 2 * p; | |||
} | |||
/* now i + p > n - q */ | |||
j = i; | |||
while (j < n - q) { | |||
int32 a = x[j + p]; | |||
for (r = q; r > p; r >>= 1) { | |||
int32_MINMAX(a, x[j + r]); | |||
} | |||
x[j + p] = a; | |||
++j; | |||
} | |||
done: | |||
; | |||
} | |||
} | |||
} | |||
/* can save time by integrating xor loops with int32_sort */ | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_uint32_sort(uint32_t *x, size_t n) { | |||
size_t j; | |||
for (j = 0; j < n; ++j) { | |||
x[j] ^= 0x80000000; | |||
} | |||
int32_sort((int32_t *) x, n); | |||
for (j = 0; j < n; ++j) { | |||
x[j] ^= 0x80000000; | |||
} | |||
} |
@@ -1,11 +0,0 @@ | |||
#ifndef SORT_H | |||
#define SORT_H | |||
#include <stddef.h> | |||
#include <stdint.h> | |||
#define int32 int32_t | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_uint32_sort(uint32_t *x, size_t n); | |||
#endif |
@@ -1,21 +0,0 @@ | |||
#include "gf2x_arith.h" | |||
#include "utils.h" | |||
/* compares DIGIT sequences, returns 0 if they are equal */ | |||
int PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_verify(const DIGIT *a, const DIGIT *b, size_t len) { | |||
DIGIT x = 0; | |||
for (size_t i = 0; i < len; i++) { | |||
x |= a[i] ^ b[i]; | |||
} | |||
x = (~x) + 1; | |||
x >>= (DIGIT_SIZE_b - 1); | |||
return (int)x; | |||
} | |||
/* conditionally move a into r if cond */ | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_cmov(uint8_t *r, const uint8_t *a, size_t len, int cond) { | |||
uint8_t mask = (uint8_t)(-cond); | |||
for (size_t i = 0; i < len; i++) { | |||
r[i] ^= mask & (r[i] ^ a[i]); | |||
} | |||
} |