@@ -19,8 +19,10 @@ | |||
static void compute_fft_betas(uint16_t *betas); | |||
static void compute_subset_sums(uint16_t *subset_sums, const uint16_t *set, size_t set_size); | |||
static void radix_t(uint16_t *f, const uint16_t *f0, const uint16_t *f1, uint32_t m_f); | |||
static void radix_t_big(uint16_t *f, const uint16_t *f0, const uint16_t *f1, uint32_t m_f); | |||
static void fft_t_rec(uint16_t *f, const uint16_t *w, size_t f_coeffs, uint8_t m, uint32_t m_f, const uint16_t *betas); | |||
static void radix(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f); | |||
static void radix_big(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f); | |||
static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32_t m_f, const uint16_t *betas); | |||
@@ -30,7 +32,8 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 | |||
* @param[out] betas Array of size PARAM_M-1 | |||
*/ | |||
static void compute_fft_betas(uint16_t *betas) { | |||
for (size_t i = 0 ; i < PARAM_M - 1 ; ++i) { | |||
size_t i; | |||
for (i = 0 ; i < PARAM_M - 1 ; ++i) { | |||
betas[i] = 1 << (PARAM_M - 1 - i); | |||
} | |||
} | |||
@@ -48,10 +51,11 @@ static void compute_fft_betas(uint16_t *betas) { | |||
* @param[in] set_size Size of the array set | |||
*/ | |||
static void compute_subset_sums(uint16_t *subset_sums, const uint16_t *set, size_t set_size) { | |||
size_t i, j; | |||
subset_sums[0] = 0; | |||
for (size_t i = 0 ; i < set_size ; ++i) { | |||
for (size_t j = 0 ; j < (1U << i) ; ++j) { | |||
for (i = 0 ; i < set_size ; ++i) { | |||
for (j = 0 ; j < (1U << i) ; ++j) { | |||
subset_sums[(1 << i) + j] = set[i] ^ subset_sums[j]; | |||
} | |||
} | |||
@@ -90,7 +94,7 @@ static void radix_t(uint16_t *f, const uint16_t *f0, const uint16_t *f1, uint32_ | |||
f[13] = f[7] ^ f[9] ^ f[11] ^ f1[6]; | |||
f[14] = f[6] ^ f0[6] ^ f0[7] ^ f1[6]; | |||
f[15] = f[7] ^ f0[7] ^ f1[7]; | |||
return; | |||
break; | |||
case 3: | |||
f[0] = f0[0]; | |||
@@ -101,49 +105,53 @@ static void radix_t(uint16_t *f, const uint16_t *f0, const uint16_t *f1, uint32_ | |||
f[5] = f[3] ^ f1[2]; | |||
f[6] = f[4] ^ f0[3] ^ f1[2]; | |||
f[7] = f[3] ^ f0[3] ^ f1[3]; | |||
return; | |||
break; | |||
case 2: | |||
f[0] = f0[0]; | |||
f[1] = f1[0]; | |||
f[2] = f0[1] ^ f1[0]; | |||
f[3] = f[2] ^ f1[1]; | |||
return; | |||
break; | |||
case 1: | |||
f[0] = f0[0]; | |||
f[1] = f1[0]; | |||
return; | |||
break; | |||
default: | |||
; | |||
radix_t_big(f, f0, f1, m_f); | |||
break; | |||
} | |||
} | |||
size_t n = 1 << (m_f - 2); | |||
static void radix_t_big(uint16_t *f, const uint16_t *f0, const uint16_t *f1, uint32_t m_f) { | |||
uint16_t Q0[1 << (PARAM_FFT_T - 2)] = {0}; | |||
uint16_t Q1[1 << (PARAM_FFT_T - 2)] = {0}; | |||
uint16_t R0[1 << (PARAM_FFT_T - 2)] = {0}; | |||
uint16_t R1[1 << (PARAM_FFT_T - 2)] = {0}; | |||
uint16_t Q0[1 << (PARAM_FFT_T - 2)]; | |||
uint16_t Q1[1 << (PARAM_FFT_T - 2)]; | |||
uint16_t R0[1 << (PARAM_FFT_T - 2)]; | |||
uint16_t R1[1 << (PARAM_FFT_T - 2)]; | |||
uint16_t Q[1 << 2 * (PARAM_FFT_T - 2)] = {0}; | |||
uint16_t R[1 << 2 * (PARAM_FFT_T - 2)] = {0}; | |||
uint16_t Q[1 << 2 * (PARAM_FFT_T - 2)]; | |||
uint16_t R[1 << 2 * (PARAM_FFT_T - 2)]; | |||
size_t i, n; | |||
memcpy(Q0, f0 + n, 2 * n); | |||
memcpy(Q1, f1 + n, 2 * n); | |||
memcpy(R0, f0, 2 * n); | |||
memcpy(R1, f1, 2 * n); | |||
n = 1 << (m_f - 2); | |||
memcpy(Q0, f0 + n, 2 * n); | |||
memcpy(Q1, f1 + n, 2 * n); | |||
memcpy(R0, f0, 2 * n); | |||
memcpy(R1, f1, 2 * n); | |||
radix_t (Q, Q0, Q1, m_f - 1); | |||
radix_t (R, R0, R1, m_f - 1); | |||
radix_t (Q, Q0, Q1, m_f - 1); | |||
radix_t (R, R0, R1, m_f - 1); | |||
memcpy(f, R, 4 * n); | |||
memcpy(f + 2 * n, R + n, 2 * n); | |||
memcpy(f + 3 * n, Q + n, 2 * n); | |||
memcpy(f, R, 4 * n); | |||
memcpy(f + 2 * n, R + n, 2 * n); | |||
memcpy(f + 3 * n, Q + n, 2 * n); | |||
for (size_t i = 0 ; i < n ; ++i) { | |||
f[2 * n + i] ^= Q[i]; | |||
f[3 * n + i] ^= f[2 * n + i]; | |||
} | |||
for (i = 0 ; i < n ; ++i) { | |||
f[2 * n + i] ^= Q[i]; | |||
f[3 * n + i] ^= f[2 * n + i]; | |||
} | |||
} | |||
@@ -162,29 +170,31 @@ static void radix_t(uint16_t *f, const uint16_t *f0, const uint16_t *f1, uint32_ | |||
* @param[in] betas FFT constants | |||
*/ | |||
static void fft_t_rec(uint16_t *f, const uint16_t *w, size_t f_coeffs, uint8_t m, uint32_t m_f, const uint16_t *betas) { | |||
size_t k = 1 << (m - 1); | |||
uint16_t gammas[PARAM_M - 2]; | |||
uint16_t deltas[PARAM_M - 2]; | |||
uint16_t gammas_sums[1 << (PARAM_M - 1)]; | |||
uint16_t gammas[PARAM_M - 2] = {0}; | |||
uint16_t deltas[PARAM_M - 2] = {0}; | |||
uint16_t gammas_sums[1 << (PARAM_M - 1)] = {0}; | |||
uint16_t u[1 << (PARAM_M - 2)] = {0}; | |||
uint16_t f0[1 << (PARAM_FFT_T - 2)] = {0}; | |||
uint16_t f1[1 << (PARAM_FFT_T - 2)] = {0}; | |||
uint16_t betas_sums[1 << (PARAM_M - 1)] = {0}; | |||
uint16_t v[1 << (PARAM_M - 2)] = {0}; | |||
uint16_t beta_m_pow; | |||
size_t i, j, k; | |||
// Step 1 | |||
if (m_f == 1) { | |||
f[0] = 0; | |||
for (size_t i = 0 ; i < (1U << m) ; ++i) { | |||
for (i = 0 ; i < (1U << m) ; ++i) { | |||
f[0] ^= w[i]; | |||
} | |||
f[1] = 0; | |||
uint16_t betas_sums[1 << (PARAM_M - 1)]; | |||
betas_sums[0] = 0; | |||
for (size_t j = 0 ; j < m ; ++j) { | |||
for (size_t k = 0 ; k < (1U << j) ; ++k) { | |||
size_t index = (1 << j) + k; | |||
betas_sums[index] = betas_sums[k] ^ betas[j]; | |||
f[1] ^= PQCLEAN_HQC128_CLEAN_gf_mul(betas_sums[index], w[index]); | |||
for (j = 0 ; j < m ; ++j) { | |||
for (k = 0 ; k < (1U << j) ; ++k) { | |||
betas_sums[(1 << j) + k] = betas_sums[k] ^ betas[j]; | |||
f[1] ^= PQCLEAN_HQC128_CLEAN_gf_mul(betas_sums[(1 << j) + k], w[(1 << j) + k]); | |||
} | |||
} | |||
@@ -192,7 +202,7 @@ static void fft_t_rec(uint16_t *f, const uint16_t *w, size_t f_coeffs, uint8_t m | |||
} | |||
// Compute gammas and deltas | |||
for (uint8_t i = 0 ; i < m - 1 ; ++i) { | |||
for (i = 0 ; i + 1 < m ; ++i) { | |||
gammas[i] = PQCLEAN_HQC128_CLEAN_gf_mul(betas[i], PQCLEAN_HQC128_CLEAN_gf_inverse(betas[m - 1])); | |||
deltas[i] = PQCLEAN_HQC128_CLEAN_gf_square(gammas[i]) ^ gammas[i]; | |||
} | |||
@@ -206,23 +216,22 @@ static void fft_t_rec(uint16_t *f, const uint16_t *w, size_t f_coeffs, uint8_t m | |||
* Transpose: | |||
* u[i] = w[i] + w[k+i] | |||
* v[i] = G[i].w[i] + (G[i]+1).w[k+i] = G[i].u[i] + w[k+i] */ | |||
k = 1 << ((m - 1) & 0xf); // &0xf is to let the compiler know that m-1 is small. | |||
if (f_coeffs <= 3) { // 3-coefficient polynomial f case | |||
// Step 5: Compute f0 from u and f1 from v | |||
f1[1] = 0; | |||
u[0] = w[0] ^ w[k]; | |||
f1[0] = w[k]; | |||
for (size_t i = 1 ; i < k ; ++i) { | |||
for (i = 1 ; i < k ; ++i) { | |||
u[i] = w[i] ^ w[k + i]; | |||
f1[0] ^= PQCLEAN_HQC128_CLEAN_gf_mul(gammas_sums[i], u[i]) ^ w[k + i]; | |||
} | |||
fft_t_rec(f0, u, (f_coeffs + 1) / 2, m - 1, m_f - 1, deltas); | |||
} else { | |||
uint16_t v[1 << (PARAM_M - 2)] = {0}; | |||
u[0] = w[0] ^ w[k]; | |||
v[0] = w[k]; | |||
for (size_t i = 1 ; i < k ; ++i) { | |||
for (i = 1 ; i < k ; ++i) { | |||
u[i] = w[i] ^ w[k + i]; | |||
v[i] = PQCLEAN_HQC128_CLEAN_gf_mul(gammas_sums[i], u[i]) ^ w[k + i]; | |||
} | |||
@@ -237,8 +246,8 @@ static void fft_t_rec(uint16_t *f, const uint16_t *w, size_t f_coeffs, uint8_t m | |||
// Step 2: compute f from g | |||
if (betas[m - 1] != 1) { | |||
uint16_t beta_m_pow = 1; | |||
for (size_t i = 1 ; i < (1U << m_f) ; ++i) { | |||
beta_m_pow = 1; | |||
for (i = 1 ; i < (1U << m_f) ; ++i) { | |||
beta_m_pow = PQCLEAN_HQC128_CLEAN_gf_mul(beta_m_pow, betas[m - 1]); | |||
f[i] = PQCLEAN_HQC128_CLEAN_gf_mul(beta_m_pow, f[i]); | |||
} | |||
@@ -261,14 +270,15 @@ static void fft_t_rec(uint16_t *f, const uint16_t *w, size_t f_coeffs, uint8_t m | |||
*/ | |||
void PQCLEAN_HQC128_CLEAN_fft_t(uint16_t *f, const uint16_t *w, size_t f_coeffs) { | |||
// Transposed from Gao and Mateer algorithm | |||
uint16_t betas[PARAM_M - 1]; | |||
uint16_t betas_sums[1 << (PARAM_M - 1)]; | |||
size_t k = 1 << (PARAM_M - 1); | |||
uint16_t betas[PARAM_M - 1] = {0}; | |||
uint16_t betas_sums[1 << (PARAM_M - 1)] = {0}; | |||
uint16_t u[1 << (PARAM_M - 1)] = {0}; | |||
uint16_t v[1 << (PARAM_M - 1)] = {0}; | |||
uint16_t deltas[PARAM_M - 1]; | |||
uint16_t f0[1 << (PARAM_FFT_T - 1)]; | |||
uint16_t f1[1 << (PARAM_FFT_T - 1)]; | |||
uint16_t deltas[PARAM_M - 1] = {0}; | |||
uint16_t f0[1 << (PARAM_FFT_T - 1)] = {0}; | |||
uint16_t f1[1 << (PARAM_FFT_T - 1)] = {0}; | |||
size_t i, k; | |||
compute_fft_betas(betas); | |||
compute_subset_sums(betas_sums, betas, PARAM_M - 1); | |||
@@ -281,15 +291,16 @@ void PQCLEAN_HQC128_CLEAN_fft_t(uint16_t *f, const uint16_t *w, size_t f_coeffs) | |||
* Transpose: | |||
* u[i] = w[i] + w[k+i] | |||
* v[i] = G[i].w[i] + (G[i]+1).w[k+i] = G[i].u[i] + w[k+i] */ | |||
k = 1 << (PARAM_M - 1); | |||
u[0] = w[0] ^ w[k]; | |||
v[0] = w[k]; | |||
for (size_t i = 1 ; i < k ; ++i) { | |||
for (i = 1 ; i < k ; ++i) { | |||
u[i] = w[i] ^ w[k + i]; | |||
v[i] = PQCLEAN_HQC128_CLEAN_gf_mul(betas_sums[i], u[i]) ^ w[k + i]; | |||
} | |||
// Compute deltas | |||
for (size_t i = 0 ; i < PARAM_M - 1 ; ++i) { | |||
for (i = 0 ; i < PARAM_M - 1 ; ++i) { | |||
deltas[i] = PQCLEAN_HQC128_CLEAN_gf_square(betas[i]) ^ betas[i]; | |||
} | |||
@@ -337,7 +348,7 @@ static void radix(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f) { | |||
f1[2] = f[3] ^ f1[1] ^ f0[3]; | |||
f0[1] = f[2] ^ f0[2] ^ f1[1]; | |||
f1[0] = f[1] ^ f0[1]; | |||
return; | |||
break; | |||
case 3: | |||
f0[0] = f[0]; | |||
@@ -348,49 +359,54 @@ static void radix(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f) { | |||
f1[3] = f[7]; | |||
f0[1] = f[2] ^ f0[2] ^ f1[1]; | |||
f1[0] = f[1] ^ f0[1]; | |||
return; | |||
break; | |||
case 2: | |||
f0[0] = f[0]; | |||
f0[1] = f[2] ^ f[3]; | |||
f1[0] = f[1] ^ f0[1]; | |||
f1[1] = f[3]; | |||
return; | |||
break; | |||
case 1: | |||
f0[0] = f[0]; | |||
f1[0] = f[1]; | |||
return; | |||
break; | |||
default: | |||
; | |||
size_t n = 1 << (m_f - 2); | |||
uint16_t Q[2 * (1 << (PARAM_FFT - 2))]; | |||
uint16_t R[2 * (1 << (PARAM_FFT - 2))]; | |||
radix_big(f0, f1, f, m_f); | |||
break; | |||
} | |||
} | |||
uint16_t Q0[1 << (PARAM_FFT - 2)]; | |||
uint16_t Q1[1 << (PARAM_FFT - 2)]; | |||
uint16_t R0[1 << (PARAM_FFT - 2)]; | |||
uint16_t R1[1 << (PARAM_FFT - 2)]; | |||
static void radix_big(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f) { | |||
uint16_t Q[2 * (1 << (PARAM_FFT - 2))] = {0}; | |||
uint16_t R[2 * (1 << (PARAM_FFT - 2))] = {0}; | |||
memcpy(Q, f + 3 * n, 2 * n); | |||
memcpy(Q + n, f + 3 * n, 2 * n); | |||
memcpy(R, f, 4 * n); | |||
uint16_t Q0[1 << (PARAM_FFT - 2)] = {0}; | |||
uint16_t Q1[1 << (PARAM_FFT - 2)] = {0}; | |||
uint16_t R0[1 << (PARAM_FFT - 2)] = {0}; | |||
uint16_t R1[1 << (PARAM_FFT - 2)] = {0}; | |||
for (size_t i = 0 ; i < n ; ++i) { | |||
Q[i] ^= f[2 * n + i]; | |||
R[n + i] ^= Q[i]; | |||
} | |||
size_t i, n; | |||
radix(Q0, Q1, Q, m_f - 1); | |||
radix(R0, R1, R, m_f - 1); | |||
n = 1 << (m_f - 2); | |||
memcpy(Q, f + 3 * n, 2 * n); | |||
memcpy(Q + n, f + 3 * n, 2 * n); | |||
memcpy(R, f, 4 * n); | |||
memcpy(f0, R0, 2 * n); | |||
memcpy(f0 + n, Q0, 2 * n); | |||
memcpy(f1, R1, 2 * n); | |||
memcpy(f1 + n, Q1, 2 * n); | |||
for (i = 0 ; i < n ; ++i) { | |||
Q[i] ^= f[2 * n + i]; | |||
R[n + i] ^= Q[i]; | |||
} | |||
radix(Q0, Q1, Q, m_f - 1); | |||
radix(R0, R1, R, m_f - 1); | |||
memcpy(f0, R0, 2 * n); | |||
memcpy(f0 + n, Q0, 2 * n); | |||
memcpy(f1, R1, 2 * n); | |||
memcpy(f1 + n, Q1, 2 * n); | |||
} | |||
@@ -408,25 +424,27 @@ static void radix(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f) { | |||
* @param[in] betas FFT constants | |||
*/ | |||
static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32_t m_f, const uint16_t *betas) { | |||
uint16_t f0[1 << (PARAM_FFT - 2)]; | |||
uint16_t f1[1 << (PARAM_FFT - 2)]; | |||
uint16_t gammas[PARAM_M - 2]; | |||
uint16_t deltas[PARAM_M - 2]; | |||
size_t k = 1 << (m - 1); | |||
uint16_t gammas_sums[1 << (PARAM_M - 2)]; | |||
uint16_t f0[1 << (PARAM_FFT - 2)] = {0}; | |||
uint16_t f1[1 << (PARAM_FFT - 2)] = {0}; | |||
uint16_t gammas[PARAM_M - 2] = {0}; | |||
uint16_t deltas[PARAM_M - 2] = {0}; | |||
uint16_t gammas_sums[1 << (PARAM_M - 2)] = {0}; | |||
uint16_t u[1 << (PARAM_M - 2)] = {0}; | |||
uint16_t v[1 << (PARAM_M - 2)] = {0}; | |||
uint16_t tmp[PARAM_M - (PARAM_FFT - 1)] = {0}; | |||
uint16_t beta_m_pow; | |||
size_t i, j, k; | |||
// Step 1 | |||
if (m_f == 1) { | |||
uint16_t tmp[PARAM_M - (PARAM_FFT - 1)]; | |||
for (size_t i = 0 ; i < m ; ++i) { | |||
for (i = 0 ; i < m ; ++i) { | |||
tmp[i] = PQCLEAN_HQC128_CLEAN_gf_mul(betas[i], f[1]); | |||
} | |||
w[0] = f[0]; | |||
for (size_t j = 0 ; j < m ; ++j) { | |||
for (size_t k = 0 ; k < (1U << j) ; ++k) { | |||
for (j = 0 ; j < m ; ++j) { | |||
for (k = 0 ; k < (1U << j) ; ++k) { | |||
w[(1 << j) + k] = w[k] ^ tmp[j]; | |||
} | |||
} | |||
@@ -436,8 +454,8 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 | |||
// Step 2: compute g | |||
if (betas[m - 1] != 1) { | |||
uint16_t beta_m_pow = 1; | |||
for (size_t i = 1 ; i < (1U << m_f) ; ++i) { | |||
beta_m_pow = 1; | |||
for (i = 1 ; i < (1U << m_f) ; ++i) { | |||
beta_m_pow = PQCLEAN_HQC128_CLEAN_gf_mul(beta_m_pow, betas[m - 1]); | |||
f[i] = PQCLEAN_HQC128_CLEAN_gf_mul(beta_m_pow, f[i]); | |||
} | |||
@@ -447,7 +465,7 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 | |||
radix(f0, f1, f, m_f); | |||
// Step 4: compute gammas and deltas | |||
for (uint8_t i = 0 ; i < m - 1 ; ++i) { | |||
for (i = 0 ; i + 1 < m ; ++i) { | |||
gammas[i] = PQCLEAN_HQC128_CLEAN_gf_mul(betas[i], PQCLEAN_HQC128_CLEAN_gf_inverse(betas[m - 1])); | |||
deltas[i] = PQCLEAN_HQC128_CLEAN_gf_square(gammas[i]) ^ gammas[i]; | |||
} | |||
@@ -458,10 +476,11 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 | |||
// Step 5 | |||
fft_rec(u, f0, (f_coeffs + 1) / 2, m - 1, m_f - 1, deltas); | |||
k = 1 << ((m - 1) & 0xf); // &0xf is to let the compiler know that m-1 is small. | |||
if (f_coeffs <= 3) { // 3-coefficient polynomial f case: f1 is constant | |||
w[0] = u[0]; | |||
w[k] = u[0] ^ f1[0]; | |||
for (size_t i = 1 ; i < k ; ++i) { | |||
for (i = 1 ; i < k ; ++i) { | |||
w[i] = u[i] ^ PQCLEAN_HQC128_CLEAN_gf_mul(gammas_sums[i], f1[0]); | |||
w[k + i] = w[i] ^ f1[0]; | |||
} | |||
@@ -472,7 +491,7 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 | |||
memcpy(w + k, v, 2 * k); | |||
w[0] = u[0]; | |||
w[k] ^= u[0]; | |||
for (size_t i = 1 ; i < k ; ++i) { | |||
for (i = 1 ; i < k ; ++i) { | |||
w[i] = u[i] ^ PQCLEAN_HQC128_CLEAN_gf_mul(gammas_sums[i], v[i]); | |||
w[k + i] ^= w[i]; | |||
} | |||
@@ -501,14 +520,15 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 | |||
* @param[in] f_coeffs Number coefficients of f (i.e. deg(f)+1) | |||
*/ | |||
void PQCLEAN_HQC128_CLEAN_fft(uint16_t *w, const uint16_t *f, size_t f_coeffs) { | |||
uint16_t betas[PARAM_M - 1]; | |||
uint16_t betas_sums[1 << (PARAM_M - 1)]; | |||
uint16_t f0[1 << (PARAM_FFT - 1)]; | |||
uint16_t f1[1 << (PARAM_FFT - 1)]; | |||
uint16_t deltas[PARAM_M - 1]; | |||
size_t k = 1 << (PARAM_M - 1); | |||
uint16_t u[1 << (PARAM_M - 1)]; | |||
uint16_t v[1 << (PARAM_M - 1)]; | |||
uint16_t betas[PARAM_M - 1] = {0}; | |||
uint16_t betas_sums[1 << (PARAM_M - 1)] = {0}; | |||
uint16_t f0[1 << (PARAM_FFT - 1)] = {0}; | |||
uint16_t f1[1 << (PARAM_FFT - 1)] = {0}; | |||
uint16_t deltas[PARAM_M - 1] = {0}; | |||
uint16_t u[1 << (PARAM_M - 1)] = {0}; | |||
uint16_t v[1 << (PARAM_M - 1)] = {0}; | |||
size_t i, k; | |||
// Follows Gao and Mateer algorithm | |||
compute_fft_betas(betas); | |||
@@ -524,7 +544,7 @@ void PQCLEAN_HQC128_CLEAN_fft(uint16_t *w, const uint16_t *f, size_t f_coeffs) { | |||
radix(f0, f1, f, PARAM_FFT); | |||
// Step 4: Compute deltas | |||
for (size_t i = 0 ; i < PARAM_M - 1 ; ++i) { | |||
for (i = 0 ; i < PARAM_M - 1 ; ++i) { | |||
deltas[i] = PQCLEAN_HQC128_CLEAN_gf_square(betas[i]) ^ betas[i]; | |||
} | |||
@@ -532,6 +552,7 @@ void PQCLEAN_HQC128_CLEAN_fft(uint16_t *w, const uint16_t *f, size_t f_coeffs) { | |||
fft_rec(u, f0, (f_coeffs + 1) / 2, PARAM_M - 1, PARAM_FFT - 1, deltas); | |||
fft_rec(v, f1, f_coeffs / 2, PARAM_M - 1, PARAM_FFT - 1, deltas); | |||
k = 1 << (PARAM_M - 1); | |||
// Step 6, 7 and error polynomial computation | |||
memcpy(w + k, v, 2 * k); | |||
@@ -542,7 +563,7 @@ void PQCLEAN_HQC128_CLEAN_fft(uint16_t *w, const uint16_t *f, size_t f_coeffs) { | |||
w[k] ^= u[0]; | |||
// Find other roots | |||
for (size_t i = 1 ; i < k ; ++i) { | |||
for (i = 1 ; i < k ; ++i) { | |||
w[i] = u[i] ^ PQCLEAN_HQC128_CLEAN_gf_mul(betas_sums[i], v[i]); | |||
w[k + i] ^= w[i]; | |||
} | |||
@@ -561,21 +582,20 @@ void PQCLEAN_HQC128_CLEAN_fft(uint16_t *w, const uint16_t *f, size_t f_coeffs) { | |||
* @param[in] vector Array of size VEC_N1_SIZE_BYTES | |||
*/ | |||
void PQCLEAN_HQC128_CLEAN_fft_t_preprocess_bch_codeword(uint16_t *w, const uint64_t *vector) { | |||
uint16_t r[1 << PARAM_M]; | |||
uint16_t gammas[PARAM_M - 1]; | |||
uint16_t gammas_sums[1 << (PARAM_M - 1)]; | |||
size_t k = 1 << (PARAM_M - 1); | |||
uint16_t r[1 << PARAM_M] = {0}; | |||
uint16_t gammas[PARAM_M - 1] = {0}; | |||
uint16_t gammas_sums[1 << (PARAM_M - 1)] = {0}; | |||
size_t i, j, k; | |||
// Unpack the received word vector into array r | |||
size_t i; | |||
for (i = 0 ; i < VEC_N1_SIZE_64 - (PARAM_N1 % 64 != 0) ; ++i) { | |||
for (size_t j = 0 ; j < 64 ; ++j) { | |||
for (j = 0 ; j < 64 ; ++j) { | |||
r[64 * i + j] = (uint8_t) ((vector[i] >> j) & 1); | |||
} | |||
} | |||
// Last byte | |||
for (size_t j = 0 ; j < PARAM_N1 % 64 ; ++j) { | |||
for (j = 0 ; j < PARAM_N1 % 64 ; ++j) { | |||
r[64 * i + j] = (uint8_t) ((vector[i] >> j) & 1); | |||
} | |||
@@ -586,9 +606,10 @@ void PQCLEAN_HQC128_CLEAN_fft_t_preprocess_bch_codeword(uint16_t *w, const uint6 | |||
compute_subset_sums(gammas_sums, gammas, PARAM_M - 1); | |||
// Twist and permute r adequately to obtain w | |||
k = 1 << (PARAM_M - 1); | |||
w[0] = 0; | |||
w[k] = -r[0] & 1; | |||
for (size_t i = 1 ; i < k ; ++i) { | |||
for (i = 1 ; i < k ; ++i) { | |||
w[i] = -r[PQCLEAN_HQC128_CLEAN_gf_log(gammas_sums[i])] & gammas_sums[i]; | |||
w[k + i] = -r[PQCLEAN_HQC128_CLEAN_gf_log(gammas_sums[i] ^ 1)] & (gammas_sums[i] ^ 1); | |||
} | |||
@@ -603,25 +624,28 @@ void PQCLEAN_HQC128_CLEAN_fft_t_preprocess_bch_codeword(uint16_t *w, const uint6 | |||
* @param[in] w Array of size 2^PARAM_M | |||
*/ | |||
void PQCLEAN_HQC128_CLEAN_fft_retrieve_bch_error_poly(uint64_t *error, const uint16_t *w) { | |||
uint16_t gammas[PARAM_M - 1]; | |||
uint16_t gammas_sums[1 << (PARAM_M - 1)]; | |||
size_t k = 1 << (PARAM_M - 1); | |||
size_t index = PARAM_GF_MUL_ORDER; | |||
uint16_t gammas[PARAM_M - 1] = {0}; | |||
uint16_t gammas_sums[1 << (PARAM_M - 1)] = {0}; | |||
uint64_t bit; | |||
size_t i, k, index; | |||
compute_fft_betas(gammas); | |||
compute_subset_sums(gammas_sums, gammas, PARAM_M - 1); | |||
error[0] ^= ((uint64_t) 1) ^ ((uint16_t) - w[0] >> 15); | |||
uint64_t bit = ((uint64_t) 1) ^ ((uint16_t) - w[k] >> 15); | |||
error[0] ^= 1 ^ ((uint16_t) - w[0] >> 15); | |||
k = 1 << (PARAM_M - 1); | |||
index = PARAM_GF_MUL_ORDER; | |||
bit = 1 ^ ((uint16_t) - w[k] >> 15); | |||
error[index / 8] ^= bit << (index % 64); | |||
for (size_t i = 1 ; i < k ; ++i) { | |||
for (i = 1 ; i < k ; ++i) { | |||
index = PARAM_GF_MUL_ORDER - PQCLEAN_HQC128_CLEAN_gf_log(gammas_sums[i]); | |||
bit = ((uint64_t) 1) ^ ((uint16_t) - w[i] >> 15); | |||
bit = 1 ^ ((uint16_t) - w[i] >> 15); | |||
error[index / 64] ^= bit << (index % 64); | |||
index = PARAM_GF_MUL_ORDER - PQCLEAN_HQC128_CLEAN_gf_log(gammas_sums[i] ^ 1); | |||
bit = ((uint64_t) 1) ^ ((uint16_t) - w[k + i] >> 15); | |||
bit = 1 ^ ((uint16_t) - w[k + i] >> 15); | |||
error[index / 64] ^= bit << (index % 64); | |||
} | |||
} |
@@ -19,8 +19,10 @@ | |||
static void compute_fft_betas(uint16_t *betas); | |||
static void compute_subset_sums(uint16_t *subset_sums, const uint16_t *set, size_t set_size); | |||
static void radix_t(uint16_t *f, const uint16_t *f0, const uint16_t *f1, uint32_t m_f); | |||
static void radix_t_big(uint16_t *f, const uint16_t *f0, const uint16_t *f1, uint32_t m_f); | |||
static void fft_t_rec(uint16_t *f, const uint16_t *w, size_t f_coeffs, uint8_t m, uint32_t m_f, const uint16_t *betas); | |||
static void radix(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f); | |||
static void radix_big(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f); | |||
static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32_t m_f, const uint16_t *betas); | |||
@@ -30,7 +32,8 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 | |||
* @param[out] betas Array of size PARAM_M-1 | |||
*/ | |||
static void compute_fft_betas(uint16_t *betas) { | |||
for (size_t i = 0 ; i < PARAM_M - 1 ; ++i) { | |||
size_t i; | |||
for (i = 0 ; i < PARAM_M - 1 ; ++i) { | |||
betas[i] = 1 << (PARAM_M - 1 - i); | |||
} | |||
} | |||
@@ -48,10 +51,11 @@ static void compute_fft_betas(uint16_t *betas) { | |||
* @param[in] set_size Size of the array set | |||
*/ | |||
static void compute_subset_sums(uint16_t *subset_sums, const uint16_t *set, size_t set_size) { | |||
size_t i, j; | |||
subset_sums[0] = 0; | |||
for (size_t i = 0 ; i < set_size ; ++i) { | |||
for (size_t j = 0 ; j < (1U << i) ; ++j) { | |||
for (i = 0 ; i < set_size ; ++i) { | |||
for (j = 0 ; j < (1U << i) ; ++j) { | |||
subset_sums[(1 << i) + j] = set[i] ^ subset_sums[j]; | |||
} | |||
} | |||
@@ -90,7 +94,7 @@ static void radix_t(uint16_t *f, const uint16_t *f0, const uint16_t *f1, uint32_ | |||
f[13] = f[7] ^ f[9] ^ f[11] ^ f1[6]; | |||
f[14] = f[6] ^ f0[6] ^ f0[7] ^ f1[6]; | |||
f[15] = f[7] ^ f0[7] ^ f1[7]; | |||
return; | |||
break; | |||
case 3: | |||
f[0] = f0[0]; | |||
@@ -101,49 +105,53 @@ static void radix_t(uint16_t *f, const uint16_t *f0, const uint16_t *f1, uint32_ | |||
f[5] = f[3] ^ f1[2]; | |||
f[6] = f[4] ^ f0[3] ^ f1[2]; | |||
f[7] = f[3] ^ f0[3] ^ f1[3]; | |||
return; | |||
break; | |||
case 2: | |||
f[0] = f0[0]; | |||
f[1] = f1[0]; | |||
f[2] = f0[1] ^ f1[0]; | |||
f[3] = f[2] ^ f1[1]; | |||
return; | |||
break; | |||
case 1: | |||
f[0] = f0[0]; | |||
f[1] = f1[0]; | |||
return; | |||
break; | |||
default: | |||
; | |||
radix_t_big(f, f0, f1, m_f); | |||
break; | |||
} | |||
} | |||
size_t n = 1 << (m_f - 2); | |||
static void radix_t_big(uint16_t *f, const uint16_t *f0, const uint16_t *f1, uint32_t m_f) { | |||
uint16_t Q0[1 << (PARAM_FFT_T - 2)] = {0}; | |||
uint16_t Q1[1 << (PARAM_FFT_T - 2)] = {0}; | |||
uint16_t R0[1 << (PARAM_FFT_T - 2)] = {0}; | |||
uint16_t R1[1 << (PARAM_FFT_T - 2)] = {0}; | |||
uint16_t Q0[1 << (PARAM_FFT_T - 2)]; | |||
uint16_t Q1[1 << (PARAM_FFT_T - 2)]; | |||
uint16_t R0[1 << (PARAM_FFT_T - 2)]; | |||
uint16_t R1[1 << (PARAM_FFT_T - 2)]; | |||
uint16_t Q[1 << 2 * (PARAM_FFT_T - 2)] = {0}; | |||
uint16_t R[1 << 2 * (PARAM_FFT_T - 2)] = {0}; | |||
uint16_t Q[1 << 2 * (PARAM_FFT_T - 2)]; | |||
uint16_t R[1 << 2 * (PARAM_FFT_T - 2)]; | |||
size_t i, n; | |||
memcpy(Q0, f0 + n, 2 * n); | |||
memcpy(Q1, f1 + n, 2 * n); | |||
memcpy(R0, f0, 2 * n); | |||
memcpy(R1, f1, 2 * n); | |||
n = 1 << (m_f - 2); | |||
memcpy(Q0, f0 + n, 2 * n); | |||
memcpy(Q1, f1 + n, 2 * n); | |||
memcpy(R0, f0, 2 * n); | |||
memcpy(R1, f1, 2 * n); | |||
radix_t (Q, Q0, Q1, m_f - 1); | |||
radix_t (R, R0, R1, m_f - 1); | |||
radix_t (Q, Q0, Q1, m_f - 1); | |||
radix_t (R, R0, R1, m_f - 1); | |||
memcpy(f, R, 4 * n); | |||
memcpy(f + 2 * n, R + n, 2 * n); | |||
memcpy(f + 3 * n, Q + n, 2 * n); | |||
memcpy(f, R, 4 * n); | |||
memcpy(f + 2 * n, R + n, 2 * n); | |||
memcpy(f + 3 * n, Q + n, 2 * n); | |||
for (size_t i = 0 ; i < n ; ++i) { | |||
f[2 * n + i] ^= Q[i]; | |||
f[3 * n + i] ^= f[2 * n + i]; | |||
} | |||
for (i = 0 ; i < n ; ++i) { | |||
f[2 * n + i] ^= Q[i]; | |||
f[3 * n + i] ^= f[2 * n + i]; | |||
} | |||
} | |||
@@ -162,29 +170,31 @@ static void radix_t(uint16_t *f, const uint16_t *f0, const uint16_t *f1, uint32_ | |||
* @param[in] betas FFT constants | |||
*/ | |||
static void fft_t_rec(uint16_t *f, const uint16_t *w, size_t f_coeffs, uint8_t m, uint32_t m_f, const uint16_t *betas) { | |||
size_t k = 1 << (m - 1); | |||
uint16_t gammas[PARAM_M - 2]; | |||
uint16_t deltas[PARAM_M - 2]; | |||
uint16_t gammas_sums[1 << (PARAM_M - 1)]; | |||
uint16_t gammas[PARAM_M - 2] = {0}; | |||
uint16_t deltas[PARAM_M - 2] = {0}; | |||
uint16_t gammas_sums[1 << (PARAM_M - 1)] = {0}; | |||
uint16_t u[1 << (PARAM_M - 2)] = {0}; | |||
uint16_t f0[1 << (PARAM_FFT_T - 2)] = {0}; | |||
uint16_t f1[1 << (PARAM_FFT_T - 2)] = {0}; | |||
uint16_t betas_sums[1 << (PARAM_M - 1)] = {0}; | |||
uint16_t v[1 << (PARAM_M - 2)] = {0}; | |||
uint16_t beta_m_pow; | |||
size_t i, j, k; | |||
// Step 1 | |||
if (m_f == 1) { | |||
f[0] = 0; | |||
for (size_t i = 0 ; i < (1U << m) ; ++i) { | |||
for (i = 0 ; i < (1U << m) ; ++i) { | |||
f[0] ^= w[i]; | |||
} | |||
f[1] = 0; | |||
uint16_t betas_sums[1 << (PARAM_M - 1)]; | |||
betas_sums[0] = 0; | |||
for (size_t j = 0 ; j < m ; ++j) { | |||
for (size_t k = 0 ; k < (1U << j) ; ++k) { | |||
size_t index = (1 << j) + k; | |||
betas_sums[index] = betas_sums[k] ^ betas[j]; | |||
f[1] ^= PQCLEAN_HQC192_CLEAN_gf_mul(betas_sums[index], w[index]); | |||
for (j = 0 ; j < m ; ++j) { | |||
for (k = 0 ; k < (1U << j) ; ++k) { | |||
betas_sums[(1 << j) + k] = betas_sums[k] ^ betas[j]; | |||
f[1] ^= PQCLEAN_HQC192_CLEAN_gf_mul(betas_sums[(1 << j) + k], w[(1 << j) + k]); | |||
} | |||
} | |||
@@ -192,7 +202,7 @@ static void fft_t_rec(uint16_t *f, const uint16_t *w, size_t f_coeffs, uint8_t m | |||
} | |||
// Compute gammas and deltas | |||
for (uint8_t i = 0 ; i < m - 1 ; ++i) { | |||
for (i = 0 ; i + 1 < m ; ++i) { | |||
gammas[i] = PQCLEAN_HQC192_CLEAN_gf_mul(betas[i], PQCLEAN_HQC192_CLEAN_gf_inverse(betas[m - 1])); | |||
deltas[i] = PQCLEAN_HQC192_CLEAN_gf_square(gammas[i]) ^ gammas[i]; | |||
} | |||
@@ -206,23 +216,22 @@ static void fft_t_rec(uint16_t *f, const uint16_t *w, size_t f_coeffs, uint8_t m | |||
* Transpose: | |||
* u[i] = w[i] + w[k+i] | |||
* v[i] = G[i].w[i] + (G[i]+1).w[k+i] = G[i].u[i] + w[k+i] */ | |||
k = 1 << ((m - 1) & 0xf); // &0xf is to let the compiler know that m-1 is small. | |||
if (f_coeffs <= 3) { // 3-coefficient polynomial f case | |||
// Step 5: Compute f0 from u and f1 from v | |||
f1[1] = 0; | |||
u[0] = w[0] ^ w[k]; | |||
f1[0] = w[k]; | |||
for (size_t i = 1 ; i < k ; ++i) { | |||
for (i = 1 ; i < k ; ++i) { | |||
u[i] = w[i] ^ w[k + i]; | |||
f1[0] ^= PQCLEAN_HQC192_CLEAN_gf_mul(gammas_sums[i], u[i]) ^ w[k + i]; | |||
} | |||
fft_t_rec(f0, u, (f_coeffs + 1) / 2, m - 1, m_f - 1, deltas); | |||
} else { | |||
uint16_t v[1 << (PARAM_M - 2)] = {0}; | |||
u[0] = w[0] ^ w[k]; | |||
v[0] = w[k]; | |||
for (size_t i = 1 ; i < k ; ++i) { | |||
for (i = 1 ; i < k ; ++i) { | |||
u[i] = w[i] ^ w[k + i]; | |||
v[i] = PQCLEAN_HQC192_CLEAN_gf_mul(gammas_sums[i], u[i]) ^ w[k + i]; | |||
} | |||
@@ -237,8 +246,8 @@ static void fft_t_rec(uint16_t *f, const uint16_t *w, size_t f_coeffs, uint8_t m | |||
// Step 2: compute f from g | |||
if (betas[m - 1] != 1) { | |||
uint16_t beta_m_pow = 1; | |||
for (size_t i = 1 ; i < (1U << m_f) ; ++i) { | |||
beta_m_pow = 1; | |||
for (i = 1 ; i < (1U << m_f) ; ++i) { | |||
beta_m_pow = PQCLEAN_HQC192_CLEAN_gf_mul(beta_m_pow, betas[m - 1]); | |||
f[i] = PQCLEAN_HQC192_CLEAN_gf_mul(beta_m_pow, f[i]); | |||
} | |||
@@ -261,14 +270,15 @@ static void fft_t_rec(uint16_t *f, const uint16_t *w, size_t f_coeffs, uint8_t m | |||
*/ | |||
void PQCLEAN_HQC192_CLEAN_fft_t(uint16_t *f, const uint16_t *w, size_t f_coeffs) { | |||
// Transposed from Gao and Mateer algorithm | |||
uint16_t betas[PARAM_M - 1]; | |||
uint16_t betas_sums[1 << (PARAM_M - 1)]; | |||
size_t k = 1 << (PARAM_M - 1); | |||
uint16_t betas[PARAM_M - 1] = {0}; | |||
uint16_t betas_sums[1 << (PARAM_M - 1)] = {0}; | |||
uint16_t u[1 << (PARAM_M - 1)] = {0}; | |||
uint16_t v[1 << (PARAM_M - 1)] = {0}; | |||
uint16_t deltas[PARAM_M - 1]; | |||
uint16_t f0[1 << (PARAM_FFT_T - 1)]; | |||
uint16_t f1[1 << (PARAM_FFT_T - 1)]; | |||
uint16_t deltas[PARAM_M - 1] = {0}; | |||
uint16_t f0[1 << (PARAM_FFT_T - 1)] = {0}; | |||
uint16_t f1[1 << (PARAM_FFT_T - 1)] = {0}; | |||
size_t i, k; | |||
compute_fft_betas(betas); | |||
compute_subset_sums(betas_sums, betas, PARAM_M - 1); | |||
@@ -281,15 +291,16 @@ void PQCLEAN_HQC192_CLEAN_fft_t(uint16_t *f, const uint16_t *w, size_t f_coeffs) | |||
* Transpose: | |||
* u[i] = w[i] + w[k+i] | |||
* v[i] = G[i].w[i] + (G[i]+1).w[k+i] = G[i].u[i] + w[k+i] */ | |||
k = 1 << (PARAM_M - 1); | |||
u[0] = w[0] ^ w[k]; | |||
v[0] = w[k]; | |||
for (size_t i = 1 ; i < k ; ++i) { | |||
for (i = 1 ; i < k ; ++i) { | |||
u[i] = w[i] ^ w[k + i]; | |||
v[i] = PQCLEAN_HQC192_CLEAN_gf_mul(betas_sums[i], u[i]) ^ w[k + i]; | |||
} | |||
// Compute deltas | |||
for (size_t i = 0 ; i < PARAM_M - 1 ; ++i) { | |||
for (i = 0 ; i < PARAM_M - 1 ; ++i) { | |||
deltas[i] = PQCLEAN_HQC192_CLEAN_gf_square(betas[i]) ^ betas[i]; | |||
} | |||
@@ -337,7 +348,7 @@ static void radix(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f) { | |||
f1[2] = f[3] ^ f1[1] ^ f0[3]; | |||
f0[1] = f[2] ^ f0[2] ^ f1[1]; | |||
f1[0] = f[1] ^ f0[1]; | |||
return; | |||
break; | |||
case 3: | |||
f0[0] = f[0]; | |||
@@ -348,49 +359,54 @@ static void radix(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f) { | |||
f1[3] = f[7]; | |||
f0[1] = f[2] ^ f0[2] ^ f1[1]; | |||
f1[0] = f[1] ^ f0[1]; | |||
return; | |||
break; | |||
case 2: | |||
f0[0] = f[0]; | |||
f0[1] = f[2] ^ f[3]; | |||
f1[0] = f[1] ^ f0[1]; | |||
f1[1] = f[3]; | |||
return; | |||
break; | |||
case 1: | |||
f0[0] = f[0]; | |||
f1[0] = f[1]; | |||
return; | |||
break; | |||
default: | |||
; | |||
size_t n = 1 << (m_f - 2); | |||
uint16_t Q[2 * (1 << (PARAM_FFT - 2))]; | |||
uint16_t R[2 * (1 << (PARAM_FFT - 2))]; | |||
radix_big(f0, f1, f, m_f); | |||
break; | |||
} | |||
} | |||
uint16_t Q0[1 << (PARAM_FFT - 2)]; | |||
uint16_t Q1[1 << (PARAM_FFT - 2)]; | |||
uint16_t R0[1 << (PARAM_FFT - 2)]; | |||
uint16_t R1[1 << (PARAM_FFT - 2)]; | |||
static void radix_big(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f) { | |||
uint16_t Q[2 * (1 << (PARAM_FFT - 2))] = {0}; | |||
uint16_t R[2 * (1 << (PARAM_FFT - 2))] = {0}; | |||
memcpy(Q, f + 3 * n, 2 * n); | |||
memcpy(Q + n, f + 3 * n, 2 * n); | |||
memcpy(R, f, 4 * n); | |||
uint16_t Q0[1 << (PARAM_FFT - 2)] = {0}; | |||
uint16_t Q1[1 << (PARAM_FFT - 2)] = {0}; | |||
uint16_t R0[1 << (PARAM_FFT - 2)] = {0}; | |||
uint16_t R1[1 << (PARAM_FFT - 2)] = {0}; | |||
for (size_t i = 0 ; i < n ; ++i) { | |||
Q[i] ^= f[2 * n + i]; | |||
R[n + i] ^= Q[i]; | |||
} | |||
size_t i, n; | |||
radix(Q0, Q1, Q, m_f - 1); | |||
radix(R0, R1, R, m_f - 1); | |||
n = 1 << (m_f - 2); | |||
memcpy(Q, f + 3 * n, 2 * n); | |||
memcpy(Q + n, f + 3 * n, 2 * n); | |||
memcpy(R, f, 4 * n); | |||
memcpy(f0, R0, 2 * n); | |||
memcpy(f0 + n, Q0, 2 * n); | |||
memcpy(f1, R1, 2 * n); | |||
memcpy(f1 + n, Q1, 2 * n); | |||
for (i = 0 ; i < n ; ++i) { | |||
Q[i] ^= f[2 * n + i]; | |||
R[n + i] ^= Q[i]; | |||
} | |||
radix(Q0, Q1, Q, m_f - 1); | |||
radix(R0, R1, R, m_f - 1); | |||
memcpy(f0, R0, 2 * n); | |||
memcpy(f0 + n, Q0, 2 * n); | |||
memcpy(f1, R1, 2 * n); | |||
memcpy(f1 + n, Q1, 2 * n); | |||
} | |||
@@ -408,25 +424,27 @@ static void radix(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f) { | |||
* @param[in] betas FFT constants | |||
*/ | |||
static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32_t m_f, const uint16_t *betas) { | |||
uint16_t f0[1 << (PARAM_FFT - 2)]; | |||
uint16_t f1[1 << (PARAM_FFT - 2)]; | |||
uint16_t gammas[PARAM_M - 2]; | |||
uint16_t deltas[PARAM_M - 2]; | |||
size_t k = 1 << (m - 1); | |||
uint16_t gammas_sums[1 << (PARAM_M - 2)]; | |||
uint16_t f0[1 << (PARAM_FFT - 2)] = {0}; | |||
uint16_t f1[1 << (PARAM_FFT - 2)] = {0}; | |||
uint16_t gammas[PARAM_M - 2] = {0}; | |||
uint16_t deltas[PARAM_M - 2] = {0}; | |||
uint16_t gammas_sums[1 << (PARAM_M - 2)] = {0}; | |||
uint16_t u[1 << (PARAM_M - 2)] = {0}; | |||
uint16_t v[1 << (PARAM_M - 2)] = {0}; | |||
uint16_t tmp[PARAM_M - (PARAM_FFT - 1)] = {0}; | |||
uint16_t beta_m_pow; | |||
size_t i, j, k; | |||
// Step 1 | |||
if (m_f == 1) { | |||
uint16_t tmp[PARAM_M - (PARAM_FFT - 1)]; | |||
for (size_t i = 0 ; i < m ; ++i) { | |||
for (i = 0 ; i < m ; ++i) { | |||
tmp[i] = PQCLEAN_HQC192_CLEAN_gf_mul(betas[i], f[1]); | |||
} | |||
w[0] = f[0]; | |||
for (size_t j = 0 ; j < m ; ++j) { | |||
for (size_t k = 0 ; k < (1U << j) ; ++k) { | |||
for (j = 0 ; j < m ; ++j) { | |||
for (k = 0 ; k < (1U << j) ; ++k) { | |||
w[(1 << j) + k] = w[k] ^ tmp[j]; | |||
} | |||
} | |||
@@ -436,8 +454,8 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 | |||
// Step 2: compute g | |||
if (betas[m - 1] != 1) { | |||
uint16_t beta_m_pow = 1; | |||
for (size_t i = 1 ; i < (1U << m_f) ; ++i) { | |||
beta_m_pow = 1; | |||
for (i = 1 ; i < (1U << m_f) ; ++i) { | |||
beta_m_pow = PQCLEAN_HQC192_CLEAN_gf_mul(beta_m_pow, betas[m - 1]); | |||
f[i] = PQCLEAN_HQC192_CLEAN_gf_mul(beta_m_pow, f[i]); | |||
} | |||
@@ -447,7 +465,7 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 | |||
radix(f0, f1, f, m_f); | |||
// Step 4: compute gammas and deltas | |||
for (uint8_t i = 0 ; i < m - 1 ; ++i) { | |||
for (i = 0 ; i + 1 < m ; ++i) { | |||
gammas[i] = PQCLEAN_HQC192_CLEAN_gf_mul(betas[i], PQCLEAN_HQC192_CLEAN_gf_inverse(betas[m - 1])); | |||
deltas[i] = PQCLEAN_HQC192_CLEAN_gf_square(gammas[i]) ^ gammas[i]; | |||
} | |||
@@ -458,10 +476,11 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 | |||
// Step 5 | |||
fft_rec(u, f0, (f_coeffs + 1) / 2, m - 1, m_f - 1, deltas); | |||
k = 1 << ((m - 1) & 0xf); // &0xf is to let the compiler know that m-1 is small. | |||
if (f_coeffs <= 3) { // 3-coefficient polynomial f case: f1 is constant | |||
w[0] = u[0]; | |||
w[k] = u[0] ^ f1[0]; | |||
for (size_t i = 1 ; i < k ; ++i) { | |||
for (i = 1 ; i < k ; ++i) { | |||
w[i] = u[i] ^ PQCLEAN_HQC192_CLEAN_gf_mul(gammas_sums[i], f1[0]); | |||
w[k + i] = w[i] ^ f1[0]; | |||
} | |||
@@ -472,7 +491,7 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 | |||
memcpy(w + k, v, 2 * k); | |||
w[0] = u[0]; | |||
w[k] ^= u[0]; | |||
for (size_t i = 1 ; i < k ; ++i) { | |||
for (i = 1 ; i < k ; ++i) { | |||
w[i] = u[i] ^ PQCLEAN_HQC192_CLEAN_gf_mul(gammas_sums[i], v[i]); | |||
w[k + i] ^= w[i]; | |||
} | |||
@@ -501,14 +520,15 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 | |||
* @param[in] f_coeffs Number coefficients of f (i.e. deg(f)+1) | |||
*/ | |||
void PQCLEAN_HQC192_CLEAN_fft(uint16_t *w, const uint16_t *f, size_t f_coeffs) { | |||
uint16_t betas[PARAM_M - 1]; | |||
uint16_t betas_sums[1 << (PARAM_M - 1)]; | |||
uint16_t f0[1 << (PARAM_FFT - 1)]; | |||
uint16_t f1[1 << (PARAM_FFT - 1)]; | |||
uint16_t deltas[PARAM_M - 1]; | |||
size_t k = 1 << (PARAM_M - 1); | |||
uint16_t u[1 << (PARAM_M - 1)]; | |||
uint16_t v[1 << (PARAM_M - 1)]; | |||
uint16_t betas[PARAM_M - 1] = {0}; | |||
uint16_t betas_sums[1 << (PARAM_M - 1)] = {0}; | |||
uint16_t f0[1 << (PARAM_FFT - 1)] = {0}; | |||
uint16_t f1[1 << (PARAM_FFT - 1)] = {0}; | |||
uint16_t deltas[PARAM_M - 1] = {0}; | |||
uint16_t u[1 << (PARAM_M - 1)] = {0}; | |||
uint16_t v[1 << (PARAM_M - 1)] = {0}; | |||
size_t i, k; | |||
// Follows Gao and Mateer algorithm | |||
compute_fft_betas(betas); | |||
@@ -524,7 +544,7 @@ void PQCLEAN_HQC192_CLEAN_fft(uint16_t *w, const uint16_t *f, size_t f_coeffs) { | |||
radix(f0, f1, f, PARAM_FFT); | |||
// Step 4: Compute deltas | |||
for (size_t i = 0 ; i < PARAM_M - 1 ; ++i) { | |||
for (i = 0 ; i < PARAM_M - 1 ; ++i) { | |||
deltas[i] = PQCLEAN_HQC192_CLEAN_gf_square(betas[i]) ^ betas[i]; | |||
} | |||
@@ -532,6 +552,7 @@ void PQCLEAN_HQC192_CLEAN_fft(uint16_t *w, const uint16_t *f, size_t f_coeffs) { | |||
fft_rec(u, f0, (f_coeffs + 1) / 2, PARAM_M - 1, PARAM_FFT - 1, deltas); | |||
fft_rec(v, f1, f_coeffs / 2, PARAM_M - 1, PARAM_FFT - 1, deltas); | |||
k = 1 << (PARAM_M - 1); | |||
// Step 6, 7 and error polynomial computation | |||
memcpy(w + k, v, 2 * k); | |||
@@ -542,7 +563,7 @@ void PQCLEAN_HQC192_CLEAN_fft(uint16_t *w, const uint16_t *f, size_t f_coeffs) { | |||
w[k] ^= u[0]; | |||
// Find other roots | |||
for (size_t i = 1 ; i < k ; ++i) { | |||
for (i = 1 ; i < k ; ++i) { | |||
w[i] = u[i] ^ PQCLEAN_HQC192_CLEAN_gf_mul(betas_sums[i], v[i]); | |||
w[k + i] ^= w[i]; | |||
} | |||
@@ -561,21 +582,20 @@ void PQCLEAN_HQC192_CLEAN_fft(uint16_t *w, const uint16_t *f, size_t f_coeffs) { | |||
* @param[in] vector Array of size VEC_N1_SIZE_BYTES | |||
*/ | |||
void PQCLEAN_HQC192_CLEAN_fft_t_preprocess_bch_codeword(uint16_t *w, const uint64_t *vector) { | |||
uint16_t r[1 << PARAM_M]; | |||
uint16_t gammas[PARAM_M - 1]; | |||
uint16_t gammas_sums[1 << (PARAM_M - 1)]; | |||
size_t k = 1 << (PARAM_M - 1); | |||
uint16_t r[1 << PARAM_M] = {0}; | |||
uint16_t gammas[PARAM_M - 1] = {0}; | |||
uint16_t gammas_sums[1 << (PARAM_M - 1)] = {0}; | |||
size_t i, j, k; | |||
// Unpack the received word vector into array r | |||
size_t i; | |||
for (i = 0 ; i < VEC_N1_SIZE_64 - (PARAM_N1 % 64 != 0) ; ++i) { | |||
for (size_t j = 0 ; j < 64 ; ++j) { | |||
for (j = 0 ; j < 64 ; ++j) { | |||
r[64 * i + j] = (uint8_t) ((vector[i] >> j) & 1); | |||
} | |||
} | |||
// Last byte | |||
for (size_t j = 0 ; j < PARAM_N1 % 64 ; ++j) { | |||
for (j = 0 ; j < PARAM_N1 % 64 ; ++j) { | |||
r[64 * i + j] = (uint8_t) ((vector[i] >> j) & 1); | |||
} | |||
@@ -586,9 +606,10 @@ void PQCLEAN_HQC192_CLEAN_fft_t_preprocess_bch_codeword(uint16_t *w, const uint6 | |||
compute_subset_sums(gammas_sums, gammas, PARAM_M - 1); | |||
// Twist and permute r adequately to obtain w | |||
k = 1 << (PARAM_M - 1); | |||
w[0] = 0; | |||
w[k] = -r[0] & 1; | |||
for (size_t i = 1 ; i < k ; ++i) { | |||
for (i = 1 ; i < k ; ++i) { | |||
w[i] = -r[PQCLEAN_HQC192_CLEAN_gf_log(gammas_sums[i])] & gammas_sums[i]; | |||
w[k + i] = -r[PQCLEAN_HQC192_CLEAN_gf_log(gammas_sums[i] ^ 1)] & (gammas_sums[i] ^ 1); | |||
} | |||
@@ -603,25 +624,28 @@ void PQCLEAN_HQC192_CLEAN_fft_t_preprocess_bch_codeword(uint16_t *w, const uint6 | |||
* @param[in] w Array of size 2^PARAM_M | |||
*/ | |||
void PQCLEAN_HQC192_CLEAN_fft_retrieve_bch_error_poly(uint64_t *error, const uint16_t *w) { | |||
uint16_t gammas[PARAM_M - 1]; | |||
uint16_t gammas_sums[1 << (PARAM_M - 1)]; | |||
size_t k = 1 << (PARAM_M - 1); | |||
size_t index = PARAM_GF_MUL_ORDER; | |||
uint16_t gammas[PARAM_M - 1] = {0}; | |||
uint16_t gammas_sums[1 << (PARAM_M - 1)] = {0}; | |||
uint64_t bit; | |||
size_t i, k, index; | |||
compute_fft_betas(gammas); | |||
compute_subset_sums(gammas_sums, gammas, PARAM_M - 1); | |||
error[0] ^= ((uint64_t) 1) ^ ((uint16_t) - w[0] >> 15); | |||
uint64_t bit = ((uint64_t) 1) ^ ((uint16_t) - w[k] >> 15); | |||
error[0] ^= 1 ^ ((uint16_t) - w[0] >> 15); | |||
k = 1 << (PARAM_M - 1); | |||
index = PARAM_GF_MUL_ORDER; | |||
bit = 1 ^ ((uint16_t) - w[k] >> 15); | |||
error[index / 8] ^= bit << (index % 64); | |||
for (size_t i = 1 ; i < k ; ++i) { | |||
for (i = 1 ; i < k ; ++i) { | |||
index = PARAM_GF_MUL_ORDER - PQCLEAN_HQC192_CLEAN_gf_log(gammas_sums[i]); | |||
bit = ((uint64_t) 1) ^ ((uint16_t) - w[i] >> 15); | |||
bit = 1 ^ ((uint16_t) - w[i] >> 15); | |||
error[index / 64] ^= bit << (index % 64); | |||
index = PARAM_GF_MUL_ORDER - PQCLEAN_HQC192_CLEAN_gf_log(gammas_sums[i] ^ 1); | |||
bit = ((uint64_t) 1) ^ ((uint16_t) - w[k + i] >> 15); | |||
bit = 1 ^ ((uint16_t) - w[k + i] >> 15); | |||
error[index / 64] ^= bit << (index % 64); | |||
} | |||
} |
@@ -19,8 +19,10 @@ | |||
static void compute_fft_betas(uint16_t *betas); | |||
static void compute_subset_sums(uint16_t *subset_sums, const uint16_t *set, size_t set_size); | |||
static void radix_t(uint16_t *f, const uint16_t *f0, const uint16_t *f1, uint32_t m_f); | |||
static void radix_t_big(uint16_t *f, const uint16_t *f0, const uint16_t *f1, uint32_t m_f); | |||
static void fft_t_rec(uint16_t *f, const uint16_t *w, size_t f_coeffs, uint8_t m, uint32_t m_f, const uint16_t *betas); | |||
static void radix(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f); | |||
static void radix_big(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f); | |||
static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32_t m_f, const uint16_t *betas); | |||
@@ -30,7 +32,8 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 | |||
* @param[out] betas Array of size PARAM_M-1 | |||
*/ | |||
static void compute_fft_betas(uint16_t *betas) { | |||
for (size_t i = 0 ; i < PARAM_M - 1 ; ++i) { | |||
size_t i; | |||
for (i = 0 ; i < PARAM_M - 1 ; ++i) { | |||
betas[i] = 1 << (PARAM_M - 1 - i); | |||
} | |||
} | |||
@@ -48,10 +51,11 @@ static void compute_fft_betas(uint16_t *betas) { | |||
* @param[in] set_size Size of the array set | |||
*/ | |||
static void compute_subset_sums(uint16_t *subset_sums, const uint16_t *set, size_t set_size) { | |||
size_t i, j; | |||
subset_sums[0] = 0; | |||
for (size_t i = 0 ; i < set_size ; ++i) { | |||
for (size_t j = 0 ; j < (1U << i) ; ++j) { | |||
for (i = 0 ; i < set_size ; ++i) { | |||
for (j = 0 ; j < (1U << i) ; ++j) { | |||
subset_sums[(1 << i) + j] = set[i] ^ subset_sums[j]; | |||
} | |||
} | |||
@@ -90,7 +94,7 @@ static void radix_t(uint16_t *f, const uint16_t *f0, const uint16_t *f1, uint32_ | |||
f[13] = f[7] ^ f[9] ^ f[11] ^ f1[6]; | |||
f[14] = f[6] ^ f0[6] ^ f0[7] ^ f1[6]; | |||
f[15] = f[7] ^ f0[7] ^ f1[7]; | |||
return; | |||
break; | |||
case 3: | |||
f[0] = f0[0]; | |||
@@ -101,49 +105,53 @@ static void radix_t(uint16_t *f, const uint16_t *f0, const uint16_t *f1, uint32_ | |||
f[5] = f[3] ^ f1[2]; | |||
f[6] = f[4] ^ f0[3] ^ f1[2]; | |||
f[7] = f[3] ^ f0[3] ^ f1[3]; | |||
return; | |||
break; | |||
case 2: | |||
f[0] = f0[0]; | |||
f[1] = f1[0]; | |||
f[2] = f0[1] ^ f1[0]; | |||
f[3] = f[2] ^ f1[1]; | |||
return; | |||
break; | |||
case 1: | |||
f[0] = f0[0]; | |||
f[1] = f1[0]; | |||
return; | |||
break; | |||
default: | |||
; | |||
radix_t_big(f, f0, f1, m_f); | |||
break; | |||
} | |||
} | |||
size_t n = 1 << (m_f - 2); | |||
static void radix_t_big(uint16_t *f, const uint16_t *f0, const uint16_t *f1, uint32_t m_f) { | |||
uint16_t Q0[1 << (PARAM_FFT_T - 2)] = {0}; | |||
uint16_t Q1[1 << (PARAM_FFT_T - 2)] = {0}; | |||
uint16_t R0[1 << (PARAM_FFT_T - 2)] = {0}; | |||
uint16_t R1[1 << (PARAM_FFT_T - 2)] = {0}; | |||
uint16_t Q0[1 << (PARAM_FFT_T - 2)]; | |||
uint16_t Q1[1 << (PARAM_FFT_T - 2)]; | |||
uint16_t R0[1 << (PARAM_FFT_T - 2)]; | |||
uint16_t R1[1 << (PARAM_FFT_T - 2)]; | |||
uint16_t Q[1 << 2 * (PARAM_FFT_T - 2)] = {0}; | |||
uint16_t R[1 << 2 * (PARAM_FFT_T - 2)] = {0}; | |||
uint16_t Q[1 << 2 * (PARAM_FFT_T - 2)]; | |||
uint16_t R[1 << 2 * (PARAM_FFT_T - 2)]; | |||
size_t i, n; | |||
memcpy(Q0, f0 + n, 2 * n); | |||
memcpy(Q1, f1 + n, 2 * n); | |||
memcpy(R0, f0, 2 * n); | |||
memcpy(R1, f1, 2 * n); | |||
n = 1 << (m_f - 2); | |||
memcpy(Q0, f0 + n, 2 * n); | |||
memcpy(Q1, f1 + n, 2 * n); | |||
memcpy(R0, f0, 2 * n); | |||
memcpy(R1, f1, 2 * n); | |||
radix_t (Q, Q0, Q1, m_f - 1); | |||
radix_t (R, R0, R1, m_f - 1); | |||
radix_t (Q, Q0, Q1, m_f - 1); | |||
radix_t (R, R0, R1, m_f - 1); | |||
memcpy(f, R, 4 * n); | |||
memcpy(f + 2 * n, R + n, 2 * n); | |||
memcpy(f + 3 * n, Q + n, 2 * n); | |||
memcpy(f, R, 4 * n); | |||
memcpy(f + 2 * n, R + n, 2 * n); | |||
memcpy(f + 3 * n, Q + n, 2 * n); | |||
for (size_t i = 0 ; i < n ; ++i) { | |||
f[2 * n + i] ^= Q[i]; | |||
f[3 * n + i] ^= f[2 * n + i]; | |||
} | |||
for (i = 0 ; i < n ; ++i) { | |||
f[2 * n + i] ^= Q[i]; | |||
f[3 * n + i] ^= f[2 * n + i]; | |||
} | |||
} | |||
@@ -162,29 +170,31 @@ static void radix_t(uint16_t *f, const uint16_t *f0, const uint16_t *f1, uint32_ | |||
* @param[in] betas FFT constants | |||
*/ | |||
static void fft_t_rec(uint16_t *f, const uint16_t *w, size_t f_coeffs, uint8_t m, uint32_t m_f, const uint16_t *betas) { | |||
size_t k = 1 << (m - 1); | |||
uint16_t gammas[PARAM_M - 2]; | |||
uint16_t deltas[PARAM_M - 2]; | |||
uint16_t gammas_sums[1 << (PARAM_M - 1)]; | |||
uint16_t gammas[PARAM_M - 2] = {0}; | |||
uint16_t deltas[PARAM_M - 2] = {0}; | |||
uint16_t gammas_sums[1 << (PARAM_M - 1)] = {0}; | |||
uint16_t u[1 << (PARAM_M - 2)] = {0}; | |||
uint16_t f0[1 << (PARAM_FFT_T - 2)] = {0}; | |||
uint16_t f1[1 << (PARAM_FFT_T - 2)] = {0}; | |||
uint16_t betas_sums[1 << (PARAM_M - 1)] = {0}; | |||
uint16_t v[1 << (PARAM_M - 2)] = {0}; | |||
uint16_t beta_m_pow; | |||
size_t i, j, k; | |||
// Step 1 | |||
if (m_f == 1) { | |||
f[0] = 0; | |||
for (size_t i = 0 ; i < (1U << m) ; ++i) { | |||
for (i = 0 ; i < (1U << m) ; ++i) { | |||
f[0] ^= w[i]; | |||
} | |||
f[1] = 0; | |||
uint16_t betas_sums[1 << (PARAM_M - 1)]; | |||
betas_sums[0] = 0; | |||
for (size_t j = 0 ; j < m ; ++j) { | |||
for (size_t k = 0 ; k < (1U << j) ; ++k) { | |||
size_t index = (1 << j) + k; | |||
betas_sums[index] = betas_sums[k] ^ betas[j]; | |||
f[1] ^= PQCLEAN_HQC256_CLEAN_gf_mul(betas_sums[index], w[index]); | |||
for (j = 0 ; j < m ; ++j) { | |||
for (k = 0 ; k < (1U << j) ; ++k) { | |||
betas_sums[(1 << j) + k] = betas_sums[k] ^ betas[j]; | |||
f[1] ^= PQCLEAN_HQC256_CLEAN_gf_mul(betas_sums[(1 << j) + k], w[(1 << j) + k]); | |||
} | |||
} | |||
@@ -192,7 +202,7 @@ static void fft_t_rec(uint16_t *f, const uint16_t *w, size_t f_coeffs, uint8_t m | |||
} | |||
// Compute gammas and deltas | |||
for (uint8_t i = 0 ; i < m - 1 ; ++i) { | |||
for (i = 0 ; i + 1 < m ; ++i) { | |||
gammas[i] = PQCLEAN_HQC256_CLEAN_gf_mul(betas[i], PQCLEAN_HQC256_CLEAN_gf_inverse(betas[m - 1])); | |||
deltas[i] = PQCLEAN_HQC256_CLEAN_gf_square(gammas[i]) ^ gammas[i]; | |||
} | |||
@@ -206,23 +216,22 @@ static void fft_t_rec(uint16_t *f, const uint16_t *w, size_t f_coeffs, uint8_t m | |||
* Transpose: | |||
* u[i] = w[i] + w[k+i] | |||
* v[i] = G[i].w[i] + (G[i]+1).w[k+i] = G[i].u[i] + w[k+i] */ | |||
k = 1 << ((m - 1) & 0xf); // &0xf is to let the compiler know that m-1 is small. | |||
if (f_coeffs <= 3) { // 3-coefficient polynomial f case | |||
// Step 5: Compute f0 from u and f1 from v | |||
f1[1] = 0; | |||
u[0] = w[0] ^ w[k]; | |||
f1[0] = w[k]; | |||
for (size_t i = 1 ; i < k ; ++i) { | |||
for (i = 1 ; i < k ; ++i) { | |||
u[i] = w[i] ^ w[k + i]; | |||
f1[0] ^= PQCLEAN_HQC256_CLEAN_gf_mul(gammas_sums[i], u[i]) ^ w[k + i]; | |||
} | |||
fft_t_rec(f0, u, (f_coeffs + 1) / 2, m - 1, m_f - 1, deltas); | |||
} else { | |||
uint16_t v[1 << (PARAM_M - 2)] = {0}; | |||
u[0] = w[0] ^ w[k]; | |||
v[0] = w[k]; | |||
for (size_t i = 1 ; i < k ; ++i) { | |||
for (i = 1 ; i < k ; ++i) { | |||
u[i] = w[i] ^ w[k + i]; | |||
v[i] = PQCLEAN_HQC256_CLEAN_gf_mul(gammas_sums[i], u[i]) ^ w[k + i]; | |||
} | |||
@@ -237,8 +246,8 @@ static void fft_t_rec(uint16_t *f, const uint16_t *w, size_t f_coeffs, uint8_t m | |||
// Step 2: compute f from g | |||
if (betas[m - 1] != 1) { | |||
uint16_t beta_m_pow = 1; | |||
for (size_t i = 1 ; i < (1U << m_f) ; ++i) { | |||
beta_m_pow = 1; | |||
for (i = 1 ; i < (1U << m_f) ; ++i) { | |||
beta_m_pow = PQCLEAN_HQC256_CLEAN_gf_mul(beta_m_pow, betas[m - 1]); | |||
f[i] = PQCLEAN_HQC256_CLEAN_gf_mul(beta_m_pow, f[i]); | |||
} | |||
@@ -261,14 +270,15 @@ static void fft_t_rec(uint16_t *f, const uint16_t *w, size_t f_coeffs, uint8_t m | |||
*/ | |||
void PQCLEAN_HQC256_CLEAN_fft_t(uint16_t *f, const uint16_t *w, size_t f_coeffs) { | |||
// Transposed from Gao and Mateer algorithm | |||
uint16_t betas[PARAM_M - 1]; | |||
uint16_t betas_sums[1 << (PARAM_M - 1)]; | |||
size_t k = 1 << (PARAM_M - 1); | |||
uint16_t betas[PARAM_M - 1] = {0}; | |||
uint16_t betas_sums[1 << (PARAM_M - 1)] = {0}; | |||
uint16_t u[1 << (PARAM_M - 1)] = {0}; | |||
uint16_t v[1 << (PARAM_M - 1)] = {0}; | |||
uint16_t deltas[PARAM_M - 1]; | |||
uint16_t f0[1 << (PARAM_FFT_T - 1)]; | |||
uint16_t f1[1 << (PARAM_FFT_T - 1)]; | |||
uint16_t deltas[PARAM_M - 1] = {0}; | |||
uint16_t f0[1 << (PARAM_FFT_T - 1)] = {0}; | |||
uint16_t f1[1 << (PARAM_FFT_T - 1)] = {0}; | |||
size_t i, k; | |||
compute_fft_betas(betas); | |||
compute_subset_sums(betas_sums, betas, PARAM_M - 1); | |||
@@ -281,15 +291,16 @@ void PQCLEAN_HQC256_CLEAN_fft_t(uint16_t *f, const uint16_t *w, size_t f_coeffs) | |||
* Transpose: | |||
* u[i] = w[i] + w[k+i] | |||
* v[i] = G[i].w[i] + (G[i]+1).w[k+i] = G[i].u[i] + w[k+i] */ | |||
k = 1 << (PARAM_M - 1); | |||
u[0] = w[0] ^ w[k]; | |||
v[0] = w[k]; | |||
for (size_t i = 1 ; i < k ; ++i) { | |||
for (i = 1 ; i < k ; ++i) { | |||
u[i] = w[i] ^ w[k + i]; | |||
v[i] = PQCLEAN_HQC256_CLEAN_gf_mul(betas_sums[i], u[i]) ^ w[k + i]; | |||
} | |||
// Compute deltas | |||
for (size_t i = 0 ; i < PARAM_M - 1 ; ++i) { | |||
for (i = 0 ; i < PARAM_M - 1 ; ++i) { | |||
deltas[i] = PQCLEAN_HQC256_CLEAN_gf_square(betas[i]) ^ betas[i]; | |||
} | |||
@@ -337,7 +348,7 @@ static void radix(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f) { | |||
f1[2] = f[3] ^ f1[1] ^ f0[3]; | |||
f0[1] = f[2] ^ f0[2] ^ f1[1]; | |||
f1[0] = f[1] ^ f0[1]; | |||
return; | |||
break; | |||
case 3: | |||
f0[0] = f[0]; | |||
@@ -348,49 +359,54 @@ static void radix(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f) { | |||
f1[3] = f[7]; | |||
f0[1] = f[2] ^ f0[2] ^ f1[1]; | |||
f1[0] = f[1] ^ f0[1]; | |||
return; | |||
break; | |||
case 2: | |||
f0[0] = f[0]; | |||
f0[1] = f[2] ^ f[3]; | |||
f1[0] = f[1] ^ f0[1]; | |||
f1[1] = f[3]; | |||
return; | |||
break; | |||
case 1: | |||
f0[0] = f[0]; | |||
f1[0] = f[1]; | |||
return; | |||
break; | |||
default: | |||
; | |||
size_t n = 1 << (m_f - 2); | |||
uint16_t Q[2 * (1 << (PARAM_FFT - 2))]; | |||
uint16_t R[2 * (1 << (PARAM_FFT - 2))]; | |||
radix_big(f0, f1, f, m_f); | |||
break; | |||
} | |||
} | |||
uint16_t Q0[1 << (PARAM_FFT - 2)]; | |||
uint16_t Q1[1 << (PARAM_FFT - 2)]; | |||
uint16_t R0[1 << (PARAM_FFT - 2)]; | |||
uint16_t R1[1 << (PARAM_FFT - 2)]; | |||
static void radix_big(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f) { | |||
uint16_t Q[2 * (1 << (PARAM_FFT - 2))] = {0}; | |||
uint16_t R[2 * (1 << (PARAM_FFT - 2))] = {0}; | |||
memcpy(Q, f + 3 * n, 2 * n); | |||
memcpy(Q + n, f + 3 * n, 2 * n); | |||
memcpy(R, f, 4 * n); | |||
uint16_t Q0[1 << (PARAM_FFT - 2)] = {0}; | |||
uint16_t Q1[1 << (PARAM_FFT - 2)] = {0}; | |||
uint16_t R0[1 << (PARAM_FFT - 2)] = {0}; | |||
uint16_t R1[1 << (PARAM_FFT - 2)] = {0}; | |||
for (size_t i = 0 ; i < n ; ++i) { | |||
Q[i] ^= f[2 * n + i]; | |||
R[n + i] ^= Q[i]; | |||
} | |||
size_t i, n; | |||
radix(Q0, Q1, Q, m_f - 1); | |||
radix(R0, R1, R, m_f - 1); | |||
n = 1 << (m_f - 2); | |||
memcpy(Q, f + 3 * n, 2 * n); | |||
memcpy(Q + n, f + 3 * n, 2 * n); | |||
memcpy(R, f, 4 * n); | |||
memcpy(f0, R0, 2 * n); | |||
memcpy(f0 + n, Q0, 2 * n); | |||
memcpy(f1, R1, 2 * n); | |||
memcpy(f1 + n, Q1, 2 * n); | |||
for (i = 0 ; i < n ; ++i) { | |||
Q[i] ^= f[2 * n + i]; | |||
R[n + i] ^= Q[i]; | |||
} | |||
radix(Q0, Q1, Q, m_f - 1); | |||
radix(R0, R1, R, m_f - 1); | |||
memcpy(f0, R0, 2 * n); | |||
memcpy(f0 + n, Q0, 2 * n); | |||
memcpy(f1, R1, 2 * n); | |||
memcpy(f1 + n, Q1, 2 * n); | |||
} | |||
@@ -408,25 +424,27 @@ static void radix(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f) { | |||
* @param[in] betas FFT constants | |||
*/ | |||
static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32_t m_f, const uint16_t *betas) { | |||
uint16_t f0[1 << (PARAM_FFT - 2)]; | |||
uint16_t f1[1 << (PARAM_FFT - 2)]; | |||
uint16_t gammas[PARAM_M - 2]; | |||
uint16_t deltas[PARAM_M - 2]; | |||
size_t k = 1 << (m - 1); | |||
uint16_t gammas_sums[1 << (PARAM_M - 2)]; | |||
uint16_t f0[1 << (PARAM_FFT - 2)] = {0}; | |||
uint16_t f1[1 << (PARAM_FFT - 2)] = {0}; | |||
uint16_t gammas[PARAM_M - 2] = {0}; | |||
uint16_t deltas[PARAM_M - 2] = {0}; | |||
uint16_t gammas_sums[1 << (PARAM_M - 2)] = {0}; | |||
uint16_t u[1 << (PARAM_M - 2)] = {0}; | |||
uint16_t v[1 << (PARAM_M - 2)] = {0}; | |||
uint16_t tmp[PARAM_M - (PARAM_FFT - 1)] = {0}; | |||
uint16_t beta_m_pow; | |||
size_t i, j, k; | |||
// Step 1 | |||
if (m_f == 1) { | |||
uint16_t tmp[PARAM_M - (PARAM_FFT - 1)]; | |||
for (size_t i = 0 ; i < m ; ++i) { | |||
for (i = 0 ; i < m ; ++i) { | |||
tmp[i] = PQCLEAN_HQC256_CLEAN_gf_mul(betas[i], f[1]); | |||
} | |||
w[0] = f[0]; | |||
for (size_t j = 0 ; j < m ; ++j) { | |||
for (size_t k = 0 ; k < (1U << j) ; ++k) { | |||
for (j = 0 ; j < m ; ++j) { | |||
for (k = 0 ; k < (1U << j) ; ++k) { | |||
w[(1 << j) + k] = w[k] ^ tmp[j]; | |||
} | |||
} | |||
@@ -436,8 +454,8 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 | |||
// Step 2: compute g | |||
if (betas[m - 1] != 1) { | |||
uint16_t beta_m_pow = 1; | |||
for (size_t i = 1 ; i < (1U << m_f) ; ++i) { | |||
beta_m_pow = 1; | |||
for (i = 1 ; i < (1U << m_f) ; ++i) { | |||
beta_m_pow = PQCLEAN_HQC256_CLEAN_gf_mul(beta_m_pow, betas[m - 1]); | |||
f[i] = PQCLEAN_HQC256_CLEAN_gf_mul(beta_m_pow, f[i]); | |||
} | |||
@@ -447,7 +465,7 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 | |||
radix(f0, f1, f, m_f); | |||
// Step 4: compute gammas and deltas | |||
for (uint8_t i = 0 ; i < m - 1 ; ++i) { | |||
for (i = 0 ; i + 1 < m ; ++i) { | |||
gammas[i] = PQCLEAN_HQC256_CLEAN_gf_mul(betas[i], PQCLEAN_HQC256_CLEAN_gf_inverse(betas[m - 1])); | |||
deltas[i] = PQCLEAN_HQC256_CLEAN_gf_square(gammas[i]) ^ gammas[i]; | |||
} | |||
@@ -458,10 +476,11 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 | |||
// Step 5 | |||
fft_rec(u, f0, (f_coeffs + 1) / 2, m - 1, m_f - 1, deltas); | |||
k = 1 << ((m - 1) & 0xf); // &0xf is to let the compiler know that m-1 is small. | |||
if (f_coeffs <= 3) { // 3-coefficient polynomial f case: f1 is constant | |||
w[0] = u[0]; | |||
w[k] = u[0] ^ f1[0]; | |||
for (size_t i = 1 ; i < k ; ++i) { | |||
for (i = 1 ; i < k ; ++i) { | |||
w[i] = u[i] ^ PQCLEAN_HQC256_CLEAN_gf_mul(gammas_sums[i], f1[0]); | |||
w[k + i] = w[i] ^ f1[0]; | |||
} | |||
@@ -472,7 +491,7 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 | |||
memcpy(w + k, v, 2 * k); | |||
w[0] = u[0]; | |||
w[k] ^= u[0]; | |||
for (size_t i = 1 ; i < k ; ++i) { | |||
for (i = 1 ; i < k ; ++i) { | |||
w[i] = u[i] ^ PQCLEAN_HQC256_CLEAN_gf_mul(gammas_sums[i], v[i]); | |||
w[k + i] ^= w[i]; | |||
} | |||
@@ -501,14 +520,15 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 | |||
* @param[in] f_coeffs Number coefficients of f (i.e. deg(f)+1) | |||
*/ | |||
void PQCLEAN_HQC256_CLEAN_fft(uint16_t *w, const uint16_t *f, size_t f_coeffs) { | |||
uint16_t betas[PARAM_M - 1]; | |||
uint16_t betas_sums[1 << (PARAM_M - 1)]; | |||
uint16_t f0[1 << (PARAM_FFT - 1)]; | |||
uint16_t f1[1 << (PARAM_FFT - 1)]; | |||
uint16_t deltas[PARAM_M - 1]; | |||
size_t k = 1 << (PARAM_M - 1); | |||
uint16_t u[1 << (PARAM_M - 1)]; | |||
uint16_t v[1 << (PARAM_M - 1)]; | |||
uint16_t betas[PARAM_M - 1] = {0}; | |||
uint16_t betas_sums[1 << (PARAM_M - 1)] = {0}; | |||
uint16_t f0[1 << (PARAM_FFT - 1)] = {0}; | |||
uint16_t f1[1 << (PARAM_FFT - 1)] = {0}; | |||
uint16_t deltas[PARAM_M - 1] = {0}; | |||
uint16_t u[1 << (PARAM_M - 1)] = {0}; | |||
uint16_t v[1 << (PARAM_M - 1)] = {0}; | |||
size_t i, k; | |||
// Follows Gao and Mateer algorithm | |||
compute_fft_betas(betas); | |||
@@ -524,7 +544,7 @@ void PQCLEAN_HQC256_CLEAN_fft(uint16_t *w, const uint16_t *f, size_t f_coeffs) { | |||
radix(f0, f1, f, PARAM_FFT); | |||
// Step 4: Compute deltas | |||
for (size_t i = 0 ; i < PARAM_M - 1 ; ++i) { | |||
for (i = 0 ; i < PARAM_M - 1 ; ++i) { | |||
deltas[i] = PQCLEAN_HQC256_CLEAN_gf_square(betas[i]) ^ betas[i]; | |||
} | |||
@@ -532,6 +552,7 @@ void PQCLEAN_HQC256_CLEAN_fft(uint16_t *w, const uint16_t *f, size_t f_coeffs) { | |||
fft_rec(u, f0, (f_coeffs + 1) / 2, PARAM_M - 1, PARAM_FFT - 1, deltas); | |||
fft_rec(v, f1, f_coeffs / 2, PARAM_M - 1, PARAM_FFT - 1, deltas); | |||
k = 1 << (PARAM_M - 1); | |||
// Step 6, 7 and error polynomial computation | |||
memcpy(w + k, v, 2 * k); | |||
@@ -542,7 +563,7 @@ void PQCLEAN_HQC256_CLEAN_fft(uint16_t *w, const uint16_t *f, size_t f_coeffs) { | |||
w[k] ^= u[0]; | |||
// Find other roots | |||
for (size_t i = 1 ; i < k ; ++i) { | |||
for (i = 1 ; i < k ; ++i) { | |||
w[i] = u[i] ^ PQCLEAN_HQC256_CLEAN_gf_mul(betas_sums[i], v[i]); | |||
w[k + i] ^= w[i]; | |||
} | |||
@@ -561,21 +582,20 @@ void PQCLEAN_HQC256_CLEAN_fft(uint16_t *w, const uint16_t *f, size_t f_coeffs) { | |||
* @param[in] vector Array of size VEC_N1_SIZE_BYTES | |||
*/ | |||
void PQCLEAN_HQC256_CLEAN_fft_t_preprocess_bch_codeword(uint16_t *w, const uint64_t *vector) { | |||
uint16_t r[1 << PARAM_M]; | |||
uint16_t gammas[PARAM_M - 1]; | |||
uint16_t gammas_sums[1 << (PARAM_M - 1)]; | |||
size_t k = 1 << (PARAM_M - 1); | |||
uint16_t r[1 << PARAM_M] = {0}; | |||
uint16_t gammas[PARAM_M - 1] = {0}; | |||
uint16_t gammas_sums[1 << (PARAM_M - 1)] = {0}; | |||
size_t i, j, k; | |||
// Unpack the received word vector into array r | |||
size_t i; | |||
for (i = 0 ; i < VEC_N1_SIZE_64 - (PARAM_N1 % 64 != 0) ; ++i) { | |||
for (size_t j = 0 ; j < 64 ; ++j) { | |||
for (j = 0 ; j < 64 ; ++j) { | |||
r[64 * i + j] = (uint8_t) ((vector[i] >> j) & 1); | |||
} | |||
} | |||
// Last byte | |||
for (size_t j = 0 ; j < PARAM_N1 % 64 ; ++j) { | |||
for (j = 0 ; j < PARAM_N1 % 64 ; ++j) { | |||
r[64 * i + j] = (uint8_t) ((vector[i] >> j) & 1); | |||
} | |||
@@ -586,9 +606,10 @@ void PQCLEAN_HQC256_CLEAN_fft_t_preprocess_bch_codeword(uint16_t *w, const uint6 | |||
compute_subset_sums(gammas_sums, gammas, PARAM_M - 1); | |||
// Twist and permute r adequately to obtain w | |||
k = 1 << (PARAM_M - 1); | |||
w[0] = 0; | |||
w[k] = -r[0] & 1; | |||
for (size_t i = 1 ; i < k ; ++i) { | |||
for (i = 1 ; i < k ; ++i) { | |||
w[i] = -r[PQCLEAN_HQC256_CLEAN_gf_log(gammas_sums[i])] & gammas_sums[i]; | |||
w[k + i] = -r[PQCLEAN_HQC256_CLEAN_gf_log(gammas_sums[i] ^ 1)] & (gammas_sums[i] ^ 1); | |||
} | |||
@@ -603,25 +624,28 @@ void PQCLEAN_HQC256_CLEAN_fft_t_preprocess_bch_codeword(uint16_t *w, const uint6 | |||
* @param[in] w Array of size 2^PARAM_M | |||
*/ | |||
void PQCLEAN_HQC256_CLEAN_fft_retrieve_bch_error_poly(uint64_t *error, const uint16_t *w) { | |||
uint16_t gammas[PARAM_M - 1]; | |||
uint16_t gammas_sums[1 << (PARAM_M - 1)]; | |||
size_t k = 1 << (PARAM_M - 1); | |||
size_t index = PARAM_GF_MUL_ORDER; | |||
uint16_t gammas[PARAM_M - 1] = {0}; | |||
uint16_t gammas_sums[1 << (PARAM_M - 1)] = {0}; | |||
uint64_t bit; | |||
size_t i, k, index; | |||
compute_fft_betas(gammas); | |||
compute_subset_sums(gammas_sums, gammas, PARAM_M - 1); | |||
error[0] ^= ((uint64_t) 1) ^ ((uint16_t) - w[0] >> 15); | |||
uint64_t bit = ((uint64_t) 1) ^ ((uint16_t) - w[k] >> 15); | |||
error[0] ^= 1 ^ ((uint16_t) - w[0] >> 15); | |||
k = 1 << (PARAM_M - 1); | |||
index = PARAM_GF_MUL_ORDER; | |||
bit = 1 ^ ((uint16_t) - w[k] >> 15); | |||
error[index / 8] ^= bit << (index % 64); | |||
for (size_t i = 1 ; i < k ; ++i) { | |||
for (i = 1 ; i < k ; ++i) { | |||
index = PARAM_GF_MUL_ORDER - PQCLEAN_HQC256_CLEAN_gf_log(gammas_sums[i]); | |||
bit = ((uint64_t) 1) ^ ((uint16_t) - w[i] >> 15); | |||
bit = 1 ^ ((uint16_t) - w[i] >> 15); | |||
error[index / 64] ^= bit << (index % 64); | |||
index = PARAM_GF_MUL_ORDER - PQCLEAN_HQC256_CLEAN_gf_log(gammas_sums[i] ^ 1); | |||
bit = ((uint64_t) 1) ^ ((uint16_t) - w[k + i] >> 15); | |||
bit = 1 ^ ((uint16_t) - w[k + i] >> 15); | |||
error[index / 64] ^= bit << (index % 64); | |||
} | |||
} |
@@ -18,6 +18,7 @@ | |||
static void compute_fft_betas(uint16_t *betas); | |||
static void compute_subset_sums(uint16_t *subset_sums, const uint16_t *set, size_t set_size); | |||
static void radix(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f); | |||
static void radix_big(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f); | |||
static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32_t m_f, const uint16_t *betas); | |||
@@ -27,7 +28,8 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 | |||
* @param[out] betas Array of size PARAM_M-1 | |||
*/ | |||
static void compute_fft_betas(uint16_t *betas) { | |||
for (size_t i = 0 ; i < PARAM_M - 1 ; ++i) { | |||
size_t i; | |||
for (i = 0 ; i < PARAM_M - 1 ; ++i) { | |||
betas[i] = 1 << (PARAM_M - 1 - i); | |||
} | |||
} | |||
@@ -45,10 +47,11 @@ static void compute_fft_betas(uint16_t *betas) { | |||
* @param[in] set_size Size of the array set | |||
*/ | |||
static void compute_subset_sums(uint16_t *subset_sums, const uint16_t *set, size_t set_size) { | |||
size_t i, j; | |||
subset_sums[0] = 0; | |||
for (size_t i = 0 ; i < set_size ; ++i) { | |||
for (size_t j = 0 ; j < (1U << i) ; ++j) { | |||
for (i = 0 ; i < set_size ; ++i) { | |||
for (j = 0 ; j < (1U << i) ; ++j) { | |||
subset_sums[(1 << i) + j] = set[i] ^ subset_sums[j]; | |||
} | |||
} | |||
@@ -88,7 +91,7 @@ static void radix(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f) { | |||
f1[2] = f[3] ^ f1[1] ^ f0[3]; | |||
f0[1] = f[2] ^ f0[2] ^ f1[1]; | |||
f1[0] = f[1] ^ f0[1]; | |||
return; | |||
break; | |||
case 3: | |||
f0[0] = f[0]; | |||
@@ -99,49 +102,54 @@ static void radix(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f) { | |||
f1[3] = f[7]; | |||
f0[1] = f[2] ^ f0[2] ^ f1[1]; | |||
f1[0] = f[1] ^ f0[1]; | |||
return; | |||
break; | |||
case 2: | |||
f0[0] = f[0]; | |||
f0[1] = f[2] ^ f[3]; | |||
f1[0] = f[1] ^ f0[1]; | |||
f1[1] = f[3]; | |||
return; | |||
break; | |||
case 1: | |||
f0[0] = f[0]; | |||
f1[0] = f[1]; | |||
return; | |||
break; | |||
default: | |||
; | |||
size_t n = 1 << (m_f - 2); | |||
radix_big(f0, f1, f, m_f); | |||
break; | |||
} | |||
} | |||
uint16_t Q[2 * (1 << (PARAM_FFT - 2))]; | |||
uint16_t R[2 * (1 << (PARAM_FFT - 2))]; | |||
static void radix_big(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f) { | |||
uint16_t Q[2 * (1 << (PARAM_FFT - 2))] = {0}; | |||
uint16_t R[2 * (1 << (PARAM_FFT - 2))] = {0}; | |||
uint16_t Q0[1 << (PARAM_FFT - 2)]; | |||
uint16_t Q1[1 << (PARAM_FFT - 2)]; | |||
uint16_t R0[1 << (PARAM_FFT - 2)]; | |||
uint16_t R1[1 << (PARAM_FFT - 2)]; | |||
uint16_t Q0[1 << (PARAM_FFT - 2)] = {0}; | |||
uint16_t Q1[1 << (PARAM_FFT - 2)] = {0}; | |||
uint16_t R0[1 << (PARAM_FFT - 2)] = {0}; | |||
uint16_t R1[1 << (PARAM_FFT - 2)] = {0}; | |||
memcpy(Q, f + 3 * n, 2 * n); | |||
memcpy(Q + n, f + 3 * n, 2 * n); | |||
memcpy(R, f, 4 * n); | |||
size_t i, n; | |||
for (size_t i = 0 ; i < n ; ++i) { | |||
Q[i] ^= f[2 * n + i]; | |||
R[n + i] ^= Q[i]; | |||
} | |||
n = 1 << (m_f - 2); | |||
memcpy(Q, f + 3 * n, 2 * n); | |||
memcpy(Q + n, f + 3 * n, 2 * n); | |||
memcpy(R, f, 4 * n); | |||
radix(Q0, Q1, Q, m_f - 1); | |||
radix(R0, R1, R, m_f - 1); | |||
memcpy(f0, R0, 2 * n); | |||
memcpy(f0 + n, Q0, 2 * n); | |||
memcpy(f1, R1, 2 * n); | |||
memcpy(f1 + n, Q1, 2 * n); | |||
for (i = 0 ; i < n ; ++i) { | |||
Q[i] ^= f[2 * n + i]; | |||
R[n + i] ^= Q[i]; | |||
} | |||
radix(Q0, Q1, Q, m_f - 1); | |||
radix(R0, R1, R, m_f - 1); | |||
memcpy(f0, R0, 2 * n); | |||
memcpy(f0 + n, Q0, 2 * n); | |||
memcpy(f1, R1, 2 * n); | |||
memcpy(f1 + n, Q1, 2 * n); | |||
} | |||
@@ -159,25 +167,27 @@ static void radix(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f) { | |||
* @param[in] betas FFT constants | |||
*/ | |||
static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32_t m_f, const uint16_t *betas) { | |||
uint16_t f0[1 << (PARAM_FFT - 2)]; | |||
uint16_t f1[1 << (PARAM_FFT - 2)]; | |||
uint16_t gammas[PARAM_M - 2]; | |||
uint16_t deltas[PARAM_M - 2]; | |||
size_t k = 1 << (m - 1); | |||
uint16_t gammas_sums[1 << (PARAM_M - 2)]; | |||
uint16_t f0[1 << (PARAM_FFT - 2)] = {0}; | |||
uint16_t f1[1 << (PARAM_FFT - 2)] = {0}; | |||
uint16_t gammas[PARAM_M - 2] = {0}; | |||
uint16_t deltas[PARAM_M - 2] = {0}; | |||
uint16_t gammas_sums[1 << (PARAM_M - 2)] = {0}; | |||
uint16_t u[1 << (PARAM_M - 2)] = {0}; | |||
uint16_t v[1 << (PARAM_M - 2)] = {0}; | |||
uint16_t tmp[PARAM_M - (PARAM_FFT - 1)] = {0}; | |||
uint16_t beta_m_pow; | |||
size_t i, j, k; | |||
// Step 1 | |||
if (m_f == 1) { | |||
uint16_t tmp[PARAM_M - (PARAM_FFT - 1)]; | |||
for (size_t i = 0 ; i < m ; ++i) { | |||
for (i = 0 ; i < m ; ++i) { | |||
tmp[i] = PQCLEAN_HQCRMRS128_CLEAN_gf_mul(betas[i], f[1]); | |||
} | |||
w[0] = f[0]; | |||
for (size_t j = 0 ; j < m ; ++j) { | |||
for (size_t k = 0 ; k < (1U << j) ; ++k) { | |||
for (j = 0 ; j < m ; ++j) { | |||
for (k = 0 ; k < (1U << j) ; ++k) { | |||
w[(1 << j) + k] = w[k] ^ tmp[j]; | |||
} | |||
} | |||
@@ -187,8 +197,8 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 | |||
// Step 2: compute g | |||
if (betas[m - 1] != 1) { | |||
uint16_t beta_m_pow = 1; | |||
for (size_t i = 1 ; i < (1U << m_f) ; ++i) { | |||
beta_m_pow = 1; | |||
for (i = 1 ; i < (1U << m_f) ; ++i) { | |||
beta_m_pow = PQCLEAN_HQCRMRS128_CLEAN_gf_mul(beta_m_pow, betas[m - 1]); | |||
f[i] = PQCLEAN_HQCRMRS128_CLEAN_gf_mul(beta_m_pow, f[i]); | |||
} | |||
@@ -198,7 +208,7 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 | |||
radix(f0, f1, f, m_f); | |||
// Step 4: compute gammas and deltas | |||
for (uint8_t i = 0 ; i < m - 1 ; ++i) { | |||
for (i = 0 ; i + 1 < m ; ++i) { | |||
gammas[i] = PQCLEAN_HQCRMRS128_CLEAN_gf_mul(betas[i], PQCLEAN_HQCRMRS128_CLEAN_gf_inverse(betas[m - 1])); | |||
deltas[i] = PQCLEAN_HQCRMRS128_CLEAN_gf_square(gammas[i]) ^ gammas[i]; | |||
} | |||
@@ -209,10 +219,11 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 | |||
// Step 5 | |||
fft_rec(u, f0, (f_coeffs + 1) / 2, m - 1, m_f - 1, deltas); | |||
k = 1 << ((m - 1) & 0xf); // &0xf is to let the compiler know that m-1 is small. | |||
if (f_coeffs <= 3) { // 3-coefficient polynomial f case: f1 is constant | |||
w[0] = u[0]; | |||
w[k] = u[0] ^ f1[0]; | |||
for (size_t i = 1 ; i < k ; ++i) { | |||
for (i = 1 ; i < k ; ++i) { | |||
w[i] = u[i] ^ PQCLEAN_HQCRMRS128_CLEAN_gf_mul(gammas_sums[i], f1[0]); | |||
w[k + i] = w[i] ^ f1[0]; | |||
} | |||
@@ -223,7 +234,7 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 | |||
memcpy(w + k, v, 2 * k); | |||
w[0] = u[0]; | |||
w[k] ^= u[0]; | |||
for (size_t i = 1 ; i < k ; ++i) { | |||
for (i = 1 ; i < k ; ++i) { | |||
w[i] = u[i] ^ PQCLEAN_HQCRMRS128_CLEAN_gf_mul(gammas_sums[i], v[i]); | |||
w[k + i] ^= w[i]; | |||
} | |||
@@ -252,14 +263,15 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 | |||
* @param[in] f_coeffs Number coefficients of f (i.e. deg(f)+1) | |||
*/ | |||
void PQCLEAN_HQCRMRS128_CLEAN_fft(uint16_t *w, const uint16_t *f, size_t f_coeffs) { | |||
uint16_t betas[PARAM_M - 1]; | |||
uint16_t betas_sums[1 << (PARAM_M - 1)]; | |||
uint16_t f0[1 << (PARAM_FFT - 1)]; | |||
uint16_t f1[1 << (PARAM_FFT - 1)]; | |||
uint16_t deltas[PARAM_M - 1]; | |||
size_t k = 1 << (PARAM_M - 1); | |||
uint16_t u[1 << (PARAM_M - 1)]; | |||
uint16_t v[1 << (PARAM_M - 1)]; | |||
uint16_t betas[PARAM_M - 1] = {0}; | |||
uint16_t betas_sums[1 << (PARAM_M - 1)] = {0}; | |||
uint16_t f0[1 << (PARAM_FFT - 1)] = {0}; | |||
uint16_t f1[1 << (PARAM_FFT - 1)] = {0}; | |||
uint16_t deltas[PARAM_M - 1] = {0}; | |||
uint16_t u[1 << (PARAM_M - 1)] = {0}; | |||
uint16_t v[1 << (PARAM_M - 1)] = {0}; | |||
size_t i, k; | |||
// Follows Gao and Mateer algorithm | |||
compute_fft_betas(betas); | |||
@@ -275,7 +287,7 @@ void PQCLEAN_HQCRMRS128_CLEAN_fft(uint16_t *w, const uint16_t *f, size_t f_coeff | |||
radix(f0, f1, f, PARAM_FFT); | |||
// Step 4: Compute deltas | |||
for (size_t i = 0 ; i < PARAM_M - 1 ; ++i) { | |||
for (i = 0 ; i < PARAM_M - 1 ; ++i) { | |||
deltas[i] = PQCLEAN_HQCRMRS128_CLEAN_gf_square(betas[i]) ^ betas[i]; | |||
} | |||
@@ -283,6 +295,7 @@ void PQCLEAN_HQCRMRS128_CLEAN_fft(uint16_t *w, const uint16_t *f, size_t f_coeff | |||
fft_rec(u, f0, (f_coeffs + 1) / 2, PARAM_M - 1, PARAM_FFT - 1, deltas); | |||
fft_rec(v, f1, f_coeffs / 2, PARAM_M - 1, PARAM_FFT - 1, deltas); | |||
k = 1 << (PARAM_M - 1); | |||
// Step 6, 7 and error polynomial computation | |||
memcpy(w + k, v, 2 * k); | |||
@@ -293,7 +306,7 @@ void PQCLEAN_HQCRMRS128_CLEAN_fft(uint16_t *w, const uint16_t *f, size_t f_coeff | |||
w[k] ^= u[0]; | |||
// Find other roots | |||
for (size_t i = 1 ; i < k ; ++i) { | |||
for (i = 1 ; i < k ; ++i) { | |||
w[i] = u[i] ^ PQCLEAN_HQCRMRS128_CLEAN_gf_mul(betas_sums[i], v[i]); | |||
w[k + i] ^= w[i]; | |||
} | |||
@@ -311,17 +324,16 @@ void PQCLEAN_HQCRMRS128_CLEAN_fft(uint16_t *w, const uint16_t *f, size_t f_coeff | |||
void PQCLEAN_HQCRMRS128_CLEAN_fft_retrieve_error_poly(uint8_t *error, const uint16_t *w) { | |||
uint16_t gammas[PARAM_M - 1] = {0}; | |||
uint16_t gammas_sums[1 << (PARAM_M - 1)] = {0}; | |||
size_t k = 1 << (PARAM_M - 1); | |||
size_t i, k, index; | |||
compute_fft_betas(gammas); | |||
compute_subset_sums(gammas_sums, gammas, PARAM_M - 1); | |||
k = 1 << (PARAM_M - 1); | |||
error[0] ^= 1 ^ ((uint16_t) - w[0] >> 15); | |||
error[0] ^= 1 ^ ((uint16_t) - w[k] >> 15); | |||
size_t index = PARAM_GF_MUL_ORDER; | |||
for (size_t i = 1 ; i < k ; ++i) { | |||
for (i = 1 ; i < k ; ++i) { | |||
index = PARAM_GF_MUL_ORDER - PQCLEAN_HQCRMRS128_CLEAN_gf_log(gammas_sums[i]); | |||
error[index] ^= 1 ^ ((uint16_t) - w[i] >> 15); | |||
@@ -18,6 +18,7 @@ | |||
static void compute_fft_betas(uint16_t *betas); | |||
static void compute_subset_sums(uint16_t *subset_sums, const uint16_t *set, size_t set_size); | |||
static void radix(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f); | |||
static void radix_big(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f); | |||
static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32_t m_f, const uint16_t *betas); | |||
@@ -27,7 +28,8 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 | |||
* @param[out] betas Array of size PARAM_M-1 | |||
*/ | |||
static void compute_fft_betas(uint16_t *betas) { | |||
for (size_t i = 0 ; i < PARAM_M - 1 ; ++i) { | |||
size_t i; | |||
for (i = 0 ; i < PARAM_M - 1 ; ++i) { | |||
betas[i] = 1 << (PARAM_M - 1 - i); | |||
} | |||
} | |||
@@ -45,10 +47,11 @@ static void compute_fft_betas(uint16_t *betas) { | |||
* @param[in] set_size Size of the array set | |||
*/ | |||
static void compute_subset_sums(uint16_t *subset_sums, const uint16_t *set, size_t set_size) { | |||
size_t i, j; | |||
subset_sums[0] = 0; | |||
for (size_t i = 0 ; i < set_size ; ++i) { | |||
for (size_t j = 0 ; j < (1U << i) ; ++j) { | |||
for (i = 0 ; i < set_size ; ++i) { | |||
for (j = 0 ; j < (1U << i) ; ++j) { | |||
subset_sums[(1 << i) + j] = set[i] ^ subset_sums[j]; | |||
} | |||
} | |||
@@ -88,7 +91,7 @@ static void radix(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f) { | |||
f1[2] = f[3] ^ f1[1] ^ f0[3]; | |||
f0[1] = f[2] ^ f0[2] ^ f1[1]; | |||
f1[0] = f[1] ^ f0[1]; | |||
return; | |||
break; | |||
case 3: | |||
f0[0] = f[0]; | |||
@@ -99,49 +102,54 @@ static void radix(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f) { | |||
f1[3] = f[7]; | |||
f0[1] = f[2] ^ f0[2] ^ f1[1]; | |||
f1[0] = f[1] ^ f0[1]; | |||
return; | |||
break; | |||
case 2: | |||
f0[0] = f[0]; | |||
f0[1] = f[2] ^ f[3]; | |||
f1[0] = f[1] ^ f0[1]; | |||
f1[1] = f[3]; | |||
return; | |||
break; | |||
case 1: | |||
f0[0] = f[0]; | |||
f1[0] = f[1]; | |||
return; | |||
break; | |||
default: | |||
; | |||
size_t n = 1 << (m_f - 2); | |||
radix_big(f0, f1, f, m_f); | |||
break; | |||
} | |||
} | |||
uint16_t Q[2 * (1 << (PARAM_FFT - 2))]; | |||
uint16_t R[2 * (1 << (PARAM_FFT - 2))]; | |||
static void radix_big(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f) { | |||
uint16_t Q[2 * (1 << (PARAM_FFT - 2))] = {0}; | |||
uint16_t R[2 * (1 << (PARAM_FFT - 2))] = {0}; | |||
uint16_t Q0[1 << (PARAM_FFT - 2)]; | |||
uint16_t Q1[1 << (PARAM_FFT - 2)]; | |||
uint16_t R0[1 << (PARAM_FFT - 2)]; | |||
uint16_t R1[1 << (PARAM_FFT - 2)]; | |||
uint16_t Q0[1 << (PARAM_FFT - 2)] = {0}; | |||
uint16_t Q1[1 << (PARAM_FFT - 2)] = {0}; | |||
uint16_t R0[1 << (PARAM_FFT - 2)] = {0}; | |||
uint16_t R1[1 << (PARAM_FFT - 2)] = {0}; | |||
memcpy(Q, f + 3 * n, 2 * n); | |||
memcpy(Q + n, f + 3 * n, 2 * n); | |||
memcpy(R, f, 4 * n); | |||
size_t i, n; | |||
for (size_t i = 0 ; i < n ; ++i) { | |||
Q[i] ^= f[2 * n + i]; | |||
R[n + i] ^= Q[i]; | |||
} | |||
n = 1 << (m_f - 2); | |||
memcpy(Q, f + 3 * n, 2 * n); | |||
memcpy(Q + n, f + 3 * n, 2 * n); | |||
memcpy(R, f, 4 * n); | |||
radix(Q0, Q1, Q, m_f - 1); | |||
radix(R0, R1, R, m_f - 1); | |||
memcpy(f0, R0, 2 * n); | |||
memcpy(f0 + n, Q0, 2 * n); | |||
memcpy(f1, R1, 2 * n); | |||
memcpy(f1 + n, Q1, 2 * n); | |||
for (i = 0 ; i < n ; ++i) { | |||
Q[i] ^= f[2 * n + i]; | |||
R[n + i] ^= Q[i]; | |||
} | |||
radix(Q0, Q1, Q, m_f - 1); | |||
radix(R0, R1, R, m_f - 1); | |||
memcpy(f0, R0, 2 * n); | |||
memcpy(f0 + n, Q0, 2 * n); | |||
memcpy(f1, R1, 2 * n); | |||
memcpy(f1 + n, Q1, 2 * n); | |||
} | |||
@@ -159,25 +167,27 @@ static void radix(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f) { | |||
* @param[in] betas FFT constants | |||
*/ | |||
static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32_t m_f, const uint16_t *betas) { | |||
uint16_t f0[1 << (PARAM_FFT - 2)]; | |||
uint16_t f1[1 << (PARAM_FFT - 2)]; | |||
uint16_t gammas[PARAM_M - 2]; | |||
uint16_t deltas[PARAM_M - 2]; | |||
size_t k = 1 << (m - 1); | |||
uint16_t gammas_sums[1 << (PARAM_M - 2)]; | |||
uint16_t f0[1 << (PARAM_FFT - 2)] = {0}; | |||
uint16_t f1[1 << (PARAM_FFT - 2)] = {0}; | |||
uint16_t gammas[PARAM_M - 2] = {0}; | |||
uint16_t deltas[PARAM_M - 2] = {0}; | |||
uint16_t gammas_sums[1 << (PARAM_M - 2)] = {0}; | |||
uint16_t u[1 << (PARAM_M - 2)] = {0}; | |||
uint16_t v[1 << (PARAM_M - 2)] = {0}; | |||
uint16_t tmp[PARAM_M - (PARAM_FFT - 1)] = {0}; | |||
uint16_t beta_m_pow; | |||
size_t i, j, k; | |||
// Step 1 | |||
if (m_f == 1) { | |||
uint16_t tmp[PARAM_M - (PARAM_FFT - 1)]; | |||
for (size_t i = 0 ; i < m ; ++i) { | |||
for (i = 0 ; i < m ; ++i) { | |||
tmp[i] = PQCLEAN_HQCRMRS192_CLEAN_gf_mul(betas[i], f[1]); | |||
} | |||
w[0] = f[0]; | |||
for (size_t j = 0 ; j < m ; ++j) { | |||
for (size_t k = 0 ; k < (1U << j) ; ++k) { | |||
for (j = 0 ; j < m ; ++j) { | |||
for (k = 0 ; k < (1U << j) ; ++k) { | |||
w[(1 << j) + k] = w[k] ^ tmp[j]; | |||
} | |||
} | |||
@@ -187,8 +197,8 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 | |||
// Step 2: compute g | |||
if (betas[m - 1] != 1) { | |||
uint16_t beta_m_pow = 1; | |||
for (size_t i = 1 ; i < (1U << m_f) ; ++i) { | |||
beta_m_pow = 1; | |||
for (i = 1 ; i < (1U << m_f) ; ++i) { | |||
beta_m_pow = PQCLEAN_HQCRMRS192_CLEAN_gf_mul(beta_m_pow, betas[m - 1]); | |||
f[i] = PQCLEAN_HQCRMRS192_CLEAN_gf_mul(beta_m_pow, f[i]); | |||
} | |||
@@ -198,7 +208,7 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 | |||
radix(f0, f1, f, m_f); | |||
// Step 4: compute gammas and deltas | |||
for (uint8_t i = 0 ; i < m - 1 ; ++i) { | |||
for (i = 0 ; i + 1 < m ; ++i) { | |||
gammas[i] = PQCLEAN_HQCRMRS192_CLEAN_gf_mul(betas[i], PQCLEAN_HQCRMRS192_CLEAN_gf_inverse(betas[m - 1])); | |||
deltas[i] = PQCLEAN_HQCRMRS192_CLEAN_gf_square(gammas[i]) ^ gammas[i]; | |||
} | |||
@@ -209,10 +219,11 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 | |||
// Step 5 | |||
fft_rec(u, f0, (f_coeffs + 1) / 2, m - 1, m_f - 1, deltas); | |||
k = 1 << ((m - 1) & 0xf); // &0xf is to let the compiler know that m-1 is small. | |||
if (f_coeffs <= 3) { // 3-coefficient polynomial f case: f1 is constant | |||
w[0] = u[0]; | |||
w[k] = u[0] ^ f1[0]; | |||
for (size_t i = 1 ; i < k ; ++i) { | |||
for (i = 1 ; i < k ; ++i) { | |||
w[i] = u[i] ^ PQCLEAN_HQCRMRS192_CLEAN_gf_mul(gammas_sums[i], f1[0]); | |||
w[k + i] = w[i] ^ f1[0]; | |||
} | |||
@@ -223,7 +234,7 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 | |||
memcpy(w + k, v, 2 * k); | |||
w[0] = u[0]; | |||
w[k] ^= u[0]; | |||
for (size_t i = 1 ; i < k ; ++i) { | |||
for (i = 1 ; i < k ; ++i) { | |||
w[i] = u[i] ^ PQCLEAN_HQCRMRS192_CLEAN_gf_mul(gammas_sums[i], v[i]); | |||
w[k + i] ^= w[i]; | |||
} | |||
@@ -252,14 +263,15 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 | |||
* @param[in] f_coeffs Number coefficients of f (i.e. deg(f)+1) | |||
*/ | |||
void PQCLEAN_HQCRMRS192_CLEAN_fft(uint16_t *w, const uint16_t *f, size_t f_coeffs) { | |||
uint16_t betas[PARAM_M - 1]; | |||
uint16_t betas_sums[1 << (PARAM_M - 1)]; | |||
uint16_t f0[1 << (PARAM_FFT - 1)]; | |||
uint16_t f1[1 << (PARAM_FFT - 1)]; | |||
uint16_t deltas[PARAM_M - 1]; | |||
size_t k = 1 << (PARAM_M - 1); | |||
uint16_t u[1 << (PARAM_M - 1)]; | |||
uint16_t v[1 << (PARAM_M - 1)]; | |||
uint16_t betas[PARAM_M - 1] = {0}; | |||
uint16_t betas_sums[1 << (PARAM_M - 1)] = {0}; | |||
uint16_t f0[1 << (PARAM_FFT - 1)] = {0}; | |||
uint16_t f1[1 << (PARAM_FFT - 1)] = {0}; | |||
uint16_t deltas[PARAM_M - 1] = {0}; | |||
uint16_t u[1 << (PARAM_M - 1)] = {0}; | |||
uint16_t v[1 << (PARAM_M - 1)] = {0}; | |||
size_t i, k; | |||
// Follows Gao and Mateer algorithm | |||
compute_fft_betas(betas); | |||
@@ -275,7 +287,7 @@ void PQCLEAN_HQCRMRS192_CLEAN_fft(uint16_t *w, const uint16_t *f, size_t f_coeff | |||
radix(f0, f1, f, PARAM_FFT); | |||
// Step 4: Compute deltas | |||
for (size_t i = 0 ; i < PARAM_M - 1 ; ++i) { | |||
for (i = 0 ; i < PARAM_M - 1 ; ++i) { | |||
deltas[i] = PQCLEAN_HQCRMRS192_CLEAN_gf_square(betas[i]) ^ betas[i]; | |||
} | |||
@@ -283,6 +295,7 @@ void PQCLEAN_HQCRMRS192_CLEAN_fft(uint16_t *w, const uint16_t *f, size_t f_coeff | |||
fft_rec(u, f0, (f_coeffs + 1) / 2, PARAM_M - 1, PARAM_FFT - 1, deltas); | |||
fft_rec(v, f1, f_coeffs / 2, PARAM_M - 1, PARAM_FFT - 1, deltas); | |||
k = 1 << (PARAM_M - 1); | |||
// Step 6, 7 and error polynomial computation | |||
memcpy(w + k, v, 2 * k); | |||
@@ -293,7 +306,7 @@ void PQCLEAN_HQCRMRS192_CLEAN_fft(uint16_t *w, const uint16_t *f, size_t f_coeff | |||
w[k] ^= u[0]; | |||
// Find other roots | |||
for (size_t i = 1 ; i < k ; ++i) { | |||
for (i = 1 ; i < k ; ++i) { | |||
w[i] = u[i] ^ PQCLEAN_HQCRMRS192_CLEAN_gf_mul(betas_sums[i], v[i]); | |||
w[k + i] ^= w[i]; | |||
} | |||
@@ -311,17 +324,16 @@ void PQCLEAN_HQCRMRS192_CLEAN_fft(uint16_t *w, const uint16_t *f, size_t f_coeff | |||
void PQCLEAN_HQCRMRS192_CLEAN_fft_retrieve_error_poly(uint8_t *error, const uint16_t *w) { | |||
uint16_t gammas[PARAM_M - 1] = {0}; | |||
uint16_t gammas_sums[1 << (PARAM_M - 1)] = {0}; | |||
size_t k = 1 << (PARAM_M - 1); | |||
size_t i, k, index; | |||
compute_fft_betas(gammas); | |||
compute_subset_sums(gammas_sums, gammas, PARAM_M - 1); | |||
k = 1 << (PARAM_M - 1); | |||
error[0] ^= 1 ^ ((uint16_t) - w[0] >> 15); | |||
error[0] ^= 1 ^ ((uint16_t) - w[k] >> 15); | |||
size_t index = PARAM_GF_MUL_ORDER; | |||
for (size_t i = 1 ; i < k ; ++i) { | |||
for (i = 1 ; i < k ; ++i) { | |||
index = PARAM_GF_MUL_ORDER - PQCLEAN_HQCRMRS192_CLEAN_gf_log(gammas_sums[i]); | |||
error[index] ^= 1 ^ ((uint16_t) - w[i] >> 15); | |||
@@ -18,6 +18,7 @@ | |||
static void compute_fft_betas(uint16_t *betas); | |||
static void compute_subset_sums(uint16_t *subset_sums, const uint16_t *set, size_t set_size); | |||
static void radix(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f); | |||
static void radix_big(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f); | |||
static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32_t m_f, const uint16_t *betas); | |||
@@ -27,7 +28,8 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 | |||
* @param[out] betas Array of size PARAM_M-1 | |||
*/ | |||
static void compute_fft_betas(uint16_t *betas) { | |||
for (size_t i = 0 ; i < PARAM_M - 1 ; ++i) { | |||
size_t i; | |||
for (i = 0 ; i < PARAM_M - 1 ; ++i) { | |||
betas[i] = 1 << (PARAM_M - 1 - i); | |||
} | |||
} | |||
@@ -45,10 +47,11 @@ static void compute_fft_betas(uint16_t *betas) { | |||
* @param[in] set_size Size of the array set | |||
*/ | |||
static void compute_subset_sums(uint16_t *subset_sums, const uint16_t *set, size_t set_size) { | |||
size_t i, j; | |||
subset_sums[0] = 0; | |||
for (size_t i = 0 ; i < set_size ; ++i) { | |||
for (size_t j = 0 ; j < (1U << i) ; ++j) { | |||
for (i = 0 ; i < set_size ; ++i) { | |||
for (j = 0 ; j < (1U << i) ; ++j) { | |||
subset_sums[(1 << i) + j] = set[i] ^ subset_sums[j]; | |||
} | |||
} | |||
@@ -88,7 +91,7 @@ static void radix(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f) { | |||
f1[2] = f[3] ^ f1[1] ^ f0[3]; | |||
f0[1] = f[2] ^ f0[2] ^ f1[1]; | |||
f1[0] = f[1] ^ f0[1]; | |||
return; | |||
break; | |||
case 3: | |||
f0[0] = f[0]; | |||
@@ -99,49 +102,54 @@ static void radix(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f) { | |||
f1[3] = f[7]; | |||
f0[1] = f[2] ^ f0[2] ^ f1[1]; | |||
f1[0] = f[1] ^ f0[1]; | |||
return; | |||
break; | |||
case 2: | |||
f0[0] = f[0]; | |||
f0[1] = f[2] ^ f[3]; | |||
f1[0] = f[1] ^ f0[1]; | |||
f1[1] = f[3]; | |||
return; | |||
break; | |||
case 1: | |||
f0[0] = f[0]; | |||
f1[0] = f[1]; | |||
return; | |||
break; | |||
default: | |||
; | |||
size_t n = 1 << (m_f - 2); | |||
radix_big(f0, f1, f, m_f); | |||
break; | |||
} | |||
} | |||
uint16_t Q[2 * (1 << (PARAM_FFT - 2))]; | |||
uint16_t R[2 * (1 << (PARAM_FFT - 2))]; | |||
static void radix_big(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f) { | |||
uint16_t Q[2 * (1 << (PARAM_FFT - 2))] = {0}; | |||
uint16_t R[2 * (1 << (PARAM_FFT - 2))] = {0}; | |||
uint16_t Q0[1 << (PARAM_FFT - 2)]; | |||
uint16_t Q1[1 << (PARAM_FFT - 2)]; | |||
uint16_t R0[1 << (PARAM_FFT - 2)]; | |||
uint16_t R1[1 << (PARAM_FFT - 2)]; | |||
uint16_t Q0[1 << (PARAM_FFT - 2)] = {0}; | |||
uint16_t Q1[1 << (PARAM_FFT - 2)] = {0}; | |||
uint16_t R0[1 << (PARAM_FFT - 2)] = {0}; | |||
uint16_t R1[1 << (PARAM_FFT - 2)] = {0}; | |||
memcpy(Q, f + 3 * n, 2 * n); | |||
memcpy(Q + n, f + 3 * n, 2 * n); | |||
memcpy(R, f, 4 * n); | |||
size_t i, n; | |||
for (size_t i = 0 ; i < n ; ++i) { | |||
Q[i] ^= f[2 * n + i]; | |||
R[n + i] ^= Q[i]; | |||
} | |||
n = 1 << (m_f - 2); | |||
memcpy(Q, f + 3 * n, 2 * n); | |||
memcpy(Q + n, f + 3 * n, 2 * n); | |||
memcpy(R, f, 4 * n); | |||
radix(Q0, Q1, Q, m_f - 1); | |||
radix(R0, R1, R, m_f - 1); | |||
memcpy(f0, R0, 2 * n); | |||
memcpy(f0 + n, Q0, 2 * n); | |||
memcpy(f1, R1, 2 * n); | |||
memcpy(f1 + n, Q1, 2 * n); | |||
for (i = 0 ; i < n ; ++i) { | |||
Q[i] ^= f[2 * n + i]; | |||
R[n + i] ^= Q[i]; | |||
} | |||
radix(Q0, Q1, Q, m_f - 1); | |||
radix(R0, R1, R, m_f - 1); | |||
memcpy(f0, R0, 2 * n); | |||
memcpy(f0 + n, Q0, 2 * n); | |||
memcpy(f1, R1, 2 * n); | |||
memcpy(f1 + n, Q1, 2 * n); | |||
} | |||
@@ -159,25 +167,27 @@ static void radix(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f) { | |||
* @param[in] betas FFT constants | |||
*/ | |||
static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32_t m_f, const uint16_t *betas) { | |||
uint16_t f0[1 << (PARAM_FFT - 2)]; | |||
uint16_t f1[1 << (PARAM_FFT - 2)]; | |||
uint16_t gammas[PARAM_M - 2]; | |||
uint16_t deltas[PARAM_M - 2]; | |||
size_t k = 1 << (m - 1); | |||
uint16_t gammas_sums[1 << (PARAM_M - 2)]; | |||
uint16_t f0[1 << (PARAM_FFT - 2)] = {0}; | |||
uint16_t f1[1 << (PARAM_FFT - 2)] = {0}; | |||
uint16_t gammas[PARAM_M - 2] = {0}; | |||
uint16_t deltas[PARAM_M - 2] = {0}; | |||
uint16_t gammas_sums[1 << (PARAM_M - 2)] = {0}; | |||
uint16_t u[1 << (PARAM_M - 2)] = {0}; | |||
uint16_t v[1 << (PARAM_M - 2)] = {0}; | |||
uint16_t tmp[PARAM_M - (PARAM_FFT - 1)] = {0}; | |||
uint16_t beta_m_pow; | |||
size_t i, j, k; | |||
// Step 1 | |||
if (m_f == 1) { | |||
uint16_t tmp[PARAM_M - (PARAM_FFT - 1)]; | |||
for (size_t i = 0 ; i < m ; ++i) { | |||
for (i = 0 ; i < m ; ++i) { | |||
tmp[i] = PQCLEAN_HQCRMRS256_CLEAN_gf_mul(betas[i], f[1]); | |||
} | |||
w[0] = f[0]; | |||
for (size_t j = 0 ; j < m ; ++j) { | |||
for (size_t k = 0 ; k < (1U << j) ; ++k) { | |||
for (j = 0 ; j < m ; ++j) { | |||
for (k = 0 ; k < (1U << j) ; ++k) { | |||
w[(1 << j) + k] = w[k] ^ tmp[j]; | |||
} | |||
} | |||
@@ -187,8 +197,8 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 | |||
// Step 2: compute g | |||
if (betas[m - 1] != 1) { | |||
uint16_t beta_m_pow = 1; | |||
for (size_t i = 1 ; i < (1U << m_f) ; ++i) { | |||
beta_m_pow = 1; | |||
for (i = 1 ; i < (1U << m_f) ; ++i) { | |||
beta_m_pow = PQCLEAN_HQCRMRS256_CLEAN_gf_mul(beta_m_pow, betas[m - 1]); | |||
f[i] = PQCLEAN_HQCRMRS256_CLEAN_gf_mul(beta_m_pow, f[i]); | |||
} | |||
@@ -198,7 +208,7 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 | |||
radix(f0, f1, f, m_f); | |||
// Step 4: compute gammas and deltas | |||
for (uint8_t i = 0 ; i < m - 1 ; ++i) { | |||
for (i = 0 ; i + 1 < m ; ++i) { | |||
gammas[i] = PQCLEAN_HQCRMRS256_CLEAN_gf_mul(betas[i], PQCLEAN_HQCRMRS256_CLEAN_gf_inverse(betas[m - 1])); | |||
deltas[i] = PQCLEAN_HQCRMRS256_CLEAN_gf_square(gammas[i]) ^ gammas[i]; | |||
} | |||
@@ -209,10 +219,11 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 | |||
// Step 5 | |||
fft_rec(u, f0, (f_coeffs + 1) / 2, m - 1, m_f - 1, deltas); | |||
k = 1 << ((m - 1) & 0xf); // &0xf is to let the compiler know that m-1 is small. | |||
if (f_coeffs <= 3) { // 3-coefficient polynomial f case: f1 is constant | |||
w[0] = u[0]; | |||
w[k] = u[0] ^ f1[0]; | |||
for (size_t i = 1 ; i < k ; ++i) { | |||
for (i = 1 ; i < k ; ++i) { | |||
w[i] = u[i] ^ PQCLEAN_HQCRMRS256_CLEAN_gf_mul(gammas_sums[i], f1[0]); | |||
w[k + i] = w[i] ^ f1[0]; | |||
} | |||
@@ -223,7 +234,7 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 | |||
memcpy(w + k, v, 2 * k); | |||
w[0] = u[0]; | |||
w[k] ^= u[0]; | |||
for (size_t i = 1 ; i < k ; ++i) { | |||
for (i = 1 ; i < k ; ++i) { | |||
w[i] = u[i] ^ PQCLEAN_HQCRMRS256_CLEAN_gf_mul(gammas_sums[i], v[i]); | |||
w[k + i] ^= w[i]; | |||
} | |||
@@ -252,14 +263,15 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 | |||
* @param[in] f_coeffs Number coefficients of f (i.e. deg(f)+1) | |||
*/ | |||
void PQCLEAN_HQCRMRS256_CLEAN_fft(uint16_t *w, const uint16_t *f, size_t f_coeffs) { | |||
uint16_t betas[PARAM_M - 1]; | |||
uint16_t betas_sums[1 << (PARAM_M - 1)]; | |||
uint16_t f0[1 << (PARAM_FFT - 1)]; | |||
uint16_t f1[1 << (PARAM_FFT - 1)]; | |||
uint16_t deltas[PARAM_M - 1]; | |||
size_t k = 1 << (PARAM_M - 1); | |||
uint16_t u[1 << (PARAM_M - 1)]; | |||
uint16_t v[1 << (PARAM_M - 1)]; | |||
uint16_t betas[PARAM_M - 1] = {0}; | |||
uint16_t betas_sums[1 << (PARAM_M - 1)] = {0}; | |||
uint16_t f0[1 << (PARAM_FFT - 1)] = {0}; | |||
uint16_t f1[1 << (PARAM_FFT - 1)] = {0}; | |||
uint16_t deltas[PARAM_M - 1] = {0}; | |||
uint16_t u[1 << (PARAM_M - 1)] = {0}; | |||
uint16_t v[1 << (PARAM_M - 1)] = {0}; | |||
size_t i, k; | |||
// Follows Gao and Mateer algorithm | |||
compute_fft_betas(betas); | |||
@@ -275,7 +287,7 @@ void PQCLEAN_HQCRMRS256_CLEAN_fft(uint16_t *w, const uint16_t *f, size_t f_coeff | |||
radix(f0, f1, f, PARAM_FFT); | |||
// Step 4: Compute deltas | |||
for (size_t i = 0 ; i < PARAM_M - 1 ; ++i) { | |||
for (i = 0 ; i < PARAM_M - 1 ; ++i) { | |||
deltas[i] = PQCLEAN_HQCRMRS256_CLEAN_gf_square(betas[i]) ^ betas[i]; | |||
} | |||
@@ -283,6 +295,7 @@ void PQCLEAN_HQCRMRS256_CLEAN_fft(uint16_t *w, const uint16_t *f, size_t f_coeff | |||
fft_rec(u, f0, (f_coeffs + 1) / 2, PARAM_M - 1, PARAM_FFT - 1, deltas); | |||
fft_rec(v, f1, f_coeffs / 2, PARAM_M - 1, PARAM_FFT - 1, deltas); | |||
k = 1 << (PARAM_M - 1); | |||
// Step 6, 7 and error polynomial computation | |||
memcpy(w + k, v, 2 * k); | |||
@@ -293,7 +306,7 @@ void PQCLEAN_HQCRMRS256_CLEAN_fft(uint16_t *w, const uint16_t *f, size_t f_coeff | |||
w[k] ^= u[0]; | |||
// Find other roots | |||
for (size_t i = 1 ; i < k ; ++i) { | |||
for (i = 1 ; i < k ; ++i) { | |||
w[i] = u[i] ^ PQCLEAN_HQCRMRS256_CLEAN_gf_mul(betas_sums[i], v[i]); | |||
w[k + i] ^= w[i]; | |||
} | |||
@@ -311,17 +324,16 @@ void PQCLEAN_HQCRMRS256_CLEAN_fft(uint16_t *w, const uint16_t *f, size_t f_coeff | |||
void PQCLEAN_HQCRMRS256_CLEAN_fft_retrieve_error_poly(uint8_t *error, const uint16_t *w) { | |||
uint16_t gammas[PARAM_M - 1] = {0}; | |||
uint16_t gammas_sums[1 << (PARAM_M - 1)] = {0}; | |||
size_t k = 1 << (PARAM_M - 1); | |||
size_t i, k, index; | |||
compute_fft_betas(gammas); | |||
compute_subset_sums(gammas_sums, gammas, PARAM_M - 1); | |||
k = 1 << (PARAM_M - 1); | |||
error[0] ^= 1 ^ ((uint16_t) - w[0] >> 15); | |||
error[0] ^= 1 ^ ((uint16_t) - w[k] >> 15); | |||
size_t index = PARAM_GF_MUL_ORDER; | |||
for (size_t i = 1 ; i < k ; ++i) { | |||
for (i = 1 ; i < k ; ++i) { | |||
index = PARAM_GF_MUL_ORDER - PQCLEAN_HQCRMRS256_CLEAN_gf_log(gammas_sums[i]); | |||
error[index] ^= 1 ^ ((uint16_t) - w[i] >> 15); | |||
@@ -11,7 +11,6 @@ consistency_checks: | |||
- reed_muller.h | |||
- reed_solomon.h | |||
- code.c | |||
- fft.c | |||
- source: | |||
scheme: hqc-rmrs-192 | |||
implementation: clean | |||
@@ -23,7 +22,6 @@ consistency_checks: | |||
- reed_muller.h | |||
- reed_solomon.h | |||
- code.c | |||
- fft.c | |||
- source: | |||
scheme: hqc-rmrs-192 | |||
implementation: avx2 | |||
@@ -56,7 +54,6 @@ consistency_checks: | |||
- reed_muller.h | |||
- reed_solomon.h | |||
- code.c | |||
- fft.c | |||
- source: | |||
scheme: hqc-rmrs-256 | |||
implementation: avx2 | |||
@@ -11,7 +11,6 @@ consistency_checks: | |||
- reed_muller.h | |||
- reed_solomon.h | |||
- code.c | |||
- fft.c | |||
- source: | |||
scheme: hqc-rmrs-192 | |||
implementation: clean | |||
@@ -45,7 +44,6 @@ consistency_checks: | |||
- reed_muller.h | |||
- reed_solomon.h | |||
- code.c | |||
- fft.c | |||
- source: | |||
scheme: hqc-rmrs-256 | |||
implementation: clean | |||
@@ -79,4 +77,3 @@ consistency_checks: | |||
- reed_muller.h | |||
- reed_solomon.h | |||
- code.c | |||
- fft.c |
@@ -11,7 +11,6 @@ consistency_checks: | |||
- reed_muller.h | |||
- reed_solomon.h | |||
- code.c | |||
- fft.c | |||
- source: | |||
scheme: hqc-rmrs-256 | |||
implementation: clean | |||
@@ -23,7 +22,6 @@ consistency_checks: | |||
- reed_muller.h | |||
- reed_solomon.h | |||
- code.c | |||
- fft.c | |||
- source: | |||
scheme: hqc-rmrs-256 | |||
implementation: avx2 | |||
@@ -11,7 +11,6 @@ consistency_checks: | |||
- reed_muller.h | |||
- reed_solomon.h | |||
- code.c | |||
- fft.c | |||
- source: | |||
scheme: hqc-rmrs-256 | |||
implementation: clean | |||
@@ -45,4 +44,3 @@ consistency_checks: | |||
- reed_muller.h | |||
- reed_solomon.h | |||
- code.c | |||
- fft.c |
@@ -11,4 +11,3 @@ consistency_checks: | |||
- reed_muller.h | |||
- reed_solomon.h | |||
- code.c | |||
- fft.c |
@@ -11,4 +11,3 @@ consistency_checks: | |||
- reed_muller.h | |||
- reed_solomon.h | |||
- code.c | |||
- fft.c |