@@ -82,7 +82,8 @@ void PQCLEAN_HQC128_AVX2_store8_arr(uint8_t *out8, size_t outlen, const uint64_t | |||
*/ | |||
void PQCLEAN_HQC128_AVX2_hqc_secret_key_to_string(uint8_t *sk, const uint8_t *sk_seed, const uint8_t *pk) { | |||
memcpy(sk, sk_seed, SEED_BYTES); | |||
memcpy(sk + SEED_BYTES, pk, PUBLIC_KEY_BYTES); | |||
sk += SEED_BYTES; | |||
memcpy(sk, pk, PUBLIC_KEY_BYTES); | |||
} | |||
/** | |||
@@ -101,11 +102,12 @@ void PQCLEAN_HQC128_AVX2_hqc_secret_key_from_string(uint64_t *x, uint64_t *y, ui | |||
uint8_t sk_seed[SEED_BYTES] = {0}; | |||
memcpy(sk_seed, sk, SEED_BYTES); | |||
seedexpander_init(&sk_seedexpander, sk_seed, sk_seed + 32, SEEDEXPANDER_MAX_LENGTH); | |||
sk += SEED_BYTES; | |||
memcpy(pk, sk, PUBLIC_KEY_BYTES); | |||
seedexpander_init(&sk_seedexpander, sk_seed, sk_seed + 32, SEEDEXPANDER_MAX_LENGTH); | |||
PQCLEAN_HQC128_AVX2_vect_set_random_fixed_weight(&sk_seedexpander, x, PARAM_OMEGA); | |||
PQCLEAN_HQC128_AVX2_vect_set_random_fixed_weight(&sk_seedexpander, y, PARAM_OMEGA); | |||
memcpy(pk, sk + SEED_BYTES, PUBLIC_KEY_BYTES); | |||
} | |||
/** | |||
@@ -138,10 +140,11 @@ void PQCLEAN_HQC128_AVX2_hqc_public_key_from_string(uint64_t *h, uint64_t *s, co | |||
uint8_t pk_seed[SEED_BYTES] = {0}; | |||
memcpy(pk_seed, pk, SEED_BYTES); | |||
pk += SEED_BYTES; | |||
PQCLEAN_HQC128_AVX2_load8_arr(s, VEC_N_SIZE_64, pk, VEC_N_SIZE_BYTES); | |||
seedexpander_init(&pk_seedexpander, pk_seed, pk_seed + 32, SEEDEXPANDER_MAX_LENGTH); | |||
PQCLEAN_HQC128_AVX2_vect_set_random(&pk_seedexpander, h); | |||
PQCLEAN_HQC128_AVX2_load8_arr(s, VEC_N_SIZE_64, pk + SEED_BYTES, VEC_N_SIZE_BYTES); | |||
} | |||
@@ -157,8 +160,10 @@ void PQCLEAN_HQC128_AVX2_hqc_public_key_from_string(uint64_t *h, uint64_t *s, co | |||
*/ | |||
void PQCLEAN_HQC128_AVX2_hqc_ciphertext_to_string(uint8_t *ct, const uint64_t *u, const uint64_t *v, const uint8_t *d) { | |||
PQCLEAN_HQC128_AVX2_store8_arr(ct, VEC_N_SIZE_BYTES, u, VEC_N_SIZE_64); | |||
PQCLEAN_HQC128_AVX2_store8_arr(ct + VEC_N_SIZE_BYTES, VEC_N_SIZE_BYTES, v, VEC_N1N2_SIZE_64); | |||
memcpy(ct + VEC_N_SIZE_BYTES + VEC_N1N2_SIZE_BYTES, d, SHA512_BYTES); | |||
ct += VEC_N_SIZE_BYTES; | |||
PQCLEAN_HQC128_AVX2_store8_arr(ct, VEC_N1N2_SIZE_BYTES, v, VEC_N1N2_SIZE_64); | |||
ct += VEC_N1N2_SIZE_BYTES; | |||
memcpy(ct, d, SHA512_BYTES); | |||
} | |||
@@ -174,6 +179,8 @@ void PQCLEAN_HQC128_AVX2_hqc_ciphertext_to_string(uint8_t *ct, const uint64_t *u | |||
*/ | |||
void PQCLEAN_HQC128_AVX2_hqc_ciphertext_from_string(uint64_t *u, uint64_t *v, uint8_t *d, const uint8_t *ct) { | |||
PQCLEAN_HQC128_AVX2_load8_arr(u, VEC_N_SIZE_64, ct, VEC_N_SIZE_BYTES); | |||
PQCLEAN_HQC128_AVX2_load8_arr(v, VEC_N1N2_SIZE_64, ct + VEC_N_SIZE_BYTES, VEC_N1N2_SIZE_BYTES); | |||
memcpy(d, ct + VEC_N_SIZE_BYTES + VEC_N1N2_SIZE_BYTES, SHA512_BYTES); | |||
ct += VEC_N_SIZE_BYTES; | |||
PQCLEAN_HQC128_AVX2_load8_arr(v, VEC_N1N2_SIZE_64, ct, VEC_N1N2_SIZE_BYTES); | |||
ct += VEC_N1N2_SIZE_BYTES; | |||
memcpy(d, ct, SHA512_BYTES); | |||
} |
@@ -28,12 +28,12 @@ static void compute_roots(uint64_t *error, const uint16_t *sigma); | |||
static void unpack_message(uint8_t *message_unpacked, const uint64_t *message) { | |||
for (size_t i = 0; i < (VEC_K_SIZE_64 - (PARAM_K % 64 != 0)); ++i) { | |||
for (size_t j = 0; j < 64; ++j) { | |||
message_unpacked[j + 64 * i] = (message[i] >> j) & 0x0000000000000001; | |||
message_unpacked[j + 64 * i] = (message[i] >> j) & 1; | |||
} | |||
} | |||
for (int8_t j = 0; j < PARAM_K % 64; ++j) { | |||
message_unpacked[j + 64 * (VEC_K_SIZE_64 - 1)] = (message[VEC_K_SIZE_64 - 1] >> j) & 0x0000000000000001; | |||
message_unpacked[j + 64 * (VEC_K_SIZE_64 - 1)] = (message[VEC_K_SIZE_64 - 1] >> j) & 1; | |||
} | |||
} | |||
@@ -1,10 +1,9 @@ | |||
#include "gf2x.h" | |||
#include "nistseedexpander.h" | |||
#include "parameters.h" | |||
#include "parsing.h" | |||
#include "randombytes.h" | |||
#include <stdint.h> | |||
#include <stdio.h> | |||
#include <string.h> | |||
/** | |||
* \file gf2x.c | |||
* \brief Implementation of multiplication of two polynomials | |||
@@ -13,7 +12,7 @@ | |||
static inline void swap(uint16_t *tab, uint16_t elt1, uint16_t elt2); | |||
static void reduce(uint64_t *o, const uint64_t *a); | |||
static void fast_convolution_mult(uint64_t *o, const uint32_t *a1, const uint64_t *a2, uint16_t weight, AES_XOF_struct *ctx); | |||
static void fast_convolution_mult(uint8_t *o, const uint32_t *a1, const uint64_t *a2, uint16_t weight, AES_XOF_struct *ctx); | |||
/** | |||
* @brief swap two elements in a table | |||
@@ -68,7 +67,7 @@ static void reduce(uint64_t *o, const uint64_t *a) { | |||
* @param[in] weight Hamming wifht of the sparse polynomial a2 | |||
* @param[in] ctx Pointer to a seed expander used to randomize the multiplication process | |||
*/ | |||
static void fast_convolution_mult(uint64_t *o, const uint32_t *a1, const uint64_t *a2, uint16_t weight, AES_XOF_struct *ctx) { | |||
static void fast_convolution_mult(uint8_t *o, const uint32_t *a1, const uint64_t *a2, uint16_t weight, AES_XOF_struct *ctx) { | |||
//static uint32_t fast_convolution_mult(const uint64_t *A, const uint32_t *vB, uint64_t *C, const uint16_t w, AES_XOF_struct *ctx) | |||
uint64_t carry; | |||
uint32_t dec, s; | |||
@@ -77,8 +76,9 @@ static void fast_convolution_mult(uint64_t *o, const uint32_t *a1, const uint64_ | |||
uint16_t permutation_table[16]; | |||
uint16_t permuted_sparse_vect[PARAM_OMEGA_E]; | |||
uint16_t permutation_sparse_vect[PARAM_OMEGA_E]; | |||
uint64_t tmp; | |||
uint64_t *pt; | |||
uint16_t *res_16; | |||
uint8_t *res; | |||
size_t i, j; | |||
for (i = 0; i < 16; i++) { | |||
@@ -120,14 +120,13 @@ static void fast_convolution_mult(uint64_t *o, const uint32_t *a1, const uint64_ | |||
for (i = 0; i < weight; i++) { | |||
dec = a1[permuted_sparse_vect[i]] & 0xf; | |||
s = a1[permuted_sparse_vect[i]] >> 4; | |||
res_16 = ((uint16_t *) o) + s; | |||
res = o + 2 * s; | |||
pt = table + (permuted_table[dec] * (VEC_N_SIZE_64 + 1)); | |||
for (j = 0; j < VEC_N_SIZE_64 + 1; j++) { | |||
*res_16++ ^= (uint16_t) pt[j]; | |||
*res_16++ ^= (uint16_t) (pt[j] >> 16); | |||
*res_16++ ^= (uint16_t) (pt[j] >> 32); | |||
*res_16++ ^= (uint16_t) (pt[j] >> 48); | |||
tmp = PQCLEAN_HQC128_CLEAN_load8(res); | |||
PQCLEAN_HQC128_CLEAN_store8(res, tmp ^ pt[j]); | |||
res += 8; | |||
} | |||
} | |||
} | |||
@@ -147,11 +146,9 @@ static void fast_convolution_mult(uint64_t *o, const uint32_t *a1, const uint64_ | |||
* @param[in] ctx Pointer to the randomness context | |||
*/ | |||
void PQCLEAN_HQC128_CLEAN_vect_mul(uint64_t *o, const uint32_t *a1, const uint64_t *a2, uint16_t weight, AES_XOF_struct *ctx) { | |||
uint64_t tmp[2 * VEC_N_SIZE_64 + 1]; | |||
for (uint32_t j = 0; j < 2 * VEC_N_SIZE_64 + 1; j++) { | |||
tmp[j] = 0; | |||
} | |||
uint64_t tmp[2 * VEC_N_SIZE_64 + 1] = {0}; | |||
fast_convolution_mult(tmp, a1, a2, weight, ctx); | |||
fast_convolution_mult((uint8_t *) tmp, a1, a2, weight, ctx); | |||
PQCLEAN_HQC128_CLEAN_load8_arr(tmp, 2 * VEC_N_SIZE_64 + 1, (uint8_t *) tmp, sizeof(tmp)); | |||
reduce(o, tmp); | |||
} |
@@ -47,6 +47,7 @@ int PQCLEAN_HQC128_CLEAN_crypto_kem_keypair(unsigned char *pk, unsigned char *sk | |||
int PQCLEAN_HQC128_CLEAN_crypto_kem_enc(unsigned char *ct, unsigned char *ss, const unsigned char *pk) { | |||
uint8_t theta[SHA512_BYTES] = {0}; | |||
uint8_t m_bytes[VEC_K_SIZE_BYTES] = {0}; | |||
uint64_t m[VEC_K_SIZE_64] = {0}; | |||
uint64_t u[VEC_N_SIZE_64] = {0}; | |||
uint64_t v[VEC_N1N2_SIZE_64] = {0}; | |||
@@ -54,19 +55,20 @@ int PQCLEAN_HQC128_CLEAN_crypto_kem_enc(unsigned char *ct, unsigned char *ss, co | |||
unsigned char mc[VEC_K_SIZE_BYTES + VEC_N_SIZE_BYTES + VEC_N1N2_SIZE_BYTES] = {0}; | |||
// Computing m | |||
PQCLEAN_HQC128_CLEAN_vect_set_random_from_randombytes(m); | |||
randombytes(m_bytes, VEC_K_SIZE_BYTES); | |||
PQCLEAN_HQC128_CLEAN_load8_arr(m, VEC_K_SIZE_64, m_bytes, VEC_K_SIZE_BYTES); | |||
// Computing theta | |||
sha3_512(theta, (uint8_t *) m, VEC_K_SIZE_BYTES); | |||
sha3_512(theta, m_bytes, VEC_K_SIZE_BYTES); | |||
// Encrypting m | |||
PQCLEAN_HQC128_CLEAN_hqc_pke_encrypt(u, v, m, theta, pk); | |||
// Computing d | |||
sha512(d, (unsigned char *) m, VEC_K_SIZE_BYTES); | |||
sha512(d, m_bytes, VEC_K_SIZE_BYTES); | |||
// Computing shared secret | |||
PQCLEAN_HQC128_CLEAN_store8_arr(mc, VEC_K_SIZE_BYTES, m, VEC_K_SIZE_64); | |||
memcpy(mc, m_bytes, VEC_K_SIZE_BYTES); | |||
PQCLEAN_HQC128_CLEAN_store8_arr(mc + VEC_K_SIZE_BYTES, VEC_N_SIZE_BYTES, u, VEC_N_SIZE_64); | |||
PQCLEAN_HQC128_CLEAN_store8_arr(mc + VEC_K_SIZE_BYTES + VEC_N_SIZE_BYTES, VEC_N1N2_SIZE_BYTES, v, VEC_N1N2_SIZE_64); | |||
sha512(ss, mc, VEC_K_SIZE_BYTES + VEC_N_SIZE_BYTES + VEC_N1N2_SIZE_BYTES); | |||
@@ -95,6 +97,7 @@ int PQCLEAN_HQC128_CLEAN_crypto_kem_dec(unsigned char *ss, const unsigned char * | |||
uint64_t v[VEC_N1N2_SIZE_64] = {0}; | |||
unsigned char d[SHA512_BYTES] = {0}; | |||
unsigned char pk[PUBLIC_KEY_BYTES] = {0}; | |||
uint8_t m_bytes[VEC_K_SIZE_BYTES] = {0}; | |||
uint64_t m[VEC_K_SIZE_64] = {0}; | |||
uint8_t theta[SHA512_BYTES] = {0}; | |||
uint64_t u2[VEC_N_SIZE_64] = {0}; | |||
@@ -110,18 +113,19 @@ int PQCLEAN_HQC128_CLEAN_crypto_kem_dec(unsigned char *ss, const unsigned char * | |||
// Decryting | |||
PQCLEAN_HQC128_CLEAN_hqc_pke_decrypt(m, u, v, sk); | |||
PQCLEAN_HQC128_CLEAN_store8_arr(m_bytes, VEC_K_SIZE_BYTES, m, VEC_K_SIZE_64); | |||
// Computing theta | |||
sha3_512(theta, (uint8_t *) m, VEC_K_SIZE_BYTES); | |||
sha3_512(theta, m_bytes, VEC_K_SIZE_BYTES); | |||
// Encrypting m' | |||
PQCLEAN_HQC128_CLEAN_hqc_pke_encrypt(u2, v2, m, theta, pk); | |||
// Computing d' | |||
sha512(d2, (unsigned char *) m, VEC_K_SIZE_BYTES); | |||
sha512(d2, m_bytes, VEC_K_SIZE_BYTES); | |||
// Computing shared secret | |||
PQCLEAN_HQC128_CLEAN_store8_arr(mc, VEC_K_SIZE_BYTES, m, VEC_K_SIZE_64); | |||
memcpy(mc, m_bytes, VEC_K_SIZE_BYTES); | |||
PQCLEAN_HQC128_CLEAN_store8_arr(mc + VEC_K_SIZE_BYTES, VEC_N_SIZE_BYTES, u, VEC_N_SIZE_64); | |||
PQCLEAN_HQC128_CLEAN_store8_arr(mc + VEC_K_SIZE_BYTES + VEC_N_SIZE_BYTES, VEC_N1N2_SIZE_BYTES, v, VEC_N1N2_SIZE_64); | |||
sha512(ss, mc, VEC_K_SIZE_BYTES + VEC_N_SIZE_BYTES + VEC_N1N2_SIZE_BYTES); | |||
@@ -82,7 +82,8 @@ void PQCLEAN_HQC128_CLEAN_store8_arr(uint8_t *out8, size_t outlen, const uint64_ | |||
*/ | |||
void PQCLEAN_HQC128_CLEAN_hqc_secret_key_to_string(uint8_t *sk, const uint8_t *sk_seed, const uint8_t *pk) { | |||
memcpy(sk, sk_seed, SEED_BYTES); | |||
memcpy(sk + SEED_BYTES, pk, PUBLIC_KEY_BYTES); | |||
sk += SEED_BYTES; | |||
memcpy(sk, pk, PUBLIC_KEY_BYTES); | |||
} | |||
/** | |||
@@ -101,11 +102,12 @@ void PQCLEAN_HQC128_CLEAN_hqc_secret_key_from_string(uint64_t *x, uint32_t *y, u | |||
uint8_t sk_seed[SEED_BYTES] = {0}; | |||
memcpy(sk_seed, sk, SEED_BYTES); | |||
seedexpander_init(&sk_seedexpander, sk_seed, sk_seed + 32, SEEDEXPANDER_MAX_LENGTH); | |||
sk += SEED_BYTES; | |||
memcpy(pk, sk, PUBLIC_KEY_BYTES); | |||
seedexpander_init(&sk_seedexpander, sk_seed, sk_seed + 32, SEEDEXPANDER_MAX_LENGTH); | |||
PQCLEAN_HQC128_CLEAN_vect_set_random_fixed_weight(&sk_seedexpander, x, PARAM_OMEGA); | |||
PQCLEAN_HQC128_CLEAN_vect_set_random_fixed_weight_by_coordinates(&sk_seedexpander, y, PARAM_OMEGA); | |||
memcpy(pk, sk + SEED_BYTES, PUBLIC_KEY_BYTES); | |||
} | |||
/** | |||
@@ -119,7 +121,7 @@ void PQCLEAN_HQC128_CLEAN_hqc_secret_key_from_string(uint64_t *x, uint32_t *y, u | |||
*/ | |||
void PQCLEAN_HQC128_CLEAN_hqc_public_key_to_string(uint8_t *pk, const uint8_t *pk_seed, const uint64_t *s) { | |||
memcpy(pk, pk_seed, SEED_BYTES); | |||
memcpy(pk + SEED_BYTES, s, VEC_N_SIZE_BYTES); | |||
PQCLEAN_HQC128_CLEAN_store8_arr(pk + SEED_BYTES, VEC_N_SIZE_BYTES, s, VEC_N_SIZE_64); | |||
} | |||
@@ -138,10 +140,11 @@ void PQCLEAN_HQC128_CLEAN_hqc_public_key_from_string(uint64_t *h, uint64_t *s, c | |||
uint8_t pk_seed[SEED_BYTES] = {0}; | |||
memcpy(pk_seed, pk, SEED_BYTES); | |||
pk += SEED_BYTES; | |||
PQCLEAN_HQC128_CLEAN_load8_arr(s, VEC_N_SIZE_64, pk, VEC_N_SIZE_BYTES); | |||
seedexpander_init(&pk_seedexpander, pk_seed, pk_seed + 32, SEEDEXPANDER_MAX_LENGTH); | |||
PQCLEAN_HQC128_CLEAN_vect_set_random(&pk_seedexpander, h); | |||
memcpy(s, pk + SEED_BYTES, VEC_N_SIZE_BYTES); | |||
} | |||
@@ -156,9 +159,11 @@ void PQCLEAN_HQC128_CLEAN_hqc_public_key_from_string(uint64_t *h, uint64_t *s, c | |||
* @param[in] d String containing the hash d | |||
*/ | |||
void PQCLEAN_HQC128_CLEAN_hqc_ciphertext_to_string(uint8_t *ct, const uint64_t *u, const uint64_t *v, const uint8_t *d) { | |||
memcpy(ct, u, VEC_N_SIZE_BYTES); | |||
memcpy(ct + VEC_N_SIZE_BYTES, v, VEC_N1N2_SIZE_BYTES); | |||
memcpy(ct + VEC_N_SIZE_BYTES + VEC_N1N2_SIZE_BYTES, d, SHA512_BYTES); | |||
PQCLEAN_HQC128_CLEAN_store8_arr(ct, VEC_N_SIZE_BYTES, u, VEC_N_SIZE_64); | |||
ct += VEC_N_SIZE_BYTES; | |||
PQCLEAN_HQC128_CLEAN_store8_arr(ct, VEC_N1N2_SIZE_BYTES, v, VEC_N1N2_SIZE_64); | |||
ct += VEC_N1N2_SIZE_BYTES; | |||
memcpy(ct, d, SHA512_BYTES); | |||
} | |||
@@ -173,7 +178,9 @@ void PQCLEAN_HQC128_CLEAN_hqc_ciphertext_to_string(uint8_t *ct, const uint64_t * | |||
* @param[in] ct String containing the ciphertext | |||
*/ | |||
void PQCLEAN_HQC128_CLEAN_hqc_ciphertext_from_string(uint64_t *u, uint64_t *v, uint8_t *d, const uint8_t *ct) { | |||
memcpy(u, ct, VEC_N_SIZE_BYTES); | |||
memcpy(v, ct + VEC_N_SIZE_BYTES, VEC_N1N2_SIZE_BYTES); | |||
memcpy(d, ct + VEC_N_SIZE_BYTES + VEC_N1N2_SIZE_BYTES, SHA512_BYTES); | |||
PQCLEAN_HQC128_CLEAN_load8_arr(u, VEC_N_SIZE_64, ct, VEC_N_SIZE_BYTES); | |||
ct += VEC_N_SIZE_BYTES; | |||
PQCLEAN_HQC128_CLEAN_load8_arr(v, VEC_N1N2_SIZE_64, ct, VEC_N1N2_SIZE_BYTES); | |||
ct += VEC_N1N2_SIZE_BYTES; | |||
memcpy(d, ct, SHA512_BYTES); | |||
} |
@@ -154,22 +154,6 @@ void PQCLEAN_HQC128_CLEAN_vect_set_random(AES_XOF_struct *ctx, uint64_t *v) { | |||
/** | |||
* @brief Generates a random vector | |||
* | |||
* This function generates a random binary vector. It uses the the randombytes function. | |||
* | |||
* @param[in] v Pointer to an array | |||
*/ | |||
void PQCLEAN_HQC128_CLEAN_vect_set_random_from_randombytes(uint64_t *v) { | |||
uint8_t rand_bytes [VEC_K_SIZE_BYTES] = {0}; | |||
randombytes(rand_bytes, VEC_K_SIZE_BYTES); | |||
PQCLEAN_HQC128_CLEAN_load8_arr(v, VEC_K_SIZE_64, rand_bytes, VEC_K_SIZE_BYTES); | |||
} | |||
/** | |||
* @brief Adds two vectors | |||
* | |||
@@ -217,12 +201,12 @@ void PQCLEAN_HQC128_CLEAN_vect_resize(uint64_t *o, uint32_t size_o, const uint64 | |||
val = 64 - (size_o % 64); | |||
} | |||
memcpy(o, v, VEC_N1N2_SIZE_BYTES); | |||
memcpy(o, v, 8 * VEC_N1N2_SIZE_64); | |||
for (int8_t i = 0; i < val; ++i) { | |||
o[VEC_N1N2_SIZE_64 - 1] &= (mask >> i); | |||
} | |||
} else { | |||
memcpy(o, v, CEIL_DIVIDE(size_v, 8)); | |||
memcpy(o, v, 8 * CEIL_DIVIDE(size_v, 64)); | |||
} | |||
} |
@@ -18,8 +18,6 @@ void PQCLEAN_HQC128_CLEAN_vect_set_random_fixed_weight(AES_XOF_struct *ctx, uint | |||
void PQCLEAN_HQC128_CLEAN_vect_set_random(AES_XOF_struct *ctx, uint64_t *v); | |||
void PQCLEAN_HQC128_CLEAN_vect_set_random_from_randombytes(uint64_t *v); | |||
void PQCLEAN_HQC128_CLEAN_vect_add(uint64_t *o, const uint64_t *v1, const uint64_t *v2, uint32_t size); | |||
@@ -82,7 +82,8 @@ void PQCLEAN_HQC192_AVX2_store8_arr(uint8_t *out8, size_t outlen, const uint64_t | |||
*/ | |||
void PQCLEAN_HQC192_AVX2_hqc_secret_key_to_string(uint8_t *sk, const uint8_t *sk_seed, const uint8_t *pk) { | |||
memcpy(sk, sk_seed, SEED_BYTES); | |||
memcpy(sk + SEED_BYTES, pk, PUBLIC_KEY_BYTES); | |||
sk += SEED_BYTES; | |||
memcpy(sk, pk, PUBLIC_KEY_BYTES); | |||
} | |||
/** | |||
@@ -101,11 +102,12 @@ void PQCLEAN_HQC192_AVX2_hqc_secret_key_from_string(uint64_t *x, uint64_t *y, ui | |||
uint8_t sk_seed[SEED_BYTES] = {0}; | |||
memcpy(sk_seed, sk, SEED_BYTES); | |||
seedexpander_init(&sk_seedexpander, sk_seed, sk_seed + 32, SEEDEXPANDER_MAX_LENGTH); | |||
sk += SEED_BYTES; | |||
memcpy(pk, sk, PUBLIC_KEY_BYTES); | |||
seedexpander_init(&sk_seedexpander, sk_seed, sk_seed + 32, SEEDEXPANDER_MAX_LENGTH); | |||
PQCLEAN_HQC192_AVX2_vect_set_random_fixed_weight(&sk_seedexpander, x, PARAM_OMEGA); | |||
PQCLEAN_HQC192_AVX2_vect_set_random_fixed_weight(&sk_seedexpander, y, PARAM_OMEGA); | |||
memcpy(pk, sk + SEED_BYTES, PUBLIC_KEY_BYTES); | |||
} | |||
/** | |||
@@ -138,10 +140,11 @@ void PQCLEAN_HQC192_AVX2_hqc_public_key_from_string(uint64_t *h, uint64_t *s, co | |||
uint8_t pk_seed[SEED_BYTES] = {0}; | |||
memcpy(pk_seed, pk, SEED_BYTES); | |||
pk += SEED_BYTES; | |||
PQCLEAN_HQC192_AVX2_load8_arr(s, VEC_N_SIZE_64, pk, VEC_N_SIZE_BYTES); | |||
seedexpander_init(&pk_seedexpander, pk_seed, pk_seed + 32, SEEDEXPANDER_MAX_LENGTH); | |||
PQCLEAN_HQC192_AVX2_vect_set_random(&pk_seedexpander, h); | |||
PQCLEAN_HQC192_AVX2_load8_arr(s, VEC_N_SIZE_64, pk + SEED_BYTES, VEC_N_SIZE_BYTES); | |||
} | |||
@@ -157,8 +160,10 @@ void PQCLEAN_HQC192_AVX2_hqc_public_key_from_string(uint64_t *h, uint64_t *s, co | |||
*/ | |||
void PQCLEAN_HQC192_AVX2_hqc_ciphertext_to_string(uint8_t *ct, const uint64_t *u, const uint64_t *v, const uint8_t *d) { | |||
PQCLEAN_HQC192_AVX2_store8_arr(ct, VEC_N_SIZE_BYTES, u, VEC_N_SIZE_64); | |||
PQCLEAN_HQC192_AVX2_store8_arr(ct + VEC_N_SIZE_BYTES, VEC_N_SIZE_BYTES, v, VEC_N1N2_SIZE_64); | |||
memcpy(ct + VEC_N_SIZE_BYTES + VEC_N1N2_SIZE_BYTES, d, SHA512_BYTES); | |||
ct += VEC_N_SIZE_BYTES; | |||
PQCLEAN_HQC192_AVX2_store8_arr(ct, VEC_N1N2_SIZE_BYTES, v, VEC_N1N2_SIZE_64); | |||
ct += VEC_N1N2_SIZE_BYTES; | |||
memcpy(ct, d, SHA512_BYTES); | |||
} | |||
@@ -174,6 +179,8 @@ void PQCLEAN_HQC192_AVX2_hqc_ciphertext_to_string(uint8_t *ct, const uint64_t *u | |||
*/ | |||
void PQCLEAN_HQC192_AVX2_hqc_ciphertext_from_string(uint64_t *u, uint64_t *v, uint8_t *d, const uint8_t *ct) { | |||
PQCLEAN_HQC192_AVX2_load8_arr(u, VEC_N_SIZE_64, ct, VEC_N_SIZE_BYTES); | |||
PQCLEAN_HQC192_AVX2_load8_arr(v, VEC_N1N2_SIZE_64, ct + VEC_N_SIZE_BYTES, VEC_N1N2_SIZE_BYTES); | |||
memcpy(d, ct + VEC_N_SIZE_BYTES + VEC_N1N2_SIZE_BYTES, SHA512_BYTES); | |||
ct += VEC_N_SIZE_BYTES; | |||
PQCLEAN_HQC192_AVX2_load8_arr(v, VEC_N1N2_SIZE_64, ct, VEC_N1N2_SIZE_BYTES); | |||
ct += VEC_N1N2_SIZE_BYTES; | |||
memcpy(d, ct, SHA512_BYTES); | |||
} |
@@ -1,10 +1,9 @@ | |||
#include "gf2x.h" | |||
#include "nistseedexpander.h" | |||
#include "parameters.h" | |||
#include "parsing.h" | |||
#include "randombytes.h" | |||
#include <stdint.h> | |||
#include <stdio.h> | |||
#include <string.h> | |||
/** | |||
* \file gf2x.c | |||
* \brief Implementation of multiplication of two polynomials | |||
@@ -13,7 +12,7 @@ | |||
static inline void swap(uint16_t *tab, uint16_t elt1, uint16_t elt2); | |||
static void reduce(uint64_t *o, const uint64_t *a); | |||
static void fast_convolution_mult(uint64_t *o, const uint32_t *a1, const uint64_t *a2, uint16_t weight, AES_XOF_struct *ctx); | |||
static void fast_convolution_mult(uint8_t *o, const uint32_t *a1, const uint64_t *a2, uint16_t weight, AES_XOF_struct *ctx); | |||
/** | |||
* @brief swap two elements in a table | |||
@@ -68,7 +67,7 @@ static void reduce(uint64_t *o, const uint64_t *a) { | |||
* @param[in] weight Hamming wifht of the sparse polynomial a2 | |||
* @param[in] ctx Pointer to a seed expander used to randomize the multiplication process | |||
*/ | |||
static void fast_convolution_mult(uint64_t *o, const uint32_t *a1, const uint64_t *a2, uint16_t weight, AES_XOF_struct *ctx) { | |||
static void fast_convolution_mult(uint8_t *o, const uint32_t *a1, const uint64_t *a2, uint16_t weight, AES_XOF_struct *ctx) { | |||
//static uint32_t fast_convolution_mult(const uint64_t *A, const uint32_t *vB, uint64_t *C, const uint16_t w, AES_XOF_struct *ctx) | |||
uint64_t carry; | |||
uint32_t dec, s; | |||
@@ -77,8 +76,9 @@ static void fast_convolution_mult(uint64_t *o, const uint32_t *a1, const uint64_ | |||
uint16_t permutation_table[16]; | |||
uint16_t permuted_sparse_vect[PARAM_OMEGA_E]; | |||
uint16_t permutation_sparse_vect[PARAM_OMEGA_E]; | |||
uint64_t tmp; | |||
uint64_t *pt; | |||
uint16_t *res_16; | |||
uint8_t *res; | |||
size_t i, j; | |||
for (i = 0; i < 16; i++) { | |||
@@ -120,14 +120,13 @@ static void fast_convolution_mult(uint64_t *o, const uint32_t *a1, const uint64_ | |||
for (i = 0; i < weight; i++) { | |||
dec = a1[permuted_sparse_vect[i]] & 0xf; | |||
s = a1[permuted_sparse_vect[i]] >> 4; | |||
res_16 = ((uint16_t *) o) + s; | |||
res = o + 2 * s; | |||
pt = table + (permuted_table[dec] * (VEC_N_SIZE_64 + 1)); | |||
for (j = 0; j < VEC_N_SIZE_64 + 1; j++) { | |||
*res_16++ ^= (uint16_t) pt[j]; | |||
*res_16++ ^= (uint16_t) (pt[j] >> 16); | |||
*res_16++ ^= (uint16_t) (pt[j] >> 32); | |||
*res_16++ ^= (uint16_t) (pt[j] >> 48); | |||
tmp = PQCLEAN_HQC192_CLEAN_load8(res); | |||
PQCLEAN_HQC192_CLEAN_store8(res, tmp ^ pt[j]); | |||
res += 8; | |||
} | |||
} | |||
} | |||
@@ -147,11 +146,9 @@ static void fast_convolution_mult(uint64_t *o, const uint32_t *a1, const uint64_ | |||
* @param[in] ctx Pointer to the randomness context | |||
*/ | |||
void PQCLEAN_HQC192_CLEAN_vect_mul(uint64_t *o, const uint32_t *a1, const uint64_t *a2, uint16_t weight, AES_XOF_struct *ctx) { | |||
uint64_t tmp[2 * VEC_N_SIZE_64 + 1]; | |||
for (uint32_t j = 0; j < 2 * VEC_N_SIZE_64 + 1; j++) { | |||
tmp[j] = 0; | |||
} | |||
uint64_t tmp[2 * VEC_N_SIZE_64 + 1] = {0}; | |||
fast_convolution_mult(tmp, a1, a2, weight, ctx); | |||
fast_convolution_mult((uint8_t *) tmp, a1, a2, weight, ctx); | |||
PQCLEAN_HQC192_CLEAN_load8_arr(tmp, 2 * VEC_N_SIZE_64 + 1, (uint8_t *) tmp, sizeof(tmp)); | |||
reduce(o, tmp); | |||
} |
@@ -47,6 +47,7 @@ int PQCLEAN_HQC192_CLEAN_crypto_kem_keypair(unsigned char *pk, unsigned char *sk | |||
int PQCLEAN_HQC192_CLEAN_crypto_kem_enc(unsigned char *ct, unsigned char *ss, const unsigned char *pk) { | |||
uint8_t theta[SHA512_BYTES] = {0}; | |||
uint8_t m_bytes[VEC_K_SIZE_BYTES] = {0}; | |||
uint64_t m[VEC_K_SIZE_64] = {0}; | |||
uint64_t u[VEC_N_SIZE_64] = {0}; | |||
uint64_t v[VEC_N1N2_SIZE_64] = {0}; | |||
@@ -54,19 +55,20 @@ int PQCLEAN_HQC192_CLEAN_crypto_kem_enc(unsigned char *ct, unsigned char *ss, co | |||
unsigned char mc[VEC_K_SIZE_BYTES + VEC_N_SIZE_BYTES + VEC_N1N2_SIZE_BYTES] = {0}; | |||
// Computing m | |||
PQCLEAN_HQC192_CLEAN_vect_set_random_from_randombytes(m); | |||
randombytes(m_bytes, VEC_K_SIZE_BYTES); | |||
PQCLEAN_HQC192_CLEAN_load8_arr(m, VEC_K_SIZE_64, m_bytes, VEC_K_SIZE_BYTES); | |||
// Computing theta | |||
sha3_512(theta, (uint8_t *) m, VEC_K_SIZE_BYTES); | |||
sha3_512(theta, m_bytes, VEC_K_SIZE_BYTES); | |||
// Encrypting m | |||
PQCLEAN_HQC192_CLEAN_hqc_pke_encrypt(u, v, m, theta, pk); | |||
// Computing d | |||
sha512(d, (unsigned char *) m, VEC_K_SIZE_BYTES); | |||
sha512(d, m_bytes, VEC_K_SIZE_BYTES); | |||
// Computing shared secret | |||
PQCLEAN_HQC192_CLEAN_store8_arr(mc, VEC_K_SIZE_BYTES, m, VEC_K_SIZE_64); | |||
memcpy(mc, m_bytes, VEC_K_SIZE_BYTES); | |||
PQCLEAN_HQC192_CLEAN_store8_arr(mc + VEC_K_SIZE_BYTES, VEC_N_SIZE_BYTES, u, VEC_N_SIZE_64); | |||
PQCLEAN_HQC192_CLEAN_store8_arr(mc + VEC_K_SIZE_BYTES + VEC_N_SIZE_BYTES, VEC_N1N2_SIZE_BYTES, v, VEC_N1N2_SIZE_64); | |||
sha512(ss, mc, VEC_K_SIZE_BYTES + VEC_N_SIZE_BYTES + VEC_N1N2_SIZE_BYTES); | |||
@@ -95,6 +97,7 @@ int PQCLEAN_HQC192_CLEAN_crypto_kem_dec(unsigned char *ss, const unsigned char * | |||
uint64_t v[VEC_N1N2_SIZE_64] = {0}; | |||
unsigned char d[SHA512_BYTES] = {0}; | |||
unsigned char pk[PUBLIC_KEY_BYTES] = {0}; | |||
uint8_t m_bytes[VEC_K_SIZE_BYTES] = {0}; | |||
uint64_t m[VEC_K_SIZE_64] = {0}; | |||
uint8_t theta[SHA512_BYTES] = {0}; | |||
uint64_t u2[VEC_N_SIZE_64] = {0}; | |||
@@ -110,18 +113,19 @@ int PQCLEAN_HQC192_CLEAN_crypto_kem_dec(unsigned char *ss, const unsigned char * | |||
// Decryting | |||
PQCLEAN_HQC192_CLEAN_hqc_pke_decrypt(m, u, v, sk); | |||
PQCLEAN_HQC192_CLEAN_store8_arr(m_bytes, VEC_K_SIZE_BYTES, m, VEC_K_SIZE_64); | |||
// Computing theta | |||
sha3_512(theta, (uint8_t *) m, VEC_K_SIZE_BYTES); | |||
sha3_512(theta, m_bytes, VEC_K_SIZE_BYTES); | |||
// Encrypting m' | |||
PQCLEAN_HQC192_CLEAN_hqc_pke_encrypt(u2, v2, m, theta, pk); | |||
// Computing d' | |||
sha512(d2, (unsigned char *) m, VEC_K_SIZE_BYTES); | |||
sha512(d2, m_bytes, VEC_K_SIZE_BYTES); | |||
// Computing shared secret | |||
PQCLEAN_HQC192_CLEAN_store8_arr(mc, VEC_K_SIZE_BYTES, m, VEC_K_SIZE_64); | |||
memcpy(mc, m_bytes, VEC_K_SIZE_BYTES); | |||
PQCLEAN_HQC192_CLEAN_store8_arr(mc + VEC_K_SIZE_BYTES, VEC_N_SIZE_BYTES, u, VEC_N_SIZE_64); | |||
PQCLEAN_HQC192_CLEAN_store8_arr(mc + VEC_K_SIZE_BYTES + VEC_N_SIZE_BYTES, VEC_N1N2_SIZE_BYTES, v, VEC_N1N2_SIZE_64); | |||
sha512(ss, mc, VEC_K_SIZE_BYTES + VEC_N_SIZE_BYTES + VEC_N1N2_SIZE_BYTES); | |||
@@ -82,7 +82,8 @@ void PQCLEAN_HQC192_CLEAN_store8_arr(uint8_t *out8, size_t outlen, const uint64_ | |||
*/ | |||
void PQCLEAN_HQC192_CLEAN_hqc_secret_key_to_string(uint8_t *sk, const uint8_t *sk_seed, const uint8_t *pk) { | |||
memcpy(sk, sk_seed, SEED_BYTES); | |||
memcpy(sk + SEED_BYTES, pk, PUBLIC_KEY_BYTES); | |||
sk += SEED_BYTES; | |||
memcpy(sk, pk, PUBLIC_KEY_BYTES); | |||
} | |||
/** | |||
@@ -101,11 +102,12 @@ void PQCLEAN_HQC192_CLEAN_hqc_secret_key_from_string(uint64_t *x, uint32_t *y, u | |||
uint8_t sk_seed[SEED_BYTES] = {0}; | |||
memcpy(sk_seed, sk, SEED_BYTES); | |||
seedexpander_init(&sk_seedexpander, sk_seed, sk_seed + 32, SEEDEXPANDER_MAX_LENGTH); | |||
sk += SEED_BYTES; | |||
memcpy(pk, sk, PUBLIC_KEY_BYTES); | |||
seedexpander_init(&sk_seedexpander, sk_seed, sk_seed + 32, SEEDEXPANDER_MAX_LENGTH); | |||
PQCLEAN_HQC192_CLEAN_vect_set_random_fixed_weight(&sk_seedexpander, x, PARAM_OMEGA); | |||
PQCLEAN_HQC192_CLEAN_vect_set_random_fixed_weight_by_coordinates(&sk_seedexpander, y, PARAM_OMEGA); | |||
memcpy(pk, sk + SEED_BYTES, PUBLIC_KEY_BYTES); | |||
} | |||
/** | |||
@@ -119,7 +121,7 @@ void PQCLEAN_HQC192_CLEAN_hqc_secret_key_from_string(uint64_t *x, uint32_t *y, u | |||
*/ | |||
void PQCLEAN_HQC192_CLEAN_hqc_public_key_to_string(uint8_t *pk, const uint8_t *pk_seed, const uint64_t *s) { | |||
memcpy(pk, pk_seed, SEED_BYTES); | |||
memcpy(pk + SEED_BYTES, s, VEC_N_SIZE_BYTES); | |||
PQCLEAN_HQC192_CLEAN_store8_arr(pk + SEED_BYTES, VEC_N_SIZE_BYTES, s, VEC_N_SIZE_64); | |||
} | |||
@@ -138,10 +140,11 @@ void PQCLEAN_HQC192_CLEAN_hqc_public_key_from_string(uint64_t *h, uint64_t *s, c | |||
uint8_t pk_seed[SEED_BYTES] = {0}; | |||
memcpy(pk_seed, pk, SEED_BYTES); | |||
pk += SEED_BYTES; | |||
PQCLEAN_HQC192_CLEAN_load8_arr(s, VEC_N_SIZE_64, pk, VEC_N_SIZE_BYTES); | |||
seedexpander_init(&pk_seedexpander, pk_seed, pk_seed + 32, SEEDEXPANDER_MAX_LENGTH); | |||
PQCLEAN_HQC192_CLEAN_vect_set_random(&pk_seedexpander, h); | |||
memcpy(s, pk + SEED_BYTES, VEC_N_SIZE_BYTES); | |||
} | |||
@@ -156,9 +159,11 @@ void PQCLEAN_HQC192_CLEAN_hqc_public_key_from_string(uint64_t *h, uint64_t *s, c | |||
* @param[in] d String containing the hash d | |||
*/ | |||
void PQCLEAN_HQC192_CLEAN_hqc_ciphertext_to_string(uint8_t *ct, const uint64_t *u, const uint64_t *v, const uint8_t *d) { | |||
memcpy(ct, u, VEC_N_SIZE_BYTES); | |||
memcpy(ct + VEC_N_SIZE_BYTES, v, VEC_N1N2_SIZE_BYTES); | |||
memcpy(ct + VEC_N_SIZE_BYTES + VEC_N1N2_SIZE_BYTES, d, SHA512_BYTES); | |||
PQCLEAN_HQC192_CLEAN_store8_arr(ct, VEC_N_SIZE_BYTES, u, VEC_N_SIZE_64); | |||
ct += VEC_N_SIZE_BYTES; | |||
PQCLEAN_HQC192_CLEAN_store8_arr(ct, VEC_N1N2_SIZE_BYTES, v, VEC_N1N2_SIZE_64); | |||
ct += VEC_N1N2_SIZE_BYTES; | |||
memcpy(ct, d, SHA512_BYTES); | |||
} | |||
@@ -173,7 +178,9 @@ void PQCLEAN_HQC192_CLEAN_hqc_ciphertext_to_string(uint8_t *ct, const uint64_t * | |||
* @param[in] ct String containing the ciphertext | |||
*/ | |||
void PQCLEAN_HQC192_CLEAN_hqc_ciphertext_from_string(uint64_t *u, uint64_t *v, uint8_t *d, const uint8_t *ct) { | |||
memcpy(u, ct, VEC_N_SIZE_BYTES); | |||
memcpy(v, ct + VEC_N_SIZE_BYTES, VEC_N1N2_SIZE_BYTES); | |||
memcpy(d, ct + VEC_N_SIZE_BYTES + VEC_N1N2_SIZE_BYTES, SHA512_BYTES); | |||
PQCLEAN_HQC192_CLEAN_load8_arr(u, VEC_N_SIZE_64, ct, VEC_N_SIZE_BYTES); | |||
ct += VEC_N_SIZE_BYTES; | |||
PQCLEAN_HQC192_CLEAN_load8_arr(v, VEC_N1N2_SIZE_64, ct, VEC_N1N2_SIZE_BYTES); | |||
ct += VEC_N1N2_SIZE_BYTES; | |||
memcpy(d, ct, SHA512_BYTES); | |||
} |
@@ -154,22 +154,6 @@ void PQCLEAN_HQC192_CLEAN_vect_set_random(AES_XOF_struct *ctx, uint64_t *v) { | |||
/** | |||
* @brief Generates a random vector | |||
* | |||
* This function generates a random binary vector. It uses the the randombytes function. | |||
* | |||
* @param[in] v Pointer to an array | |||
*/ | |||
void PQCLEAN_HQC192_CLEAN_vect_set_random_from_randombytes(uint64_t *v) { | |||
uint8_t rand_bytes [VEC_K_SIZE_BYTES] = {0}; | |||
randombytes(rand_bytes, VEC_K_SIZE_BYTES); | |||
memcpy(v, rand_bytes, VEC_K_SIZE_BYTES); | |||
} | |||
/** | |||
* @brief Adds two vectors | |||
* | |||
@@ -185,6 +169,7 @@ void PQCLEAN_HQC192_CLEAN_vect_add(uint64_t *o, const uint64_t *v1, const uint64 | |||
} | |||
/** | |||
* @brief Compares two vectors | |||
* | |||
@@ -216,12 +201,12 @@ void PQCLEAN_HQC192_CLEAN_vect_resize(uint64_t *o, uint32_t size_o, const uint64 | |||
val = 64 - (size_o % 64); | |||
} | |||
memcpy(o, v, VEC_N1N2_SIZE_BYTES); | |||
memcpy(o, v, 8 * VEC_N1N2_SIZE_64); | |||
for (int8_t i = 0; i < val; ++i) { | |||
o[VEC_N1N2_SIZE_64 - 1] &= (mask >> i); | |||
} | |||
} else { | |||
memcpy(o, v, CEIL_DIVIDE(size_v, 8)); | |||
memcpy(o, v, 8 * CEIL_DIVIDE(size_v, 64)); | |||
} | |||
} |
@@ -18,8 +18,6 @@ void PQCLEAN_HQC192_CLEAN_vect_set_random_fixed_weight(AES_XOF_struct *ctx, uint | |||
void PQCLEAN_HQC192_CLEAN_vect_set_random(AES_XOF_struct *ctx, uint64_t *v); | |||
void PQCLEAN_HQC192_CLEAN_vect_set_random_from_randombytes(uint64_t *v); | |||
void PQCLEAN_HQC192_CLEAN_vect_add(uint64_t *o, const uint64_t *v1, const uint64_t *v2, uint32_t size); | |||
@@ -82,7 +82,8 @@ void PQCLEAN_HQC256_AVX2_store8_arr(uint8_t *out8, size_t outlen, const uint64_t | |||
*/ | |||
void PQCLEAN_HQC256_AVX2_hqc_secret_key_to_string(uint8_t *sk, const uint8_t *sk_seed, const uint8_t *pk) { | |||
memcpy(sk, sk_seed, SEED_BYTES); | |||
memcpy(sk + SEED_BYTES, pk, PUBLIC_KEY_BYTES); | |||
sk += SEED_BYTES; | |||
memcpy(sk, pk, PUBLIC_KEY_BYTES); | |||
} | |||
/** | |||
@@ -101,11 +102,12 @@ void PQCLEAN_HQC256_AVX2_hqc_secret_key_from_string(uint64_t *x, uint64_t *y, ui | |||
uint8_t sk_seed[SEED_BYTES] = {0}; | |||
memcpy(sk_seed, sk, SEED_BYTES); | |||
seedexpander_init(&sk_seedexpander, sk_seed, sk_seed + 32, SEEDEXPANDER_MAX_LENGTH); | |||
sk += SEED_BYTES; | |||
memcpy(pk, sk, PUBLIC_KEY_BYTES); | |||
seedexpander_init(&sk_seedexpander, sk_seed, sk_seed + 32, SEEDEXPANDER_MAX_LENGTH); | |||
PQCLEAN_HQC256_AVX2_vect_set_random_fixed_weight(&sk_seedexpander, x, PARAM_OMEGA); | |||
PQCLEAN_HQC256_AVX2_vect_set_random_fixed_weight(&sk_seedexpander, y, PARAM_OMEGA); | |||
memcpy(pk, sk + SEED_BYTES, PUBLIC_KEY_BYTES); | |||
} | |||
/** | |||
@@ -138,10 +140,11 @@ void PQCLEAN_HQC256_AVX2_hqc_public_key_from_string(uint64_t *h, uint64_t *s, co | |||
uint8_t pk_seed[SEED_BYTES] = {0}; | |||
memcpy(pk_seed, pk, SEED_BYTES); | |||
pk += SEED_BYTES; | |||
PQCLEAN_HQC256_AVX2_load8_arr(s, VEC_N_SIZE_64, pk, VEC_N_SIZE_BYTES); | |||
seedexpander_init(&pk_seedexpander, pk_seed, pk_seed + 32, SEEDEXPANDER_MAX_LENGTH); | |||
PQCLEAN_HQC256_AVX2_vect_set_random(&pk_seedexpander, h); | |||
PQCLEAN_HQC256_AVX2_load8_arr(s, VEC_N_SIZE_64, pk + SEED_BYTES, VEC_N_SIZE_BYTES); | |||
} | |||
@@ -157,8 +160,10 @@ void PQCLEAN_HQC256_AVX2_hqc_public_key_from_string(uint64_t *h, uint64_t *s, co | |||
*/ | |||
void PQCLEAN_HQC256_AVX2_hqc_ciphertext_to_string(uint8_t *ct, const uint64_t *u, const uint64_t *v, const uint8_t *d) { | |||
PQCLEAN_HQC256_AVX2_store8_arr(ct, VEC_N_SIZE_BYTES, u, VEC_N_SIZE_64); | |||
PQCLEAN_HQC256_AVX2_store8_arr(ct + VEC_N_SIZE_BYTES, VEC_N_SIZE_BYTES, v, VEC_N1N2_SIZE_64); | |||
memcpy(ct + VEC_N_SIZE_BYTES + VEC_N1N2_SIZE_BYTES, d, SHA512_BYTES); | |||
ct += VEC_N_SIZE_BYTES; | |||
PQCLEAN_HQC256_AVX2_store8_arr(ct, VEC_N1N2_SIZE_BYTES, v, VEC_N1N2_SIZE_64); | |||
ct += VEC_N1N2_SIZE_BYTES; | |||
memcpy(ct, d, SHA512_BYTES); | |||
} | |||
@@ -174,6 +179,8 @@ void PQCLEAN_HQC256_AVX2_hqc_ciphertext_to_string(uint8_t *ct, const uint64_t *u | |||
*/ | |||
void PQCLEAN_HQC256_AVX2_hqc_ciphertext_from_string(uint64_t *u, uint64_t *v, uint8_t *d, const uint8_t *ct) { | |||
PQCLEAN_HQC256_AVX2_load8_arr(u, VEC_N_SIZE_64, ct, VEC_N_SIZE_BYTES); | |||
PQCLEAN_HQC256_AVX2_load8_arr(v, VEC_N1N2_SIZE_64, ct + VEC_N_SIZE_BYTES, VEC_N1N2_SIZE_BYTES); | |||
memcpy(d, ct + VEC_N_SIZE_BYTES + VEC_N1N2_SIZE_BYTES, SHA512_BYTES); | |||
ct += VEC_N_SIZE_BYTES; | |||
PQCLEAN_HQC256_AVX2_load8_arr(v, VEC_N1N2_SIZE_64, ct, VEC_N1N2_SIZE_BYTES); | |||
ct += VEC_N1N2_SIZE_BYTES; | |||
memcpy(d, ct, SHA512_BYTES); | |||
} |
@@ -1,10 +1,9 @@ | |||
#include "gf2x.h" | |||
#include "nistseedexpander.h" | |||
#include "parameters.h" | |||
#include "parsing.h" | |||
#include "randombytes.h" | |||
#include <stdint.h> | |||
#include <stdio.h> | |||
#include <string.h> | |||
/** | |||
* \file gf2x.c | |||
* \brief Implementation of multiplication of two polynomials | |||
@@ -13,7 +12,7 @@ | |||
static inline void swap(uint16_t *tab, uint16_t elt1, uint16_t elt2); | |||
static void reduce(uint64_t *o, const uint64_t *a); | |||
static void fast_convolution_mult(uint64_t *o, const uint32_t *a1, const uint64_t *a2, uint16_t weight, AES_XOF_struct *ctx); | |||
static void fast_convolution_mult(uint8_t *o, const uint32_t *a1, const uint64_t *a2, uint16_t weight, AES_XOF_struct *ctx); | |||
/** | |||
* @brief swap two elements in a table | |||
@@ -68,7 +67,7 @@ static void reduce(uint64_t *o, const uint64_t *a) { | |||
* @param[in] weight Hamming wifht of the sparse polynomial a2 | |||
* @param[in] ctx Pointer to a seed expander used to randomize the multiplication process | |||
*/ | |||
static void fast_convolution_mult(uint64_t *o, const uint32_t *a1, const uint64_t *a2, uint16_t weight, AES_XOF_struct *ctx) { | |||
static void fast_convolution_mult(uint8_t *o, const uint32_t *a1, const uint64_t *a2, uint16_t weight, AES_XOF_struct *ctx) { | |||
//static uint32_t fast_convolution_mult(const uint64_t *A, const uint32_t *vB, uint64_t *C, const uint16_t w, AES_XOF_struct *ctx) | |||
uint64_t carry; | |||
uint32_t dec, s; | |||
@@ -77,8 +76,9 @@ static void fast_convolution_mult(uint64_t *o, const uint32_t *a1, const uint64_ | |||
uint16_t permutation_table[16]; | |||
uint16_t permuted_sparse_vect[PARAM_OMEGA_E]; | |||
uint16_t permutation_sparse_vect[PARAM_OMEGA_E]; | |||
uint64_t tmp; | |||
uint64_t *pt; | |||
uint16_t *res_16; | |||
uint8_t *res; | |||
size_t i, j; | |||
for (i = 0; i < 16; i++) { | |||
@@ -120,14 +120,13 @@ static void fast_convolution_mult(uint64_t *o, const uint32_t *a1, const uint64_ | |||
for (i = 0; i < weight; i++) { | |||
dec = a1[permuted_sparse_vect[i]] & 0xf; | |||
s = a1[permuted_sparse_vect[i]] >> 4; | |||
res_16 = ((uint16_t *) o) + s; | |||
res = o + 2 * s; | |||
pt = table + (permuted_table[dec] * (VEC_N_SIZE_64 + 1)); | |||
for (j = 0; j < VEC_N_SIZE_64 + 1; j++) { | |||
*res_16++ ^= (uint16_t) pt[j]; | |||
*res_16++ ^= (uint16_t) (pt[j] >> 16); | |||
*res_16++ ^= (uint16_t) (pt[j] >> 32); | |||
*res_16++ ^= (uint16_t) (pt[j] >> 48); | |||
tmp = PQCLEAN_HQC256_CLEAN_load8(res); | |||
PQCLEAN_HQC256_CLEAN_store8(res, tmp ^ pt[j]); | |||
res += 8; | |||
} | |||
} | |||
} | |||
@@ -147,11 +146,9 @@ static void fast_convolution_mult(uint64_t *o, const uint32_t *a1, const uint64_ | |||
* @param[in] ctx Pointer to the randomness context | |||
*/ | |||
void PQCLEAN_HQC256_CLEAN_vect_mul(uint64_t *o, const uint32_t *a1, const uint64_t *a2, uint16_t weight, AES_XOF_struct *ctx) { | |||
uint64_t tmp[2 * VEC_N_SIZE_64 + 1]; | |||
for (uint32_t j = 0; j < 2 * VEC_N_SIZE_64 + 1; j++) { | |||
tmp[j] = 0; | |||
} | |||
uint64_t tmp[2 * VEC_N_SIZE_64 + 1] = {0}; | |||
fast_convolution_mult(tmp, a1, a2, weight, ctx); | |||
fast_convolution_mult((uint8_t *) tmp, a1, a2, weight, ctx); | |||
PQCLEAN_HQC256_CLEAN_load8_arr(tmp, 2 * VEC_N_SIZE_64 + 1, (uint8_t *) tmp, sizeof(tmp)); | |||
reduce(o, tmp); | |||
} |
@@ -47,6 +47,7 @@ int PQCLEAN_HQC256_CLEAN_crypto_kem_keypair(unsigned char *pk, unsigned char *sk | |||
int PQCLEAN_HQC256_CLEAN_crypto_kem_enc(unsigned char *ct, unsigned char *ss, const unsigned char *pk) { | |||
uint8_t theta[SHA512_BYTES] = {0}; | |||
uint8_t m_bytes[VEC_K_SIZE_BYTES] = {0}; | |||
uint64_t m[VEC_K_SIZE_64] = {0}; | |||
uint64_t u[VEC_N_SIZE_64] = {0}; | |||
uint64_t v[VEC_N1N2_SIZE_64] = {0}; | |||
@@ -54,19 +55,20 @@ int PQCLEAN_HQC256_CLEAN_crypto_kem_enc(unsigned char *ct, unsigned char *ss, co | |||
unsigned char mc[VEC_K_SIZE_BYTES + VEC_N_SIZE_BYTES + VEC_N1N2_SIZE_BYTES] = {0}; | |||
// Computing m | |||
PQCLEAN_HQC256_CLEAN_vect_set_random_from_randombytes(m); | |||
randombytes(m_bytes, VEC_K_SIZE_BYTES); | |||
PQCLEAN_HQC256_CLEAN_load8_arr(m, VEC_K_SIZE_64, m_bytes, VEC_K_SIZE_BYTES); | |||
// Computing theta | |||
sha3_512(theta, (uint8_t *) m, VEC_K_SIZE_BYTES); | |||
sha3_512(theta, m_bytes, VEC_K_SIZE_BYTES); | |||
// Encrypting m | |||
PQCLEAN_HQC256_CLEAN_hqc_pke_encrypt(u, v, m, theta, pk); | |||
// Computing d | |||
sha512(d, (unsigned char *) m, VEC_K_SIZE_BYTES); | |||
sha512(d, m_bytes, VEC_K_SIZE_BYTES); | |||
// Computing shared secret | |||
PQCLEAN_HQC256_CLEAN_store8_arr(mc, VEC_K_SIZE_BYTES, m, VEC_K_SIZE_64); | |||
memcpy(mc, m_bytes, VEC_K_SIZE_BYTES); | |||
PQCLEAN_HQC256_CLEAN_store8_arr(mc + VEC_K_SIZE_BYTES, VEC_N_SIZE_BYTES, u, VEC_N_SIZE_64); | |||
PQCLEAN_HQC256_CLEAN_store8_arr(mc + VEC_K_SIZE_BYTES + VEC_N_SIZE_BYTES, VEC_N1N2_SIZE_BYTES, v, VEC_N1N2_SIZE_64); | |||
sha512(ss, mc, VEC_K_SIZE_BYTES + VEC_N_SIZE_BYTES + VEC_N1N2_SIZE_BYTES); | |||
@@ -95,6 +97,7 @@ int PQCLEAN_HQC256_CLEAN_crypto_kem_dec(unsigned char *ss, const unsigned char * | |||
uint64_t v[VEC_N1N2_SIZE_64] = {0}; | |||
unsigned char d[SHA512_BYTES] = {0}; | |||
unsigned char pk[PUBLIC_KEY_BYTES] = {0}; | |||
uint8_t m_bytes[VEC_K_SIZE_BYTES] = {0}; | |||
uint64_t m[VEC_K_SIZE_64] = {0}; | |||
uint8_t theta[SHA512_BYTES] = {0}; | |||
uint64_t u2[VEC_N_SIZE_64] = {0}; | |||
@@ -110,18 +113,19 @@ int PQCLEAN_HQC256_CLEAN_crypto_kem_dec(unsigned char *ss, const unsigned char * | |||
// Decryting | |||
PQCLEAN_HQC256_CLEAN_hqc_pke_decrypt(m, u, v, sk); | |||
PQCLEAN_HQC256_CLEAN_store8_arr(m_bytes, VEC_K_SIZE_BYTES, m, VEC_K_SIZE_64); | |||
// Computing theta | |||
sha3_512(theta, (uint8_t *) m, VEC_K_SIZE_BYTES); | |||
sha3_512(theta, m_bytes, VEC_K_SIZE_BYTES); | |||
// Encrypting m' | |||
PQCLEAN_HQC256_CLEAN_hqc_pke_encrypt(u2, v2, m, theta, pk); | |||
// Computing d' | |||
sha512(d2, (unsigned char *) m, VEC_K_SIZE_BYTES); | |||
sha512(d2, m_bytes, VEC_K_SIZE_BYTES); | |||
// Computing shared secret | |||
PQCLEAN_HQC256_CLEAN_store8_arr(mc, VEC_K_SIZE_BYTES, m, VEC_K_SIZE_64); | |||
memcpy(mc, m_bytes, VEC_K_SIZE_BYTES); | |||
PQCLEAN_HQC256_CLEAN_store8_arr(mc + VEC_K_SIZE_BYTES, VEC_N_SIZE_BYTES, u, VEC_N_SIZE_64); | |||
PQCLEAN_HQC256_CLEAN_store8_arr(mc + VEC_K_SIZE_BYTES + VEC_N_SIZE_BYTES, VEC_N1N2_SIZE_BYTES, v, VEC_N1N2_SIZE_64); | |||
sha512(ss, mc, VEC_K_SIZE_BYTES + VEC_N_SIZE_BYTES + VEC_N1N2_SIZE_BYTES); | |||
@@ -82,7 +82,8 @@ void PQCLEAN_HQC256_CLEAN_store8_arr(uint8_t *out8, size_t outlen, const uint64_ | |||
*/ | |||
void PQCLEAN_HQC256_CLEAN_hqc_secret_key_to_string(uint8_t *sk, const uint8_t *sk_seed, const uint8_t *pk) { | |||
memcpy(sk, sk_seed, SEED_BYTES); | |||
memcpy(sk + SEED_BYTES, pk, PUBLIC_KEY_BYTES); | |||
sk += SEED_BYTES; | |||
memcpy(sk, pk, PUBLIC_KEY_BYTES); | |||
} | |||
/** | |||
@@ -101,11 +102,12 @@ void PQCLEAN_HQC256_CLEAN_hqc_secret_key_from_string(uint64_t *x, uint32_t *y, u | |||
uint8_t sk_seed[SEED_BYTES] = {0}; | |||
memcpy(sk_seed, sk, SEED_BYTES); | |||
seedexpander_init(&sk_seedexpander, sk_seed, sk_seed + 32, SEEDEXPANDER_MAX_LENGTH); | |||
sk += SEED_BYTES; | |||
memcpy(pk, sk, PUBLIC_KEY_BYTES); | |||
seedexpander_init(&sk_seedexpander, sk_seed, sk_seed + 32, SEEDEXPANDER_MAX_LENGTH); | |||
PQCLEAN_HQC256_CLEAN_vect_set_random_fixed_weight(&sk_seedexpander, x, PARAM_OMEGA); | |||
PQCLEAN_HQC256_CLEAN_vect_set_random_fixed_weight_by_coordinates(&sk_seedexpander, y, PARAM_OMEGA); | |||
memcpy(pk, sk + SEED_BYTES, PUBLIC_KEY_BYTES); | |||
} | |||
/** | |||
@@ -119,7 +121,7 @@ void PQCLEAN_HQC256_CLEAN_hqc_secret_key_from_string(uint64_t *x, uint32_t *y, u | |||
*/ | |||
void PQCLEAN_HQC256_CLEAN_hqc_public_key_to_string(uint8_t *pk, const uint8_t *pk_seed, const uint64_t *s) { | |||
memcpy(pk, pk_seed, SEED_BYTES); | |||
memcpy(pk + SEED_BYTES, s, VEC_N_SIZE_BYTES); | |||
PQCLEAN_HQC256_CLEAN_store8_arr(pk + SEED_BYTES, VEC_N_SIZE_BYTES, s, VEC_N_SIZE_64); | |||
} | |||
@@ -138,10 +140,11 @@ void PQCLEAN_HQC256_CLEAN_hqc_public_key_from_string(uint64_t *h, uint64_t *s, c | |||
uint8_t pk_seed[SEED_BYTES] = {0}; | |||
memcpy(pk_seed, pk, SEED_BYTES); | |||
pk += SEED_BYTES; | |||
PQCLEAN_HQC256_CLEAN_load8_arr(s, VEC_N_SIZE_64, pk, VEC_N_SIZE_BYTES); | |||
seedexpander_init(&pk_seedexpander, pk_seed, pk_seed + 32, SEEDEXPANDER_MAX_LENGTH); | |||
PQCLEAN_HQC256_CLEAN_vect_set_random(&pk_seedexpander, h); | |||
memcpy(s, pk + SEED_BYTES, VEC_N_SIZE_BYTES); | |||
} | |||
@@ -156,9 +159,11 @@ void PQCLEAN_HQC256_CLEAN_hqc_public_key_from_string(uint64_t *h, uint64_t *s, c | |||
* @param[in] d String containing the hash d | |||
*/ | |||
void PQCLEAN_HQC256_CLEAN_hqc_ciphertext_to_string(uint8_t *ct, const uint64_t *u, const uint64_t *v, const uint8_t *d) { | |||
memcpy(ct, u, VEC_N_SIZE_BYTES); | |||
memcpy(ct + VEC_N_SIZE_BYTES, v, VEC_N1N2_SIZE_BYTES); | |||
memcpy(ct + VEC_N_SIZE_BYTES + VEC_N1N2_SIZE_BYTES, d, SHA512_BYTES); | |||
PQCLEAN_HQC256_CLEAN_store8_arr(ct, VEC_N_SIZE_BYTES, u, VEC_N_SIZE_64); | |||
ct += VEC_N_SIZE_BYTES; | |||
PQCLEAN_HQC256_CLEAN_store8_arr(ct, VEC_N1N2_SIZE_BYTES, v, VEC_N1N2_SIZE_64); | |||
ct += VEC_N1N2_SIZE_BYTES; | |||
memcpy(ct, d, SHA512_BYTES); | |||
} | |||
@@ -173,7 +178,9 @@ void PQCLEAN_HQC256_CLEAN_hqc_ciphertext_to_string(uint8_t *ct, const uint64_t * | |||
* @param[in] ct String containing the ciphertext | |||
*/ | |||
void PQCLEAN_HQC256_CLEAN_hqc_ciphertext_from_string(uint64_t *u, uint64_t *v, uint8_t *d, const uint8_t *ct) { | |||
memcpy(u, ct, VEC_N_SIZE_BYTES); | |||
memcpy(v, ct + VEC_N_SIZE_BYTES, VEC_N1N2_SIZE_BYTES); | |||
memcpy(d, ct + VEC_N_SIZE_BYTES + VEC_N1N2_SIZE_BYTES, SHA512_BYTES); | |||
PQCLEAN_HQC256_CLEAN_load8_arr(u, VEC_N_SIZE_64, ct, VEC_N_SIZE_BYTES); | |||
ct += VEC_N_SIZE_BYTES; | |||
PQCLEAN_HQC256_CLEAN_load8_arr(v, VEC_N1N2_SIZE_64, ct, VEC_N1N2_SIZE_BYTES); | |||
ct += VEC_N1N2_SIZE_BYTES; | |||
memcpy(d, ct, SHA512_BYTES); | |||
} |
@@ -154,22 +154,6 @@ void PQCLEAN_HQC256_CLEAN_vect_set_random(AES_XOF_struct *ctx, uint64_t *v) { | |||
/** | |||
* @brief Generates a random vector | |||
* | |||
* This function generates a random binary vector. It uses the the randombytes function. | |||
* | |||
* @param[in] v Pointer to an array | |||
*/ | |||
void PQCLEAN_HQC256_CLEAN_vect_set_random_from_randombytes(uint64_t *v) { | |||
uint8_t rand_bytes [VEC_K_SIZE_BYTES] = {0}; | |||
randombytes(rand_bytes, VEC_K_SIZE_BYTES); | |||
memcpy(v, rand_bytes, VEC_K_SIZE_BYTES); | |||
} | |||
/** | |||
* @brief Adds two vectors | |||
* | |||
@@ -185,6 +169,7 @@ void PQCLEAN_HQC256_CLEAN_vect_add(uint64_t *o, const uint64_t *v1, const uint64 | |||
} | |||
/** | |||
* @brief Compares two vectors | |||
* | |||
@@ -216,12 +201,12 @@ void PQCLEAN_HQC256_CLEAN_vect_resize(uint64_t *o, uint32_t size_o, const uint64 | |||
val = 64 - (size_o % 64); | |||
} | |||
memcpy(o, v, VEC_N1N2_SIZE_BYTES); | |||
memcpy(o, v, 8 * VEC_N1N2_SIZE_64); | |||
for (int8_t i = 0; i < val; ++i) { | |||
o[VEC_N1N2_SIZE_64 - 1] &= (mask >> i); | |||
} | |||
} else { | |||
memcpy(o, v, CEIL_DIVIDE(size_v, 8)); | |||
memcpy(o, v, 8 * CEIL_DIVIDE(size_v, 64)); | |||
} | |||
} |
@@ -18,8 +18,6 @@ void PQCLEAN_HQC256_CLEAN_vect_set_random_fixed_weight(AES_XOF_struct *ctx, uint | |||
void PQCLEAN_HQC256_CLEAN_vect_set_random(AES_XOF_struct *ctx, uint64_t *v); | |||
void PQCLEAN_HQC256_CLEAN_vect_set_random_from_randombytes(uint64_t *v); | |||
void PQCLEAN_HQC256_CLEAN_vect_add(uint64_t *o, const uint64_t *v1, const uint64_t *v2, uint32_t size); | |||
@@ -82,7 +82,8 @@ void PQCLEAN_HQCRMRS128_AVX2_store8_arr(uint8_t *out8, size_t outlen, const uint | |||
*/ | |||
void PQCLEAN_HQCRMRS128_AVX2_hqc_secret_key_to_string(uint8_t *sk, const uint8_t *sk_seed, const uint8_t *pk) { | |||
memcpy(sk, sk_seed, SEED_BYTES); | |||
memcpy(sk + SEED_BYTES, pk, PUBLIC_KEY_BYTES); | |||
sk += SEED_BYTES; | |||
memcpy(sk, pk, PUBLIC_KEY_BYTES); | |||
} | |||
/** | |||
@@ -101,11 +102,12 @@ void PQCLEAN_HQCRMRS128_AVX2_hqc_secret_key_from_string(uint64_t *x, uint64_t *y | |||
uint8_t sk_seed[SEED_BYTES] = {0}; | |||
memcpy(sk_seed, sk, SEED_BYTES); | |||
seedexpander_init(&sk_seedexpander, sk_seed, sk_seed + 32, SEEDEXPANDER_MAX_LENGTH); | |||
sk += SEED_BYTES; | |||
memcpy(pk, sk, PUBLIC_KEY_BYTES); | |||
seedexpander_init(&sk_seedexpander, sk_seed, sk_seed + 32, SEEDEXPANDER_MAX_LENGTH); | |||
PQCLEAN_HQCRMRS128_AVX2_vect_set_random_fixed_weight(&sk_seedexpander, x, PARAM_OMEGA); | |||
PQCLEAN_HQCRMRS128_AVX2_vect_set_random_fixed_weight(&sk_seedexpander, y, PARAM_OMEGA); | |||
memcpy(pk, sk + SEED_BYTES, PUBLIC_KEY_BYTES); | |||
} | |||
/** | |||
@@ -138,10 +140,11 @@ void PQCLEAN_HQCRMRS128_AVX2_hqc_public_key_from_string(uint64_t *h, uint64_t *s | |||
uint8_t pk_seed[SEED_BYTES] = {0}; | |||
memcpy(pk_seed, pk, SEED_BYTES); | |||
pk += SEED_BYTES; | |||
PQCLEAN_HQCRMRS128_AVX2_load8_arr(s, VEC_N_SIZE_64, pk, VEC_N_SIZE_BYTES); | |||
seedexpander_init(&pk_seedexpander, pk_seed, pk_seed + 32, SEEDEXPANDER_MAX_LENGTH); | |||
PQCLEAN_HQCRMRS128_AVX2_vect_set_random(&pk_seedexpander, h); | |||
PQCLEAN_HQCRMRS128_AVX2_load8_arr(s, VEC_N_SIZE_64, pk + SEED_BYTES, VEC_N_SIZE_BYTES); | |||
} | |||
@@ -157,8 +160,10 @@ void PQCLEAN_HQCRMRS128_AVX2_hqc_public_key_from_string(uint64_t *h, uint64_t *s | |||
*/ | |||
void PQCLEAN_HQCRMRS128_AVX2_hqc_ciphertext_to_string(uint8_t *ct, const uint64_t *u, const uint64_t *v, const uint8_t *d) { | |||
PQCLEAN_HQCRMRS128_AVX2_store8_arr(ct, VEC_N_SIZE_BYTES, u, VEC_N_SIZE_64); | |||
PQCLEAN_HQCRMRS128_AVX2_store8_arr(ct + VEC_N_SIZE_BYTES, VEC_N_SIZE_BYTES, v, VEC_N1N2_SIZE_64); | |||
memcpy(ct + VEC_N_SIZE_BYTES + VEC_N1N2_SIZE_BYTES, d, SHA512_BYTES); | |||
ct += VEC_N_SIZE_BYTES; | |||
PQCLEAN_HQCRMRS128_AVX2_store8_arr(ct, VEC_N1N2_SIZE_BYTES, v, VEC_N1N2_SIZE_64); | |||
ct += VEC_N1N2_SIZE_BYTES; | |||
memcpy(ct, d, SHA512_BYTES); | |||
} | |||
@@ -174,6 +179,8 @@ void PQCLEAN_HQCRMRS128_AVX2_hqc_ciphertext_to_string(uint8_t *ct, const uint64_ | |||
*/ | |||
void PQCLEAN_HQCRMRS128_AVX2_hqc_ciphertext_from_string(uint64_t *u, uint64_t *v, uint8_t *d, const uint8_t *ct) { | |||
PQCLEAN_HQCRMRS128_AVX2_load8_arr(u, VEC_N_SIZE_64, ct, VEC_N_SIZE_BYTES); | |||
PQCLEAN_HQCRMRS128_AVX2_load8_arr(v, VEC_N1N2_SIZE_64, ct + VEC_N_SIZE_BYTES, VEC_N1N2_SIZE_BYTES); | |||
memcpy(d, ct + VEC_N_SIZE_BYTES + VEC_N1N2_SIZE_BYTES, SHA512_BYTES); | |||
ct += VEC_N_SIZE_BYTES; | |||
PQCLEAN_HQCRMRS128_AVX2_load8_arr(v, VEC_N1N2_SIZE_64, ct, VEC_N1N2_SIZE_BYTES); | |||
ct += VEC_N1N2_SIZE_BYTES; | |||
memcpy(d, ct, SHA512_BYTES); | |||
} |
@@ -21,8 +21,8 @@ | |||
* @param[out] em Pointer to an array that is the tensor code word | |||
* @param[in] m Pointer to an array that is the message | |||
*/ | |||
void PQCLEAN_HQCRMRS128_CLEAN_code_encode(uint64_t *em, const uint64_t *m) { | |||
uint64_t tmp[VEC_N1_SIZE_64] = {0}; | |||
void PQCLEAN_HQCRMRS128_CLEAN_code_encode(uint8_t *em, const uint8_t *m) { | |||
uint8_t tmp[VEC_N1_SIZE_BYTES] = {0}; | |||
PQCLEAN_HQCRMRS128_CLEAN_reed_solomon_encode(tmp, m); | |||
PQCLEAN_HQCRMRS128_CLEAN_reed_muller_encode(em, tmp); | |||
@@ -37,11 +37,10 @@ void PQCLEAN_HQCRMRS128_CLEAN_code_encode(uint64_t *em, const uint64_t *m) { | |||
* @param[out] m Pointer to an array that is the message | |||
* @param[in] em Pointer to an array that is the code word | |||
*/ | |||
void PQCLEAN_HQCRMRS128_CLEAN_code_decode(uint64_t *m, const uint64_t *em) { | |||
uint64_t tmp[VEC_N1_SIZE_64] = {0}; | |||
void PQCLEAN_HQCRMRS128_CLEAN_code_decode(uint8_t *m, const uint8_t *em) { | |||
uint8_t tmp[VEC_N1_SIZE_BYTES] = {0}; | |||
PQCLEAN_HQCRMRS128_CLEAN_reed_muller_decode(tmp, em); | |||
PQCLEAN_HQCRMRS128_CLEAN_reed_solomon_decode(m, tmp); | |||
} |
@@ -12,9 +12,9 @@ | |||
#include <stddef.h> | |||
#include <stdint.h> | |||
void PQCLEAN_HQCRMRS128_CLEAN_code_encode(uint64_t *em, const uint64_t *message); | |||
void PQCLEAN_HQCRMRS128_CLEAN_code_encode(uint8_t *em, const uint8_t *message); | |||
void PQCLEAN_HQCRMRS128_CLEAN_code_decode(uint64_t *m, const uint64_t *em); | |||
void PQCLEAN_HQCRMRS128_CLEAN_code_decode(uint8_t *m, const uint8_t *em); | |||
#endif |
@@ -1,10 +1,9 @@ | |||
#include "gf2x.h" | |||
#include "nistseedexpander.h" | |||
#include "parameters.h" | |||
#include "parsing.h" | |||
#include "randombytes.h" | |||
#include <stdint.h> | |||
#include <stdio.h> | |||
#include <string.h> | |||
/** | |||
* \file gf2x.c | |||
* \brief Implementation of multiplication of two polynomials | |||
@@ -13,7 +12,7 @@ | |||
static inline void swap(uint16_t *tab, uint16_t elt1, uint16_t elt2); | |||
static void reduce(uint64_t *o, const uint64_t *a); | |||
static void fast_convolution_mult(uint64_t *o, const uint32_t *a1, const uint64_t *a2, uint16_t weight, AES_XOF_struct *ctx); | |||
static void fast_convolution_mult(uint8_t *o, const uint32_t *a1, const uint64_t *a2, uint16_t weight, AES_XOF_struct *ctx); | |||
/** | |||
* @brief swap two elements in a table | |||
@@ -68,7 +67,7 @@ static void reduce(uint64_t *o, const uint64_t *a) { | |||
* @param[in] weight Hamming wifht of the sparse polynomial a2 | |||
* @param[in] ctx Pointer to a seed expander used to randomize the multiplication process | |||
*/ | |||
static void fast_convolution_mult(uint64_t *o, const uint32_t *a1, const uint64_t *a2, uint16_t weight, AES_XOF_struct *ctx) { | |||
static void fast_convolution_mult(uint8_t *o, const uint32_t *a1, const uint64_t *a2, uint16_t weight, AES_XOF_struct *ctx) { | |||
//static uint32_t fast_convolution_mult(const uint64_t *A, const uint32_t *vB, uint64_t *C, const uint16_t w, AES_XOF_struct *ctx) | |||
uint64_t carry; | |||
uint32_t dec, s; | |||
@@ -77,8 +76,9 @@ static void fast_convolution_mult(uint64_t *o, const uint32_t *a1, const uint64_ | |||
uint16_t permutation_table[16]; | |||
uint16_t permuted_sparse_vect[PARAM_OMEGA_E]; | |||
uint16_t permutation_sparse_vect[PARAM_OMEGA_E]; | |||
uint64_t tmp; | |||
uint64_t *pt; | |||
uint16_t *res_16; | |||
uint8_t *res; | |||
size_t i, j; | |||
for (i = 0; i < 16; i++) { | |||
@@ -120,14 +120,13 @@ static void fast_convolution_mult(uint64_t *o, const uint32_t *a1, const uint64_ | |||
for (i = 0; i < weight; i++) { | |||
dec = a1[permuted_sparse_vect[i]] & 0xf; | |||
s = a1[permuted_sparse_vect[i]] >> 4; | |||
res_16 = ((uint16_t *) o) + s; | |||
res = o + 2 * s; | |||
pt = table + (permuted_table[dec] * (VEC_N_SIZE_64 + 1)); | |||
for (j = 0; j < VEC_N_SIZE_64 + 1; j++) { | |||
*res_16++ ^= (uint16_t) pt[j]; | |||
*res_16++ ^= (uint16_t) (pt[j] >> 16); | |||
*res_16++ ^= (uint16_t) (pt[j] >> 32); | |||
*res_16++ ^= (uint16_t) (pt[j] >> 48); | |||
tmp = PQCLEAN_HQCRMRS128_CLEAN_load8(res); | |||
PQCLEAN_HQCRMRS128_CLEAN_store8(res, tmp ^ pt[j]); | |||
res += 8; | |||
} | |||
} | |||
} | |||
@@ -147,11 +146,9 @@ static void fast_convolution_mult(uint64_t *o, const uint32_t *a1, const uint64_ | |||
* @param[in] ctx Pointer to the randomness context | |||
*/ | |||
void PQCLEAN_HQCRMRS128_CLEAN_vect_mul(uint64_t *o, const uint32_t *a1, const uint64_t *a2, uint16_t weight, AES_XOF_struct *ctx) { | |||
uint64_t tmp[2 * VEC_N_SIZE_64 + 1]; | |||
for (uint32_t j = 0; j < 2 * VEC_N_SIZE_64 + 1; j++) { | |||
tmp[j] = 0; | |||
} | |||
uint64_t tmp[2 * VEC_N_SIZE_64 + 1] = {0}; | |||
fast_convolution_mult(tmp, a1, a2, weight, ctx); | |||
fast_convolution_mult((uint8_t *) tmp, a1, a2, weight, ctx); | |||
PQCLEAN_HQCRMRS128_CLEAN_load8_arr(tmp, 2 * VEC_N_SIZE_64 + 1, (uint8_t *) tmp, sizeof(tmp)); | |||
reduce(o, tmp); | |||
} |
@@ -70,7 +70,7 @@ void PQCLEAN_HQCRMRS128_CLEAN_hqc_pke_keygen(unsigned char *pk, unsigned char *s | |||
* @param[in] theta Seed used to derive randomness required for encryption | |||
* @param[in] pk String containing the public key | |||
*/ | |||
void PQCLEAN_HQCRMRS128_CLEAN_hqc_pke_encrypt(uint64_t *u, uint64_t *v, uint64_t *m, unsigned char *theta, const unsigned char *pk) { | |||
void PQCLEAN_HQCRMRS128_CLEAN_hqc_pke_encrypt(uint64_t *u, uint64_t *v, uint8_t *m, unsigned char *theta, const unsigned char *pk) { | |||
AES_XOF_struct seedexpander; | |||
uint64_t h[VEC_N_SIZE_64] = {0}; | |||
uint64_t s[VEC_N_SIZE_64] = {0}; | |||
@@ -96,7 +96,8 @@ void PQCLEAN_HQCRMRS128_CLEAN_hqc_pke_encrypt(uint64_t *u, uint64_t *v, uint64_t | |||
PQCLEAN_HQCRMRS128_CLEAN_vect_add(u, r1, u, VEC_N_SIZE_64); | |||
// Compute v = m.G by encoding the message | |||
PQCLEAN_HQCRMRS128_CLEAN_code_encode(v, m); | |||
PQCLEAN_HQCRMRS128_CLEAN_code_encode((uint8_t *)v, m); | |||
PQCLEAN_HQCRMRS128_CLEAN_load8_arr(v, VEC_N1N2_SIZE_64, (uint8_t *)v, VEC_N1N2_SIZE_BYTES); | |||
PQCLEAN_HQCRMRS128_CLEAN_vect_resize(tmp1, PARAM_N, v, PARAM_N1N2); | |||
// Compute v = m.G + s.r2 + e | |||
@@ -117,17 +118,16 @@ void PQCLEAN_HQCRMRS128_CLEAN_hqc_pke_encrypt(uint64_t *u, uint64_t *v, uint64_t | |||
* @param[in] v Vector v (second part of the ciphertext) | |||
* @param[in] sk String containing the secret key | |||
*/ | |||
void PQCLEAN_HQCRMRS128_CLEAN_hqc_pke_decrypt(uint64_t *m, const uint64_t *u, const uint64_t *v, const unsigned char *sk) { | |||
uint64_t x[VEC_N_SIZE_64] = {0}; | |||
uint32_t y[PARAM_OMEGA] = {0}; | |||
void PQCLEAN_HQCRMRS128_CLEAN_hqc_pke_decrypt(uint8_t *m, const uint64_t *u, const uint64_t *v, const unsigned char *sk) { | |||
uint8_t pk[PUBLIC_KEY_BYTES] = {0}; | |||
uint64_t tmp1[VEC_N_SIZE_64] = {0}; | |||
uint64_t tmp2[VEC_N_SIZE_64] = {0}; | |||
uint32_t y[PARAM_OMEGA] = {0}; | |||
AES_XOF_struct perm_seedexpander; | |||
uint8_t perm_seed[SEED_BYTES] = {0}; | |||
// Retrieve x, y, pk from secret key | |||
PQCLEAN_HQCRMRS128_CLEAN_hqc_secret_key_from_string(x, y, pk, sk); | |||
PQCLEAN_HQCRMRS128_CLEAN_hqc_secret_key_from_string(tmp1, y, pk, sk); | |||
randombytes(perm_seed, SEED_BYTES); | |||
seedexpander_init(&perm_seedexpander, perm_seed, perm_seed + 32, SEEDEXPANDER_MAX_LENGTH); | |||
@@ -139,5 +139,6 @@ void PQCLEAN_HQCRMRS128_CLEAN_hqc_pke_decrypt(uint64_t *m, const uint64_t *u, co | |||
// Compute m by decoding v - u.y | |||
PQCLEAN_HQCRMRS128_CLEAN_code_decode(m, tmp2); | |||
PQCLEAN_HQCRMRS128_CLEAN_store8_arr((uint8_t *)tmp1, VEC_N_SIZE_BYTES, tmp2, VEC_N_SIZE_64); | |||
PQCLEAN_HQCRMRS128_CLEAN_code_decode(m, (uint8_t *)tmp1); | |||
} |
@@ -13,9 +13,9 @@ | |||
void PQCLEAN_HQCRMRS128_CLEAN_hqc_pke_keygen(unsigned char *pk, unsigned char *sk); | |||
void PQCLEAN_HQCRMRS128_CLEAN_hqc_pke_encrypt(uint64_t *u, uint64_t *v, uint64_t *m, unsigned char *theta, const unsigned char *pk); | |||
void PQCLEAN_HQCRMRS128_CLEAN_hqc_pke_encrypt(uint64_t *u, uint64_t *v, uint8_t *m, unsigned char *theta, const unsigned char *pk); | |||
void PQCLEAN_HQCRMRS128_CLEAN_hqc_pke_decrypt(uint64_t *m, const uint64_t *u, const uint64_t *v, const unsigned char *sk); | |||
void PQCLEAN_HQCRMRS128_CLEAN_hqc_pke_decrypt(uint8_t *m, const uint64_t *u, const uint64_t *v, const unsigned char *sk); | |||
#endif |
@@ -47,26 +47,26 @@ int PQCLEAN_HQCRMRS128_CLEAN_crypto_kem_keypair(unsigned char *pk, unsigned char | |||
int PQCLEAN_HQCRMRS128_CLEAN_crypto_kem_enc(unsigned char *ct, unsigned char *ss, const unsigned char *pk) { | |||
uint8_t theta[SHA512_BYTES] = {0}; | |||
uint64_t m[VEC_K_SIZE_64] = {0}; | |||
uint8_t m[VEC_K_SIZE_BYTES] = {0}; | |||
uint64_t u[VEC_N_SIZE_64] = {0}; | |||
uint64_t v[VEC_N1N2_SIZE_64] = {0}; | |||
unsigned char d[SHA512_BYTES] = {0}; | |||
unsigned char mc[VEC_K_SIZE_BYTES + VEC_N_SIZE_BYTES + VEC_N1N2_SIZE_BYTES] = {0}; | |||
// Computing m | |||
PQCLEAN_HQCRMRS128_CLEAN_vect_set_random_from_randombytes(m); | |||
randombytes(m, VEC_K_SIZE_BYTES); | |||
// Computing theta | |||
sha3_512(theta, (uint8_t *) m, VEC_K_SIZE_BYTES); | |||
sha3_512(theta, m, VEC_K_SIZE_BYTES); | |||
// Encrypting m | |||
PQCLEAN_HQCRMRS128_CLEAN_hqc_pke_encrypt(u, v, m, theta, pk); | |||
// Computing d | |||
sha512(d, (unsigned char *) m, VEC_K_SIZE_BYTES); | |||
sha512(d, m, VEC_K_SIZE_BYTES); | |||
// Computing shared secret | |||
PQCLEAN_HQCRMRS128_CLEAN_store8_arr(mc, VEC_K_SIZE_BYTES, m, VEC_K_SIZE_64); | |||
memcpy(mc, m, VEC_K_SIZE_BYTES); | |||
PQCLEAN_HQCRMRS128_CLEAN_store8_arr(mc + VEC_K_SIZE_BYTES, VEC_N_SIZE_BYTES, u, VEC_N_SIZE_64); | |||
PQCLEAN_HQCRMRS128_CLEAN_store8_arr(mc + VEC_K_SIZE_BYTES + VEC_N_SIZE_BYTES, VEC_N1N2_SIZE_BYTES, v, VEC_N1N2_SIZE_64); | |||
sha512(ss, mc, VEC_K_SIZE_BYTES + VEC_N_SIZE_BYTES + VEC_N1N2_SIZE_BYTES); | |||
@@ -95,7 +95,7 @@ int PQCLEAN_HQCRMRS128_CLEAN_crypto_kem_dec(unsigned char *ss, const unsigned ch | |||
uint64_t v[VEC_N1N2_SIZE_64] = {0}; | |||
unsigned char d[SHA512_BYTES] = {0}; | |||
unsigned char pk[PUBLIC_KEY_BYTES] = {0}; | |||
uint64_t m[VEC_K_SIZE_64] = {0}; | |||
uint8_t m[VEC_K_SIZE_BYTES] = {0}; | |||
uint8_t theta[SHA512_BYTES] = {0}; | |||
uint64_t u2[VEC_N_SIZE_64] = {0}; | |||
uint64_t v2[VEC_N1N2_SIZE_64] = {0}; | |||
@@ -112,16 +112,16 @@ int PQCLEAN_HQCRMRS128_CLEAN_crypto_kem_dec(unsigned char *ss, const unsigned ch | |||
PQCLEAN_HQCRMRS128_CLEAN_hqc_pke_decrypt(m, u, v, sk); | |||
// Computing theta | |||
sha3_512(theta, (uint8_t *) m, VEC_K_SIZE_BYTES); | |||
sha3_512(theta, m, VEC_K_SIZE_BYTES); | |||
// Encrypting m' | |||
PQCLEAN_HQCRMRS128_CLEAN_hqc_pke_encrypt(u2, v2, m, theta, pk); | |||
// Computing d' | |||
sha512(d2, (unsigned char *) m, VEC_K_SIZE_BYTES); | |||
sha512(d2, m, VEC_K_SIZE_BYTES); | |||
// Computing shared secret | |||
PQCLEAN_HQCRMRS128_CLEAN_store8_arr(mc, VEC_K_SIZE_BYTES, m, VEC_K_SIZE_64); | |||
memcpy(mc, m, VEC_K_SIZE_BYTES); | |||
PQCLEAN_HQCRMRS128_CLEAN_store8_arr(mc + VEC_K_SIZE_BYTES, VEC_N_SIZE_BYTES, u, VEC_N_SIZE_64); | |||
PQCLEAN_HQCRMRS128_CLEAN_store8_arr(mc + VEC_K_SIZE_BYTES + VEC_N_SIZE_BYTES, VEC_N1N2_SIZE_BYTES, v, VEC_N1N2_SIZE_64); | |||
sha512(ss, mc, VEC_K_SIZE_BYTES + VEC_N_SIZE_BYTES + VEC_N1N2_SIZE_BYTES); | |||
@@ -82,7 +82,8 @@ void PQCLEAN_HQCRMRS128_CLEAN_store8_arr(uint8_t *out8, size_t outlen, const uin | |||
*/ | |||
void PQCLEAN_HQCRMRS128_CLEAN_hqc_secret_key_to_string(uint8_t *sk, const uint8_t *sk_seed, const uint8_t *pk) { | |||
memcpy(sk, sk_seed, SEED_BYTES); | |||
memcpy(sk + SEED_BYTES, pk, PUBLIC_KEY_BYTES); | |||
sk += SEED_BYTES; | |||
memcpy(sk, pk, PUBLIC_KEY_BYTES); | |||
} | |||
/** | |||
@@ -101,11 +102,12 @@ void PQCLEAN_HQCRMRS128_CLEAN_hqc_secret_key_from_string(uint64_t *x, uint32_t * | |||
uint8_t sk_seed[SEED_BYTES] = {0}; | |||
memcpy(sk_seed, sk, SEED_BYTES); | |||
seedexpander_init(&sk_seedexpander, sk_seed, sk_seed + 32, SEEDEXPANDER_MAX_LENGTH); | |||
sk += SEED_BYTES; | |||
memcpy(pk, sk, PUBLIC_KEY_BYTES); | |||
seedexpander_init(&sk_seedexpander, sk_seed, sk_seed + 32, SEEDEXPANDER_MAX_LENGTH); | |||
PQCLEAN_HQCRMRS128_CLEAN_vect_set_random_fixed_weight(&sk_seedexpander, x, PARAM_OMEGA); | |||
PQCLEAN_HQCRMRS128_CLEAN_vect_set_random_fixed_weight_by_coordinates(&sk_seedexpander, y, PARAM_OMEGA); | |||
memcpy(pk, sk + SEED_BYTES, PUBLIC_KEY_BYTES); | |||
} | |||
/** | |||
@@ -119,7 +121,7 @@ void PQCLEAN_HQCRMRS128_CLEAN_hqc_secret_key_from_string(uint64_t *x, uint32_t * | |||
*/ | |||
void PQCLEAN_HQCRMRS128_CLEAN_hqc_public_key_to_string(uint8_t *pk, const uint8_t *pk_seed, const uint64_t *s) { | |||
memcpy(pk, pk_seed, SEED_BYTES); | |||
memcpy(pk + SEED_BYTES, s, VEC_N_SIZE_BYTES); | |||
PQCLEAN_HQCRMRS128_CLEAN_store8_arr(pk + SEED_BYTES, VEC_N_SIZE_BYTES, s, VEC_N_SIZE_64); | |||
} | |||
@@ -138,10 +140,11 @@ void PQCLEAN_HQCRMRS128_CLEAN_hqc_public_key_from_string(uint64_t *h, uint64_t * | |||
uint8_t pk_seed[SEED_BYTES] = {0}; | |||
memcpy(pk_seed, pk, SEED_BYTES); | |||
pk += SEED_BYTES; | |||
PQCLEAN_HQCRMRS128_CLEAN_load8_arr(s, VEC_N_SIZE_64, pk, VEC_N_SIZE_BYTES); | |||
seedexpander_init(&pk_seedexpander, pk_seed, pk_seed + 32, SEEDEXPANDER_MAX_LENGTH); | |||
PQCLEAN_HQCRMRS128_CLEAN_vect_set_random(&pk_seedexpander, h); | |||
memcpy(s, pk + SEED_BYTES, VEC_N_SIZE_BYTES); | |||
} | |||
@@ -156,9 +159,11 @@ void PQCLEAN_HQCRMRS128_CLEAN_hqc_public_key_from_string(uint64_t *h, uint64_t * | |||
* @param[in] d String containing the hash d | |||
*/ | |||
void PQCLEAN_HQCRMRS128_CLEAN_hqc_ciphertext_to_string(uint8_t *ct, const uint64_t *u, const uint64_t *v, const uint8_t *d) { | |||
memcpy(ct, u, VEC_N_SIZE_BYTES); | |||
memcpy(ct + VEC_N_SIZE_BYTES, v, VEC_N1N2_SIZE_BYTES); | |||
memcpy(ct + VEC_N_SIZE_BYTES + VEC_N1N2_SIZE_BYTES, d, SHA512_BYTES); | |||
PQCLEAN_HQCRMRS128_CLEAN_store8_arr(ct, VEC_N_SIZE_BYTES, u, VEC_N_SIZE_64); | |||
ct += VEC_N_SIZE_BYTES; | |||
PQCLEAN_HQCRMRS128_CLEAN_store8_arr(ct, VEC_N1N2_SIZE_BYTES, v, VEC_N1N2_SIZE_64); | |||
ct += VEC_N1N2_SIZE_BYTES; | |||
memcpy(ct, d, SHA512_BYTES); | |||
} | |||
@@ -173,7 +178,9 @@ void PQCLEAN_HQCRMRS128_CLEAN_hqc_ciphertext_to_string(uint8_t *ct, const uint64 | |||
* @param[in] ct String containing the ciphertext | |||
*/ | |||
void PQCLEAN_HQCRMRS128_CLEAN_hqc_ciphertext_from_string(uint64_t *u, uint64_t *v, uint8_t *d, const uint8_t *ct) { | |||
memcpy(u, ct, VEC_N_SIZE_BYTES); | |||
memcpy(v, ct + VEC_N_SIZE_BYTES, VEC_N1N2_SIZE_BYTES); | |||
memcpy(d, ct + VEC_N_SIZE_BYTES + VEC_N1N2_SIZE_BYTES, SHA512_BYTES); | |||
PQCLEAN_HQCRMRS128_CLEAN_load8_arr(u, VEC_N_SIZE_64, ct, VEC_N_SIZE_BYTES); | |||
ct += VEC_N_SIZE_BYTES; | |||
PQCLEAN_HQCRMRS128_CLEAN_load8_arr(v, VEC_N1N2_SIZE_64, ct, VEC_N1N2_SIZE_BYTES); | |||
ct += VEC_N1N2_SIZE_BYTES; | |||
memcpy(d, ct, SHA512_BYTES); | |||
} |
@@ -16,9 +16,9 @@ | |||
#define BIT0MASK(x) (-((x) & 1)) | |||
static void encode(uint32_t *word, uint8_t message); | |||
static void encode(uint8_t *word, uint8_t message); | |||
static void hadamard(uint16_t src[128], uint16_t dst[128]); | |||
static void expand_and_sum(uint16_t dest[128], const uint32_t src[4 * MULTIPLICITY]); | |||
static void expand_and_sum(uint16_t dest[128], const uint8_t src[16 * MULTIPLICITY]); | |||
static uint8_t find_peaks(const uint16_t transform[128]); | |||
@@ -40,28 +40,38 @@ static uint8_t find_peaks(const uint16_t transform[128]); | |||
* @param[out] word An RM(1,7) codeword | |||
* @param[in] message A message | |||
*/ | |||
static void encode(uint32_t *word, uint8_t message) { | |||
// the four parts of the word are identical | |||
// except for encoding bits 5 and 6 | |||
uint32_t first_word; | |||
static void encode(uint8_t *word, uint8_t message) { | |||
uint32_t e; | |||
// bit 7 flips all the bits, do that first to save work | |||
first_word = BIT0MASK(message >> 7); | |||
e = BIT0MASK(message >> 7); | |||
// bits 0, 1, 2, 3, 4 are the same for all four longs | |||
// (Warning: in the bit matrix above, low bits are at the left!) | |||
first_word ^= BIT0MASK(message >> 0) & 0xaaaaaaaa; | |||
first_word ^= BIT0MASK(message >> 1) & 0xcccccccc; | |||
first_word ^= BIT0MASK(message >> 2) & 0xf0f0f0f0; | |||
first_word ^= BIT0MASK(message >> 3) & 0xff00ff00; | |||
first_word ^= BIT0MASK(message >> 4) & 0xffff0000; | |||
e ^= BIT0MASK(message >> 0) & 0xaaaaaaaa; | |||
e ^= BIT0MASK(message >> 1) & 0xcccccccc; | |||
e ^= BIT0MASK(message >> 2) & 0xf0f0f0f0; | |||
e ^= BIT0MASK(message >> 3) & 0xff00ff00; | |||
e ^= BIT0MASK(message >> 4) & 0xffff0000; | |||
// we can store this in the first quarter | |||
word[0] = first_word; | |||
word[0 + 0] = (e >> 0x00) & 0xff; | |||
word[0 + 1] = (e >> 0x08) & 0xff; | |||
word[0 + 2] = (e >> 0x10) & 0xff; | |||
word[0 + 3] = (e >> 0x18) & 0xff; | |||
// bit 5 flips entries 1 and 3; bit 6 flips 2 and 3 | |||
first_word ^= BIT0MASK(message >> 5); | |||
word[1] = first_word; | |||
first_word ^= BIT0MASK(message >> 6); | |||
word[3] = first_word; | |||
first_word ^= BIT0MASK(message >> 5); | |||
word[2] = first_word; | |||
e ^= BIT0MASK(message >> 5); | |||
word[4 + 0] = (e >> 0x00) & 0xff; | |||
word[4 + 1] = (e >> 0x08) & 0xff; | |||
word[4 + 2] = (e >> 0x10) & 0xff; | |||
word[4 + 3] = (e >> 0x18) & 0xff; | |||
e ^= BIT0MASK(message >> 6); | |||
word[12 + 0] = (e >> 0x00) & 0xff; | |||
word[12 + 1] = (e >> 0x08) & 0xff; | |||
word[12 + 2] = (e >> 0x10) & 0xff; | |||
word[12 + 3] = (e >> 0x18) & 0xff; | |||
e ^= BIT0MASK(message >> 5); | |||
word[8 + 0] = (e >> 0x00) & 0xff; | |||
word[8 + 1] = (e >> 0x08) & 0xff; | |||
word[8 + 2] = (e >> 0x10) & 0xff; | |||
word[8 + 3] = (e >> 0x18) & 0xff; | |||
} | |||
@@ -131,18 +141,19 @@ static void hadamard(uint16_t src[128], uint16_t dst[128]) { | |||
* @param[out] dest Structure that contain the expanded codeword | |||
* @param[in] src Structure that contain the codeword | |||
*/ | |||
static void expand_and_sum(uint16_t dest[128], const uint32_t src[4 * MULTIPLICITY]) { | |||
static void expand_and_sum(uint16_t dest[128], const uint8_t src[16 * MULTIPLICITY]) { | |||
size_t part, bit, copy; | |||
// start with the first copy | |||
for (uint32_t part = 0; part < 4; part++) { | |||
for (uint32_t bit = 0; bit < 32; bit++) { | |||
dest[part * 32 + bit] = (uint16_t) ((src[part] >> bit) & 1); | |||
for (part = 0; part < 16; part++) { | |||
for (bit = 0; bit < 8; bit++) { | |||
dest[part * 8 + bit] = (uint16_t) ((src[part] >> bit) & 1); | |||
} | |||
} | |||
// sum the rest of the copies | |||
for (uint32_t copy = 1; copy < MULTIPLICITY; copy++) { | |||
for (uint32_t part = 0; part < 4; part++) { | |||
for (uint32_t bit = 0; bit < 32; bit++) { | |||
dest[part * 32 + bit] += (uint16_t) ((src[4 * copy + part] >> bit) & 1); | |||
for (copy = 1; copy < MULTIPLICITY; copy++) { | |||
for (part = 0; part < 16; part++) { | |||
for (bit = 0; bit < 8; bit++) { | |||
dest[part * 8 + bit] += (uint16_t) ((src[16 * copy + part] >> bit) & 1); | |||
} | |||
} | |||
} | |||
@@ -188,15 +199,13 @@ static uint8_t find_peaks(const uint16_t transform[128]) { | |||
* @param[out] cdw Array of size VEC_N1N2_SIZE_64 receiving the encoded message | |||
* @param[in] msg Array of size VEC_N1_SIZE_64 storing the message | |||
*/ | |||
void PQCLEAN_HQCRMRS128_CLEAN_reed_muller_encode(uint64_t *cdw, const uint64_t *msg) { | |||
uint8_t *message_array = (uint8_t *) msg; | |||
uint32_t *codeArray = (uint32_t *) cdw; | |||
void PQCLEAN_HQCRMRS128_CLEAN_reed_muller_encode(uint8_t *cdw, const uint8_t *msg) { | |||
for (size_t i = 0; i < VEC_N1_SIZE_BYTES; i++) { | |||
// encode first word | |||
encode(&codeArray[4 * i * MULTIPLICITY], message_array[i]); | |||
encode(&cdw[16 * i * MULTIPLICITY], msg[i]); | |||
// copy to other identical codewords | |||
for (size_t copy = 1; copy < MULTIPLICITY; copy++) { | |||
memcpy(&codeArray[4 * i * MULTIPLICITY + 4 * copy], &codeArray[4 * i * MULTIPLICITY], 4 * sizeof(uint32_t)); | |||
memcpy(&cdw[16 * i * MULTIPLICITY + 16 * copy], &cdw[16 * i * MULTIPLICITY], 16); | |||
} | |||
} | |||
} | |||
@@ -212,19 +221,17 @@ void PQCLEAN_HQCRMRS128_CLEAN_reed_muller_encode(uint64_t *cdw, const uint64_t * | |||
* @param[out] msg Array of size VEC_N1_SIZE_64 receiving the decoded message | |||
* @param[in] cdw Array of size VEC_N1N2_SIZE_64 storing the received word | |||
*/ | |||
void PQCLEAN_HQCRMRS128_CLEAN_reed_muller_decode(uint64_t *msg, const uint64_t *cdw) { | |||
uint8_t *message_array = (uint8_t *) msg; | |||
uint32_t *codeArray = (uint32_t *) cdw; | |||
void PQCLEAN_HQCRMRS128_CLEAN_reed_muller_decode(uint8_t *msg, const uint8_t *cdw) { | |||
uint16_t expanded[128]; | |||
uint16_t transform[128]; | |||
for (size_t i = 0; i < VEC_N1_SIZE_BYTES; i++) { | |||
// collect the codewords | |||
expand_and_sum(expanded, &codeArray[4 * i * MULTIPLICITY]); | |||
expand_and_sum(expanded, &cdw[16 * i * MULTIPLICITY]); | |||
// apply hadamard transform | |||
hadamard(expanded, transform); | |||
// fix the first entry to get the half Hadamard transform | |||
transform[0] -= 64 * MULTIPLICITY; | |||
// finish the decoding | |||
message_array[i] = find_peaks(transform); | |||
msg[i] = find_peaks(transform); | |||
} | |||
} |
@@ -12,9 +12,9 @@ | |||
#include <stddef.h> | |||
#include <stdint.h> | |||
void PQCLEAN_HQCRMRS128_CLEAN_reed_muller_encode(uint64_t *cdw, const uint64_t *msg); | |||
void PQCLEAN_HQCRMRS128_CLEAN_reed_muller_encode(uint8_t *cdw, const uint8_t *msg); | |||
void PQCLEAN_HQCRMRS128_CLEAN_reed_muller_decode(uint64_t *msg, const uint64_t *cdw); | |||
void PQCLEAN_HQCRMRS128_CLEAN_reed_muller_decode(uint8_t *msg, const uint8_t *cdw); | |||
#endif |
@@ -1,6 +1,7 @@ | |||
#include "fft.h" | |||
#include "gf.h" | |||
#include "parameters.h" | |||
#include "parsing.h" | |||
#include "reed_solomon.h" | |||
#include <stdint.h> | |||
#include <stdio.h> | |||
@@ -30,37 +31,31 @@ static void correct_errors(uint8_t *cdw, const uint16_t *error_values); | |||
* @param[out] cdw Array of size VEC_N1_SIZE_64 receiving the encoded message | |||
* @param[in] msg Array of size VEC_K_SIZE_64 storing the message | |||
*/ | |||
void PQCLEAN_HQCRMRS128_CLEAN_reed_solomon_encode(uint64_t *cdw, const uint64_t *msg) { | |||
void PQCLEAN_HQCRMRS128_CLEAN_reed_solomon_encode(uint8_t *cdw, const uint8_t *msg) { | |||
uint8_t gate_value = 0; | |||
uint16_t tmp[PARAM_G] = {0}; | |||
uint16_t PARAM_RS_POLY [] = {RS_POLY_COEFS}; | |||
uint8_t msg_bytes[PARAM_K] = {0}; | |||
uint8_t cdw_bytes[PARAM_N1] = {0}; | |||
for (size_t i = 0; i < VEC_K_SIZE_64; ++i) { | |||
for (size_t j = 0; j < 8; ++j) { | |||
msg_bytes[i * 8 + j] = (uint8_t) (msg[i] >> (j * 8)); | |||
} | |||
for (size_t i = 0; i < PARAM_N1; i++) { | |||
cdw[i] = 0; | |||
} | |||
for (int i = PARAM_K - 1; i >= 0; --i) { | |||
gate_value = msg_bytes[i] ^ cdw_bytes[PARAM_N1 - PARAM_K - 1]; | |||
gate_value = msg[i] ^ cdw[PARAM_N1 - PARAM_K - 1]; | |||
for (size_t j = 0; j < PARAM_G; ++j) { | |||
tmp[j] = PQCLEAN_HQCRMRS128_CLEAN_gf_mul(gate_value, PARAM_RS_POLY[j]); | |||
} | |||
for (size_t k = PARAM_N1 - PARAM_K - 1; k; --k) { | |||
cdw_bytes[k] = cdw_bytes[k - 1] ^ tmp[k]; | |||
cdw[k] = cdw[k - 1] ^ tmp[k]; | |||
} | |||
cdw_bytes[0] = tmp[0]; | |||
cdw[0] = tmp[0]; | |||
} | |||
memcpy(cdw_bytes + PARAM_N1 - PARAM_K, msg_bytes, PARAM_K); | |||
memcpy(cdw, cdw_bytes, PARAM_N1); | |||
memcpy(cdw + PARAM_N1 - PARAM_K, msg, PARAM_K); | |||
} | |||
@@ -312,8 +307,7 @@ static void correct_errors(uint8_t *cdw, const uint16_t *error_values) { | |||
* @param[out] msg Array of size VEC_K_SIZE_64 receiving the decoded message | |||
* @param[in] cdw Array of size VEC_N1_SIZE_64 storing the received word | |||
*/ | |||
void PQCLEAN_HQCRMRS128_CLEAN_reed_solomon_decode(uint64_t *msg, uint64_t *cdw) { | |||
uint8_t cdw_bytes[PARAM_N1] = {0}; | |||
void PQCLEAN_HQCRMRS128_CLEAN_reed_solomon_decode(uint8_t *msg, uint8_t *cdw) { | |||
uint16_t syndromes[2 * PARAM_DELTA] = {0}; | |||
uint16_t sigma[1 << PARAM_FFT] = {0}; | |||
uint8_t error[1 << PARAM_M] = {0}; | |||
@@ -321,11 +315,8 @@ void PQCLEAN_HQCRMRS128_CLEAN_reed_solomon_decode(uint64_t *msg, uint64_t *cdw) | |||
uint16_t error_values[PARAM_N1] = {0}; | |||
uint16_t deg; | |||
// Copy the vector in an array of bytes | |||
memcpy(cdw_bytes, cdw, PARAM_N1); | |||
// Calculate the 2*PARAM_DELTA syndromes | |||
compute_syndromes(syndromes, cdw_bytes); | |||
compute_syndromes(syndromes, cdw); | |||
// Compute the error locator polynomial sigma | |||
// Sigma's degree is at most PARAM_DELTA but the FFT requires the extra room | |||
@@ -341,9 +332,9 @@ void PQCLEAN_HQCRMRS128_CLEAN_reed_solomon_decode(uint64_t *msg, uint64_t *cdw) | |||
compute_error_values(error_values, z, error); | |||
// Correct the errors | |||
correct_errors(cdw_bytes, error_values); | |||
correct_errors(cdw, error_values); | |||
// Retrieve the message from the decoded codeword | |||
memcpy(msg, cdw_bytes + (PARAM_G - 1), PARAM_K); | |||
memcpy(msg, cdw + (PARAM_G - 1), PARAM_K); | |||
} |
@@ -154,22 +154,6 @@ void PQCLEAN_HQCRMRS128_CLEAN_vect_set_random(AES_XOF_struct *ctx, uint64_t *v) | |||
/** | |||
* @brief Generates a random vector | |||
* | |||
* This function generates a random binary vector. It uses the the randombytes function. | |||
* | |||
* @param[in] v Pointer to an array | |||
*/ | |||
void PQCLEAN_HQCRMRS128_CLEAN_vect_set_random_from_randombytes(uint64_t *v) { | |||
uint8_t rand_bytes [VEC_K_SIZE_BYTES] = {0}; | |||
randombytes(rand_bytes, VEC_K_SIZE_BYTES); | |||
memcpy(v, rand_bytes, VEC_K_SIZE_BYTES); | |||
} | |||
/** | |||
* @brief Adds two vectors | |||
* | |||
@@ -185,6 +169,7 @@ void PQCLEAN_HQCRMRS128_CLEAN_vect_add(uint64_t *o, const uint64_t *v1, const ui | |||
} | |||
/** | |||
* @brief Compares two vectors | |||
* | |||
@@ -216,12 +201,12 @@ void PQCLEAN_HQCRMRS128_CLEAN_vect_resize(uint64_t *o, uint32_t size_o, const ui | |||
val = 64 - (size_o % 64); | |||
} | |||
memcpy(o, v, VEC_N1N2_SIZE_BYTES); | |||
memcpy(o, v, 8 * VEC_N1N2_SIZE_64); | |||
for (int8_t i = 0; i < val; ++i) { | |||
o[VEC_N1N2_SIZE_64 - 1] &= (mask >> i); | |||
} | |||
} else { | |||
memcpy(o, v, CEIL_DIVIDE(size_v, 8)); | |||
memcpy(o, v, 8 * CEIL_DIVIDE(size_v, 64)); | |||
} | |||
} |
@@ -18,8 +18,6 @@ void PQCLEAN_HQCRMRS128_CLEAN_vect_set_random_fixed_weight(AES_XOF_struct *ctx, | |||
void PQCLEAN_HQCRMRS128_CLEAN_vect_set_random(AES_XOF_struct *ctx, uint64_t *v); | |||
void PQCLEAN_HQCRMRS128_CLEAN_vect_set_random_from_randombytes(uint64_t *v); | |||
void PQCLEAN_HQCRMRS128_CLEAN_vect_add(uint64_t *o, const uint64_t *v1, const uint64_t *v2, uint32_t size); | |||
@@ -82,7 +82,8 @@ void PQCLEAN_HQCRMRS192_AVX2_store8_arr(uint8_t *out8, size_t outlen, const uint | |||
*/ | |||
void PQCLEAN_HQCRMRS192_AVX2_hqc_secret_key_to_string(uint8_t *sk, const uint8_t *sk_seed, const uint8_t *pk) { | |||
memcpy(sk, sk_seed, SEED_BYTES); | |||
memcpy(sk + SEED_BYTES, pk, PUBLIC_KEY_BYTES); | |||
sk += SEED_BYTES; | |||
memcpy(sk, pk, PUBLIC_KEY_BYTES); | |||
} | |||
/** | |||
@@ -101,11 +102,12 @@ void PQCLEAN_HQCRMRS192_AVX2_hqc_secret_key_from_string(uint64_t *x, uint64_t *y | |||
uint8_t sk_seed[SEED_BYTES] = {0}; | |||
memcpy(sk_seed, sk, SEED_BYTES); | |||
seedexpander_init(&sk_seedexpander, sk_seed, sk_seed + 32, SEEDEXPANDER_MAX_LENGTH); | |||
sk += SEED_BYTES; | |||
memcpy(pk, sk, PUBLIC_KEY_BYTES); | |||
seedexpander_init(&sk_seedexpander, sk_seed, sk_seed + 32, SEEDEXPANDER_MAX_LENGTH); | |||
PQCLEAN_HQCRMRS192_AVX2_vect_set_random_fixed_weight(&sk_seedexpander, x, PARAM_OMEGA); | |||
PQCLEAN_HQCRMRS192_AVX2_vect_set_random_fixed_weight(&sk_seedexpander, y, PARAM_OMEGA); | |||
memcpy(pk, sk + SEED_BYTES, PUBLIC_KEY_BYTES); | |||
} | |||
/** | |||
@@ -138,10 +140,11 @@ void PQCLEAN_HQCRMRS192_AVX2_hqc_public_key_from_string(uint64_t *h, uint64_t *s | |||
uint8_t pk_seed[SEED_BYTES] = {0}; | |||
memcpy(pk_seed, pk, SEED_BYTES); | |||
pk += SEED_BYTES; | |||
PQCLEAN_HQCRMRS192_AVX2_load8_arr(s, VEC_N_SIZE_64, pk, VEC_N_SIZE_BYTES); | |||
seedexpander_init(&pk_seedexpander, pk_seed, pk_seed + 32, SEEDEXPANDER_MAX_LENGTH); | |||
PQCLEAN_HQCRMRS192_AVX2_vect_set_random(&pk_seedexpander, h); | |||
PQCLEAN_HQCRMRS192_AVX2_load8_arr(s, VEC_N_SIZE_64, pk + SEED_BYTES, VEC_N_SIZE_BYTES); | |||
} | |||
@@ -157,8 +160,10 @@ void PQCLEAN_HQCRMRS192_AVX2_hqc_public_key_from_string(uint64_t *h, uint64_t *s | |||
*/ | |||
void PQCLEAN_HQCRMRS192_AVX2_hqc_ciphertext_to_string(uint8_t *ct, const uint64_t *u, const uint64_t *v, const uint8_t *d) { | |||
PQCLEAN_HQCRMRS192_AVX2_store8_arr(ct, VEC_N_SIZE_BYTES, u, VEC_N_SIZE_64); | |||
PQCLEAN_HQCRMRS192_AVX2_store8_arr(ct + VEC_N_SIZE_BYTES, VEC_N_SIZE_BYTES, v, VEC_N1N2_SIZE_64); | |||
memcpy(ct + VEC_N_SIZE_BYTES + VEC_N1N2_SIZE_BYTES, d, SHA512_BYTES); | |||
ct += VEC_N_SIZE_BYTES; | |||
PQCLEAN_HQCRMRS192_AVX2_store8_arr(ct, VEC_N1N2_SIZE_BYTES, v, VEC_N1N2_SIZE_64); | |||
ct += VEC_N1N2_SIZE_BYTES; | |||
memcpy(ct, d, SHA512_BYTES); | |||
} | |||
@@ -174,6 +179,8 @@ void PQCLEAN_HQCRMRS192_AVX2_hqc_ciphertext_to_string(uint8_t *ct, const uint64_ | |||
*/ | |||
void PQCLEAN_HQCRMRS192_AVX2_hqc_ciphertext_from_string(uint64_t *u, uint64_t *v, uint8_t *d, const uint8_t *ct) { | |||
PQCLEAN_HQCRMRS192_AVX2_load8_arr(u, VEC_N_SIZE_64, ct, VEC_N_SIZE_BYTES); | |||
PQCLEAN_HQCRMRS192_AVX2_load8_arr(v, VEC_N1N2_SIZE_64, ct + VEC_N_SIZE_BYTES, VEC_N1N2_SIZE_BYTES); | |||
memcpy(d, ct + VEC_N_SIZE_BYTES + VEC_N1N2_SIZE_BYTES, SHA512_BYTES); | |||
ct += VEC_N_SIZE_BYTES; | |||
PQCLEAN_HQCRMRS192_AVX2_load8_arr(v, VEC_N1N2_SIZE_64, ct, VEC_N1N2_SIZE_BYTES); | |||
ct += VEC_N1N2_SIZE_BYTES; | |||
memcpy(d, ct, SHA512_BYTES); | |||
} |
@@ -21,8 +21,8 @@ | |||
* @param[out] em Pointer to an array that is the tensor code word | |||
* @param[in] m Pointer to an array that is the message | |||
*/ | |||
void PQCLEAN_HQCRMRS192_CLEAN_code_encode(uint64_t *em, const uint64_t *m) { | |||
uint64_t tmp[VEC_N1_SIZE_64] = {0}; | |||
void PQCLEAN_HQCRMRS192_CLEAN_code_encode(uint8_t *em, const uint8_t *m) { | |||
uint8_t tmp[VEC_N1_SIZE_BYTES] = {0}; | |||
PQCLEAN_HQCRMRS192_CLEAN_reed_solomon_encode(tmp, m); | |||
PQCLEAN_HQCRMRS192_CLEAN_reed_muller_encode(em, tmp); | |||
@@ -37,11 +37,10 @@ void PQCLEAN_HQCRMRS192_CLEAN_code_encode(uint64_t *em, const uint64_t *m) { | |||
* @param[out] m Pointer to an array that is the message | |||
* @param[in] em Pointer to an array that is the code word | |||
*/ | |||
void PQCLEAN_HQCRMRS192_CLEAN_code_decode(uint64_t *m, const uint64_t *em) { | |||
uint64_t tmp[VEC_N1_SIZE_64] = {0}; | |||
void PQCLEAN_HQCRMRS192_CLEAN_code_decode(uint8_t *m, const uint8_t *em) { | |||
uint8_t tmp[VEC_N1_SIZE_BYTES] = {0}; | |||
PQCLEAN_HQCRMRS192_CLEAN_reed_muller_decode(tmp, em); | |||
PQCLEAN_HQCRMRS192_CLEAN_reed_solomon_decode(m, tmp); | |||
} |
@@ -12,9 +12,9 @@ | |||
#include <stddef.h> | |||
#include <stdint.h> | |||
void PQCLEAN_HQCRMRS192_CLEAN_code_encode(uint64_t *em, const uint64_t *message); | |||
void PQCLEAN_HQCRMRS192_CLEAN_code_encode(uint8_t *em, const uint8_t *message); | |||
void PQCLEAN_HQCRMRS192_CLEAN_code_decode(uint64_t *m, const uint64_t *em); | |||
void PQCLEAN_HQCRMRS192_CLEAN_code_decode(uint8_t *m, const uint8_t *em); | |||
#endif |
@@ -1,10 +1,9 @@ | |||
#include "gf2x.h" | |||
#include "nistseedexpander.h" | |||
#include "parameters.h" | |||
#include "parsing.h" | |||
#include "randombytes.h" | |||
#include <stdint.h> | |||
#include <stdio.h> | |||
#include <string.h> | |||
/** | |||
* \file gf2x.c | |||
* \brief Implementation of multiplication of two polynomials | |||
@@ -13,7 +12,7 @@ | |||
static inline void swap(uint16_t *tab, uint16_t elt1, uint16_t elt2); | |||
static void reduce(uint64_t *o, const uint64_t *a); | |||
static void fast_convolution_mult(uint64_t *o, const uint32_t *a1, const uint64_t *a2, uint16_t weight, AES_XOF_struct *ctx); | |||
static void fast_convolution_mult(uint8_t *o, const uint32_t *a1, const uint64_t *a2, uint16_t weight, AES_XOF_struct *ctx); | |||
/** | |||
* @brief swap two elements in a table | |||
@@ -68,7 +67,7 @@ static void reduce(uint64_t *o, const uint64_t *a) { | |||
* @param[in] weight Hamming wifht of the sparse polynomial a2 | |||
* @param[in] ctx Pointer to a seed expander used to randomize the multiplication process | |||
*/ | |||
static void fast_convolution_mult(uint64_t *o, const uint32_t *a1, const uint64_t *a2, uint16_t weight, AES_XOF_struct *ctx) { | |||
static void fast_convolution_mult(uint8_t *o, const uint32_t *a1, const uint64_t *a2, uint16_t weight, AES_XOF_struct *ctx) { | |||
//static uint32_t fast_convolution_mult(const uint64_t *A, const uint32_t *vB, uint64_t *C, const uint16_t w, AES_XOF_struct *ctx) | |||
uint64_t carry; | |||
uint32_t dec, s; | |||
@@ -77,8 +76,9 @@ static void fast_convolution_mult(uint64_t *o, const uint32_t *a1, const uint64_ | |||
uint16_t permutation_table[16]; | |||
uint16_t permuted_sparse_vect[PARAM_OMEGA_E]; | |||
uint16_t permutation_sparse_vect[PARAM_OMEGA_E]; | |||
uint64_t tmp; | |||
uint64_t *pt; | |||
uint16_t *res_16; | |||
uint8_t *res; | |||
size_t i, j; | |||
for (i = 0; i < 16; i++) { | |||
@@ -120,14 +120,13 @@ static void fast_convolution_mult(uint64_t *o, const uint32_t *a1, const uint64_ | |||
for (i = 0; i < weight; i++) { | |||
dec = a1[permuted_sparse_vect[i]] & 0xf; | |||
s = a1[permuted_sparse_vect[i]] >> 4; | |||
res_16 = ((uint16_t *) o) + s; | |||
res = o + 2 * s; | |||
pt = table + (permuted_table[dec] * (VEC_N_SIZE_64 + 1)); | |||
for (j = 0; j < VEC_N_SIZE_64 + 1; j++) { | |||
*res_16++ ^= (uint16_t) pt[j]; | |||
*res_16++ ^= (uint16_t) (pt[j] >> 16); | |||
*res_16++ ^= (uint16_t) (pt[j] >> 32); | |||
*res_16++ ^= (uint16_t) (pt[j] >> 48); | |||
tmp = PQCLEAN_HQCRMRS192_CLEAN_load8(res); | |||
PQCLEAN_HQCRMRS192_CLEAN_store8(res, tmp ^ pt[j]); | |||
res += 8; | |||
} | |||
} | |||
} | |||
@@ -147,11 +146,9 @@ static void fast_convolution_mult(uint64_t *o, const uint32_t *a1, const uint64_ | |||
* @param[in] ctx Pointer to the randomness context | |||
*/ | |||
void PQCLEAN_HQCRMRS192_CLEAN_vect_mul(uint64_t *o, const uint32_t *a1, const uint64_t *a2, uint16_t weight, AES_XOF_struct *ctx) { | |||
uint64_t tmp[2 * VEC_N_SIZE_64 + 1]; | |||
for (uint32_t j = 0; j < 2 * VEC_N_SIZE_64 + 1; j++) { | |||
tmp[j] = 0; | |||
} | |||
uint64_t tmp[2 * VEC_N_SIZE_64 + 1] = {0}; | |||
fast_convolution_mult(tmp, a1, a2, weight, ctx); | |||
fast_convolution_mult((uint8_t *) tmp, a1, a2, weight, ctx); | |||
PQCLEAN_HQCRMRS192_CLEAN_load8_arr(tmp, 2 * VEC_N_SIZE_64 + 1, (uint8_t *) tmp, sizeof(tmp)); | |||
reduce(o, tmp); | |||
} |
@@ -70,7 +70,7 @@ void PQCLEAN_HQCRMRS192_CLEAN_hqc_pke_keygen(unsigned char *pk, unsigned char *s | |||
* @param[in] theta Seed used to derive randomness required for encryption | |||
* @param[in] pk String containing the public key | |||
*/ | |||
void PQCLEAN_HQCRMRS192_CLEAN_hqc_pke_encrypt(uint64_t *u, uint64_t *v, uint64_t *m, unsigned char *theta, const unsigned char *pk) { | |||
void PQCLEAN_HQCRMRS192_CLEAN_hqc_pke_encrypt(uint64_t *u, uint64_t *v, uint8_t *m, unsigned char *theta, const unsigned char *pk) { | |||
AES_XOF_struct seedexpander; | |||
uint64_t h[VEC_N_SIZE_64] = {0}; | |||
uint64_t s[VEC_N_SIZE_64] = {0}; | |||
@@ -96,7 +96,8 @@ void PQCLEAN_HQCRMRS192_CLEAN_hqc_pke_encrypt(uint64_t *u, uint64_t *v, uint64_t | |||
PQCLEAN_HQCRMRS192_CLEAN_vect_add(u, r1, u, VEC_N_SIZE_64); | |||
// Compute v = m.G by encoding the message | |||
PQCLEAN_HQCRMRS192_CLEAN_code_encode(v, m); | |||
PQCLEAN_HQCRMRS192_CLEAN_code_encode((uint8_t *)v, m); | |||
PQCLEAN_HQCRMRS192_CLEAN_load8_arr(v, VEC_N1N2_SIZE_64, (uint8_t *)v, VEC_N1N2_SIZE_BYTES); | |||
PQCLEAN_HQCRMRS192_CLEAN_vect_resize(tmp1, PARAM_N, v, PARAM_N1N2); | |||
// Compute v = m.G + s.r2 + e | |||
@@ -117,17 +118,16 @@ void PQCLEAN_HQCRMRS192_CLEAN_hqc_pke_encrypt(uint64_t *u, uint64_t *v, uint64_t | |||
* @param[in] v Vector v (second part of the ciphertext) | |||
* @param[in] sk String containing the secret key | |||
*/ | |||
void PQCLEAN_HQCRMRS192_CLEAN_hqc_pke_decrypt(uint64_t *m, const uint64_t *u, const uint64_t *v, const unsigned char *sk) { | |||
uint64_t x[VEC_N_SIZE_64] = {0}; | |||
uint32_t y[PARAM_OMEGA] = {0}; | |||
void PQCLEAN_HQCRMRS192_CLEAN_hqc_pke_decrypt(uint8_t *m, const uint64_t *u, const uint64_t *v, const unsigned char *sk) { | |||
uint8_t pk[PUBLIC_KEY_BYTES] = {0}; | |||
uint64_t tmp1[VEC_N_SIZE_64] = {0}; | |||
uint64_t tmp2[VEC_N_SIZE_64] = {0}; | |||
uint32_t y[PARAM_OMEGA] = {0}; | |||
AES_XOF_struct perm_seedexpander; | |||
uint8_t perm_seed[SEED_BYTES] = {0}; | |||
// Retrieve x, y, pk from secret key | |||
PQCLEAN_HQCRMRS192_CLEAN_hqc_secret_key_from_string(x, y, pk, sk); | |||
PQCLEAN_HQCRMRS192_CLEAN_hqc_secret_key_from_string(tmp1, y, pk, sk); | |||
randombytes(perm_seed, SEED_BYTES); | |||
seedexpander_init(&perm_seedexpander, perm_seed, perm_seed + 32, SEEDEXPANDER_MAX_LENGTH); | |||
@@ -139,5 +139,6 @@ void PQCLEAN_HQCRMRS192_CLEAN_hqc_pke_decrypt(uint64_t *m, const uint64_t *u, co | |||
// Compute m by decoding v - u.y | |||
PQCLEAN_HQCRMRS192_CLEAN_code_decode(m, tmp2); | |||
PQCLEAN_HQCRMRS192_CLEAN_store8_arr((uint8_t *)tmp1, VEC_N_SIZE_BYTES, tmp2, VEC_N_SIZE_64); | |||
PQCLEAN_HQCRMRS192_CLEAN_code_decode(m, (uint8_t *)tmp1); | |||
} |
@@ -13,9 +13,9 @@ | |||
void PQCLEAN_HQCRMRS192_CLEAN_hqc_pke_keygen(unsigned char *pk, unsigned char *sk); | |||
void PQCLEAN_HQCRMRS192_CLEAN_hqc_pke_encrypt(uint64_t *u, uint64_t *v, uint64_t *m, unsigned char *theta, const unsigned char *pk); | |||
void PQCLEAN_HQCRMRS192_CLEAN_hqc_pke_encrypt(uint64_t *u, uint64_t *v, uint8_t *m, unsigned char *theta, const unsigned char *pk); | |||
void PQCLEAN_HQCRMRS192_CLEAN_hqc_pke_decrypt(uint64_t *m, const uint64_t *u, const uint64_t *v, const unsigned char *sk); | |||
void PQCLEAN_HQCRMRS192_CLEAN_hqc_pke_decrypt(uint8_t *m, const uint64_t *u, const uint64_t *v, const unsigned char *sk); | |||
#endif |
@@ -47,26 +47,26 @@ int PQCLEAN_HQCRMRS192_CLEAN_crypto_kem_keypair(unsigned char *pk, unsigned char | |||
int PQCLEAN_HQCRMRS192_CLEAN_crypto_kem_enc(unsigned char *ct, unsigned char *ss, const unsigned char *pk) { | |||
uint8_t theta[SHA512_BYTES] = {0}; | |||
uint64_t m[VEC_K_SIZE_64] = {0}; | |||
uint8_t m[VEC_K_SIZE_BYTES] = {0}; | |||
uint64_t u[VEC_N_SIZE_64] = {0}; | |||
uint64_t v[VEC_N1N2_SIZE_64] = {0}; | |||
unsigned char d[SHA512_BYTES] = {0}; | |||
unsigned char mc[VEC_K_SIZE_BYTES + VEC_N_SIZE_BYTES + VEC_N1N2_SIZE_BYTES] = {0}; | |||
// Computing m | |||
PQCLEAN_HQCRMRS192_CLEAN_vect_set_random_from_randombytes(m); | |||
randombytes(m, VEC_K_SIZE_BYTES); | |||
// Computing theta | |||
sha3_512(theta, (uint8_t *) m, VEC_K_SIZE_BYTES); | |||
sha3_512(theta, m, VEC_K_SIZE_BYTES); | |||
// Encrypting m | |||
PQCLEAN_HQCRMRS192_CLEAN_hqc_pke_encrypt(u, v, m, theta, pk); | |||
// Computing d | |||
sha512(d, (unsigned char *) m, VEC_K_SIZE_BYTES); | |||
sha512(d, m, VEC_K_SIZE_BYTES); | |||
// Computing shared secret | |||
PQCLEAN_HQCRMRS192_CLEAN_store8_arr(mc, VEC_K_SIZE_BYTES, m, VEC_K_SIZE_64); | |||
memcpy(mc, m, VEC_K_SIZE_BYTES); | |||
PQCLEAN_HQCRMRS192_CLEAN_store8_arr(mc + VEC_K_SIZE_BYTES, VEC_N_SIZE_BYTES, u, VEC_N_SIZE_64); | |||
PQCLEAN_HQCRMRS192_CLEAN_store8_arr(mc + VEC_K_SIZE_BYTES + VEC_N_SIZE_BYTES, VEC_N1N2_SIZE_BYTES, v, VEC_N1N2_SIZE_64); | |||
sha512(ss, mc, VEC_K_SIZE_BYTES + VEC_N_SIZE_BYTES + VEC_N1N2_SIZE_BYTES); | |||
@@ -95,7 +95,7 @@ int PQCLEAN_HQCRMRS192_CLEAN_crypto_kem_dec(unsigned char *ss, const unsigned ch | |||
uint64_t v[VEC_N1N2_SIZE_64] = {0}; | |||
unsigned char d[SHA512_BYTES] = {0}; | |||
unsigned char pk[PUBLIC_KEY_BYTES] = {0}; | |||
uint64_t m[VEC_K_SIZE_64] = {0}; | |||
uint8_t m[VEC_K_SIZE_BYTES] = {0}; | |||
uint8_t theta[SHA512_BYTES] = {0}; | |||
uint64_t u2[VEC_N_SIZE_64] = {0}; | |||
uint64_t v2[VEC_N1N2_SIZE_64] = {0}; | |||
@@ -112,16 +112,16 @@ int PQCLEAN_HQCRMRS192_CLEAN_crypto_kem_dec(unsigned char *ss, const unsigned ch | |||
PQCLEAN_HQCRMRS192_CLEAN_hqc_pke_decrypt(m, u, v, sk); | |||
// Computing theta | |||
sha3_512(theta, (uint8_t *) m, VEC_K_SIZE_BYTES); | |||
sha3_512(theta, m, VEC_K_SIZE_BYTES); | |||
// Encrypting m' | |||
PQCLEAN_HQCRMRS192_CLEAN_hqc_pke_encrypt(u2, v2, m, theta, pk); | |||
// Computing d' | |||
sha512(d2, (unsigned char *) m, VEC_K_SIZE_BYTES); | |||
sha512(d2, m, VEC_K_SIZE_BYTES); | |||
// Computing shared secret | |||
PQCLEAN_HQCRMRS192_CLEAN_store8_arr(mc, VEC_K_SIZE_BYTES, m, VEC_K_SIZE_64); | |||
memcpy(mc, m, VEC_K_SIZE_BYTES); | |||
PQCLEAN_HQCRMRS192_CLEAN_store8_arr(mc + VEC_K_SIZE_BYTES, VEC_N_SIZE_BYTES, u, VEC_N_SIZE_64); | |||
PQCLEAN_HQCRMRS192_CLEAN_store8_arr(mc + VEC_K_SIZE_BYTES + VEC_N_SIZE_BYTES, VEC_N1N2_SIZE_BYTES, v, VEC_N1N2_SIZE_64); | |||
sha512(ss, mc, VEC_K_SIZE_BYTES + VEC_N_SIZE_BYTES + VEC_N1N2_SIZE_BYTES); | |||
@@ -82,7 +82,8 @@ void PQCLEAN_HQCRMRS192_CLEAN_store8_arr(uint8_t *out8, size_t outlen, const uin | |||
*/ | |||
void PQCLEAN_HQCRMRS192_CLEAN_hqc_secret_key_to_string(uint8_t *sk, const uint8_t *sk_seed, const uint8_t *pk) { | |||
memcpy(sk, sk_seed, SEED_BYTES); | |||
memcpy(sk + SEED_BYTES, pk, PUBLIC_KEY_BYTES); | |||
sk += SEED_BYTES; | |||
memcpy(sk, pk, PUBLIC_KEY_BYTES); | |||
} | |||
/** | |||
@@ -101,11 +102,12 @@ void PQCLEAN_HQCRMRS192_CLEAN_hqc_secret_key_from_string(uint64_t *x, uint32_t * | |||
uint8_t sk_seed[SEED_BYTES] = {0}; | |||
memcpy(sk_seed, sk, SEED_BYTES); | |||
seedexpander_init(&sk_seedexpander, sk_seed, sk_seed + 32, SEEDEXPANDER_MAX_LENGTH); | |||
sk += SEED_BYTES; | |||
memcpy(pk, sk, PUBLIC_KEY_BYTES); | |||
seedexpander_init(&sk_seedexpander, sk_seed, sk_seed + 32, SEEDEXPANDER_MAX_LENGTH); | |||
PQCLEAN_HQCRMRS192_CLEAN_vect_set_random_fixed_weight(&sk_seedexpander, x, PARAM_OMEGA); | |||
PQCLEAN_HQCRMRS192_CLEAN_vect_set_random_fixed_weight_by_coordinates(&sk_seedexpander, y, PARAM_OMEGA); | |||
memcpy(pk, sk + SEED_BYTES, PUBLIC_KEY_BYTES); | |||
} | |||
/** | |||
@@ -119,7 +121,7 @@ void PQCLEAN_HQCRMRS192_CLEAN_hqc_secret_key_from_string(uint64_t *x, uint32_t * | |||
*/ | |||
void PQCLEAN_HQCRMRS192_CLEAN_hqc_public_key_to_string(uint8_t *pk, const uint8_t *pk_seed, const uint64_t *s) { | |||
memcpy(pk, pk_seed, SEED_BYTES); | |||
memcpy(pk + SEED_BYTES, s, VEC_N_SIZE_BYTES); | |||
PQCLEAN_HQCRMRS192_CLEAN_store8_arr(pk + SEED_BYTES, VEC_N_SIZE_BYTES, s, VEC_N_SIZE_64); | |||
} | |||
@@ -138,10 +140,11 @@ void PQCLEAN_HQCRMRS192_CLEAN_hqc_public_key_from_string(uint64_t *h, uint64_t * | |||
uint8_t pk_seed[SEED_BYTES] = {0}; | |||
memcpy(pk_seed, pk, SEED_BYTES); | |||
pk += SEED_BYTES; | |||
PQCLEAN_HQCRMRS192_CLEAN_load8_arr(s, VEC_N_SIZE_64, pk, VEC_N_SIZE_BYTES); | |||
seedexpander_init(&pk_seedexpander, pk_seed, pk_seed + 32, SEEDEXPANDER_MAX_LENGTH); | |||
PQCLEAN_HQCRMRS192_CLEAN_vect_set_random(&pk_seedexpander, h); | |||
memcpy(s, pk + SEED_BYTES, VEC_N_SIZE_BYTES); | |||
} | |||
@@ -156,9 +159,11 @@ void PQCLEAN_HQCRMRS192_CLEAN_hqc_public_key_from_string(uint64_t *h, uint64_t * | |||
* @param[in] d String containing the hash d | |||
*/ | |||
void PQCLEAN_HQCRMRS192_CLEAN_hqc_ciphertext_to_string(uint8_t *ct, const uint64_t *u, const uint64_t *v, const uint8_t *d) { | |||
memcpy(ct, u, VEC_N_SIZE_BYTES); | |||
memcpy(ct + VEC_N_SIZE_BYTES, v, VEC_N1N2_SIZE_BYTES); | |||
memcpy(ct + VEC_N_SIZE_BYTES + VEC_N1N2_SIZE_BYTES, d, SHA512_BYTES); | |||
PQCLEAN_HQCRMRS192_CLEAN_store8_arr(ct, VEC_N_SIZE_BYTES, u, VEC_N_SIZE_64); | |||
ct += VEC_N_SIZE_BYTES; | |||
PQCLEAN_HQCRMRS192_CLEAN_store8_arr(ct, VEC_N1N2_SIZE_BYTES, v, VEC_N1N2_SIZE_64); | |||
ct += VEC_N1N2_SIZE_BYTES; | |||
memcpy(ct, d, SHA512_BYTES); | |||
} | |||
@@ -173,7 +178,9 @@ void PQCLEAN_HQCRMRS192_CLEAN_hqc_ciphertext_to_string(uint8_t *ct, const uint64 | |||
* @param[in] ct String containing the ciphertext | |||
*/ | |||
void PQCLEAN_HQCRMRS192_CLEAN_hqc_ciphertext_from_string(uint64_t *u, uint64_t *v, uint8_t *d, const uint8_t *ct) { | |||
memcpy(u, ct, VEC_N_SIZE_BYTES); | |||
memcpy(v, ct + VEC_N_SIZE_BYTES, VEC_N1N2_SIZE_BYTES); | |||
memcpy(d, ct + VEC_N_SIZE_BYTES + VEC_N1N2_SIZE_BYTES, SHA512_BYTES); | |||
PQCLEAN_HQCRMRS192_CLEAN_load8_arr(u, VEC_N_SIZE_64, ct, VEC_N_SIZE_BYTES); | |||
ct += VEC_N_SIZE_BYTES; | |||
PQCLEAN_HQCRMRS192_CLEAN_load8_arr(v, VEC_N1N2_SIZE_64, ct, VEC_N1N2_SIZE_BYTES); | |||
ct += VEC_N1N2_SIZE_BYTES; | |||
memcpy(d, ct, SHA512_BYTES); | |||
} |
@@ -16,9 +16,9 @@ | |||
#define BIT0MASK(x) (-((x) & 1)) | |||
static void encode(uint32_t *word, uint8_t message); | |||
static void encode(uint8_t *word, uint8_t message); | |||
static void hadamard(uint16_t src[128], uint16_t dst[128]); | |||
static void expand_and_sum(uint16_t dest[128], const uint32_t src[4 * MULTIPLICITY]); | |||
static void expand_and_sum(uint16_t dest[128], const uint8_t src[16 * MULTIPLICITY]); | |||
static uint8_t find_peaks(const uint16_t transform[128]); | |||
@@ -40,28 +40,38 @@ static uint8_t find_peaks(const uint16_t transform[128]); | |||
* @param[out] word An RM(1,7) codeword | |||
* @param[in] message A message | |||
*/ | |||
static void encode(uint32_t *word, uint8_t message) { | |||
// the four parts of the word are identical | |||
// except for encoding bits 5 and 6 | |||
uint32_t first_word; | |||
static void encode(uint8_t *word, uint8_t message) { | |||
uint32_t e; | |||
// bit 7 flips all the bits, do that first to save work | |||
first_word = BIT0MASK(message >> 7); | |||
e = BIT0MASK(message >> 7); | |||
// bits 0, 1, 2, 3, 4 are the same for all four longs | |||
// (Warning: in the bit matrix above, low bits are at the left!) | |||
first_word ^= BIT0MASK(message >> 0) & 0xaaaaaaaa; | |||
first_word ^= BIT0MASK(message >> 1) & 0xcccccccc; | |||
first_word ^= BIT0MASK(message >> 2) & 0xf0f0f0f0; | |||
first_word ^= BIT0MASK(message >> 3) & 0xff00ff00; | |||
first_word ^= BIT0MASK(message >> 4) & 0xffff0000; | |||
e ^= BIT0MASK(message >> 0) & 0xaaaaaaaa; | |||
e ^= BIT0MASK(message >> 1) & 0xcccccccc; | |||
e ^= BIT0MASK(message >> 2) & 0xf0f0f0f0; | |||
e ^= BIT0MASK(message >> 3) & 0xff00ff00; | |||
e ^= BIT0MASK(message >> 4) & 0xffff0000; | |||
// we can store this in the first quarter | |||
word[0] = first_word; | |||
word[0 + 0] = (e >> 0x00) & 0xff; | |||
word[0 + 1] = (e >> 0x08) & 0xff; | |||
word[0 + 2] = (e >> 0x10) & 0xff; | |||
word[0 + 3] = (e >> 0x18) & 0xff; | |||
// bit 5 flips entries 1 and 3; bit 6 flips 2 and 3 | |||
first_word ^= BIT0MASK(message >> 5); | |||
word[1] = first_word; | |||
first_word ^= BIT0MASK(message >> 6); | |||
word[3] = first_word; | |||
first_word ^= BIT0MASK(message >> 5); | |||
word[2] = first_word; | |||
e ^= BIT0MASK(message >> 5); | |||
word[4 + 0] = (e >> 0x00) & 0xff; | |||
word[4 + 1] = (e >> 0x08) & 0xff; | |||
word[4 + 2] = (e >> 0x10) & 0xff; | |||
word[4 + 3] = (e >> 0x18) & 0xff; | |||
e ^= BIT0MASK(message >> 6); | |||
word[12 + 0] = (e >> 0x00) & 0xff; | |||
word[12 + 1] = (e >> 0x08) & 0xff; | |||
word[12 + 2] = (e >> 0x10) & 0xff; | |||
word[12 + 3] = (e >> 0x18) & 0xff; | |||
e ^= BIT0MASK(message >> 5); | |||
word[8 + 0] = (e >> 0x00) & 0xff; | |||
word[8 + 1] = (e >> 0x08) & 0xff; | |||
word[8 + 2] = (e >> 0x10) & 0xff; | |||
word[8 + 3] = (e >> 0x18) & 0xff; | |||
} | |||
@@ -131,18 +141,19 @@ static void hadamard(uint16_t src[128], uint16_t dst[128]) { | |||
* @param[out] dest Structure that contain the expanded codeword | |||
* @param[in] src Structure that contain the codeword | |||
*/ | |||
static void expand_and_sum(uint16_t dest[128], const uint32_t src[4 * MULTIPLICITY]) { | |||
static void expand_and_sum(uint16_t dest[128], const uint8_t src[16 * MULTIPLICITY]) { | |||
size_t part, bit, copy; | |||
// start with the first copy | |||
for (uint32_t part = 0; part < 4; part++) { | |||
for (uint32_t bit = 0; bit < 32; bit++) { | |||
dest[part * 32 + bit] = (uint16_t) ((src[part] >> bit) & 1); | |||
for (part = 0; part < 16; part++) { | |||
for (bit = 0; bit < 8; bit++) { | |||
dest[part * 8 + bit] = (uint16_t) ((src[part] >> bit) & 1); | |||
} | |||
} | |||
// sum the rest of the copies | |||
for (uint32_t copy = 1; copy < MULTIPLICITY; copy++) { | |||
for (uint32_t part = 0; part < 4; part++) { | |||
for (uint32_t bit = 0; bit < 32; bit++) { | |||
dest[part * 32 + bit] += (uint16_t) ((src[4 * copy + part] >> bit) & 1); | |||
for (copy = 1; copy < MULTIPLICITY; copy++) { | |||
for (part = 0; part < 16; part++) { | |||
for (bit = 0; bit < 8; bit++) { | |||
dest[part * 8 + bit] += (uint16_t) ((src[16 * copy + part] >> bit) & 1); | |||
} | |||
} | |||
} | |||
@@ -188,15 +199,13 @@ static uint8_t find_peaks(const uint16_t transform[128]) { | |||
* @param[out] cdw Array of size VEC_N1N2_SIZE_64 receiving the encoded message | |||
* @param[in] msg Array of size VEC_N1_SIZE_64 storing the message | |||
*/ | |||
void PQCLEAN_HQCRMRS192_CLEAN_reed_muller_encode(uint64_t *cdw, const uint64_t *msg) { | |||
uint8_t *message_array = (uint8_t *) msg; | |||
uint32_t *codeArray = (uint32_t *) cdw; | |||
void PQCLEAN_HQCRMRS192_CLEAN_reed_muller_encode(uint8_t *cdw, const uint8_t *msg) { | |||
for (size_t i = 0; i < VEC_N1_SIZE_BYTES; i++) { | |||
// encode first word | |||
encode(&codeArray[4 * i * MULTIPLICITY], message_array[i]); | |||
encode(&cdw[16 * i * MULTIPLICITY], msg[i]); | |||
// copy to other identical codewords | |||
for (size_t copy = 1; copy < MULTIPLICITY; copy++) { | |||
memcpy(&codeArray[4 * i * MULTIPLICITY + 4 * copy], &codeArray[4 * i * MULTIPLICITY], 4 * sizeof(uint32_t)); | |||
memcpy(&cdw[16 * i * MULTIPLICITY + 16 * copy], &cdw[16 * i * MULTIPLICITY], 16); | |||
} | |||
} | |||
} | |||
@@ -212,19 +221,17 @@ void PQCLEAN_HQCRMRS192_CLEAN_reed_muller_encode(uint64_t *cdw, const uint64_t * | |||
* @param[out] msg Array of size VEC_N1_SIZE_64 receiving the decoded message | |||
* @param[in] cdw Array of size VEC_N1N2_SIZE_64 storing the received word | |||
*/ | |||
void PQCLEAN_HQCRMRS192_CLEAN_reed_muller_decode(uint64_t *msg, const uint64_t *cdw) { | |||
uint8_t *message_array = (uint8_t *) msg; | |||
uint32_t *codeArray = (uint32_t *) cdw; | |||
void PQCLEAN_HQCRMRS192_CLEAN_reed_muller_decode(uint8_t *msg, const uint8_t *cdw) { | |||
uint16_t expanded[128]; | |||
uint16_t transform[128]; | |||
for (size_t i = 0; i < VEC_N1_SIZE_BYTES; i++) { | |||
// collect the codewords | |||
expand_and_sum(expanded, &codeArray[4 * i * MULTIPLICITY]); | |||
expand_and_sum(expanded, &cdw[16 * i * MULTIPLICITY]); | |||
// apply hadamard transform | |||
hadamard(expanded, transform); | |||
// fix the first entry to get the half Hadamard transform | |||
transform[0] -= 64 * MULTIPLICITY; | |||
// finish the decoding | |||
message_array[i] = find_peaks(transform); | |||
msg[i] = find_peaks(transform); | |||
} | |||
} |
@@ -12,9 +12,9 @@ | |||
#include <stddef.h> | |||
#include <stdint.h> | |||
void PQCLEAN_HQCRMRS192_CLEAN_reed_muller_encode(uint64_t *cdw, const uint64_t *msg); | |||
void PQCLEAN_HQCRMRS192_CLEAN_reed_muller_encode(uint8_t *cdw, const uint8_t *msg); | |||
void PQCLEAN_HQCRMRS192_CLEAN_reed_muller_decode(uint64_t *msg, const uint64_t *cdw); | |||
void PQCLEAN_HQCRMRS192_CLEAN_reed_muller_decode(uint8_t *msg, const uint8_t *cdw); | |||
#endif |
@@ -1,6 +1,7 @@ | |||
#include "fft.h" | |||
#include "gf.h" | |||
#include "parameters.h" | |||
#include "parsing.h" | |||
#include "reed_solomon.h" | |||
#include <stdint.h> | |||
#include <stdio.h> | |||
@@ -30,37 +31,31 @@ static void correct_errors(uint8_t *cdw, const uint16_t *error_values); | |||
* @param[out] cdw Array of size VEC_N1_SIZE_64 receiving the encoded message | |||
* @param[in] msg Array of size VEC_K_SIZE_64 storing the message | |||
*/ | |||
void PQCLEAN_HQCRMRS192_CLEAN_reed_solomon_encode(uint64_t *cdw, const uint64_t *msg) { | |||
void PQCLEAN_HQCRMRS192_CLEAN_reed_solomon_encode(uint8_t *cdw, const uint8_t *msg) { | |||
uint8_t gate_value = 0; | |||
uint16_t tmp[PARAM_G] = {0}; | |||
uint16_t PARAM_RS_POLY [] = {RS_POLY_COEFS}; | |||
uint8_t msg_bytes[PARAM_K] = {0}; | |||
uint8_t cdw_bytes[PARAM_N1] = {0}; | |||
for (size_t i = 0; i < VEC_K_SIZE_64; ++i) { | |||
for (size_t j = 0; j < 8; ++j) { | |||
msg_bytes[i * 8 + j] = (uint8_t) (msg[i] >> (j * 8)); | |||
} | |||
for (size_t i = 0; i < PARAM_N1; i++) { | |||
cdw[i] = 0; | |||
} | |||
for (int i = PARAM_K - 1; i >= 0; --i) { | |||
gate_value = msg_bytes[i] ^ cdw_bytes[PARAM_N1 - PARAM_K - 1]; | |||
gate_value = msg[i] ^ cdw[PARAM_N1 - PARAM_K - 1]; | |||
for (size_t j = 0; j < PARAM_G; ++j) { | |||
tmp[j] = PQCLEAN_HQCRMRS192_CLEAN_gf_mul(gate_value, PARAM_RS_POLY[j]); | |||
} | |||
for (size_t k = PARAM_N1 - PARAM_K - 1; k; --k) { | |||
cdw_bytes[k] = cdw_bytes[k - 1] ^ tmp[k]; | |||
cdw[k] = cdw[k - 1] ^ tmp[k]; | |||
} | |||
cdw_bytes[0] = tmp[0]; | |||
cdw[0] = tmp[0]; | |||
} | |||
memcpy(cdw_bytes + PARAM_N1 - PARAM_K, msg_bytes, PARAM_K); | |||
memcpy(cdw, cdw_bytes, PARAM_N1); | |||
memcpy(cdw + PARAM_N1 - PARAM_K, msg, PARAM_K); | |||
} | |||
@@ -312,8 +307,7 @@ static void correct_errors(uint8_t *cdw, const uint16_t *error_values) { | |||
* @param[out] msg Array of size VEC_K_SIZE_64 receiving the decoded message | |||
* @param[in] cdw Array of size VEC_N1_SIZE_64 storing the received word | |||
*/ | |||
void PQCLEAN_HQCRMRS192_CLEAN_reed_solomon_decode(uint64_t *msg, uint64_t *cdw) { | |||
uint8_t cdw_bytes[PARAM_N1] = {0}; | |||
void PQCLEAN_HQCRMRS192_CLEAN_reed_solomon_decode(uint8_t *msg, uint8_t *cdw) { | |||
uint16_t syndromes[2 * PARAM_DELTA] = {0}; | |||
uint16_t sigma[1 << PARAM_FFT] = {0}; | |||
uint8_t error[1 << PARAM_M] = {0}; | |||
@@ -321,11 +315,8 @@ void PQCLEAN_HQCRMRS192_CLEAN_reed_solomon_decode(uint64_t *msg, uint64_t *cdw) | |||
uint16_t error_values[PARAM_N1] = {0}; | |||
uint16_t deg; | |||
// Copy the vector in an array of bytes | |||
memcpy(cdw_bytes, cdw, PARAM_N1); | |||
// Calculate the 2*PARAM_DELTA syndromes | |||
compute_syndromes(syndromes, cdw_bytes); | |||
compute_syndromes(syndromes, cdw); | |||
// Compute the error locator polynomial sigma | |||
// Sigma's degree is at most PARAM_DELTA but the FFT requires the extra room | |||
@@ -341,9 +332,9 @@ void PQCLEAN_HQCRMRS192_CLEAN_reed_solomon_decode(uint64_t *msg, uint64_t *cdw) | |||
compute_error_values(error_values, z, error); | |||
// Correct the errors | |||
correct_errors(cdw_bytes, error_values); | |||
correct_errors(cdw, error_values); | |||
// Retrieve the message from the decoded codeword | |||
memcpy(msg, cdw_bytes + (PARAM_G - 1), PARAM_K); | |||
memcpy(msg, cdw + (PARAM_G - 1), PARAM_K); | |||
} |
@@ -154,22 +154,6 @@ void PQCLEAN_HQCRMRS192_CLEAN_vect_set_random(AES_XOF_struct *ctx, uint64_t *v) | |||
/** | |||
* @brief Generates a random vector | |||
* | |||
* This function generates a random binary vector. It uses the the randombytes function. | |||
* | |||
* @param[in] v Pointer to an array | |||
*/ | |||
void PQCLEAN_HQCRMRS192_CLEAN_vect_set_random_from_randombytes(uint64_t *v) { | |||
uint8_t rand_bytes [VEC_K_SIZE_BYTES] = {0}; | |||
randombytes(rand_bytes, VEC_K_SIZE_BYTES); | |||
memcpy(v, rand_bytes, VEC_K_SIZE_BYTES); | |||
} | |||
/** | |||
* @brief Adds two vectors | |||
* | |||
@@ -185,6 +169,7 @@ void PQCLEAN_HQCRMRS192_CLEAN_vect_add(uint64_t *o, const uint64_t *v1, const ui | |||
} | |||
/** | |||
* @brief Compares two vectors | |||
* | |||
@@ -216,12 +201,12 @@ void PQCLEAN_HQCRMRS192_CLEAN_vect_resize(uint64_t *o, uint32_t size_o, const ui | |||
val = 64 - (size_o % 64); | |||
} | |||
memcpy(o, v, VEC_N1N2_SIZE_BYTES); | |||
memcpy(o, v, 8 * VEC_N1N2_SIZE_64); | |||
for (int8_t i = 0; i < val; ++i) { | |||
o[VEC_N1N2_SIZE_64 - 1] &= (mask >> i); | |||
} | |||
} else { | |||
memcpy(o, v, CEIL_DIVIDE(size_v, 8)); | |||
memcpy(o, v, 8 * CEIL_DIVIDE(size_v, 64)); | |||
} | |||
} |
@@ -18,8 +18,6 @@ void PQCLEAN_HQCRMRS192_CLEAN_vect_set_random_fixed_weight(AES_XOF_struct *ctx, | |||
void PQCLEAN_HQCRMRS192_CLEAN_vect_set_random(AES_XOF_struct *ctx, uint64_t *v); | |||
void PQCLEAN_HQCRMRS192_CLEAN_vect_set_random_from_randombytes(uint64_t *v); | |||
void PQCLEAN_HQCRMRS192_CLEAN_vect_add(uint64_t *o, const uint64_t *v1, const uint64_t *v2, uint32_t size); | |||
@@ -82,7 +82,8 @@ void PQCLEAN_HQCRMRS256_AVX2_store8_arr(uint8_t *out8, size_t outlen, const uint | |||
*/ | |||
void PQCLEAN_HQCRMRS256_AVX2_hqc_secret_key_to_string(uint8_t *sk, const uint8_t *sk_seed, const uint8_t *pk) { | |||
memcpy(sk, sk_seed, SEED_BYTES); | |||
memcpy(sk + SEED_BYTES, pk, PUBLIC_KEY_BYTES); | |||
sk += SEED_BYTES; | |||
memcpy(sk, pk, PUBLIC_KEY_BYTES); | |||
} | |||
/** | |||
@@ -101,11 +102,12 @@ void PQCLEAN_HQCRMRS256_AVX2_hqc_secret_key_from_string(uint64_t *x, uint64_t *y | |||
uint8_t sk_seed[SEED_BYTES] = {0}; | |||
memcpy(sk_seed, sk, SEED_BYTES); | |||
seedexpander_init(&sk_seedexpander, sk_seed, sk_seed + 32, SEEDEXPANDER_MAX_LENGTH); | |||
sk += SEED_BYTES; | |||
memcpy(pk, sk, PUBLIC_KEY_BYTES); | |||
seedexpander_init(&sk_seedexpander, sk_seed, sk_seed + 32, SEEDEXPANDER_MAX_LENGTH); | |||
PQCLEAN_HQCRMRS256_AVX2_vect_set_random_fixed_weight(&sk_seedexpander, x, PARAM_OMEGA); | |||
PQCLEAN_HQCRMRS256_AVX2_vect_set_random_fixed_weight(&sk_seedexpander, y, PARAM_OMEGA); | |||
memcpy(pk, sk + SEED_BYTES, PUBLIC_KEY_BYTES); | |||
} | |||
/** | |||
@@ -138,10 +140,11 @@ void PQCLEAN_HQCRMRS256_AVX2_hqc_public_key_from_string(uint64_t *h, uint64_t *s | |||
uint8_t pk_seed[SEED_BYTES] = {0}; | |||
memcpy(pk_seed, pk, SEED_BYTES); | |||
pk += SEED_BYTES; | |||
PQCLEAN_HQCRMRS256_AVX2_load8_arr(s, VEC_N_SIZE_64, pk, VEC_N_SIZE_BYTES); | |||
seedexpander_init(&pk_seedexpander, pk_seed, pk_seed + 32, SEEDEXPANDER_MAX_LENGTH); | |||
PQCLEAN_HQCRMRS256_AVX2_vect_set_random(&pk_seedexpander, h); | |||
PQCLEAN_HQCRMRS256_AVX2_load8_arr(s, VEC_N_SIZE_64, pk + SEED_BYTES, VEC_N_SIZE_BYTES); | |||
} | |||
@@ -157,8 +160,10 @@ void PQCLEAN_HQCRMRS256_AVX2_hqc_public_key_from_string(uint64_t *h, uint64_t *s | |||
*/ | |||
void PQCLEAN_HQCRMRS256_AVX2_hqc_ciphertext_to_string(uint8_t *ct, const uint64_t *u, const uint64_t *v, const uint8_t *d) { | |||
PQCLEAN_HQCRMRS256_AVX2_store8_arr(ct, VEC_N_SIZE_BYTES, u, VEC_N_SIZE_64); | |||
PQCLEAN_HQCRMRS256_AVX2_store8_arr(ct + VEC_N_SIZE_BYTES, VEC_N_SIZE_BYTES, v, VEC_N1N2_SIZE_64); | |||
memcpy(ct + VEC_N_SIZE_BYTES + VEC_N1N2_SIZE_BYTES, d, SHA512_BYTES); | |||
ct += VEC_N_SIZE_BYTES; | |||
PQCLEAN_HQCRMRS256_AVX2_store8_arr(ct, VEC_N1N2_SIZE_BYTES, v, VEC_N1N2_SIZE_64); | |||
ct += VEC_N1N2_SIZE_BYTES; | |||
memcpy(ct, d, SHA512_BYTES); | |||
} | |||
@@ -174,6 +179,8 @@ void PQCLEAN_HQCRMRS256_AVX2_hqc_ciphertext_to_string(uint8_t *ct, const uint64_ | |||
*/ | |||
void PQCLEAN_HQCRMRS256_AVX2_hqc_ciphertext_from_string(uint64_t *u, uint64_t *v, uint8_t *d, const uint8_t *ct) { | |||
PQCLEAN_HQCRMRS256_AVX2_load8_arr(u, VEC_N_SIZE_64, ct, VEC_N_SIZE_BYTES); | |||
PQCLEAN_HQCRMRS256_AVX2_load8_arr(v, VEC_N1N2_SIZE_64, ct + VEC_N_SIZE_BYTES, VEC_N1N2_SIZE_BYTES); | |||
memcpy(d, ct + VEC_N_SIZE_BYTES + VEC_N1N2_SIZE_BYTES, SHA512_BYTES); | |||
ct += VEC_N_SIZE_BYTES; | |||
PQCLEAN_HQCRMRS256_AVX2_load8_arr(v, VEC_N1N2_SIZE_64, ct, VEC_N1N2_SIZE_BYTES); | |||
ct += VEC_N1N2_SIZE_BYTES; | |||
memcpy(d, ct, SHA512_BYTES); | |||
} |
@@ -21,8 +21,8 @@ | |||
* @param[out] em Pointer to an array that is the tensor code word | |||
* @param[in] m Pointer to an array that is the message | |||
*/ | |||
void PQCLEAN_HQCRMRS256_CLEAN_code_encode(uint64_t *em, const uint64_t *m) { | |||
uint64_t tmp[VEC_N1_SIZE_64] = {0}; | |||
void PQCLEAN_HQCRMRS256_CLEAN_code_encode(uint8_t *em, const uint8_t *m) { | |||
uint8_t tmp[VEC_N1_SIZE_BYTES] = {0}; | |||
PQCLEAN_HQCRMRS256_CLEAN_reed_solomon_encode(tmp, m); | |||
PQCLEAN_HQCRMRS256_CLEAN_reed_muller_encode(em, tmp); | |||
@@ -37,11 +37,10 @@ void PQCLEAN_HQCRMRS256_CLEAN_code_encode(uint64_t *em, const uint64_t *m) { | |||
* @param[out] m Pointer to an array that is the message | |||
* @param[in] em Pointer to an array that is the code word | |||
*/ | |||
void PQCLEAN_HQCRMRS256_CLEAN_code_decode(uint64_t *m, const uint64_t *em) { | |||
uint64_t tmp[VEC_N1_SIZE_64] = {0}; | |||
void PQCLEAN_HQCRMRS256_CLEAN_code_decode(uint8_t *m, const uint8_t *em) { | |||
uint8_t tmp[VEC_N1_SIZE_BYTES] = {0}; | |||
PQCLEAN_HQCRMRS256_CLEAN_reed_muller_decode(tmp, em); | |||
PQCLEAN_HQCRMRS256_CLEAN_reed_solomon_decode(m, tmp); | |||
} |
@@ -12,9 +12,9 @@ | |||
#include <stddef.h> | |||
#include <stdint.h> | |||
void PQCLEAN_HQCRMRS256_CLEAN_code_encode(uint64_t *em, const uint64_t *message); | |||
void PQCLEAN_HQCRMRS256_CLEAN_code_encode(uint8_t *em, const uint8_t *message); | |||
void PQCLEAN_HQCRMRS256_CLEAN_code_decode(uint64_t *m, const uint64_t *em); | |||
void PQCLEAN_HQCRMRS256_CLEAN_code_decode(uint8_t *m, const uint8_t *em); | |||
#endif |
@@ -1,10 +1,9 @@ | |||
#include "gf2x.h" | |||
#include "nistseedexpander.h" | |||
#include "parameters.h" | |||
#include "parsing.h" | |||
#include "randombytes.h" | |||
#include <stdint.h> | |||
#include <stdio.h> | |||
#include <string.h> | |||
/** | |||
* \file gf2x.c | |||
* \brief Implementation of multiplication of two polynomials | |||
@@ -13,7 +12,7 @@ | |||
static inline void swap(uint16_t *tab, uint16_t elt1, uint16_t elt2); | |||
static void reduce(uint64_t *o, const uint64_t *a); | |||
static void fast_convolution_mult(uint64_t *o, const uint32_t *a1, const uint64_t *a2, uint16_t weight, AES_XOF_struct *ctx); | |||
static void fast_convolution_mult(uint8_t *o, const uint32_t *a1, const uint64_t *a2, uint16_t weight, AES_XOF_struct *ctx); | |||
/** | |||
* @brief swap two elements in a table | |||
@@ -68,7 +67,7 @@ static void reduce(uint64_t *o, const uint64_t *a) { | |||
* @param[in] weight Hamming wifht of the sparse polynomial a2 | |||
* @param[in] ctx Pointer to a seed expander used to randomize the multiplication process | |||
*/ | |||
static void fast_convolution_mult(uint64_t *o, const uint32_t *a1, const uint64_t *a2, uint16_t weight, AES_XOF_struct *ctx) { | |||
static void fast_convolution_mult(uint8_t *o, const uint32_t *a1, const uint64_t *a2, uint16_t weight, AES_XOF_struct *ctx) { | |||
//static uint32_t fast_convolution_mult(const uint64_t *A, const uint32_t *vB, uint64_t *C, const uint16_t w, AES_XOF_struct *ctx) | |||
uint64_t carry; | |||
uint32_t dec, s; | |||
@@ -77,8 +76,9 @@ static void fast_convolution_mult(uint64_t *o, const uint32_t *a1, const uint64_ | |||
uint16_t permutation_table[16]; | |||
uint16_t permuted_sparse_vect[PARAM_OMEGA_E]; | |||
uint16_t permutation_sparse_vect[PARAM_OMEGA_E]; | |||
uint64_t tmp; | |||
uint64_t *pt; | |||
uint16_t *res_16; | |||
uint8_t *res; | |||
size_t i, j; | |||
for (i = 0; i < 16; i++) { | |||
@@ -120,14 +120,13 @@ static void fast_convolution_mult(uint64_t *o, const uint32_t *a1, const uint64_ | |||
for (i = 0; i < weight; i++) { | |||
dec = a1[permuted_sparse_vect[i]] & 0xf; | |||
s = a1[permuted_sparse_vect[i]] >> 4; | |||
res_16 = ((uint16_t *) o) + s; | |||
res = o + 2 * s; | |||
pt = table + (permuted_table[dec] * (VEC_N_SIZE_64 + 1)); | |||
for (j = 0; j < VEC_N_SIZE_64 + 1; j++) { | |||
*res_16++ ^= (uint16_t) pt[j]; | |||
*res_16++ ^= (uint16_t) (pt[j] >> 16); | |||
*res_16++ ^= (uint16_t) (pt[j] >> 32); | |||
*res_16++ ^= (uint16_t) (pt[j] >> 48); | |||
tmp = PQCLEAN_HQCRMRS256_CLEAN_load8(res); | |||
PQCLEAN_HQCRMRS256_CLEAN_store8(res, tmp ^ pt[j]); | |||
res += 8; | |||
} | |||
} | |||
} | |||
@@ -147,11 +146,9 @@ static void fast_convolution_mult(uint64_t *o, const uint32_t *a1, const uint64_ | |||
* @param[in] ctx Pointer to the randomness context | |||
*/ | |||
void PQCLEAN_HQCRMRS256_CLEAN_vect_mul(uint64_t *o, const uint32_t *a1, const uint64_t *a2, uint16_t weight, AES_XOF_struct *ctx) { | |||
uint64_t tmp[2 * VEC_N_SIZE_64 + 1]; | |||
for (uint32_t j = 0; j < 2 * VEC_N_SIZE_64 + 1; j++) { | |||
tmp[j] = 0; | |||
} | |||
uint64_t tmp[2 * VEC_N_SIZE_64 + 1] = {0}; | |||
fast_convolution_mult(tmp, a1, a2, weight, ctx); | |||
fast_convolution_mult((uint8_t *) tmp, a1, a2, weight, ctx); | |||
PQCLEAN_HQCRMRS256_CLEAN_load8_arr(tmp, 2 * VEC_N_SIZE_64 + 1, (uint8_t *) tmp, sizeof(tmp)); | |||
reduce(o, tmp); | |||
} |
@@ -70,7 +70,7 @@ void PQCLEAN_HQCRMRS256_CLEAN_hqc_pke_keygen(unsigned char *pk, unsigned char *s | |||
* @param[in] theta Seed used to derive randomness required for encryption | |||
* @param[in] pk String containing the public key | |||
*/ | |||
void PQCLEAN_HQCRMRS256_CLEAN_hqc_pke_encrypt(uint64_t *u, uint64_t *v, uint64_t *m, unsigned char *theta, const unsigned char *pk) { | |||
void PQCLEAN_HQCRMRS256_CLEAN_hqc_pke_encrypt(uint64_t *u, uint64_t *v, uint8_t *m, unsigned char *theta, const unsigned char *pk) { | |||
AES_XOF_struct seedexpander; | |||
uint64_t h[VEC_N_SIZE_64] = {0}; | |||
uint64_t s[VEC_N_SIZE_64] = {0}; | |||
@@ -96,7 +96,8 @@ void PQCLEAN_HQCRMRS256_CLEAN_hqc_pke_encrypt(uint64_t *u, uint64_t *v, uint64_t | |||
PQCLEAN_HQCRMRS256_CLEAN_vect_add(u, r1, u, VEC_N_SIZE_64); | |||
// Compute v = m.G by encoding the message | |||
PQCLEAN_HQCRMRS256_CLEAN_code_encode(v, m); | |||
PQCLEAN_HQCRMRS256_CLEAN_code_encode((uint8_t *)v, m); | |||
PQCLEAN_HQCRMRS256_CLEAN_load8_arr(v, VEC_N1N2_SIZE_64, (uint8_t *)v, VEC_N1N2_SIZE_BYTES); | |||
PQCLEAN_HQCRMRS256_CLEAN_vect_resize(tmp1, PARAM_N, v, PARAM_N1N2); | |||
// Compute v = m.G + s.r2 + e | |||
@@ -117,17 +118,16 @@ void PQCLEAN_HQCRMRS256_CLEAN_hqc_pke_encrypt(uint64_t *u, uint64_t *v, uint64_t | |||
* @param[in] v Vector v (second part of the ciphertext) | |||
* @param[in] sk String containing the secret key | |||
*/ | |||
void PQCLEAN_HQCRMRS256_CLEAN_hqc_pke_decrypt(uint64_t *m, const uint64_t *u, const uint64_t *v, const unsigned char *sk) { | |||
uint64_t x[VEC_N_SIZE_64] = {0}; | |||
uint32_t y[PARAM_OMEGA] = {0}; | |||
void PQCLEAN_HQCRMRS256_CLEAN_hqc_pke_decrypt(uint8_t *m, const uint64_t *u, const uint64_t *v, const unsigned char *sk) { | |||
uint8_t pk[PUBLIC_KEY_BYTES] = {0}; | |||
uint64_t tmp1[VEC_N_SIZE_64] = {0}; | |||
uint64_t tmp2[VEC_N_SIZE_64] = {0}; | |||
uint32_t y[PARAM_OMEGA] = {0}; | |||
AES_XOF_struct perm_seedexpander; | |||
uint8_t perm_seed[SEED_BYTES] = {0}; | |||
// Retrieve x, y, pk from secret key | |||
PQCLEAN_HQCRMRS256_CLEAN_hqc_secret_key_from_string(x, y, pk, sk); | |||
PQCLEAN_HQCRMRS256_CLEAN_hqc_secret_key_from_string(tmp1, y, pk, sk); | |||
randombytes(perm_seed, SEED_BYTES); | |||
seedexpander_init(&perm_seedexpander, perm_seed, perm_seed + 32, SEEDEXPANDER_MAX_LENGTH); | |||
@@ -139,5 +139,6 @@ void PQCLEAN_HQCRMRS256_CLEAN_hqc_pke_decrypt(uint64_t *m, const uint64_t *u, co | |||
// Compute m by decoding v - u.y | |||
PQCLEAN_HQCRMRS256_CLEAN_code_decode(m, tmp2); | |||
PQCLEAN_HQCRMRS256_CLEAN_store8_arr((uint8_t *)tmp1, VEC_N_SIZE_BYTES, tmp2, VEC_N_SIZE_64); | |||
PQCLEAN_HQCRMRS256_CLEAN_code_decode(m, (uint8_t *)tmp1); | |||
} |
@@ -13,9 +13,9 @@ | |||
void PQCLEAN_HQCRMRS256_CLEAN_hqc_pke_keygen(unsigned char *pk, unsigned char *sk); | |||
void PQCLEAN_HQCRMRS256_CLEAN_hqc_pke_encrypt(uint64_t *u, uint64_t *v, uint64_t *m, unsigned char *theta, const unsigned char *pk); | |||
void PQCLEAN_HQCRMRS256_CLEAN_hqc_pke_encrypt(uint64_t *u, uint64_t *v, uint8_t *m, unsigned char *theta, const unsigned char *pk); | |||
void PQCLEAN_HQCRMRS256_CLEAN_hqc_pke_decrypt(uint64_t *m, const uint64_t *u, const uint64_t *v, const unsigned char *sk); | |||
void PQCLEAN_HQCRMRS256_CLEAN_hqc_pke_decrypt(uint8_t *m, const uint64_t *u, const uint64_t *v, const unsigned char *sk); | |||
#endif |
@@ -47,26 +47,26 @@ int PQCLEAN_HQCRMRS256_CLEAN_crypto_kem_keypair(unsigned char *pk, unsigned char | |||
int PQCLEAN_HQCRMRS256_CLEAN_crypto_kem_enc(unsigned char *ct, unsigned char *ss, const unsigned char *pk) { | |||
uint8_t theta[SHA512_BYTES] = {0}; | |||
uint64_t m[VEC_K_SIZE_64] = {0}; | |||
uint8_t m[VEC_K_SIZE_BYTES] = {0}; | |||
uint64_t u[VEC_N_SIZE_64] = {0}; | |||
uint64_t v[VEC_N1N2_SIZE_64] = {0}; | |||
unsigned char d[SHA512_BYTES] = {0}; | |||
unsigned char mc[VEC_K_SIZE_BYTES + VEC_N_SIZE_BYTES + VEC_N1N2_SIZE_BYTES] = {0}; | |||
// Computing m | |||
PQCLEAN_HQCRMRS256_CLEAN_vect_set_random_from_randombytes(m); | |||
randombytes(m, VEC_K_SIZE_BYTES); | |||
// Computing theta | |||
sha3_512(theta, (uint8_t *) m, VEC_K_SIZE_BYTES); | |||
sha3_512(theta, m, VEC_K_SIZE_BYTES); | |||
// Encrypting m | |||
PQCLEAN_HQCRMRS256_CLEAN_hqc_pke_encrypt(u, v, m, theta, pk); | |||
// Computing d | |||
sha512(d, (unsigned char *) m, VEC_K_SIZE_BYTES); | |||
sha512(d, m, VEC_K_SIZE_BYTES); | |||
// Computing shared secret | |||
PQCLEAN_HQCRMRS256_CLEAN_store8_arr(mc, VEC_K_SIZE_BYTES, m, VEC_K_SIZE_64); | |||
memcpy(mc, m, VEC_K_SIZE_BYTES); | |||
PQCLEAN_HQCRMRS256_CLEAN_store8_arr(mc + VEC_K_SIZE_BYTES, VEC_N_SIZE_BYTES, u, VEC_N_SIZE_64); | |||
PQCLEAN_HQCRMRS256_CLEAN_store8_arr(mc + VEC_K_SIZE_BYTES + VEC_N_SIZE_BYTES, VEC_N1N2_SIZE_BYTES, v, VEC_N1N2_SIZE_64); | |||
sha512(ss, mc, VEC_K_SIZE_BYTES + VEC_N_SIZE_BYTES + VEC_N1N2_SIZE_BYTES); | |||
@@ -95,7 +95,7 @@ int PQCLEAN_HQCRMRS256_CLEAN_crypto_kem_dec(unsigned char *ss, const unsigned ch | |||
uint64_t v[VEC_N1N2_SIZE_64] = {0}; | |||
unsigned char d[SHA512_BYTES] = {0}; | |||
unsigned char pk[PUBLIC_KEY_BYTES] = {0}; | |||
uint64_t m[VEC_K_SIZE_64] = {0}; | |||
uint8_t m[VEC_K_SIZE_BYTES] = {0}; | |||
uint8_t theta[SHA512_BYTES] = {0}; | |||
uint64_t u2[VEC_N_SIZE_64] = {0}; | |||
uint64_t v2[VEC_N1N2_SIZE_64] = {0}; | |||
@@ -112,16 +112,16 @@ int PQCLEAN_HQCRMRS256_CLEAN_crypto_kem_dec(unsigned char *ss, const unsigned ch | |||
PQCLEAN_HQCRMRS256_CLEAN_hqc_pke_decrypt(m, u, v, sk); | |||
// Computing theta | |||
sha3_512(theta, (uint8_t *) m, VEC_K_SIZE_BYTES); | |||
sha3_512(theta, m, VEC_K_SIZE_BYTES); | |||
// Encrypting m' | |||
PQCLEAN_HQCRMRS256_CLEAN_hqc_pke_encrypt(u2, v2, m, theta, pk); | |||
// Computing d' | |||
sha512(d2, (unsigned char *) m, VEC_K_SIZE_BYTES); | |||
sha512(d2, m, VEC_K_SIZE_BYTES); | |||
// Computing shared secret | |||
PQCLEAN_HQCRMRS256_CLEAN_store8_arr(mc, VEC_K_SIZE_BYTES, m, VEC_K_SIZE_64); | |||
memcpy(mc, m, VEC_K_SIZE_BYTES); | |||
PQCLEAN_HQCRMRS256_CLEAN_store8_arr(mc + VEC_K_SIZE_BYTES, VEC_N_SIZE_BYTES, u, VEC_N_SIZE_64); | |||
PQCLEAN_HQCRMRS256_CLEAN_store8_arr(mc + VEC_K_SIZE_BYTES + VEC_N_SIZE_BYTES, VEC_N1N2_SIZE_BYTES, v, VEC_N1N2_SIZE_64); | |||
sha512(ss, mc, VEC_K_SIZE_BYTES + VEC_N_SIZE_BYTES + VEC_N1N2_SIZE_BYTES); | |||
@@ -82,7 +82,8 @@ void PQCLEAN_HQCRMRS256_CLEAN_store8_arr(uint8_t *out8, size_t outlen, const uin | |||
*/ | |||
void PQCLEAN_HQCRMRS256_CLEAN_hqc_secret_key_to_string(uint8_t *sk, const uint8_t *sk_seed, const uint8_t *pk) { | |||
memcpy(sk, sk_seed, SEED_BYTES); | |||
memcpy(sk + SEED_BYTES, pk, PUBLIC_KEY_BYTES); | |||
sk += SEED_BYTES; | |||
memcpy(sk, pk, PUBLIC_KEY_BYTES); | |||
} | |||
/** | |||
@@ -101,11 +102,12 @@ void PQCLEAN_HQCRMRS256_CLEAN_hqc_secret_key_from_string(uint64_t *x, uint32_t * | |||
uint8_t sk_seed[SEED_BYTES] = {0}; | |||
memcpy(sk_seed, sk, SEED_BYTES); | |||
seedexpander_init(&sk_seedexpander, sk_seed, sk_seed + 32, SEEDEXPANDER_MAX_LENGTH); | |||
sk += SEED_BYTES; | |||
memcpy(pk, sk, PUBLIC_KEY_BYTES); | |||
seedexpander_init(&sk_seedexpander, sk_seed, sk_seed + 32, SEEDEXPANDER_MAX_LENGTH); | |||
PQCLEAN_HQCRMRS256_CLEAN_vect_set_random_fixed_weight(&sk_seedexpander, x, PARAM_OMEGA); | |||
PQCLEAN_HQCRMRS256_CLEAN_vect_set_random_fixed_weight_by_coordinates(&sk_seedexpander, y, PARAM_OMEGA); | |||
memcpy(pk, sk + SEED_BYTES, PUBLIC_KEY_BYTES); | |||
} | |||
/** | |||
@@ -119,7 +121,7 @@ void PQCLEAN_HQCRMRS256_CLEAN_hqc_secret_key_from_string(uint64_t *x, uint32_t * | |||
*/ | |||
void PQCLEAN_HQCRMRS256_CLEAN_hqc_public_key_to_string(uint8_t *pk, const uint8_t *pk_seed, const uint64_t *s) { | |||
memcpy(pk, pk_seed, SEED_BYTES); | |||
memcpy(pk + SEED_BYTES, s, VEC_N_SIZE_BYTES); | |||
PQCLEAN_HQCRMRS256_CLEAN_store8_arr(pk + SEED_BYTES, VEC_N_SIZE_BYTES, s, VEC_N_SIZE_64); | |||
} | |||
@@ -138,10 +140,11 @@ void PQCLEAN_HQCRMRS256_CLEAN_hqc_public_key_from_string(uint64_t *h, uint64_t * | |||
uint8_t pk_seed[SEED_BYTES] = {0}; | |||
memcpy(pk_seed, pk, SEED_BYTES); | |||
pk += SEED_BYTES; | |||
PQCLEAN_HQCRMRS256_CLEAN_load8_arr(s, VEC_N_SIZE_64, pk, VEC_N_SIZE_BYTES); | |||
seedexpander_init(&pk_seedexpander, pk_seed, pk_seed + 32, SEEDEXPANDER_MAX_LENGTH); | |||
PQCLEAN_HQCRMRS256_CLEAN_vect_set_random(&pk_seedexpander, h); | |||
memcpy(s, pk + SEED_BYTES, VEC_N_SIZE_BYTES); | |||
} | |||
@@ -156,9 +159,11 @@ void PQCLEAN_HQCRMRS256_CLEAN_hqc_public_key_from_string(uint64_t *h, uint64_t * | |||
* @param[in] d String containing the hash d | |||
*/ | |||
void PQCLEAN_HQCRMRS256_CLEAN_hqc_ciphertext_to_string(uint8_t *ct, const uint64_t *u, const uint64_t *v, const uint8_t *d) { | |||
memcpy(ct, u, VEC_N_SIZE_BYTES); | |||
memcpy(ct + VEC_N_SIZE_BYTES, v, VEC_N1N2_SIZE_BYTES); | |||
memcpy(ct + VEC_N_SIZE_BYTES + VEC_N1N2_SIZE_BYTES, d, SHA512_BYTES); | |||
PQCLEAN_HQCRMRS256_CLEAN_store8_arr(ct, VEC_N_SIZE_BYTES, u, VEC_N_SIZE_64); | |||
ct += VEC_N_SIZE_BYTES; | |||
PQCLEAN_HQCRMRS256_CLEAN_store8_arr(ct, VEC_N1N2_SIZE_BYTES, v, VEC_N1N2_SIZE_64); | |||
ct += VEC_N1N2_SIZE_BYTES; | |||
memcpy(ct, d, SHA512_BYTES); | |||
} | |||
@@ -173,7 +178,9 @@ void PQCLEAN_HQCRMRS256_CLEAN_hqc_ciphertext_to_string(uint8_t *ct, const uint64 | |||
* @param[in] ct String containing the ciphertext | |||
*/ | |||
void PQCLEAN_HQCRMRS256_CLEAN_hqc_ciphertext_from_string(uint64_t *u, uint64_t *v, uint8_t *d, const uint8_t *ct) { | |||
memcpy(u, ct, VEC_N_SIZE_BYTES); | |||
memcpy(v, ct + VEC_N_SIZE_BYTES, VEC_N1N2_SIZE_BYTES); | |||
memcpy(d, ct + VEC_N_SIZE_BYTES + VEC_N1N2_SIZE_BYTES, SHA512_BYTES); | |||
PQCLEAN_HQCRMRS256_CLEAN_load8_arr(u, VEC_N_SIZE_64, ct, VEC_N_SIZE_BYTES); | |||
ct += VEC_N_SIZE_BYTES; | |||
PQCLEAN_HQCRMRS256_CLEAN_load8_arr(v, VEC_N1N2_SIZE_64, ct, VEC_N1N2_SIZE_BYTES); | |||
ct += VEC_N1N2_SIZE_BYTES; | |||
memcpy(d, ct, SHA512_BYTES); | |||
} |
@@ -16,9 +16,9 @@ | |||
#define BIT0MASK(x) (-((x) & 1)) | |||
static void encode(uint32_t *word, uint8_t message); | |||
static void encode(uint8_t *word, uint8_t message); | |||
static void hadamard(uint16_t src[128], uint16_t dst[128]); | |||
static void expand_and_sum(uint16_t dest[128], const uint32_t src[4 * MULTIPLICITY]); | |||
static void expand_and_sum(uint16_t dest[128], const uint8_t src[16 * MULTIPLICITY]); | |||
static uint8_t find_peaks(const uint16_t transform[128]); | |||
@@ -40,28 +40,38 @@ static uint8_t find_peaks(const uint16_t transform[128]); | |||
* @param[out] word An RM(1,7) codeword | |||
* @param[in] message A message | |||
*/ | |||
static void encode(uint32_t *word, uint8_t message) { | |||
// the four parts of the word are identical | |||
// except for encoding bits 5 and 6 | |||
uint32_t first_word; | |||
static void encode(uint8_t *word, uint8_t message) { | |||
uint32_t e; | |||
// bit 7 flips all the bits, do that first to save work | |||
first_word = BIT0MASK(message >> 7); | |||
e = BIT0MASK(message >> 7); | |||
// bits 0, 1, 2, 3, 4 are the same for all four longs | |||
// (Warning: in the bit matrix above, low bits are at the left!) | |||
first_word ^= BIT0MASK(message >> 0) & 0xaaaaaaaa; | |||
first_word ^= BIT0MASK(message >> 1) & 0xcccccccc; | |||
first_word ^= BIT0MASK(message >> 2) & 0xf0f0f0f0; | |||
first_word ^= BIT0MASK(message >> 3) & 0xff00ff00; | |||
first_word ^= BIT0MASK(message >> 4) & 0xffff0000; | |||
e ^= BIT0MASK(message >> 0) & 0xaaaaaaaa; | |||
e ^= BIT0MASK(message >> 1) & 0xcccccccc; | |||
e ^= BIT0MASK(message >> 2) & 0xf0f0f0f0; | |||
e ^= BIT0MASK(message >> 3) & 0xff00ff00; | |||
e ^= BIT0MASK(message >> 4) & 0xffff0000; | |||
// we can store this in the first quarter | |||
word[0] = first_word; | |||
word[0 + 0] = (e >> 0x00) & 0xff; | |||
word[0 + 1] = (e >> 0x08) & 0xff; | |||
word[0 + 2] = (e >> 0x10) & 0xff; | |||
word[0 + 3] = (e >> 0x18) & 0xff; | |||
// bit 5 flips entries 1 and 3; bit 6 flips 2 and 3 | |||
first_word ^= BIT0MASK(message >> 5); | |||
word[1] = first_word; | |||
first_word ^= BIT0MASK(message >> 6); | |||
word[3] = first_word; | |||
first_word ^= BIT0MASK(message >> 5); | |||
word[2] = first_word; | |||
e ^= BIT0MASK(message >> 5); | |||
word[4 + 0] = (e >> 0x00) & 0xff; | |||
word[4 + 1] = (e >> 0x08) & 0xff; | |||
word[4 + 2] = (e >> 0x10) & 0xff; | |||
word[4 + 3] = (e >> 0x18) & 0xff; | |||
e ^= BIT0MASK(message >> 6); | |||
word[12 + 0] = (e >> 0x00) & 0xff; | |||
word[12 + 1] = (e >> 0x08) & 0xff; | |||
word[12 + 2] = (e >> 0x10) & 0xff; | |||
word[12 + 3] = (e >> 0x18) & 0xff; | |||
e ^= BIT0MASK(message >> 5); | |||
word[8 + 0] = (e >> 0x00) & 0xff; | |||
word[8 + 1] = (e >> 0x08) & 0xff; | |||
word[8 + 2] = (e >> 0x10) & 0xff; | |||
word[8 + 3] = (e >> 0x18) & 0xff; | |||
} | |||
@@ -131,18 +141,19 @@ static void hadamard(uint16_t src[128], uint16_t dst[128]) { | |||
* @param[out] dest Structure that contain the expanded codeword | |||
* @param[in] src Structure that contain the codeword | |||
*/ | |||
static void expand_and_sum(uint16_t dest[128], const uint32_t src[4 * MULTIPLICITY]) { | |||
static void expand_and_sum(uint16_t dest[128], const uint8_t src[16 * MULTIPLICITY]) { | |||
size_t part, bit, copy; | |||
// start with the first copy | |||
for (uint32_t part = 0; part < 4; part++) { | |||
for (uint32_t bit = 0; bit < 32; bit++) { | |||
dest[part * 32 + bit] = (uint16_t) ((src[part] >> bit) & 1); | |||
for (part = 0; part < 16; part++) { | |||
for (bit = 0; bit < 8; bit++) { | |||
dest[part * 8 + bit] = (uint16_t) ((src[part] >> bit) & 1); | |||
} | |||
} | |||
// sum the rest of the copies | |||
for (uint32_t copy = 1; copy < MULTIPLICITY; copy++) { | |||
for (uint32_t part = 0; part < 4; part++) { | |||
for (uint32_t bit = 0; bit < 32; bit++) { | |||
dest[part * 32 + bit] += (uint16_t) ((src[4 * copy + part] >> bit) & 1); | |||
for (copy = 1; copy < MULTIPLICITY; copy++) { | |||
for (part = 0; part < 16; part++) { | |||
for (bit = 0; bit < 8; bit++) { | |||
dest[part * 8 + bit] += (uint16_t) ((src[16 * copy + part] >> bit) & 1); | |||
} | |||
} | |||
} | |||
@@ -188,15 +199,13 @@ static uint8_t find_peaks(const uint16_t transform[128]) { | |||
* @param[out] cdw Array of size VEC_N1N2_SIZE_64 receiving the encoded message | |||
* @param[in] msg Array of size VEC_N1_SIZE_64 storing the message | |||
*/ | |||
void PQCLEAN_HQCRMRS256_CLEAN_reed_muller_encode(uint64_t *cdw, const uint64_t *msg) { | |||
uint8_t *message_array = (uint8_t *) msg; | |||
uint32_t *codeArray = (uint32_t *) cdw; | |||
void PQCLEAN_HQCRMRS256_CLEAN_reed_muller_encode(uint8_t *cdw, const uint8_t *msg) { | |||
for (size_t i = 0; i < VEC_N1_SIZE_BYTES; i++) { | |||
// encode first word | |||
encode(&codeArray[4 * i * MULTIPLICITY], message_array[i]); | |||
encode(&cdw[16 * i * MULTIPLICITY], msg[i]); | |||
// copy to other identical codewords | |||
for (size_t copy = 1; copy < MULTIPLICITY; copy++) { | |||
memcpy(&codeArray[4 * i * MULTIPLICITY + 4 * copy], &codeArray[4 * i * MULTIPLICITY], 4 * sizeof(uint32_t)); | |||
memcpy(&cdw[16 * i * MULTIPLICITY + 16 * copy], &cdw[16 * i * MULTIPLICITY], 16); | |||
} | |||
} | |||
} | |||
@@ -212,19 +221,17 @@ void PQCLEAN_HQCRMRS256_CLEAN_reed_muller_encode(uint64_t *cdw, const uint64_t * | |||
* @param[out] msg Array of size VEC_N1_SIZE_64 receiving the decoded message | |||
* @param[in] cdw Array of size VEC_N1N2_SIZE_64 storing the received word | |||
*/ | |||
void PQCLEAN_HQCRMRS256_CLEAN_reed_muller_decode(uint64_t *msg, const uint64_t *cdw) { | |||
uint8_t *message_array = (uint8_t *) msg; | |||
uint32_t *codeArray = (uint32_t *) cdw; | |||
void PQCLEAN_HQCRMRS256_CLEAN_reed_muller_decode(uint8_t *msg, const uint8_t *cdw) { | |||
uint16_t expanded[128]; | |||
uint16_t transform[128]; | |||
for (size_t i = 0; i < VEC_N1_SIZE_BYTES; i++) { | |||
// collect the codewords | |||
expand_and_sum(expanded, &codeArray[4 * i * MULTIPLICITY]); | |||
expand_and_sum(expanded, &cdw[16 * i * MULTIPLICITY]); | |||
// apply hadamard transform | |||
hadamard(expanded, transform); | |||
// fix the first entry to get the half Hadamard transform | |||
transform[0] -= 64 * MULTIPLICITY; | |||
// finish the decoding | |||
message_array[i] = find_peaks(transform); | |||
msg[i] = find_peaks(transform); | |||
} | |||
} |
@@ -12,9 +12,9 @@ | |||
#include <stddef.h> | |||
#include <stdint.h> | |||
void PQCLEAN_HQCRMRS256_CLEAN_reed_muller_encode(uint64_t *cdw, const uint64_t *msg); | |||
void PQCLEAN_HQCRMRS256_CLEAN_reed_muller_encode(uint8_t *cdw, const uint8_t *msg); | |||
void PQCLEAN_HQCRMRS256_CLEAN_reed_muller_decode(uint64_t *msg, const uint64_t *cdw); | |||
void PQCLEAN_HQCRMRS256_CLEAN_reed_muller_decode(uint8_t *msg, const uint8_t *cdw); | |||
#endif |
@@ -1,6 +1,7 @@ | |||
#include "fft.h" | |||
#include "gf.h" | |||
#include "parameters.h" | |||
#include "parsing.h" | |||
#include "reed_solomon.h" | |||
#include <stdint.h> | |||
#include <stdio.h> | |||
@@ -30,37 +31,31 @@ static void correct_errors(uint8_t *cdw, const uint16_t *error_values); | |||
* @param[out] cdw Array of size VEC_N1_SIZE_64 receiving the encoded message | |||
* @param[in] msg Array of size VEC_K_SIZE_64 storing the message | |||
*/ | |||
void PQCLEAN_HQCRMRS256_CLEAN_reed_solomon_encode(uint64_t *cdw, const uint64_t *msg) { | |||
void PQCLEAN_HQCRMRS256_CLEAN_reed_solomon_encode(uint8_t *cdw, const uint8_t *msg) { | |||
uint8_t gate_value = 0; | |||
uint16_t tmp[PARAM_G] = {0}; | |||
uint16_t PARAM_RS_POLY [] = {RS_POLY_COEFS}; | |||
uint8_t msg_bytes[PARAM_K] = {0}; | |||
uint8_t cdw_bytes[PARAM_N1] = {0}; | |||
for (size_t i = 0; i < VEC_K_SIZE_64; ++i) { | |||
for (size_t j = 0; j < 8; ++j) { | |||
msg_bytes[i * 8 + j] = (uint8_t) (msg[i] >> (j * 8)); | |||
} | |||
for (size_t i = 0; i < PARAM_N1; i++) { | |||
cdw[i] = 0; | |||
} | |||
for (int i = PARAM_K - 1; i >= 0; --i) { | |||
gate_value = msg_bytes[i] ^ cdw_bytes[PARAM_N1 - PARAM_K - 1]; | |||
gate_value = msg[i] ^ cdw[PARAM_N1 - PARAM_K - 1]; | |||
for (size_t j = 0; j < PARAM_G; ++j) { | |||
tmp[j] = PQCLEAN_HQCRMRS256_CLEAN_gf_mul(gate_value, PARAM_RS_POLY[j]); | |||
} | |||
for (size_t k = PARAM_N1 - PARAM_K - 1; k; --k) { | |||
cdw_bytes[k] = cdw_bytes[k - 1] ^ tmp[k]; | |||
cdw[k] = cdw[k - 1] ^ tmp[k]; | |||
} | |||
cdw_bytes[0] = tmp[0]; | |||
cdw[0] = tmp[0]; | |||
} | |||
memcpy(cdw_bytes + PARAM_N1 - PARAM_K, msg_bytes, PARAM_K); | |||
memcpy(cdw, cdw_bytes, PARAM_N1); | |||
memcpy(cdw + PARAM_N1 - PARAM_K, msg, PARAM_K); | |||
} | |||
@@ -312,8 +307,7 @@ static void correct_errors(uint8_t *cdw, const uint16_t *error_values) { | |||
* @param[out] msg Array of size VEC_K_SIZE_64 receiving the decoded message | |||
* @param[in] cdw Array of size VEC_N1_SIZE_64 storing the received word | |||
*/ | |||
void PQCLEAN_HQCRMRS256_CLEAN_reed_solomon_decode(uint64_t *msg, uint64_t *cdw) { | |||
uint8_t cdw_bytes[PARAM_N1] = {0}; | |||
void PQCLEAN_HQCRMRS256_CLEAN_reed_solomon_decode(uint8_t *msg, uint8_t *cdw) { | |||
uint16_t syndromes[2 * PARAM_DELTA] = {0}; | |||
uint16_t sigma[1 << PARAM_FFT] = {0}; | |||
uint8_t error[1 << PARAM_M] = {0}; | |||
@@ -321,11 +315,8 @@ void PQCLEAN_HQCRMRS256_CLEAN_reed_solomon_decode(uint64_t *msg, uint64_t *cdw) | |||
uint16_t error_values[PARAM_N1] = {0}; | |||
uint16_t deg; | |||
// Copy the vector in an array of bytes | |||
memcpy(cdw_bytes, cdw, PARAM_N1); | |||
// Calculate the 2*PARAM_DELTA syndromes | |||
compute_syndromes(syndromes, cdw_bytes); | |||
compute_syndromes(syndromes, cdw); | |||
// Compute the error locator polynomial sigma | |||
// Sigma's degree is at most PARAM_DELTA but the FFT requires the extra room | |||
@@ -341,9 +332,9 @@ void PQCLEAN_HQCRMRS256_CLEAN_reed_solomon_decode(uint64_t *msg, uint64_t *cdw) | |||
compute_error_values(error_values, z, error); | |||
// Correct the errors | |||
correct_errors(cdw_bytes, error_values); | |||
correct_errors(cdw, error_values); | |||
// Retrieve the message from the decoded codeword | |||
memcpy(msg, cdw_bytes + (PARAM_G - 1), PARAM_K); | |||
memcpy(msg, cdw + (PARAM_G - 1), PARAM_K); | |||
} |
@@ -154,22 +154,6 @@ void PQCLEAN_HQCRMRS256_CLEAN_vect_set_random(AES_XOF_struct *ctx, uint64_t *v) | |||
/** | |||
* @brief Generates a random vector | |||
* | |||
* This function generates a random binary vector. It uses the the randombytes function. | |||
* | |||
* @param[in] v Pointer to an array | |||
*/ | |||
void PQCLEAN_HQCRMRS256_CLEAN_vect_set_random_from_randombytes(uint64_t *v) { | |||
uint8_t rand_bytes [VEC_K_SIZE_BYTES] = {0}; | |||
randombytes(rand_bytes, VEC_K_SIZE_BYTES); | |||
memcpy(v, rand_bytes, VEC_K_SIZE_BYTES); | |||
} | |||
/** | |||
* @brief Adds two vectors | |||
* | |||
@@ -185,6 +169,7 @@ void PQCLEAN_HQCRMRS256_CLEAN_vect_add(uint64_t *o, const uint64_t *v1, const ui | |||
} | |||
/** | |||
* @brief Compares two vectors | |||
* | |||
@@ -216,12 +201,12 @@ void PQCLEAN_HQCRMRS256_CLEAN_vect_resize(uint64_t *o, uint32_t size_o, const ui | |||
val = 64 - (size_o % 64); | |||
} | |||
memcpy(o, v, VEC_N1N2_SIZE_BYTES); | |||
memcpy(o, v, 8 * VEC_N1N2_SIZE_64); | |||
for (int8_t i = 0; i < val; ++i) { | |||
o[VEC_N1N2_SIZE_64 - 1] &= (mask >> i); | |||
} | |||
} else { | |||
memcpy(o, v, CEIL_DIVIDE(size_v, 8)); | |||
memcpy(o, v, 8 * CEIL_DIVIDE(size_v, 64)); | |||
} | |||
} |
@@ -18,8 +18,6 @@ void PQCLEAN_HQCRMRS256_CLEAN_vect_set_random_fixed_weight(AES_XOF_struct *ctx, | |||
void PQCLEAN_HQCRMRS256_CLEAN_vect_set_random(AES_XOF_struct *ctx, uint64_t *v); | |||
void PQCLEAN_HQCRMRS256_CLEAN_vect_set_random_from_randombytes(uint64_t *v); | |||
void PQCLEAN_HQCRMRS256_CLEAN_vect_add(uint64_t *o, const uint64_t *v1, const uint64_t *v2, uint32_t size); | |||
@@ -63,8 +63,6 @@ consistency_checks: | |||
scheme: hqc-rmrs-128 | |||
implementation: clean | |||
files: | |||
- code.h | |||
- hqc.h | |||
- source: | |||
scheme: hqc-rmrs-128 | |||
implementation: avx2 | |||
@@ -83,8 +81,6 @@ consistency_checks: | |||
scheme: hqc-rmrs-192 | |||
implementation: clean | |||
files: | |||
- code.h | |||
- hqc.h | |||
- source: | |||
scheme: hqc-rmrs-192 | |||
implementation: avx2 | |||
@@ -102,8 +98,6 @@ consistency_checks: | |||
scheme: hqc-rmrs-256 | |||
implementation: clean | |||
files: | |||
- code.h | |||
- hqc.h | |||
- source: | |||
scheme: hqc-rmrs-256 | |||
implementation: avx2 | |||
@@ -19,7 +19,6 @@ consistency_checks: | |||
- parsing.h | |||
- repetition.h | |||
- vector.h | |||
- bch.c | |||
- code.c | |||
- fft.c | |||
- gf2x.c | |||
@@ -27,6 +26,7 @@ consistency_checks: | |||
- hqc.c | |||
- kem.c | |||
- parsing.c | |||
- vector.c | |||
- source: | |||
scheme: hqc-192 | |||
implementation: avx2 | |||
@@ -46,7 +46,6 @@ consistency_checks: | |||
- parsing.h | |||
- repetition.h | |||
- vector.h | |||
- bch.c | |||
- code.c | |||
- fft.c | |||
- gf2x.c | |||
@@ -54,6 +53,7 @@ consistency_checks: | |||
- hqc.c | |||
- kem.c | |||
- parsing.c | |||
- vector.c | |||
- source: | |||
scheme: hqc-256 | |||
implementation: avx2 | |||
@@ -64,16 +64,13 @@ consistency_checks: | |||
scheme: hqc-rmrs-128 | |||
implementation: clean | |||
files: | |||
- code.h | |||
- gf2x.h | |||
- hqc.h | |||
- parsing.h | |||
- vector.h | |||
- gf2x.c | |||
- gf.c | |||
- hqc.c | |||
- kem.c | |||
- parsing.c | |||
- vector.c | |||
- source: | |||
scheme: hqc-rmrs-128 | |||
implementation: avx2 | |||
@@ -84,16 +81,13 @@ consistency_checks: | |||
scheme: hqc-rmrs-192 | |||
implementation: clean | |||
files: | |||
- code.h | |||
- gf2x.h | |||
- hqc.h | |||
- parsing.h | |||
- vector.h | |||
- gf2x.c | |||
- gf.c | |||
- hqc.c | |||
- kem.c | |||
- parsing.c | |||
- vector.c | |||
- source: | |||
scheme: hqc-rmrs-192 | |||
implementation: avx2 | |||
@@ -104,16 +98,13 @@ consistency_checks: | |||
scheme: hqc-rmrs-256 | |||
implementation: clean | |||
files: | |||
- code.h | |||
- gf2x.h | |||
- hqc.h | |||
- parsing.h | |||
- vector.h | |||
- gf2x.c | |||
- gf.c | |||
- hqc.c | |||
- kem.c | |||
- parsing.c | |||
- vector.c | |||
- source: | |||
scheme: hqc-rmrs-256 | |||
implementation: avx2 | |||
@@ -36,8 +36,6 @@ consistency_checks: | |||
scheme: hqc-rmrs-128 | |||
implementation: clean | |||
files: | |||
- code.h | |||
- hqc.h | |||
- source: | |||
scheme: hqc-rmrs-128 | |||
implementation: avx2 | |||
@@ -54,8 +52,6 @@ consistency_checks: | |||
scheme: hqc-rmrs-192 | |||
implementation: clean | |||
files: | |||
- code.h | |||
- hqc.h | |||
- source: | |||
scheme: hqc-rmrs-192 | |||
implementation: avx2 | |||
@@ -73,8 +69,6 @@ consistency_checks: | |||
scheme: hqc-rmrs-256 | |||
implementation: clean | |||
files: | |||
- code.h | |||
- hqc.h | |||
- source: | |||
scheme: hqc-rmrs-256 | |||
implementation: avx2 | |||
@@ -38,15 +38,11 @@ consistency_checks: | |||
scheme: hqc-rmrs-128 | |||
implementation: clean | |||
files: | |||
- code.h | |||
- gf2x.h | |||
- hqc.h | |||
- parsing.h | |||
- vector.h | |||
- gf2x.c | |||
- gf.c | |||
- hqc.c | |||
- kem.c | |||
- parsing.c | |||
- vector.c | |||
- source: | |||
@@ -59,15 +55,11 @@ consistency_checks: | |||
scheme: hqc-rmrs-192 | |||
implementation: clean | |||
files: | |||
- code.h | |||
- gf2x.h | |||
- hqc.h | |||
- parsing.h | |||
- vector.h | |||
- gf2x.c | |||
- gf.c | |||
- hqc.c | |||
- kem.c | |||
- parsing.c | |||
- vector.c | |||
- source: | |||
@@ -80,15 +72,11 @@ consistency_checks: | |||
scheme: hqc-rmrs-256 | |||
implementation: clean | |||
files: | |||
- code.h | |||
- gf2x.h | |||
- hqc.h | |||
- parsing.h | |||
- vector.h | |||
- gf2x.c | |||
- gf.c | |||
- hqc.c | |||
- kem.c | |||
- parsing.c | |||
- vector.c | |||
- source: | |||
@@ -10,8 +10,6 @@ consistency_checks: | |||
scheme: hqc-rmrs-128 | |||
implementation: clean | |||
files: | |||
- code.h | |||
- hqc.h | |||
- source: | |||
scheme: hqc-rmrs-128 | |||
implementation: avx2 | |||
@@ -28,8 +26,6 @@ consistency_checks: | |||
scheme: hqc-rmrs-192 | |||
implementation: clean | |||
files: | |||
- code.h | |||
- hqc.h | |||
- source: | |||
scheme: hqc-rmrs-192 | |||
implementation: avx2 | |||
@@ -46,8 +42,6 @@ consistency_checks: | |||
scheme: hqc-rmrs-256 | |||
implementation: clean | |||
files: | |||
- code.h | |||
- hqc.h | |||
- source: | |||
scheme: hqc-rmrs-256 | |||
implementation: avx2 | |||
@@ -10,15 +10,11 @@ consistency_checks: | |||
scheme: hqc-rmrs-128 | |||
implementation: clean | |||
files: | |||
- code.h | |||
- gf2x.h | |||
- hqc.h | |||
- parsing.h | |||
- vector.h | |||
- gf2x.c | |||
- gf.c | |||
- hqc.c | |||
- kem.c | |||
- parsing.c | |||
- vector.c | |||
- source: | |||
@@ -31,15 +27,11 @@ consistency_checks: | |||
scheme: hqc-rmrs-192 | |||
implementation: clean | |||
files: | |||
- code.h | |||
- gf2x.h | |||
- hqc.h | |||
- parsing.h | |||
- vector.h | |||
- gf2x.c | |||
- gf.c | |||
- hqc.c | |||
- kem.c | |||
- parsing.c | |||
- vector.c | |||
- source: | |||
@@ -52,15 +44,11 @@ consistency_checks: | |||
scheme: hqc-rmrs-256 | |||
implementation: clean | |||
files: | |||
- code.h | |||
- gf2x.h | |||
- hqc.h | |||
- parsing.h | |||
- vector.h | |||
- gf2x.c | |||
- gf.c | |||
- hqc.c | |||
- kem.c | |||
- parsing.c | |||
- vector.c | |||
- source: | |||
@@ -4,27 +4,16 @@ consistency_checks: | |||
implementation: clean | |||
files: | |||
- api.h | |||
- code.h | |||
- fft.h | |||
- gf.h | |||
- hqc.h | |||
- reed_muller.h | |||
- reed_solomon.h | |||
- code.c | |||
- fft.c | |||
- reed_solomon.c | |||
- source: | |||
scheme: hqc-rmrs-192 | |||
implementation: clean | |||
files: | |||
- code.h | |||
- fft.h | |||
- gf.h | |||
- hqc.h | |||
- reed_muller.h | |||
- code.c | |||
- fft.c | |||
- reed_solomon.c | |||
- source: | |||
scheme: hqc-rmrs-192 | |||
implementation: avx2 | |||
@@ -50,15 +39,9 @@ consistency_checks: | |||
scheme: hqc-rmrs-256 | |||
implementation: clean | |||
files: | |||
- code.h | |||
- fft.h | |||
- gf.h | |||
- hqc.h | |||
- reed_muller.h | |||
- reed_solomon.h | |||
- code.c | |||
- fft.c | |||
- reed_solomon.c | |||
- source: | |||
scheme: hqc-rmrs-256 | |||
implementation: avx2 | |||
@@ -4,15 +4,9 @@ consistency_checks: | |||
implementation: avx2 | |||
files: | |||
- api.h | |||
- code.h | |||
- fft.h | |||
- gf.h | |||
- hqc.h | |||
- reed_muller.h | |||
- reed_solomon.h | |||
- code.c | |||
- fft.c | |||
- reed_solomon.c | |||
- source: | |||
scheme: hqc-rmrs-192 | |||
implementation: clean | |||
@@ -39,14 +33,9 @@ consistency_checks: | |||
scheme: hqc-rmrs-192 | |||
implementation: avx2 | |||
files: | |||
- code.h | |||
- fft.h | |||
- gf.h | |||
- hqc.h | |||
- reed_muller.h | |||
- code.c | |||
- fft.c | |||
- reed_solomon.c | |||
- source: | |||
scheme: hqc-rmrs-256 | |||
implementation: clean | |||
@@ -58,7 +47,6 @@ consistency_checks: | |||
- hqc.h | |||
- parsing.h | |||
- reed_muller.h | |||
- reed_solomon.h | |||
- vector.h | |||
- code.c | |||
- fft.c | |||
@@ -74,11 +62,6 @@ consistency_checks: | |||
scheme: hqc-rmrs-256 | |||
implementation: avx2 | |||
files: | |||
- code.h | |||
- fft.h | |||
- gf.h | |||
- hqc.h | |||
- reed_muller.h | |||
- code.c | |||
- fft.c | |||
- reed_solomon.c |
@@ -4,27 +4,16 @@ consistency_checks: | |||
implementation: clean | |||
files: | |||
- api.h | |||
- code.h | |||
- fft.h | |||
- gf.h | |||
- hqc.h | |||
- reed_muller.h | |||
- reed_solomon.h | |||
- code.c | |||
- fft.c | |||
- reed_solomon.c | |||
- source: | |||
scheme: hqc-rmrs-256 | |||
implementation: clean | |||
files: | |||
- code.h | |||
- fft.h | |||
- gf.h | |||
- hqc.h | |||
- reed_muller.h | |||
- code.c | |||
- fft.c | |||
- reed_solomon.c | |||
- source: | |||
scheme: hqc-rmrs-256 | |||
implementation: avx2 | |||
@@ -4,15 +4,9 @@ consistency_checks: | |||
implementation: avx2 | |||
files: | |||
- api.h | |||
- code.h | |||
- fft.h | |||
- gf.h | |||
- hqc.h | |||
- reed_muller.h | |||
- reed_solomon.h | |||
- code.c | |||
- fft.c | |||
- reed_solomon.c | |||
- source: | |||
scheme: hqc-rmrs-256 | |||
implementation: clean | |||
@@ -39,11 +33,6 @@ consistency_checks: | |||
scheme: hqc-rmrs-256 | |||
implementation: avx2 | |||
files: | |||
- code.h | |||
- fft.h | |||
- gf.h | |||
- hqc.h | |||
- reed_muller.h | |||
- code.c | |||
- fft.c | |||
- reed_solomon.c |
@@ -4,11 +4,6 @@ consistency_checks: | |||
implementation: clean | |||
files: | |||
- api.h | |||
- code.h | |||
- fft.h | |||
- gf.h | |||
- hqc.h | |||
- reed_muller.h | |||
- code.c | |||
- fft.c | |||
- reed_solomon.c |
@@ -4,11 +4,6 @@ consistency_checks: | |||
implementation: avx2 | |||
files: | |||
- api.h | |||
- code.h | |||
- fft.h | |||
- gf.h | |||
- hqc.h | |||
- reed_muller.h | |||
- code.c | |||
- fft.c | |||
- reed_solomon.c |