Browse Source

HQC submission (#202)

* Sebastian's HQC merge request

* Clean up changes to common infrastructure

* Fix Bitmask macro

It assumed that ``unsigned long`` was 64 bit

* Remove maxlen from nistseedexpander

It's a complicated thing to handle because the value is larger than size_t supports on 32-bit platforms

* Initialize buffers to help linter

* Add Nistseedexpander test

* Resolve UB in gf2x.c

Some of the shifts could be larger than WORD_SIZE_BITS, ie. larger than
the width of uint64_t. This apparently on Intel gets interpreted as the
shift mod 64, but on ARM something else happened.

* Fix Windows complaints

* rename log, exp which appear to be existing functions on MS

* Solve endianness problems

* remove all spaces before ';'

* Fix duplicate consistency

* Fix duplicate consistency

* Fix complaints by MSVC about narrowing int

* Add nistseedexpander.obj to COMMON_OBJECTS_NOPATH

* astyle format util.[ch]

* add util.h to makefile

* Sort includes in util.h

* Fix more Windows MSVC complaints

Co-authored-by: Sebastian Verschoor <sebastian@zeroknowledge.me>
Co-authored-by: Thom Wiggers <thom@thomwiggers.nl>
kyber
Sebastian 4 years ago
committed by Kris Kwiatkowski
parent
commit
4054af0c42
100 changed files with 8813 additions and 1 deletions
  1. +103
    -0
      common/nistseedexpander.c
  2. +39
    -0
      common/nistseedexpander.h
  3. +1
    -1
      common/randombytes.h
  4. +23
    -0
      crypto_kem/hqc-128-1-cca2/META.yml
  5. +1
    -0
      crypto_kem/hqc-128-1-cca2/leaktime/LICENSE
  6. +19
    -0
      crypto_kem/hqc-128-1-cca2/leaktime/Makefile
  7. +23
    -0
      crypto_kem/hqc-128-1-cca2/leaktime/Makefile.Microsoft_nmake
  8. +25
    -0
      crypto_kem/hqc-128-1-cca2/leaktime/api.h
  9. +295
    -0
      crypto_kem/hqc-128-1-cca2/leaktime/bch.c
  10. +16
    -0
      crypto_kem/hqc-128-1-cca2/leaktime/bch.h
  11. +628
    -0
      crypto_kem/hqc-128-1-cca2/leaktime/fft.c
  12. +18
    -0
      crypto_kem/hqc-128-1-cca2/leaktime/fft.h
  13. +99
    -0
      crypto_kem/hqc-128-1-cca2/leaktime/gf.c
  14. +18
    -0
      crypto_kem/hqc-128-1-cca2/leaktime/gf.h
  15. +123
    -0
      crypto_kem/hqc-128-1-cca2/leaktime/gf2x.c
  16. +13
    -0
      crypto_kem/hqc-128-1-cca2/leaktime/gf2x.h
  17. +135
    -0
      crypto_kem/hqc-128-1-cca2/leaktime/hqc.c
  18. +15
    -0
      crypto_kem/hqc-128-1-cca2/leaktime/hqc.h
  19. +154
    -0
      crypto_kem/hqc-128-1-cca2/leaktime/kem.c
  20. +112
    -0
      crypto_kem/hqc-128-1-cca2/leaktime/parameters.h
  21. +126
    -0
      crypto_kem/hqc-128-1-cca2/leaktime/parsing.c
  22. +20
    -0
      crypto_kem/hqc-128-1-cca2/leaktime/parsing.h
  23. +100
    -0
      crypto_kem/hqc-128-1-cca2/leaktime/repetition.c
  24. +14
    -0
      crypto_kem/hqc-128-1-cca2/leaktime/repetition.h
  25. +42
    -0
      crypto_kem/hqc-128-1-cca2/leaktime/tensor.c
  26. +14
    -0
      crypto_kem/hqc-128-1-cca2/leaktime/tensor.h
  27. +69
    -0
      crypto_kem/hqc-128-1-cca2/leaktime/util.c
  28. +9
    -0
      crypto_kem/hqc-128-1-cca2/leaktime/util.h
  29. +224
    -0
      crypto_kem/hqc-128-1-cca2/leaktime/vector.c
  30. +22
    -0
      crypto_kem/hqc-128-1-cca2/leaktime/vector.h
  31. +23
    -0
      crypto_kem/hqc-192-1-cca2/META.yml
  32. +1
    -0
      crypto_kem/hqc-192-1-cca2/leaktime/LICENSE
  33. +19
    -0
      crypto_kem/hqc-192-1-cca2/leaktime/Makefile
  34. +23
    -0
      crypto_kem/hqc-192-1-cca2/leaktime/Makefile.Microsoft_nmake
  35. +25
    -0
      crypto_kem/hqc-192-1-cca2/leaktime/api.h
  36. +295
    -0
      crypto_kem/hqc-192-1-cca2/leaktime/bch.c
  37. +16
    -0
      crypto_kem/hqc-192-1-cca2/leaktime/bch.h
  38. +628
    -0
      crypto_kem/hqc-192-1-cca2/leaktime/fft.c
  39. +18
    -0
      crypto_kem/hqc-192-1-cca2/leaktime/fft.h
  40. +99
    -0
      crypto_kem/hqc-192-1-cca2/leaktime/gf.c
  41. +18
    -0
      crypto_kem/hqc-192-1-cca2/leaktime/gf.h
  42. +123
    -0
      crypto_kem/hqc-192-1-cca2/leaktime/gf2x.c
  43. +13
    -0
      crypto_kem/hqc-192-1-cca2/leaktime/gf2x.h
  44. +135
    -0
      crypto_kem/hqc-192-1-cca2/leaktime/hqc.c
  45. +15
    -0
      crypto_kem/hqc-192-1-cca2/leaktime/hqc.h
  46. +154
    -0
      crypto_kem/hqc-192-1-cca2/leaktime/kem.c
  47. +109
    -0
      crypto_kem/hqc-192-1-cca2/leaktime/parameters.h
  48. +126
    -0
      crypto_kem/hqc-192-1-cca2/leaktime/parsing.c
  49. +20
    -0
      crypto_kem/hqc-192-1-cca2/leaktime/parsing.h
  50. +100
    -0
      crypto_kem/hqc-192-1-cca2/leaktime/repetition.c
  51. +14
    -0
      crypto_kem/hqc-192-1-cca2/leaktime/repetition.h
  52. +42
    -0
      crypto_kem/hqc-192-1-cca2/leaktime/tensor.c
  53. +14
    -0
      crypto_kem/hqc-192-1-cca2/leaktime/tensor.h
  54. +69
    -0
      crypto_kem/hqc-192-1-cca2/leaktime/util.c
  55. +9
    -0
      crypto_kem/hqc-192-1-cca2/leaktime/util.h
  56. +224
    -0
      crypto_kem/hqc-192-1-cca2/leaktime/vector.c
  57. +22
    -0
      crypto_kem/hqc-192-1-cca2/leaktime/vector.h
  58. +23
    -0
      crypto_kem/hqc-192-2-cca2/META.yml
  59. +1
    -0
      crypto_kem/hqc-192-2-cca2/leaktime/LICENSE
  60. +19
    -0
      crypto_kem/hqc-192-2-cca2/leaktime/Makefile
  61. +23
    -0
      crypto_kem/hqc-192-2-cca2/leaktime/Makefile.Microsoft_nmake
  62. +25
    -0
      crypto_kem/hqc-192-2-cca2/leaktime/api.h
  63. +295
    -0
      crypto_kem/hqc-192-2-cca2/leaktime/bch.c
  64. +16
    -0
      crypto_kem/hqc-192-2-cca2/leaktime/bch.h
  65. +628
    -0
      crypto_kem/hqc-192-2-cca2/leaktime/fft.c
  66. +18
    -0
      crypto_kem/hqc-192-2-cca2/leaktime/fft.h
  67. +99
    -0
      crypto_kem/hqc-192-2-cca2/leaktime/gf.c
  68. +18
    -0
      crypto_kem/hqc-192-2-cca2/leaktime/gf.h
  69. +123
    -0
      crypto_kem/hqc-192-2-cca2/leaktime/gf2x.c
  70. +13
    -0
      crypto_kem/hqc-192-2-cca2/leaktime/gf2x.h
  71. +135
    -0
      crypto_kem/hqc-192-2-cca2/leaktime/hqc.c
  72. +15
    -0
      crypto_kem/hqc-192-2-cca2/leaktime/hqc.h
  73. +154
    -0
      crypto_kem/hqc-192-2-cca2/leaktime/kem.c
  74. +109
    -0
      crypto_kem/hqc-192-2-cca2/leaktime/parameters.h
  75. +126
    -0
      crypto_kem/hqc-192-2-cca2/leaktime/parsing.c
  76. +20
    -0
      crypto_kem/hqc-192-2-cca2/leaktime/parsing.h
  77. +100
    -0
      crypto_kem/hqc-192-2-cca2/leaktime/repetition.c
  78. +14
    -0
      crypto_kem/hqc-192-2-cca2/leaktime/repetition.h
  79. +42
    -0
      crypto_kem/hqc-192-2-cca2/leaktime/tensor.c
  80. +14
    -0
      crypto_kem/hqc-192-2-cca2/leaktime/tensor.h
  81. +69
    -0
      crypto_kem/hqc-192-2-cca2/leaktime/util.c
  82. +9
    -0
      crypto_kem/hqc-192-2-cca2/leaktime/util.h
  83. +224
    -0
      crypto_kem/hqc-192-2-cca2/leaktime/vector.c
  84. +22
    -0
      crypto_kem/hqc-192-2-cca2/leaktime/vector.h
  85. +23
    -0
      crypto_kem/hqc-256-1-cca2/META.yml
  86. +1
    -0
      crypto_kem/hqc-256-1-cca2/leaktime/LICENSE
  87. +19
    -0
      crypto_kem/hqc-256-1-cca2/leaktime/Makefile
  88. +23
    -0
      crypto_kem/hqc-256-1-cca2/leaktime/Makefile.Microsoft_nmake
  89. +25
    -0
      crypto_kem/hqc-256-1-cca2/leaktime/api.h
  90. +295
    -0
      crypto_kem/hqc-256-1-cca2/leaktime/bch.c
  91. +16
    -0
      crypto_kem/hqc-256-1-cca2/leaktime/bch.h
  92. +628
    -0
      crypto_kem/hqc-256-1-cca2/leaktime/fft.c
  93. +18
    -0
      crypto_kem/hqc-256-1-cca2/leaktime/fft.h
  94. +99
    -0
      crypto_kem/hqc-256-1-cca2/leaktime/gf.c
  95. +18
    -0
      crypto_kem/hqc-256-1-cca2/leaktime/gf.h
  96. +123
    -0
      crypto_kem/hqc-256-1-cca2/leaktime/gf2x.c
  97. +13
    -0
      crypto_kem/hqc-256-1-cca2/leaktime/gf2x.h
  98. +135
    -0
      crypto_kem/hqc-256-1-cca2/leaktime/hqc.c
  99. +15
    -0
      crypto_kem/hqc-256-1-cca2/leaktime/hqc.h
  100. +154
    -0
      crypto_kem/hqc-256-1-cca2/leaktime/kem.c

+ 103
- 0
common/nistseedexpander.c View File

@@ -0,0 +1,103 @@
//
// rng.c
//
// Created by Bassham, Lawrence E (Fed) on 8/29/17.
// Copyright © 2017 Bassham, Lawrence E (Fed). All rights reserved.
// Modified for PQClean by Sebastian Verschoor
//

#include "nistseedexpander.h"
#include "aes.h"
#include <string.h>

/*
seedexpander_init()
ctx - stores the current state of an instance of the seed expander
seed - a 32 byte random value
diversifier - an 8 byte diversifier
maxlen - maximum number of bytes (less than 2**32) generated under this seed and diversifier
*/
int
seedexpander_init(AES_XOF_struct *ctx,
const uint8_t *seed,
const uint8_t *diversifier,
size_t maxlen)
{
ctx->length_remaining = maxlen;

memcpy(ctx->key, seed, 32);
memcpy(ctx->ctr, diversifier, 8);

ctx->ctr[11] = maxlen % 256;
maxlen >>= 8;
ctx->ctr[10] = maxlen % 256;
maxlen >>= 8;
ctx->ctr[9] = maxlen % 256;
maxlen >>= 8;
ctx->ctr[8] = maxlen % 256;
memset(ctx->ctr+12, 0x00, 4);

ctx->buffer_pos = 16;
memset(ctx->buffer, 0x00, 16);

return RNG_SUCCESS;
}

static void AES256_ECB(uint8_t *key, uint8_t *ctr, uint8_t *buffer) {
aes256ctx ctx;
aes256_keyexp(&ctx, key);
aes256_ecb(buffer, ctr, 1, &ctx);
aes256_ctx_release(&ctx);
}

/*
seedexpander()
ctx - stores the current state of an instance of the seed expander
x - returns the XOF data
xlen - number of bytes to return
*/
int
seedexpander(AES_XOF_struct *ctx, uint8_t *x, size_t xlen)
{
size_t offset;

if ( x == NULL ) {
return RNG_BAD_OUTBUF;
}
if ( xlen >= ctx->length_remaining ) {
return RNG_BAD_REQ_LEN;
}

ctx->length_remaining -= xlen;

offset = 0;
while ( xlen > 0 ) {
if ( xlen <= (16-ctx->buffer_pos) ) { // buffer has what we need
memcpy(x+offset, ctx->buffer+ctx->buffer_pos, xlen);
ctx->buffer_pos += xlen;

return RNG_SUCCESS;
}

// take what's in the buffer
memcpy(x+offset, ctx->buffer+ctx->buffer_pos, 16-ctx->buffer_pos);
xlen -= 16-ctx->buffer_pos;
offset += 16-ctx->buffer_pos;

AES256_ECB(ctx->key, ctx->ctr, ctx->buffer);
ctx->buffer_pos = 0;

//increment the counter
for (size_t i=15; i>=12; i--) {
if ( ctx->ctr[i] == 0xff ) {
ctx->ctr[i] = 0x00;
} else {
ctx->ctr[i]++;
break;
}
}

}

return RNG_SUCCESS;
}

+ 39
- 0
common/nistseedexpander.h View File

@@ -0,0 +1,39 @@
#ifndef NISTSEEDEXPANDER_H
#define NISTSEEDEXPANDER_H

//
// rng.h
//
// Created by Bassham, Lawrence E (Fed) on 8/29/17.
// Copyright © 2017 Bassham, Lawrence E (Fed). All rights reserved.
// Modified for PQClean by Sebastian Verschoor
//

#include <stddef.h>
#include <stdint.h>

#define NISTSEEDEXPANDER_SEED_LEN 32

#define RNG_SUCCESS ( 0)
#define RNG_BAD_MAXLEN (-1)
#define RNG_BAD_OUTBUF (-2)
#define RNG_BAD_REQ_LEN (-3)

typedef struct {
uint8_t buffer[16];
size_t buffer_pos;
size_t length_remaining;
uint8_t key[NISTSEEDEXPANDER_SEED_LEN];
uint8_t ctr[16];
} AES_XOF_struct;

int
seedexpander_init(AES_XOF_struct *ctx,
const uint8_t *seed,
const uint8_t *diversifier,
size_t maxlen);

int
seedexpander(AES_XOF_struct *ctx, uint8_t *x, size_t xlen);

#endif /* NISTSEEDEXPANDER_H */

+ 1
- 1
common/randombytes.h View File

@@ -8,6 +8,6 @@
#include <unistd.h>
#endif

int randombytes(uint8_t *buf, size_t xlen);
int randombytes(uint8_t *buf, size_t n);

#endif

+ 23
- 0
crypto_kem/hqc-128-1-cca2/META.yml View File

@@ -0,0 +1,23 @@
name: HQC_128_1_CCA2
type: kem
claimed-nist-level: 1
claimed-security: IND-CCA2
length-public-key: 3125
length-ciphertext: 6234
length-secret-key: 3165
length-shared-secret: 64
nistkat-sha256: 29b6545c85a9aaf75572f112b4d4cf9078c716147f84072c4efe4ce5160f18e0
principal-submitters:
- Carlos Aguilar Melchor
- Nicolas Aragon
- Slim Bettaieb
- Loïc Bidoux
- Olivier Blazy
- Jean-Christophe Deneuville
- Philippe Gaborit
- Edoardo Persichetti
- Gilles Zémor
auxiliary-submitters: []
implementations:
- name: leaktime
version: https://pqc-hqc.org/doc/hqc-reference-implementation_2019-08-24.zip

+ 1
- 0
crypto_kem/hqc-128-1-cca2/leaktime/LICENSE View File

@@ -0,0 +1 @@
Public domain

+ 19
- 0
crypto_kem/hqc-128-1-cca2/leaktime/Makefile View File

@@ -0,0 +1,19 @@
# This Makefile can be used with GNU Make or BSD Make

LIB=libhqc-128-1-cca2_leaktime.a
HEADERS=api.h bch.h fft.h gf.h gf2x.h hqc.h parameters.h parsing.h repetition.h tensor.h vector.h util.h
OBJECTS=bch.o fft.o gf.o gf2x.o hqc.o kem.o parsing.o repetition.o tensor.o vector.o util.o

CFLAGS=-O3 -Wall -Wextra -Wpedantic -Wvla -Werror -Wmissing-prototypes -Wredundant-decls -std=c99 -I../../../common $(EXTRAFLAGS)

all: $(LIB)

%.o: %.c $(HEADERS)
$(CC) $(CFLAGS) -c -o $@ $<

$(LIB): $(OBJECTS)
$(AR) -r $@ $(OBJECTS)

clean:
$(RM) $(OBJECTS)
$(RM) $(LIB)

+ 23
- 0
crypto_kem/hqc-128-1-cca2/leaktime/Makefile.Microsoft_nmake View File

@@ -0,0 +1,23 @@
# This Makefile can be used with Microsoft Visual Studio's nmake using the command:
# nmake /f Makefile.Microsoft_nmake

LIBRARY=libhqc-128-1-cca2_leaktime.lib
OBJECTS=bch.obj fft.obj gf.obj gf2x.obj hqc.obj kem.obj parsing.obj repetition.obj tensor.obj vector.obj util.obj

# We ignore warning C4127: we sometimes use a conditional that depending
# on the parameters results in a case where if (const) is the case.
# The compiler should just optimise this away, but on MSVC we get
# a compiler complaint.
CFLAGS=/nologo /O2 /I ..\..\..\common /W4 /WX /wd4127

all: $(LIBRARY)

# Make sure objects are recompiled if headers change.
$(OBJECTS): *.h

$(LIBRARY): $(OBJECTS)
LIB.EXE /NOLOGO /WX /OUT:$@ $**

clean:
-DEL $(OBJECTS)
-DEL $(LIBRARY)

+ 25
- 0
crypto_kem/hqc-128-1-cca2/leaktime/api.h View File

@@ -0,0 +1,25 @@
#ifndef PQCLEAN_HQC1281CCA2_LEAKTIME_API_H
#define PQCLEAN_HQC1281CCA2_LEAKTIME_API_H

/**
* \file api.h
* \brief NIST KEM API used by the HQC_KEM IND-CCA2 scheme
*/

#include <stdint.h>

#define PQCLEAN_HQC1281CCA2_LEAKTIME_CRYPTO_ALGNAME "HQC_128_1_CCA2"

#define PQCLEAN_HQC1281CCA2_LEAKTIME_CRYPTO_SECRETKEYBYTES 3165
#define PQCLEAN_HQC1281CCA2_LEAKTIME_CRYPTO_PUBLICKEYBYTES 3125
#define PQCLEAN_HQC1281CCA2_LEAKTIME_CRYPTO_BYTES 64
#define PQCLEAN_HQC1281CCA2_LEAKTIME_CRYPTO_CIPHERTEXTBYTES 6234

// As a technicality, the public key is appended to the secret key in order to respect the NIST API.
// Without this constraint, CRYPTO_SECRETKEYBYTES would be defined as 32

int PQCLEAN_HQC1281CCA2_LEAKTIME_crypto_kem_keypair(uint8_t *pk, uint8_t *sk);
int PQCLEAN_HQC1281CCA2_LEAKTIME_crypto_kem_enc(uint8_t *ct, uint8_t *ss, const uint8_t *pk);
int PQCLEAN_HQC1281CCA2_LEAKTIME_crypto_kem_dec(uint8_t *ss, const uint8_t *ct, const uint8_t *sk);

#endif

+ 295
- 0
crypto_kem/hqc-128-1-cca2/leaktime/bch.c View File

@@ -0,0 +1,295 @@
/**
* @file bch.c
* Constant time implementation of BCH codes
*/

#include "bch.h"
#include "fft.h"
#include "gf.h"
#include "parameters.h"
#include "vector.h"
#include <stdint.h>
#include <string.h>

static void unpack_message(uint8_t *message_unpacked, const uint8_t *message);
static void lfsr_encode(uint8_t *codeword, const uint8_t *message);
static void pack_codeword(uint8_t *codeword, const uint8_t *codeword_unpacked);
static size_t compute_elp(uint16_t *sigma, const uint16_t *syndromes);
static void message_from_codeword(uint8_t *message, const uint8_t *codeword);
static void compute_syndromes(uint16_t *syndromes, const uint8_t *vector);
static void compute_roots(uint8_t *error, const uint16_t *sigma);


/**
* @brief Unpacks the message message to the array message_unpacked where each byte stores a bit of the message
*
* @param[out] message_unpacked Array of VEC_K_SIZE_BYTES bytes receiving the unpacked message
* @param[in] message Array of PARAM_K bytes storing the packed message
*/
static void unpack_message(uint8_t *message_unpacked, const uint8_t *message) {
for (size_t i = 0; i < (VEC_K_SIZE_BYTES - (PARAM_K % 8 != 0)); ++i) {
for (size_t j = 0; j < 8; ++j) {
message_unpacked[j + 8 * i] = (message[i] >> j) & 0x01;
}
}

for (int8_t j = 0; j < PARAM_K % 8; ++j) {
message_unpacked[j + 8 * (VEC_K_SIZE_BYTES - 1)] = (message[VEC_K_SIZE_BYTES - 1] >> j) & 0x01;
}
}



/**
* @brief Encodes the message message to a codeword codeword using the generator polynomial bch_poly of the code
*
* @param[out] codeword Array of PARAM_N1 bytes receiving the codeword
* @param[in] message Array of PARAM_K bytes storing the message to encode
*/
static void lfsr_encode(uint8_t *codeword, const uint8_t *message) {
uint8_t gate_value = 0;
uint8_t bch_poly[PARAM_G] = PARAM_BCH_POLY;

// Compute the Parity-check digits
for (int16_t i = PARAM_K - 1; i >= 0; --i) {
gate_value = message[i] ^ codeword[PARAM_N1 - PARAM_K - 1];

for (size_t j = PARAM_N1 - PARAM_K - 1; j; --j) {
codeword[j] = codeword[j - 1] ^ (-gate_value & bch_poly[j]);
}

codeword[0] = gate_value;
}

// Add the message
memcpy(codeword + PARAM_N1 - PARAM_K, message, PARAM_K);
}



/**
* @brief Packs the codeword from an array codeword_unpacked where each byte stores a bit to a compact array codeword
*
* @param[out] codeword Array of VEC_N1_SIZE_BYTES bytes receiving the packed codeword
* @param[in] codeword_unpacked Array of PARAM_N1 bytes storing the unpacked codeword
*/
static void pack_codeword(uint8_t *codeword, const uint8_t *codeword_unpacked) {
for (size_t i = 0; i < (VEC_N1_SIZE_BYTES - (PARAM_N1 % 8 != 0)); ++i) {
for (size_t j = 0; j < 8; ++j) {
codeword[i] |= codeword_unpacked[j + 8 * i] << j;
}
}

for (size_t j = 0; j < PARAM_N1 % 8; ++j) {
codeword[VEC_N1_SIZE_BYTES - 1] |= codeword_unpacked[j + 8 * (VEC_N1_SIZE_BYTES - 1)] << j;
}
}



/**
* @brief Encodes a message message of PARAM_K bits to a BCH codeword codeword of PARAM_N1 bits
*
* Following @cite lin1983error (Chapter 4 - Cyclic Codes),
* We perform a systematic encoding using a linear (PARAM_N1 - PARAM_K)-stage shift register
* with feedback connections based on the generator polynomial bch_poly of the BCH code.
*
* @param[out] codeword Array of size VEC_N1_SIZE_BYTES receiving the encoded message
* @param[in] message Array of size VEC_K_SIZE_BYTES storing the message
*/
void PQCLEAN_HQC1281CCA2_LEAKTIME_bch_code_encode(uint8_t *codeword, const uint8_t *message) {
uint8_t message_unpacked[PARAM_K];
uint8_t codeword_unpacked[PARAM_N1] = {0};

unpack_message(message_unpacked, message);
lfsr_encode(codeword_unpacked, message_unpacked);
pack_codeword(codeword, codeword_unpacked);
}



/**
* @brief Computes the error locator polynomial (ELP) sigma
*
* This is a constant time implementation of Berlekamp's simplified algorithm (see @cite joiner1995decoding). <br>
* We use the letter p for rho which is initialized at -1/2. <br>
* The array X_sigma_p represents the polynomial X^(2(mu-rho))*sigma_p(X). <br>
* Instead of maintaining a list of sigmas, we update in place both sigma and X_sigma_p. <br>
* sigma_copy serves as a temporary save of sigma in case X_sigma_p needs to be updated. <br>
* We can properly correct only if the degree of sigma does not exceed PARAM_DELTA.
* This means only the first PARAM_DELTA + 1 coefficients of sigma are of value
* and we only need to save its first PARAM_DELTA - 1 coefficients.
*
* @returns the degree of the ELP sigma
* @param[out] sigma Array of size (at least) PARAM_DELTA receiving the ELP
* @param[in] syndromes Array of size (at least) 2*PARAM_DELTA storing the syndromes
*/
static size_t compute_elp(uint16_t *sigma, const uint16_t *syndromes) {
sigma[0] = 1;
size_t deg_sigma = 0;
size_t deg_sigma_p = 0;
uint16_t sigma_copy[PARAM_DELTA - 1] = {0};
size_t deg_sigma_copy = 0;
uint16_t X_sigma_p[PARAM_DELTA + 1] = {0, 1};
int32_t pp = -1; // 2*rho
uint16_t d_p = 1;
uint16_t d = syndromes[0];

for (size_t mu = 0; mu < PARAM_DELTA; ++mu) {
// Save sigma in case we need it to update X_sigma_p
memcpy(sigma_copy, sigma, 2 * (PARAM_DELTA - 1));
deg_sigma_copy = deg_sigma;

uint16_t dd = PQCLEAN_HQC1281CCA2_LEAKTIME_gf_mul(d, PQCLEAN_HQC1281CCA2_LEAKTIME_gf_inverse(d_p)); // 0 if(d == 0)
for (size_t i = 1; (i <= 2 * mu + 1) && (i <= PARAM_DELTA); ++i) {
sigma[i] ^= PQCLEAN_HQC1281CCA2_LEAKTIME_gf_mul(dd, X_sigma_p[i]);
}

size_t deg_X = 2 * mu - pp; // 2*(mu-rho)
size_t deg_X_sigma_p = deg_X + deg_sigma_p;

// mask1 = 0xffff if(d != 0) and 0 otherwise
int16_t mask1 = -((uint16_t) - d >> 15);

// mask2 = 0xffff if(deg_X_sigma_p > deg_sigma) and 0 otherwise
int16_t mask2 = -((uint16_t) (deg_sigma - deg_X_sigma_p) >> 15);

// mask12 = 0xffff if the deg_sigma increased and 0 otherwise
int16_t mask12 = mask1 & mask2;
deg_sigma = (mask12 & deg_X_sigma_p) ^ (~mask12 & deg_sigma);

if (mu == PARAM_DELTA - 1) {
break;
}

// Update pp, d_p and X_sigma_p if needed
pp = (mask12 & (2 * mu)) ^ (~mask12 & pp);
d_p = (mask12 & d) ^ (~mask12 & d_p);
for (size_t i = PARAM_DELTA - 1; i; --i) {
X_sigma_p[i + 1] = (mask12 & sigma_copy[i - 1]) ^ (~mask12 & X_sigma_p[i - 1]);
}
X_sigma_p[1] = 0;
X_sigma_p[0] = 0;
deg_sigma_p = (mask12 & deg_sigma_copy) ^ (~mask12 & deg_sigma_p);

// Compute the next discrepancy
d = syndromes[2 * mu + 2];
for (size_t i = 1; (i <= 2 * mu + 1) && (i <= PARAM_DELTA); ++i) {
d ^= PQCLEAN_HQC1281CCA2_LEAKTIME_gf_mul(sigma[i], syndromes[2 * mu + 2 - i]);
}
}

return deg_sigma;
}



/**
* @brief Retrieves the message message from the codeword codeword
*
* Since we performed a systematic encoding, the message is the last PARAM_K bits of the codeword.
*
* @param[out] message Array of size VEC_K_SIZE_BYTES receiving the message
* @param[in] codeword Array of size VEC_N1_SIZE_BYTES storing the codeword
*/
static void message_from_codeword(uint8_t *message, const uint8_t *codeword) {
int32_t val = PARAM_N1 - PARAM_K;

uint8_t mask1 = 0xff << val % 8;
uint8_t mask2 = 0xff >> (8 - val % 8);
size_t index = val / 8;

for (size_t i = 0; i < VEC_K_SIZE_BYTES - 1; ++i) {
uint8_t message1 = (codeword[index] & mask1) >> val % 8;
uint8_t message2 = (codeword[++index] & mask2) << (8 - val % 8);
message[i] = message1 | message2;
}

// Last byte (8-val % 8 is the number of bits given by message1)
if ((PARAM_K % 8 == 0) || (8 - val % 8 < PARAM_K % 8)) {
uint8_t message1 = (codeword[index] & mask1) >> val % 8;
uint8_t message2 = (codeword[++index] & mask2) << (8 - val % 8);
message[VEC_K_SIZE_BYTES - 1] = message1 | message2;
} else {
uint8_t message1 = (codeword[index] & mask1) >> val % 8;
message[VEC_K_SIZE_BYTES - 1] = message1;
}
}



/**
* @brief Computes the 2^PARAM_DELTA syndromes from the received vector vector
*
* Syndromes are the sum of powers of alpha weighted by vector's coefficients.
* To do so, we use the additive FFT transpose, which takes as input a family w of GF(2^PARAM_M) elements
* and outputs the weighted power sums of these w. <br>
* Therefore, this requires twisting and applying a permutation before feeding vector to the fft transpose. <br>
* For more details see Berstein, Chou and Schawbe's explanations:
* https://binary.cr.yp.to/mcbits-20130616.pdf
*
* @param[out] syndromes Array of size 2^(PARAM_FFT_T) receiving the 2*PARAM_DELTA syndromes
* @param[in] vector Array of size VEC_N1_SIZE_BYTES storing the received word
*/
static void compute_syndromes(uint16_t *syndromes, const uint8_t *vector) {
uint16_t w[1 << PARAM_M];

PQCLEAN_HQC1281CCA2_LEAKTIME_fft_t_preprocess_bch_codeword(w, vector);
PQCLEAN_HQC1281CCA2_LEAKTIME_fft_t(syndromes, w, 2 * PARAM_DELTA);
}



/**
* @brief Computes the error polynomial error from the error locator polynomial sigma
*
* See function fft for more details.
*
* @param[out] err Array of VEC_N1_SIZE_BYTES elements receiving the error polynomial
* @param[in] sigma Array of 2^PARAM_FFT elements storing the error locator polynomial
*/
static void compute_roots(uint8_t *error, const uint16_t *sigma) {
uint16_t w[1 << PARAM_M] = {0}; // w will receive the evaluation of sigma in all field elements

PQCLEAN_HQC1281CCA2_LEAKTIME_fft(w, sigma, PARAM_DELTA + 1);
PQCLEAN_HQC1281CCA2_LEAKTIME_fft_retrieve_bch_error_poly(error, w);
}



/**
* @brief Decodes the received word
*
* This function relies on four steps:
* <ol>
* <li> The first step, done by additive FFT transpose, is the computation of the 2*PARAM_DELTA syndromes.
* <li> The second step is the computation of the error-locator polynomial sigma.
* <li> The third step, done by additive FFT, is finding the error-locator numbers by calculating the roots of the polynomial sigma and takings their inverses.
* <li> The fourth step is the correction of the errors in the received polynomial.
* </ol>
* For a more complete picture on BCH decoding, see Shu. Lin and Daniel J. Costello in Error Control Coding: Fundamentals and Applications @cite lin1983error
*
* @param[out] message Array of size VEC_K_SIZE_BYTES receiving the decoded message
* @param[in] vector Array of size VEC_N1_SIZE_BYTES storing the received word
*/
void PQCLEAN_HQC1281CCA2_LEAKTIME_bch_code_decode(uint8_t *message, uint8_t *vector) {
uint16_t syndromes[1 << PARAM_FFT_T];
uint16_t sigma[1 << PARAM_FFT] = {0};
uint8_t error[(1 << PARAM_M) / 8] = {0};

// Calculate the 2*PARAM_DELTA syndromes
compute_syndromes(syndromes, vector);

// Compute the error locator polynomial sigma
// Sigma's degree is at most PARAM_DELTA but the FFT requires the extra room
compute_elp(sigma, syndromes);

// Compute the error polynomial error
compute_roots(error, sigma);

// Add the error polynomial to the received polynomial
PQCLEAN_HQC1281CCA2_LEAKTIME_vect_add(vector, vector, error, VEC_N1_SIZE_BYTES);

// Retrieve the message from the decoded codeword
message_from_codeword(message, vector);
}

+ 16
- 0
crypto_kem/hqc-128-1-cca2/leaktime/bch.h View File

@@ -0,0 +1,16 @@
#ifndef PQCLEAN_HQC1281CCA2_LEAKTIME_BCH_H
#define PQCLEAN_HQC1281CCA2_LEAKTIME_BCH_H

/**
* @file bch.h
* Header file of bch.c
*/

#include "parameters.h"
#include <stddef.h>
#include <stdint.h>

void PQCLEAN_HQC1281CCA2_LEAKTIME_bch_code_encode(uint8_t *codeword, const uint8_t *message);
void PQCLEAN_HQC1281CCA2_LEAKTIME_bch_code_decode(uint8_t *message, uint8_t *vector);

#endif

+ 628
- 0
crypto_kem/hqc-128-1-cca2/leaktime/fft.c View File

@@ -0,0 +1,628 @@
/**
* @file fft.c
* Implementation of the additive FFT and its transpose.
* This implementation is based on the paper from Gao and Mateer: <br>
* Shuhong Gao and Todd Mateer, Additive Fast Fourier Transforms over Finite Fields,
* IEEE Transactions on Information Theory 56 (2010), 6265--6272.
* http://www.math.clemson.edu/~sgao/papers/GM10.pdf <br>
* and includes improvements proposed by Bernstein, Chou and Schwabe here:
* https://binary.cr.yp.to/mcbits-20130616.pdf
*/

#include "fft.h"
#include "gf.h"
#include "parameters.h"
#include <stdint.h>
#include <string.h>

static void compute_fft_betas(uint16_t *betas);
static void compute_subset_sums(uint16_t *subset_sums, const uint16_t *set, size_t set_size);
static void radix_t(uint16_t *f, const uint16_t *f0, const uint16_t *f1, uint32_t m_f);
static void fft_t_rec(uint16_t *f, const uint16_t *w, size_t f_coeffs, uint8_t m, uint32_t m_f, const uint16_t *betas);
static void radix(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f);
static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32_t m_f, const uint16_t *betas);


/**
* @brief Computes the basis of betas (omitting 1) used in the additive FFT and its transpose
*
* @param[out] betas Array of size PARAM_M-1
*/
static void compute_fft_betas(uint16_t *betas) {
for (size_t i = 0; i < PARAM_M - 1; ++i) {
betas[i] = 1 << (PARAM_M - 1 - i);
}
}



/**
* @brief Computes the subset sums of the given set
*
* The array subset_sums is such that its ith element is
* the subset sum of the set elements given by the binary form of i.
*
* @param[out] subset_sums Array of size 2^set_size receiving the subset sums
* @param[in] set Array of set_size elements
* @param[in] set_size Size of the array set
*/
static void compute_subset_sums(uint16_t *subset_sums, const uint16_t *set, size_t set_size) {
subset_sums[0] = 0;

for (size_t i = 0; i < set_size; ++i) {
for (size_t j = 0; j < (((size_t)1) << i); ++j) {
subset_sums[(((size_t)1) << i) + j] = set[i] ^ subset_sums[j];
}
}
}



/**
* @brief Transpose of the linear radix conversion
*
* This is a direct transposition of the radix function
* implemented following the process of transposing a linear function as exposed by Bernstein, Chou and Schwabe here:
* https://binary.cr.yp.to/mcbits-20130616.pdf
*
* @param[out] f Array of size a power of 2
* @param[in] f0 Array half the size of f
* @param[in] f1 Array half the size of f
* @param[in] m_f 2^{m_f} is the smallest power of 2 greater or equal to the number of coefficients of f
*/
static void radix_t(uint16_t *f, const uint16_t *f0, const uint16_t *f1, uint32_t m_f) {
switch (m_f) {
case 4:
f[0] = f0[0];
f[1] = f1[0];
f[2] = f0[1] ^ f1[0];
f[3] = f[2] ^ f1[1];
f[4] = f[2] ^ f0[2];
f[5] = f[3] ^ f1[2];
f[6] = f[4] ^ f0[3] ^ f1[2];
f[7] = f[3] ^ f0[3] ^ f1[3];
f[8] = f[4] ^ f0[4];
f[9] = f[5] ^ f1[4];
f[10] = f[6] ^ f0[5] ^ f1[4];
f[11] = f[7] ^ f0[5] ^ f1[4] ^ f1[5];
f[12] = f[8] ^ f0[5] ^ f0[6] ^ f1[4];
f[13] = f[7] ^ f[9] ^ f[11] ^ f1[6];
f[14] = f[6] ^ f0[6] ^ f0[7] ^ f1[6];
f[15] = f[7] ^ f0[7] ^ f1[7];
return;

case 3:
f[0] = f0[0];
f[1] = f1[0];
f[2] = f0[1] ^ f1[0];
f[3] = f[2] ^ f1[1];
f[4] = f[2] ^ f0[2];
f[5] = f[3] ^ f1[2];
f[6] = f[4] ^ f0[3] ^ f1[2];
f[7] = f[3] ^ f0[3] ^ f1[3];
return;

case 2:
f[0] = f0[0];
f[1] = f1[0];
f[2] = f0[1] ^ f1[0];
f[3] = f[2] ^ f1[1];
return;

case 1:
f[0] = f0[0];
f[1] = f1[0];
return;

default:
;

size_t n = ((size_t)1) << (m_f - 2);

uint16_t Q0[1 << (PARAM_FFT_T - 2)] = {0};
uint16_t Q1[1 << (PARAM_FFT_T - 2)] = {0};
uint16_t R0[1 << (PARAM_FFT_T - 2)] = {0};
uint16_t R1[1 << (PARAM_FFT_T - 2)] = {0};

uint16_t Q[1 << 2 * (PARAM_FFT_T - 2)] = {0};
uint16_t R[1 << 2 * (PARAM_FFT_T - 2)] = {0};

memcpy(Q0, f0 + n, 2 * n);
memcpy(Q1, f1 + n, 2 * n);
memcpy(R0, f0, 2 * n);
memcpy(R1, f1, 2 * n);

radix_t (Q, Q0, Q1, m_f - 1);
radix_t (R, R0, R1, m_f - 1);

memcpy(f, R, 4 * n);
memcpy(f + 2 * n, R + n, 2 * n);
memcpy(f + 3 * n, Q + n, 2 * n);

for (size_t i = 0; i < n; ++i) {
f[2 * n + i] ^= Q[i];
f[3 * n + i] ^= f[2 * n + i];
}
}
}



/**
* @brief Recursively computes syndromes of family w
*
* This function is a subroutine of the function fft_t
*
* @param[out] f Array receiving the syndromes
* @param[in] w Array storing the family
* @param[in] f_coeffs Length of syndromes vector
* @param[in] m 2^m is the smallest power of 2 greater or equal to the length of family w
* @param[in] m_f 2^{m_f} is the smallest power of 2 greater or equal to the length of f
* @param[in] betas FFT constants
*/
static void fft_t_rec(uint16_t *f, const uint16_t *w, size_t f_coeffs,
uint8_t m, uint32_t m_f, const uint16_t *betas) {
size_t k = ((size_t)1) << (m - 1);
uint16_t gammas[PARAM_M - 2] = {0};
uint16_t deltas[PARAM_M - 2] = {0};
uint16_t gammas_sums[1 << (PARAM_M - 1)];
uint16_t u[1 << (PARAM_M - 2)] = {0};
uint16_t f0[1 << (PARAM_FFT_T - 2)] = {0};
uint16_t f1[1 << (PARAM_FFT_T - 2)] = {0};
uint16_t betas_sums[1 << (PARAM_M - 1)] = {0};

// Step 1
if (m_f == 1) {
for (size_t i = 0; i < (((size_t)1) << m); ++i) {
f[0] ^= w[i];
}

for (size_t j = 0; j < m; ++j) {
for (size_t ki = 0; ki < (((size_t)1) << j); ++ki) {
size_t index = (((size_t)1) << j) + ki;
betas_sums[index] = betas_sums[ki] ^ betas[j];
f[1] ^= PQCLEAN_HQC1281CCA2_LEAKTIME_gf_mul(betas_sums[index], w[index]);
}
}

return;
}

// Compute gammas and deltas
for (uint8_t i = 0; i < m - 1; ++i) {
gammas[i] = PQCLEAN_HQC1281CCA2_LEAKTIME_gf_mul(betas[i], PQCLEAN_HQC1281CCA2_LEAKTIME_gf_inverse(betas[m - 1]));
deltas[i] = PQCLEAN_HQC1281CCA2_LEAKTIME_gf_square(gammas[i]) ^ gammas[i];
}

// Compute gammas subset sums
compute_subset_sums(gammas_sums, gammas, m - 1);

/* Step 6: Compute u and v from w (aka w)
* w[i] = u[i] + G[i].v[i]
* w[k+i] = w[i] + v[i] = u[i] + (G[i]+1).v[i]
* Transpose:
* u[i] = w[i] + w[k+i]
* v[i] = G[i].w[i] + (G[i]+1).w[k+i] = G[i].u[i] + w[k+i] */
if (f_coeffs <= 3) { // 3-coefficient polynomial f case
// Step 5: Compute f0 from u and f1 from v
f1[1] = 0;
u[0] = w[0] ^ w[k];
f1[0] = w[k];
for (size_t i = 1; i < k; ++i) {
u[i] = w[i] ^ w[k + i];
f1[0] ^= PQCLEAN_HQC1281CCA2_LEAKTIME_gf_mul(gammas_sums[i], u[i]) ^ w[k + i];
}
fft_t_rec(f0, u, (f_coeffs + 1) / 2, m - 1, m_f - 1, deltas);
} else {
uint16_t v[1 << (PARAM_M - 2)] = {0};

u[0] = w[0] ^ w[k];
v[0] = w[k];

for (size_t i = 1; i < k; ++i) {
u[i] = w[i] ^ w[k + i];
v[i] = PQCLEAN_HQC1281CCA2_LEAKTIME_gf_mul(gammas_sums[i], u[i]) ^ w[k + i];
}

// Step 5: Compute f0 from u and f1 from v
fft_t_rec(f0, u, (f_coeffs + 1) / 2, m - 1, m_f - 1, deltas);
fft_t_rec(f1, v, f_coeffs / 2, m - 1, m_f - 1, deltas);
}

// Step 3: Compute g from g0 and g1
radix_t(f, f0, f1, m_f);

// Step 2: compute f from g
if (betas[m - 1] != 1) {
uint16_t beta_m_pow = 1;
for (size_t i = 1; i < (((size_t)1) << m_f); ++i) {
beta_m_pow = PQCLEAN_HQC1281CCA2_LEAKTIME_gf_mul(beta_m_pow, betas[m - 1]);
f[i] = PQCLEAN_HQC1281CCA2_LEAKTIME_gf_mul(beta_m_pow, f[i]);
}
}
}



/**
* @brief Computes the syndromes f of the family w
*
* Since the syndromes linear map is the transpose of multipoint evaluation,
* it uses exactly the same constants, either hardcoded or precomputed by compute_fft_lut(...). <br>
* This follows directives from Bernstein, Chou and Schwabe given here:
* https://binary.cr.yp.to/mcbits-20130616.pdf
*
* @param[out] f Array of size 2*(PARAM_FFT_T) elements receiving the syndromes
* @param[in] w Array of PARAM_GF_MUL_ORDER+1 elements
* @param[in] f_coeffs Length of syndromes vector f
*/
void PQCLEAN_HQC1281CCA2_LEAKTIME_fft_t(uint16_t *f, const uint16_t *w, size_t f_coeffs) {
// Transposed from Gao and Mateer algorithm
uint16_t betas[PARAM_M - 1];
uint16_t betas_sums[1 << (PARAM_M - 1)];
size_t k = 1 << (PARAM_M - 1);
uint16_t u[1 << (PARAM_M - 1)] = {0};
uint16_t v[1 << (PARAM_M - 1)] = {0};
uint16_t deltas[PARAM_M - 1];
uint16_t f0[1 << (PARAM_FFT_T - 1)];
uint16_t f1[1 << (PARAM_FFT_T - 1)];

compute_fft_betas(betas);
compute_subset_sums(betas_sums, betas, PARAM_M - 1);

/* Step 6: Compute u and v from w (aka w)
*
* We had:
* w[i] = u[i] + G[i].v[i]
* w[k+i] = w[i] + v[i] = u[i] + (G[i]+1).v[i]
* Transpose:
* u[i] = w[i] + w[k+i]
* v[i] = G[i].w[i] + (G[i]+1).w[k+i] = G[i].u[i] + w[k+i] */
u[0] = w[0] ^ w[k];
v[0] = w[k];
for (size_t i = 1; i < k; ++i) {
u[i] = w[i] ^ w[k + i];
v[i] = PQCLEAN_HQC1281CCA2_LEAKTIME_gf_mul(betas_sums[i], u[i]) ^ w[k + i];
}

// Compute deltas
for (size_t i = 0; i < PARAM_M - 1; ++i) {
deltas[i] = PQCLEAN_HQC1281CCA2_LEAKTIME_gf_square(betas[i]) ^ betas[i];
}

// Step 5: Compute f0 from u and f1 from v
fft_t_rec(f0, u, (f_coeffs + 1) / 2, PARAM_M - 1, PARAM_FFT_T - 1, deltas);
fft_t_rec(f1, v, f_coeffs / 2, PARAM_M - 1, PARAM_FFT_T - 1, deltas);

// Step 3: Compute g from g0 and g1
radix_t(f, f0, f1, PARAM_FFT_T);

// Step 2: beta_m = 1 so f = g
}



/**
* @brief Computes the radix conversion of a polynomial f in GF(2^m)[x]
*
* Computes f0 and f1 such that f(x) = f0(x^2-x) + x.f1(x^2-x)
* as proposed by Bernstein, Chou and Schwabe:
* https://binary.cr.yp.to/mcbits-20130616.pdf
*
* @param[out] f0 Array half the size of f
* @param[out] f1 Array half the size of f
* @param[in] f Array of size a power of 2
* @param[in] m_f 2^{m_f} is the smallest power of 2 greater or equal to the number of coefficients of f
*/
static void radix(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f) {
switch (m_f) {
case 4:
f0[4] = f[8] ^ f[12];
f0[6] = f[12] ^ f[14];
f0[7] = f[14] ^ f[15];
f1[5] = f[11] ^ f[13];
f1[6] = f[13] ^ f[14];
f1[7] = f[15];
f0[5] = f[10] ^ f[12] ^ f1[5];
f1[4] = f[9] ^ f[13] ^ f0[5];

f0[0] = f[0];
f1[3] = f[7] ^ f[11] ^ f[15];
f0[3] = f[6] ^ f[10] ^ f[14] ^ f1[3];
f0[2] = f[4] ^ f0[4] ^ f0[3] ^ f1[3];
f1[1] = f[3] ^ f[5] ^ f[9] ^ f[13] ^ f1[3];
f1[2] = f[3] ^ f1[1] ^ f0[3];
f0[1] = f[2] ^ f0[2] ^ f1[1];
f1[0] = f[1] ^ f0[1];
return;

case 3:
f0[0] = f[0];
f0[2] = f[4] ^ f[6];
f0[3] = f[6] ^ f[7];
f1[1] = f[3] ^ f[5] ^ f[7];
f1[2] = f[5] ^ f[6];
f1[3] = f[7];
f0[1] = f[2] ^ f0[2] ^ f1[1];
f1[0] = f[1] ^ f0[1];
return;

case 2:
f0[0] = f[0];
f0[1] = f[2] ^ f[3];
f1[0] = f[1] ^ f0[1];
f1[1] = f[3];
return;

case 1:
f0[0] = f[0];
f1[0] = f[1];
return;

default:
;
size_t n = ((size_t)1) << (m_f - 2);

uint16_t Q[2 * (1 << (PARAM_FFT - 2))];
uint16_t R[2 * (1 << (PARAM_FFT - 2))];

uint16_t Q0[1 << (PARAM_FFT - 2)];
uint16_t Q1[1 << (PARAM_FFT - 2)];
uint16_t R0[1 << (PARAM_FFT - 2)];
uint16_t R1[1 << (PARAM_FFT - 2)];

memcpy(Q, f + 3 * n, 2 * n);
memcpy(Q + n, f + 3 * n, 2 * n);
memcpy(R, f, 4 * n);

for (size_t i = 0; i < n; ++i) {
Q[i] ^= f[2 * n + i];
R[n + i] ^= Q[i];
}

radix(Q0, Q1, Q, m_f - 1);
radix(R0, R1, R, m_f - 1);

memcpy(f0, R0, 2 * n);
memcpy(f0 + n, Q0, 2 * n);
memcpy(f1, R1, 2 * n);
memcpy(f1 + n, Q1, 2 * n);
}
}



/**
* @brief Evaluates f at all subset sums of a given set
*
* This function is a subroutine of the function fft.
*
* @param[out] w Array
* @param[in] f Array
* @param[in] f_coeffs Number of coefficients of f
* @param[in] m Number of betas
* @param[in] m_f Number of coefficients of f (one more than its degree)
* @param[in] betas FFT constants
*/
static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs,
uint8_t m, uint32_t m_f, const uint16_t *betas) {

uint16_t f0[1 << (PARAM_FFT - 2)] = {0};
uint16_t f1[1 << (PARAM_FFT - 2)] = {0};
uint16_t gammas[PARAM_M - 2] = {0};
uint16_t deltas[PARAM_M - 2] = {0};
size_t k = ((size_t)1) << (m - 1);
uint16_t gammas_sums[1 << (PARAM_M - 2)] = {0};
uint16_t u[1 << (PARAM_M - 2)] = {0};
uint16_t v[1 << (PARAM_M - 2)] = {0};

// Step 1
if (m_f == 1) {
uint16_t tmp[PARAM_M - (PARAM_FFT - 1)];
for (size_t i = 0; i < m; ++i) {
tmp[i] = PQCLEAN_HQC1281CCA2_LEAKTIME_gf_mul(betas[i], f[1]);
}

w[0] = f[0];
for (size_t j = 0; j < m; ++j) {
for (size_t ki = 0; ki < (((size_t)1) << j); ++ki) {
w[(((size_t)1) << j) + ki] = w[ki] ^ tmp[j];
}
}

return;
}

// Step 2: compute g
if (betas[m - 1] != 1) {
uint16_t beta_m_pow = 1;
for (size_t i = 1; i < (((size_t)1) << m_f); ++i) {
beta_m_pow = PQCLEAN_HQC1281CCA2_LEAKTIME_gf_mul(beta_m_pow, betas[m - 1]);
f[i] = PQCLEAN_HQC1281CCA2_LEAKTIME_gf_mul(beta_m_pow, f[i]);
}
}

// Step 3
radix(f0, f1, f, m_f);

// Step 4: compute gammas and deltas
for (uint8_t i = 0; i < m - 1; ++i) {
gammas[i] = PQCLEAN_HQC1281CCA2_LEAKTIME_gf_mul(betas[i], PQCLEAN_HQC1281CCA2_LEAKTIME_gf_inverse(betas[m - 1]));
deltas[i] = PQCLEAN_HQC1281CCA2_LEAKTIME_gf_square(gammas[i]) ^ gammas[i];
}

// Compute gammas sums
compute_subset_sums(gammas_sums, gammas, m - 1);

// Step 5
fft_rec(u, f0, (f_coeffs + 1) / 2, m - 1, m_f - 1, deltas);

if (f_coeffs <= 3) { // 3-coefficient polynomial f case: f1 is constant
w[0] = u[0];
w[k] = u[0] ^ f1[0];
for (size_t i = 1; i < k; ++i) {
w[i] = u[i] ^ PQCLEAN_HQC1281CCA2_LEAKTIME_gf_mul(gammas_sums[i], f1[0]);
w[k + i] = w[i] ^ f1[0];
}
} else {
fft_rec(v, f1, f_coeffs / 2, m - 1, m_f - 1, deltas);

// Step 6
memcpy(w + k, v, 2 * k);
w[0] = u[0];
w[k] ^= u[0];
for (size_t i = 1; i < k; ++i) {
w[i] = u[i] ^ PQCLEAN_HQC1281CCA2_LEAKTIME_gf_mul(gammas_sums[i], v[i]);
w[k + i] ^= w[i];
}
}
}



/**
* @brief Evaluates f on all fields elements using an additive FFT algorithm
*
* f_coeffs is the number of coefficients of f (one less than its degree). <br>
* The FFT proceeds recursively to evaluate f at all subset sums of a basis B. <br>
* This implementation is based on the paper from Gao and Mateer: <br>
* Shuhong Gao and Todd Mateer, Additive Fast Fourier Transforms over Finite Fields,
* IEEE Transactions on Information Theory 56 (2010), 6265--6272.
* http://www.math.clemson.edu/~sgao/papers/GM10.pdf <br>
* and includes improvements proposed by Bernstein, Chou and Schwabe here:
* https://binary.cr.yp.to/mcbits-20130616.pdf <br>
* Constants betas, gammas and deltas involved in the algorithm are either hardcoded or precomputed
* by the subroutine compute_fft_lut(...). <br>
* Note that on this first call (as opposed to the recursive calls to fft_rec), gammas are equal to betas,
* meaning the first gammas subset sums are actually the subset sums of betas (except 1). <br>
* Also note that f is altered during computation (twisted at each level).
*
* @param[out] w Array
* @param[in] f Array of 2^PARAM_FFT elements
* @param[in] f_coeffs Number coefficients of f (i.e. deg(f)+1)
*/
void PQCLEAN_HQC1281CCA2_LEAKTIME_fft(uint16_t *w, const uint16_t *f, size_t f_coeffs) {
uint16_t betas[PARAM_M - 1] = {0};
uint16_t betas_sums[1 << (PARAM_M - 1)] = {0};
uint16_t f0[1 << (PARAM_FFT - 1)] = {0};
uint16_t f1[1 << (PARAM_FFT - 1)] = {0};
uint16_t deltas[PARAM_M - 1];
size_t k = 1 << (PARAM_M - 1);
uint16_t u[1 << (PARAM_M - 1)] = {0};
uint16_t v[1 << (PARAM_M - 1)] = {0};

// Follows Gao and Mateer algorithm
compute_fft_betas(betas);

// Step 1: PARAM_FFT > 1, nothing to do

// Compute gammas sums
compute_subset_sums(betas_sums, betas, PARAM_M - 1);

// Step 2: beta_m = 1, nothing to do

// Step 3
radix(f0, f1, f, PARAM_FFT);

// Step 4: Compute deltas
for (size_t i = 0; i < PARAM_M - 1; ++i) {
deltas[i] = PQCLEAN_HQC1281CCA2_LEAKTIME_gf_square(betas[i]) ^ betas[i];
}

// Step 5
fft_rec(u, f0, (f_coeffs + 1) / 2, PARAM_M - 1, PARAM_FFT - 1, deltas);
fft_rec(v, f1, f_coeffs / 2, PARAM_M - 1, PARAM_FFT - 1, deltas);

// Step 6, 7 and error polynomial computation
memcpy(w + k, v, 2 * k);

// Check if 0 is root
w[0] = u[0];

// Check if 1 is root
w[k] ^= u[0];

// Find other roots
for (size_t i = 1; i < k; ++i) {
w[i] = u[i] ^ PQCLEAN_HQC1281CCA2_LEAKTIME_gf_mul(betas_sums[i], v[i]);
w[k + i] ^= w[i];
}
}



/**
* @brief Arranges the received word vector in a form w such that applying the additive FFT transpose to w yields the BCH syndromes of the received word vector.
*
* Since the received word vector gives coefficients of the primitive element alpha, we twist accordingly. <br>
* Furthermore, the additive FFT transpose needs elements indexed by their decomposition on the chosen basis,
* so we apply the adequate permutation.
*
* @param[out] w Array of size 2^PARAM_M
* @param[in] vector Array of size VEC_N1_SIZE_BYTES
*/
void PQCLEAN_HQC1281CCA2_LEAKTIME_fft_t_preprocess_bch_codeword(uint16_t *w, const uint8_t *vector) {
uint16_t r[1 << PARAM_M];
uint16_t gammas[PARAM_M - 1];
uint16_t gammas_sums[1 << (PARAM_M - 1)];
size_t k = 1 << (PARAM_M - 1);

// Unpack the received word vector into array r
size_t i;
for (i = 0; i < VEC_N1_SIZE_BYTES - (PARAM_N1 % 8 != 0); ++i) {
for (size_t j = 0; j < 8; ++j) {
r[8 * i + j] = (vector[i] >> j) & 1;
}
}

// Last byte
for (size_t j = 0; j < PARAM_N1 % 8; ++j) {
r[8 * i + j] = (vector[i] >> j) & 1;
}

// Complete r with zeros
memset(r + PARAM_N1, 0, 2 * ((1 << PARAM_M) - PARAM_N1));

compute_fft_betas(gammas);
compute_subset_sums(gammas_sums, gammas, PARAM_M - 1);

// Twist and permute r adequately to obtain w
w[0] = 0;
w[k] = -r[0] & 1;
for (i = 1; i < k; ++i) {
w[i] = -r[PQCLEAN_HQC1281CCA2_LEAKTIME_gf_log(gammas_sums[i])] & gammas_sums[i];
w[k + i] = -r[PQCLEAN_HQC1281CCA2_LEAKTIME_gf_log(gammas_sums[i] ^ 1)] & (gammas_sums[i] ^ 1);
}
}



/**
* @brief Retrieves the error polynomial error from the evaluations w of the ELP (Error Locator Polynomial) on all field elements.
*
* @param[out] error Array of size VEC_N1_SIZE_BYTES
* @param[in] w Array of size 2^PARAM_M
*/
void PQCLEAN_HQC1281CCA2_LEAKTIME_fft_retrieve_bch_error_poly(uint8_t *error, const uint16_t *w) {
uint16_t gammas[PARAM_M - 1];
uint16_t gammas_sums[1 << (PARAM_M - 1)];
size_t k = 1 << (PARAM_M - 1);
size_t index = PARAM_GF_MUL_ORDER;

compute_fft_betas(gammas);
compute_subset_sums(gammas_sums, gammas, PARAM_M - 1);

error[0] ^= 1 ^ ((uint16_t) - w[0] >> 15);
uint8_t bit = 1 ^ ((uint16_t) - w[k] >> 15);
error[index / 8] ^= bit << (index % 8);

for (size_t i = 1; i < k; ++i) {
index = PARAM_GF_MUL_ORDER - PQCLEAN_HQC1281CCA2_LEAKTIME_gf_log(gammas_sums[i]);
bit = 1 ^ ((uint16_t) - w[i] >> 15);
error[index / 8] ^= bit << (index % 8);

index = PARAM_GF_MUL_ORDER - PQCLEAN_HQC1281CCA2_LEAKTIME_gf_log(gammas_sums[i] ^ 1);
bit = 1 ^ ((uint16_t) - w[k + i] >> 15);
error[index / 8] ^= bit << (index % 8);
}
}

+ 18
- 0
crypto_kem/hqc-128-1-cca2/leaktime/fft.h View File

@@ -0,0 +1,18 @@
#ifndef PQCLEAN_HQC1281CCA2_LEAKTIME_FFT_H
#define PQCLEAN_HQC1281CCA2_LEAKTIME_FFT_H

/**
* @file fft.h
* Header file of fft.c
*/

#include <stddef.h>
#include <stdint.h>

void PQCLEAN_HQC1281CCA2_LEAKTIME_fft_t(uint16_t *f, const uint16_t *w, size_t f_coeffs);
void PQCLEAN_HQC1281CCA2_LEAKTIME_fft_t_preprocess_bch_codeword(uint16_t *w, const uint8_t *vector);

void PQCLEAN_HQC1281CCA2_LEAKTIME_fft(uint16_t *w, const uint16_t *f, size_t f_coeffs);
void PQCLEAN_HQC1281CCA2_LEAKTIME_fft_retrieve_bch_error_poly(uint8_t *error, const uint16_t *w);

#endif

+ 99
- 0
crypto_kem/hqc-128-1-cca2/leaktime/gf.c
File diff suppressed because it is too large
View File


+ 18
- 0
crypto_kem/hqc-128-1-cca2/leaktime/gf.h View File

@@ -0,0 +1,18 @@
#ifndef PQCLEAN_HQC1281CCA2_LEAKTIME_GF_H
#define PQCLEAN_HQC1281CCA2_LEAKTIME_GF_H

/**
* @file gf.h
* Header file of gf.c
*/

#include <stddef.h>
#include <stdint.h>

uint16_t PQCLEAN_HQC1281CCA2_LEAKTIME_gf_log(uint16_t elt);
uint16_t PQCLEAN_HQC1281CCA2_LEAKTIME_gf_mul(uint16_t a, uint16_t b);
uint16_t PQCLEAN_HQC1281CCA2_LEAKTIME_gf_square(uint16_t a);
uint16_t PQCLEAN_HQC1281CCA2_LEAKTIME_gf_inverse(uint16_t a);
uint16_t PQCLEAN_HQC1281CCA2_LEAKTIME_gf_mod(uint16_t i);

#endif

+ 123
- 0
crypto_kem/hqc-128-1-cca2/leaktime/gf2x.c View File

@@ -0,0 +1,123 @@
/**
* \file gf2x.c
* \brief Implementation of multiplication of two polynomials
*/

#include "gf2x.h"
#include "parameters.h"
#include "util.h"

#include <stdint.h>
#include <string.h>

#define WORD_TYPE uint64_t
#define WORD_TYPE_BITS (sizeof(WORD_TYPE) * 8)
#define UTILS_VECTOR_ARRAY_SIZE CEIL_DIVIDE(PARAM_N, WORD_TYPE_BITS)

static int vect_mul_precompute_rows(WORD_TYPE *o, const WORD_TYPE *v);


/**
* @brief A subroutine used in the function sparse_dense_mul()
*
* @param[out] o Pointer to an array
* @param[in] v Pointer to an array
* @return 0 if precomputation is successful, -1 otherwise
*/
static int vect_mul_precompute_rows(WORD_TYPE *o, const WORD_TYPE *v) {
int8_t var;
for (size_t i = 0; i < PARAM_N; ++i) {
var = 0;

// All the bits that we need are in the same block
if (((i % WORD_TYPE_BITS) == 0) && (i != PARAM_N - (PARAM_N % WORD_TYPE_BITS))) {
var = 1;
}

// Cases where the bits are in before the last block, the last block and the first block
if (i > PARAM_N - WORD_TYPE_BITS) {
if (i >= PARAM_N - (PARAM_N % WORD_TYPE_BITS)) {
var = 2;
} else {
var = 3;
}
}

switch (var) {
case 0:
// Take bits in the last block and the first one
o[i] = 0;
o[i] += v[i / WORD_TYPE_BITS] >> (i % WORD_TYPE_BITS);
o[i] += v[(i / WORD_TYPE_BITS) + 1] << (WORD_TYPE_BITS - (i % WORD_TYPE_BITS));
break;

case 1:
o[i] = v[i / WORD_TYPE_BITS];
break;

case 2:
o[i] = 0;
o[i] += v[i / WORD_TYPE_BITS] >> (i % WORD_TYPE_BITS);
o[i] += v[0] << ((PARAM_N - i) % WORD_TYPE_BITS);
break;

case 3:
o[i] = 0;
o[i] += v[i / WORD_TYPE_BITS] >> (i % WORD_TYPE_BITS);
o[i] += v[(i / WORD_TYPE_BITS) + 1] << (WORD_TYPE_BITS - (i % WORD_TYPE_BITS));
o[i] += v[0] << ((WORD_TYPE_BITS - i + (PARAM_N % WORD_TYPE_BITS)) % WORD_TYPE_BITS);
break;

default:
return -1;
}
}

return 0;
}



/**
* @brief Multiplies two vectors
*
* This function multiplies two vectors: a sparse vector of Hamming weight equal to <b>weight</b> and a dense (random) vector.
* The vector <b>a1</b> is the sparse vector and <b>a2</b> is the dense vector.
* We notice that the idea is explained using vector of 32 bits elements instead of 64 (the algorithm works in booth cases).
*
* @param[out] o Pointer to a vector that is the result of the multiplication
* @param[in] a1 Pointer to the sparse vector stored by position
* @param[in] a2 Pointer to the dense vector
* @param[in] weight Integer that is the weight of the sparse vector
*/
void PQCLEAN_HQC1281CCA2_LEAKTIME_vect_mul(uint8_t *o, const uint32_t *a1, const uint8_t *a2, uint16_t weight) {
WORD_TYPE v1[UTILS_VECTOR_ARRAY_SIZE] = {0};
WORD_TYPE res[UTILS_VECTOR_ARRAY_SIZE] = {0};
WORD_TYPE precomputation_array [PARAM_N] = {0};
WORD_TYPE row [UTILS_VECTOR_ARRAY_SIZE] = {0};
uint32_t index;

PQCLEAN_HQC1281CCA2_LEAKTIME_load8_arr(v1, UTILS_VECTOR_ARRAY_SIZE, a2, VEC_N_SIZE_BYTES);
vect_mul_precompute_rows(precomputation_array, v1);

for (size_t i = 0; i < weight; ++i) {
int32_t k = UTILS_VECTOR_ARRAY_SIZE;

for (size_t j = 0; j < UTILS_VECTOR_ARRAY_SIZE - 1; ++j) {
index = WORD_TYPE_BITS * (uint32_t)j - a1[i];
if (index > PARAM_N) {
index += PARAM_N;
}
row[j] = precomputation_array[index];
}

index = WORD_TYPE_BITS * (UTILS_VECTOR_ARRAY_SIZE - 1) - a1[i];
row[UTILS_VECTOR_ARRAY_SIZE - 1] = precomputation_array[(index < PARAM_N ? index : index + PARAM_N)] & BITMASK(PARAM_N, WORD_TYPE_BITS);

while (k--) {
res[k] ^= row[k];
}
}

PQCLEAN_HQC1281CCA2_LEAKTIME_store8_arr(o, VEC_N_SIZE_BYTES, res, UTILS_VECTOR_ARRAY_SIZE);
}

+ 13
- 0
crypto_kem/hqc-128-1-cca2/leaktime/gf2x.h View File

@@ -0,0 +1,13 @@
#ifndef PQCLEAN_HQC1281CCA2_LEAKTIME_GF2X_H
#define PQCLEAN_HQC1281CCA2_LEAKTIME_GF2X_H

/**
* @file gf2x.h
* @brief Header file for gf2x.c
*/

#include <stdint.h>

void PQCLEAN_HQC1281CCA2_LEAKTIME_vect_mul(uint8_t *o, const uint32_t *a1, const uint8_t *a2, uint16_t weight);

#endif

+ 135
- 0
crypto_kem/hqc-128-1-cca2/leaktime/hqc.c View File

@@ -0,0 +1,135 @@
/**
* @file hqc.c
* @brief Implementation of hqc.h
*/

#include "gf2x.h"
#include "hqc.h"
#include "nistseedexpander.h"
#include "parameters.h"
#include "parsing.h"
#include "randombytes.h"
#include "tensor.h"
#include "vector.h"
#include <stdint.h>


/**
* @brief Keygen of the HQC_PKE IND_CPA scheme
*
* The public key is composed of the syndrome <b>s</b> as well as the <b>seed</b> used to generate the vector <b>h</b>.
*
* The secret key is composed of the <b>seed</b> used to generate vectors <b>x</b> and <b>y</b>.
* As a technicality, the public key is appended to the secret key in order to respect NIST API.
*
* @param[out] pk String containing the public key
* @param[out] sk String containing the secret key
*/
void PQCLEAN_HQC1281CCA2_LEAKTIME_hqc_pke_keygen(uint8_t *pk, uint8_t *sk) {
AES_XOF_struct sk_seedexpander;
AES_XOF_struct pk_seedexpander;
uint8_t sk_seed[SEED_BYTES] = {0};
uint8_t pk_seed[SEED_BYTES] = {0};
uint8_t x[VEC_N_SIZE_BYTES] = {0};
uint32_t y[PARAM_OMEGA] = {0};
uint8_t h[VEC_N_SIZE_BYTES] = {0};
uint8_t s[VEC_N_SIZE_BYTES] = {0};

// Create seed_expanders for public key and secret key
randombytes(sk_seed, SEED_BYTES);
seedexpander_init(&sk_seedexpander, sk_seed, sk_seed + 32, SEEDEXPANDER_MAX_LENGTH);

randombytes(pk_seed, SEED_BYTES);
seedexpander_init(&pk_seedexpander, pk_seed, pk_seed + 32, SEEDEXPANDER_MAX_LENGTH);

// Compute secret key
PQCLEAN_HQC1281CCA2_LEAKTIME_vect_set_random_fixed_weight(&sk_seedexpander, x, PARAM_OMEGA);
PQCLEAN_HQC1281CCA2_LEAKTIME_vect_set_random_fixed_weight_by_coordinates(&sk_seedexpander, y, PARAM_OMEGA);

// Compute public key
PQCLEAN_HQC1281CCA2_LEAKTIME_vect_set_random(&pk_seedexpander, h);
PQCLEAN_HQC1281CCA2_LEAKTIME_vect_mul(s, y, h, PARAM_OMEGA);
PQCLEAN_HQC1281CCA2_LEAKTIME_vect_add(s, x, s, VEC_N_SIZE_BYTES);

// Parse keys to string
PQCLEAN_HQC1281CCA2_LEAKTIME_hqc_public_key_to_string(pk, pk_seed, s);
PQCLEAN_HQC1281CCA2_LEAKTIME_hqc_secret_key_to_string(sk, sk_seed, pk);
}



/**
* @brief Encryption of the HQC_PKE IND_CPA scheme
*
* The cihertext is composed of vectors <b>u</b> and <b>v</b>.
*
* @param[out] u Vector u (first part of the ciphertext)
* @param[out] v Vector v (second part of the ciphertext)
* @param[in] m Vector representing the message to encrypt
* @param[in] theta Seed used to derive randomness required for encryption
* @param[in] pk String containing the public key
*/
void PQCLEAN_HQC1281CCA2_LEAKTIME_hqc_pke_encrypt(uint8_t *u, uint8_t *v, const uint8_t *m, const uint8_t *theta, const uint8_t *pk) {
AES_XOF_struct seedexpander;
uint8_t h[VEC_N_SIZE_BYTES] = {0};
uint8_t s[VEC_N_SIZE_BYTES] = {0};
uint8_t r1[VEC_N_SIZE_BYTES] = {0};
uint32_t r2[PARAM_OMEGA_R] = {0};
uint8_t e[VEC_N_SIZE_BYTES] = {0};
uint8_t tmp1[VEC_N_SIZE_BYTES] = {0};
uint8_t tmp2[VEC_N_SIZE_BYTES] = {0};

// Create seed_expander from theta
seedexpander_init(&seedexpander, theta, theta + 32, SEEDEXPANDER_MAX_LENGTH);

// Retrieve h and s from public key
PQCLEAN_HQC1281CCA2_LEAKTIME_hqc_public_key_from_string(h, s, pk);

// Generate r1, r2 and e
PQCLEAN_HQC1281CCA2_LEAKTIME_vect_set_random_fixed_weight(&seedexpander, r1, PARAM_OMEGA_R);
PQCLEAN_HQC1281CCA2_LEAKTIME_vect_set_random_fixed_weight_by_coordinates(&seedexpander, r2, PARAM_OMEGA_R);
PQCLEAN_HQC1281CCA2_LEAKTIME_vect_set_random_fixed_weight(&seedexpander, e, PARAM_OMEGA_E);

// Compute u = r1 + r2.h
PQCLEAN_HQC1281CCA2_LEAKTIME_vect_mul(u, r2, h, PARAM_OMEGA_R);
PQCLEAN_HQC1281CCA2_LEAKTIME_vect_add(u, r1, u, VEC_N_SIZE_BYTES);

// Compute v = m.G by encoding the message
PQCLEAN_HQC1281CCA2_LEAKTIME_tensor_code_encode(v, m);
PQCLEAN_HQC1281CCA2_LEAKTIME_vect_resize(tmp1, PARAM_N, v, PARAM_N1N2);

// Compute v = m.G + s.r2 + e
PQCLEAN_HQC1281CCA2_LEAKTIME_vect_mul(tmp2, r2, s, PARAM_OMEGA_R);
PQCLEAN_HQC1281CCA2_LEAKTIME_vect_add(tmp2, e, tmp2, VEC_N_SIZE_BYTES);
PQCLEAN_HQC1281CCA2_LEAKTIME_vect_add(tmp2, tmp1, tmp2, VEC_N_SIZE_BYTES);
PQCLEAN_HQC1281CCA2_LEAKTIME_vect_resize(v, PARAM_N1N2, tmp2, PARAM_N);
}



/**
* @brief Decryption of the HQC_PKE IND_CPA scheme
*
* @param[out] m Vector representing the decrypted message
* @param[in] u Vector u (first part of the ciphertext)
* @param[in] v Vector v (second part of the ciphertext)
* @param[in] sk String containing the secret key
*/
void PQCLEAN_HQC1281CCA2_LEAKTIME_hqc_pke_decrypt(uint8_t *m, const uint8_t *u, const uint8_t *v, const uint8_t *sk) {
uint8_t x[VEC_N_SIZE_BYTES] = {0};
uint32_t y[PARAM_OMEGA] = {0};
uint8_t pk[PUBLIC_KEY_BYTES] = {0};
uint8_t tmp1[VEC_N_SIZE_BYTES] = {0};
uint8_t tmp2[VEC_N_SIZE_BYTES] = {0};

// Retrieve x, y, pk from secret key
PQCLEAN_HQC1281CCA2_LEAKTIME_hqc_secret_key_from_string(x, y, pk, sk);

// Compute v - u.y
PQCLEAN_HQC1281CCA2_LEAKTIME_vect_resize(tmp1, PARAM_N, v, PARAM_N1N2);
PQCLEAN_HQC1281CCA2_LEAKTIME_vect_mul(tmp2, y, u, PARAM_OMEGA);
PQCLEAN_HQC1281CCA2_LEAKTIME_vect_add(tmp2, tmp1, tmp2, VEC_N_SIZE_BYTES);

// Compute m by decoding v - u.y
PQCLEAN_HQC1281CCA2_LEAKTIME_tensor_code_decode(m, tmp2);
}

+ 15
- 0
crypto_kem/hqc-128-1-cca2/leaktime/hqc.h View File

@@ -0,0 +1,15 @@
#ifndef PQCLEAN_HQC1281CCA2_LEAKTIME_HQC_H
#define PQCLEAN_HQC1281CCA2_LEAKTIME_HQC_H

/**
* @file hqc.h
* @brief Functions of the HQC_PKE IND_CPA scheme
*/

#include <stdint.h>

void PQCLEAN_HQC1281CCA2_LEAKTIME_hqc_pke_keygen(uint8_t *pk, uint8_t *sk);
void PQCLEAN_HQC1281CCA2_LEAKTIME_hqc_pke_encrypt(uint8_t *u, uint8_t *v, const uint8_t *m, const uint8_t *theta, const uint8_t *pk);
void PQCLEAN_HQC1281CCA2_LEAKTIME_hqc_pke_decrypt(uint8_t *m, const uint8_t *u, const uint8_t *v, const uint8_t *sk);

#endif

+ 154
- 0
crypto_kem/hqc-128-1-cca2/leaktime/kem.c View File

@@ -0,0 +1,154 @@
/**
* @file kem.c
* @brief Implementation of api.h
*/

#include "api.h"
#include "hqc.h"
#include "nistseedexpander.h"
#include "parameters.h"
#include "parsing.h"
#include "sha2.h"
#include "vector.h"
#include <stdint.h>
#include <string.h>


/**
* @brief Keygen of the HQC_KEM IND_CAA2 scheme
*
* The public key is composed of the syndrome <b>s</b> as well as the seed used to generate the vector <b>h</b>.
*
* The secret key is composed of the seed used to generate vectors <b>x</b> and <b>y</b>.
* As a technicality, the public key is appended to the secret key in order to respect NIST API.
*
* @param[out] pk String containing the public key
* @param[out] sk String containing the secret key
* @returns 0 if keygen is successful
*/
int PQCLEAN_HQC1281CCA2_LEAKTIME_crypto_kem_keypair(uint8_t *pk, uint8_t *sk) {
PQCLEAN_HQC1281CCA2_LEAKTIME_hqc_pke_keygen(pk, sk);
return 0;
}



/**
* @brief Encapsulation of the HQC_KEM IND_CAA2 scheme
*
* @param[out] ct String containing the ciphertext
* @param[out] ss String containing the shared secret
* @param[in] pk String containing the public key
* @returns 0 if encapsulation is successful
*/
int PQCLEAN_HQC1281CCA2_LEAKTIME_crypto_kem_enc(uint8_t *ct, uint8_t *ss, const uint8_t *pk) {
AES_XOF_struct G_seedexpander;
uint8_t seed_G[VEC_K_SIZE_BYTES];
uint8_t diversifier_bytes[8] = {0};
uint8_t m[VEC_K_SIZE_BYTES] = {0};
uint8_t theta[SEED_BYTES] = {0};
uint8_t u[VEC_N_SIZE_BYTES] = {0};
uint8_t v[VEC_N1N2_SIZE_BYTES] = {0};
uint8_t d[SHA512_BYTES] = {0};
uint8_t mc[VEC_K_SIZE_BYTES + VEC_N_SIZE_BYTES + VEC_N1N2_SIZE_BYTES] = {0};

// Computing m
PQCLEAN_HQC1281CCA2_LEAKTIME_vect_set_random_from_randombytes(m);

// Generating G function
memcpy(seed_G, m, VEC_K_SIZE_BYTES);
seedexpander_init(&G_seedexpander, seed_G, diversifier_bytes, SEEDEXPANDER_MAX_LENGTH);

// Computing theta
seedexpander(&G_seedexpander, theta, SEED_BYTES);

// Encrypting m
PQCLEAN_HQC1281CCA2_LEAKTIME_hqc_pke_encrypt(u, v, m, theta, pk);

// Computing d
sha512(d, m, VEC_K_SIZE_BYTES);

// Computing shared secret
memcpy(mc, m, VEC_K_SIZE_BYTES);
memcpy(mc + VEC_K_SIZE_BYTES, u, VEC_N_SIZE_BYTES);
memcpy(mc + VEC_K_SIZE_BYTES + VEC_N_SIZE_BYTES, v, VEC_N1N2_SIZE_BYTES);
sha512(ss, mc, VEC_K_SIZE_BYTES + VEC_N_SIZE_BYTES + VEC_N1N2_SIZE_BYTES);

// Computing ciphertext
PQCLEAN_HQC1281CCA2_LEAKTIME_hqc_ciphertext_to_string(ct, u, v, d);

return 0;
}



/**
* @brief Decapsulation of the HQC_KEM IND_CAA2 scheme
*
* @param[out] ss String containing the shared secret
* @param[in] ct String containing the cipĥertext
* @param[in] sk String containing the secret key
* @returns 0 if decapsulation is successful, -1 otherwise
*/
int PQCLEAN_HQC1281CCA2_LEAKTIME_crypto_kem_dec(uint8_t *ss, const uint8_t *ct, const uint8_t *sk) {
AES_XOF_struct G_seedexpander;
uint8_t seed_G[VEC_K_SIZE_BYTES] = {0};
uint8_t diversifier_bytes[8] = {0};
uint8_t u[VEC_N_SIZE_BYTES] = {0};
uint8_t v[VEC_N1N2_SIZE_BYTES] = {0};
uint8_t d[SHA512_BYTES] = {0};
uint8_t pk[PUBLIC_KEY_BYTES] = {0};
uint8_t m[VEC_K_SIZE_BYTES] = {0};
uint8_t theta[SEED_BYTES] = {0};
uint8_t u2[VEC_N_SIZE_BYTES] = {0};
uint8_t v2[VEC_N1N2_SIZE_BYTES] = {0};
uint8_t d2[SHA512_BYTES] = {0};
uint8_t mc[VEC_K_SIZE_BYTES + VEC_N_SIZE_BYTES + VEC_N1N2_SIZE_BYTES] = {0};
int8_t abort = 0;

// Retrieving u, v and d from ciphertext
PQCLEAN_HQC1281CCA2_LEAKTIME_hqc_ciphertext_from_string(u, v, d, ct);

// Retrieving pk from sk
memcpy(pk, sk + SEED_BYTES, PUBLIC_KEY_BYTES);

// Decryting
PQCLEAN_HQC1281CCA2_LEAKTIME_hqc_pke_decrypt(m, u, v, sk);

// Generating G function
memcpy(seed_G, m, VEC_K_SIZE_BYTES);
seedexpander_init(&G_seedexpander, seed_G, diversifier_bytes, SEEDEXPANDER_MAX_LENGTH);

// Computing theta
seedexpander(&G_seedexpander, theta, SEED_BYTES);

// Encrypting m'
PQCLEAN_HQC1281CCA2_LEAKTIME_hqc_pke_encrypt(u2, v2, m, theta, pk);

// Checking that c = c' and abort otherwise
if (PQCLEAN_HQC1281CCA2_LEAKTIME_vect_compare(u, u2, VEC_N_SIZE_BYTES) != 0 ||
PQCLEAN_HQC1281CCA2_LEAKTIME_vect_compare(v, v2, VEC_N1N2_SIZE_BYTES) != 0) {
abort = 1;
}

// Computing d'
sha512(d2, m, VEC_K_SIZE_BYTES);

// Checking that d = d' and abort otherwise
if (memcmp(d, d2, SHA512_BYTES) != 0) {
abort = 1;
}

if (abort == 1) {
memset(ss, 0, SHARED_SECRET_BYTES);
return -1;
}

// Computing shared secret
memcpy(mc, m, VEC_K_SIZE_BYTES);
memcpy(mc + VEC_K_SIZE_BYTES, u, VEC_N_SIZE_BYTES);
memcpy(mc + VEC_K_SIZE_BYTES + VEC_N_SIZE_BYTES, v, VEC_N1N2_SIZE_BYTES);
sha512(ss, mc, VEC_K_SIZE_BYTES + VEC_N_SIZE_BYTES + VEC_N1N2_SIZE_BYTES);

return 0;
}

+ 112
- 0
crypto_kem/hqc-128-1-cca2/leaktime/parameters.h View File

@@ -0,0 +1,112 @@
#ifndef PQCLEAN_HQC1281CCA2_LEAKTIME_HQC_PARAMETERS_H
#define PQCLEAN_HQC1281CCA2_LEAKTIME_HQC_PARAMETERS_H

/**
* @file parameters.h
* @brief Parameters of the HQC_KEM IND-CCA2 scheme
*/

#include "api.h"

#define CEIL_DIVIDE(a, b) (((a)/(b)) + ((a) % (b) == 0 ? 0 : 1)) /*!< Divide a by b and ceil the result*/
#define BITMASK(a, size) ((1ULL << ((a) % (size))) - 1) /*!< Create a mask*/


/*
#define PARAM_N Define the parameter n of the scheme
#define PARAM_N1 Define the parameter n1 of the scheme (length of BCH code)
#define PARAM_N2 Define the parameter n2 of the scheme (length of the repetition code)
#define PARAM_N1N2 Define the parameter n1 * n2 of the scheme (length of the tensor code)
#define PARAM_OMEGA Define the parameter omega of the scheme
#define PARAM_OMEGA_E Define the parameter omega_e of the scheme
#define PARAM_OMEGA_R Define the parameter omega_r of the scheme
#define PARAM_SECURITY Define the security level corresponding to the chosen parameters
#define PARAM_DFR_EXP Define the decryption failure rate corresponding to the chosen parameters

#define SECRET_KEY_BYTES Define the size of the secret key in bytes
#define PUBLIC_KEY_BYTES Define the size of the public key in bytes
#define SHARED_SECRET_BYTES Define the size of the shared secret in bytes
#define CIPHERTEXT_BYTES Define the size of the ciphertext in bytes

#define UTILS_REJECTION_THRESHOLD Define the rejection threshold used to generate given weight vectors (see vector_set_random_fixed_weight function)
#define VEC_N_ARRAY_SIZE_BYTES Define the size of the array used to store a PARAM_N sized vector in bytes
#define VEC_N1_ARRAY_SIZE_BYTES Define the size of the array used to store a PARAM_N1 sized vector in bytes
#define VEC_N1N2_ARRAY_SIZE_BYTES Define the size of the array used to store a PARAM_N1N2 sized vector in bytes
#define VEC_K_ARRAY_SIZE_BYTES Define the size of the array used to store a PARAM_K sized vector in bytes

#define PARAM_T Define a threshold for decoding repetition code word (PARAM_T = (PARAM_N2 - 1) / 2)

#define PARAM_DELTA Define the parameter delta of the scheme (correcting capacity of the BCH code)
#define PARAM_M Define a positive integer
#define PARAM_GF_MUL_ORDER Define the size of the multiplicative group of GF(2^m), i.e 2^m -1
#define PARAM_K Define the size of the information bits of the BCH code
#define PARAM_G Define the size of the generator polynomial of BCH code
#define PARAM_FFT The additive FFT takes a 2^PARAM_FFT polynomial as input
We use the FFT to compute the roots of sigma, whose degree if PARAM_DELTA=60
The smallest power of 2 greater than 60+1 is 64=2^6
#define PARAM_FFT_T The additive FFT transpose computes a (2^PARAM_FFT_T)-sized syndrome vector
We want to compute 2*PARAM_DELTA=120 syndromes
The smallest power of 2 greater than 120 is 2^7
#define PARAM_BCH_POLY Generator polynomial of the BCH code

#define SHA512_BYTES Define the size of SHA512 output in bytes
#define SEED_BYTES Define the size of the seed in bytes
#define SEEDEXPANDER_MAX_LENGTH Define the seed expander max length
*/


#define PARAM_N 24677
#define PARAM_N1 796
#define PARAM_N2 31
#define PARAM_N1N2 24676
#define PARAM_OMEGA 67
#define PARAM_OMEGA_E 77
#define PARAM_OMEGA_R 77
#define PARAM_SECURITY 128
#define PARAM_DFR_EXP 128

#define SECRET_KEY_BYTES PQCLEAN_HQC1281CCA2_LEAKTIME_CRYPTO_SECRETKEYBYTES
#define PUBLIC_KEY_BYTES PQCLEAN_HQC1281CCA2_LEAKTIME_CRYPTO_PUBLICKEYBYTES
#define SHARED_SECRET_BYTES PQCLEAN_HQC1281CCA2_LEAKTIME_CRYPTO_BYTES
#define CIPHERTEXT_BYTES PQCLEAN_HQC1281CCA2_LEAKTIME_CRYPTO_CIPHERTEXTBYTES

#define UTILS_REJECTION_THRESHOLD 16755683
#define VEC_K_SIZE_BYTES CEIL_DIVIDE(PARAM_K, 8)
#define VEC_N_SIZE_BYTES CEIL_DIVIDE(PARAM_N, 8)
#define VEC_N1_SIZE_BYTES CEIL_DIVIDE(PARAM_N1, 8)
#define VEC_N1N2_SIZE_BYTES CEIL_DIVIDE(PARAM_N1N2, 8)

#define PARAM_T 15

#define PARAM_DELTA 60
#define PARAM_M 10
#define PARAM_GF_MUL_ORDER 1023
#define PARAM_K 256
#define PARAM_G 541
#define PARAM_FFT 6
#define PARAM_FFT_T 7
#define PARAM_BCH_POLY { \
1,1,0,1,1,0,1,0,0,0,0,1,0,1,0,1,1,1,1,1,1,0,1,1,0,1,1,1,1,1,0,0, \
1,0,0,1,0,1,1,0,1,0,0,1,1,1,0,0,1,1,1,0,0,0,1,0,1,0,1,0,1,1,0,0, \
1,0,1,0,0,1,0,0,0,1,1,1,1,1,1,1,0,0,1,1,1,1,0,1,0,1,0,1,1,0,1,0, \
0,1,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,0,1,1,1,1,0,1,0,0,1,1,1,1,0,1, \
0,0,0,1,0,0,1,1,1,1,1,0,1,0,0,0,1,0,1,1,0,0,0,1,0,1,0,0,1,0,0,0, \
1,1,0,1,0,1,0,1,1,0,1,1,0,0,1,1,1,0,0,1,0,1,0,0,1,0,0,1,1,0,1,0, \
0,0,0,1,1,0,0,0,0,1,0,1,1,0,1,1,0,1,0,0,0,1,1,1,0,1,0,1,1,0,0,1, \
1,0,1,1,0,0,0,1,0,1,1,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,1,1,0,0,1,0, \
0,0,1,1,0,0,1,1,1,0,0,0,1,0,0,1,1,1,1,0,0,0,0,0,1,1,0,0,1,0,1,1, \
1,1,1,1,0,1,1,1,0,0,1,1,0,0,1,1,1,1,1,0,0,0,0,1,0,1,1,1,0,1,0,1, \
0,0,0,0,1,1,0,0,0,0,1,0,0,0,1,0,1,0,1,0,1,1,0,0,0,1,0,1,1,0,0,0, \
1,0,0,1,0,0,1,1,0,0,1,0,1,0,0,1,1,1,1,0,0,1,1,0,0,1,1,0,1,0,1,1, \
0,0,0,0,0,0,0,0,1,0,1,1,0,0,0,0,0,0,1,1,0,1,0,1,0,0,0,0,0,1,1,1, \
0,1,0,1,1,0,1,1,1,1,0,1,1,1,0,1,1,0,1,1,1,1,1,0,0,1,0,0,1,1,0,0, \
0,0,0,0,1,0,1,0,0,0,0,0,1,0,1,1,1,1,1,0,0,1,1,1,0,0,0,0,1,0,1,1, \
1,1,0,0,1,0,0,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0,1,0,1,1,0,1,0,0, \
1,0,1,1,0,0,0,0,0,1,1,1,1,0,1,0,0,1,0,0,0,0,1,0,0,0,0,0,1 \
};

#define SHA512_BYTES 64
#define SEED_BYTES 40
#define SEEDEXPANDER_MAX_LENGTH 4294967295

#endif

+ 126
- 0
crypto_kem/hqc-128-1-cca2/leaktime/parsing.c View File

@@ -0,0 +1,126 @@
/**
* @file parsing.c
* @brief Functions to parse secret key, public key and ciphertext of the HQC scheme
*/

#include "nistseedexpander.h"
#include "parameters.h"
#include "parsing.h"
#include "vector.h"
#include <stdint.h>
#include <string.h>


/**
* @brief Parse a secret key into a string
*
* The secret key is composed of the seed used to generate vectors <b>x</b> and <b>y</b>.
* As technicality, the public key is appended to the secret key in order to respect NIST API.
*
* @param[out] sk String containing the secret key
* @param[in] sk_seed Seed used to generate the secret key
* @param[in] pk String containing the public key
*/
void PQCLEAN_HQC1281CCA2_LEAKTIME_hqc_secret_key_to_string(uint8_t *sk, const uint8_t *sk_seed, const uint8_t *pk) {
memcpy(sk, sk_seed, SEED_BYTES);
memcpy(sk + SEED_BYTES, pk, PUBLIC_KEY_BYTES);
}



/**
* @brief Parse a secret key from a string
*
* The secret key is composed of the seed used to generate vectors <b>x</b> and <b>y</b>.
* As technicality, the public key is appended to the secret key in order to respect NIST API.
*
* @param[out] x uint8_t representation of vector x
* @param[out] y uint8_t representation of vector y
* @param[out] pk String containing the public key
* @param[in] sk String containing the secret key
*/
void PQCLEAN_HQC1281CCA2_LEAKTIME_hqc_secret_key_from_string(uint8_t *x, uint32_t *y, uint8_t *pk, const uint8_t *sk) {
AES_XOF_struct sk_seedexpander;
uint8_t sk_seed[SEED_BYTES] = {0};

memcpy(sk_seed, sk, SEED_BYTES);
seedexpander_init(&sk_seedexpander, sk_seed, sk_seed + 32, SEEDEXPANDER_MAX_LENGTH);

PQCLEAN_HQC1281CCA2_LEAKTIME_vect_set_random_fixed_weight(&sk_seedexpander, x, PARAM_OMEGA);
PQCLEAN_HQC1281CCA2_LEAKTIME_vect_set_random_fixed_weight_by_coordinates(&sk_seedexpander, y, PARAM_OMEGA);
memcpy(pk, sk + SEED_BYTES, PUBLIC_KEY_BYTES);
}



/**
* @brief Parse a public key into a string
*
* The public key is composed of the syndrome <b>s</b> as well as the seed used to generate the vector <b>h</b>
*
* @param[out] pk String containing the public key
* @param[in] pk_seed Seed used to generate the public key
* @param[in] s uint8_t representation of vector s
*/
void PQCLEAN_HQC1281CCA2_LEAKTIME_hqc_public_key_to_string(uint8_t *pk, const uint8_t *pk_seed, const uint8_t *s) {
memcpy(pk, pk_seed, SEED_BYTES);
memcpy(pk + SEED_BYTES, s, VEC_N_SIZE_BYTES);
}



/**
* @brief Parse a public key from a string
*
* The public key is composed of the syndrome <b>s</b> as well as the seed used to generate the vector <b>h</b>
*
* @param[out] h uint8_t representation of vector h
* @param[out] s uint8_t representation of vector s
* @param[in] pk String containing the public key
*/
void PQCLEAN_HQC1281CCA2_LEAKTIME_hqc_public_key_from_string(uint8_t *h, uint8_t *s, const uint8_t *pk) {
AES_XOF_struct pk_seedexpander;
uint8_t pk_seed[SEED_BYTES] = {0};

memcpy(pk_seed, pk, SEED_BYTES);
seedexpander_init(&pk_seedexpander, pk_seed, pk_seed + 32, SEEDEXPANDER_MAX_LENGTH);
PQCLEAN_HQC1281CCA2_LEAKTIME_vect_set_random(&pk_seedexpander, h);

memcpy(s, pk + SEED_BYTES, VEC_N_SIZE_BYTES);
}



/**
* @brief Parse a ciphertext into a string
*
* The ciphertext is composed of vectors <b>u</b>, <b>v</b> and hash <b>d</b>.
*
* @param[out] ct String containing the ciphertext
* @param[in] u uint8_t representation of vector u
* @param[in] v uint8_t representation of vector v
* @param[in] d String containing the hash d
*/
void PQCLEAN_HQC1281CCA2_LEAKTIME_hqc_ciphertext_to_string(uint8_t *ct, const uint8_t *u, const uint8_t *v, const uint8_t *d) {
memcpy(ct, u, VEC_N_SIZE_BYTES);
memcpy(ct + VEC_N_SIZE_BYTES, v, VEC_N1N2_SIZE_BYTES);
memcpy(ct + VEC_N_SIZE_BYTES + VEC_N1N2_SIZE_BYTES, d, SHA512_BYTES);
}



/**
* @brief Parse a ciphertext from a string
*
* The ciphertext is composed of vectors <b>u</b>, <b>v</b> and hash <b>d</b>.
*
* @param[out] u uint8_t representation of vector u
* @param[out] v uint8_t representation of vector v
* @param[out] d String containing the hash d
* @param[in] ct String containing the ciphertext
*/
void PQCLEAN_HQC1281CCA2_LEAKTIME_hqc_ciphertext_from_string(uint8_t *u, uint8_t *v, uint8_t *d, const uint8_t *ct) {
memcpy(u, ct, VEC_N_SIZE_BYTES);
memcpy(v, ct + VEC_N_SIZE_BYTES, VEC_N1N2_SIZE_BYTES);
memcpy(d, ct + VEC_N_SIZE_BYTES + VEC_N1N2_SIZE_BYTES, SHA512_BYTES);
}

+ 20
- 0
crypto_kem/hqc-128-1-cca2/leaktime/parsing.h View File

@@ -0,0 +1,20 @@
#ifndef PQCLEAN_HQC1281CCA2_LEAKTIME_PARSING_H
#define PQCLEAN_HQC1281CCA2_LEAKTIME_PARSING_H

/**
* @file parsing.h
* @brief Header file for parsing.c
*/

#include <stdint.h>

void PQCLEAN_HQC1281CCA2_LEAKTIME_hqc_secret_key_to_string(uint8_t *sk, const uint8_t *sk_seed, const uint8_t *pk);
void PQCLEAN_HQC1281CCA2_LEAKTIME_hqc_secret_key_from_string(uint8_t *x, uint32_t *y, uint8_t *pk, const uint8_t *sk);

void PQCLEAN_HQC1281CCA2_LEAKTIME_hqc_public_key_to_string(uint8_t *pk, const uint8_t *pk_seed, const uint8_t *s);
void PQCLEAN_HQC1281CCA2_LEAKTIME_hqc_public_key_from_string(uint8_t *h, uint8_t *s, const uint8_t *pk);

void PQCLEAN_HQC1281CCA2_LEAKTIME_hqc_ciphertext_to_string(uint8_t *ct, const uint8_t *u, const uint8_t *v, const uint8_t *d);
void PQCLEAN_HQC1281CCA2_LEAKTIME_hqc_ciphertext_from_string(uint8_t *u, uint8_t *v, uint8_t *d, const uint8_t *ct);

#endif

+ 100
- 0
crypto_kem/hqc-128-1-cca2/leaktime/repetition.c View File

@@ -0,0 +1,100 @@
/**
* @file repetition.c
* @brief Implementation of repetition codes
*/

#include "parameters.h"
#include "repetition.h"
#include <stddef.h>
#include <stdint.h>

static void array_to_rep_codeword(uint8_t *o, const uint8_t *v);


/**
* @brief Encoding each bit in the message m using the repetition code
*
* For reasons of clarity and comprehensibility, we do the encoding by storing the encoded bits in a String (each bit in an a uint8_t),
* then we parse the obtained string to an compact array using the function array_to_rep_codeword().
*
* @param[out] em Pointer to an array that is the code word
* @param[in] m Pointer to an array that is the message
*/
void PQCLEAN_HQC1281CCA2_LEAKTIME_repetition_code_encode(uint8_t *em, const uint8_t *m) {
uint8_t tmp[PARAM_N1N2] = {0};
uint8_t bit = 0;
uint32_t index;

for (size_t i = 0; i < (VEC_N1_SIZE_BYTES - 1); ++i) {
for (uint8_t j = 0; j < 8; ++j) {
bit = (m[i] >> j) & 0x01;
index = (8 * (uint32_t)i + j) * PARAM_N2;
for (uint8_t k = 0; k < PARAM_N2; ++k) {
tmp[index + k] = bit;
}
}
}

for (uint8_t j = 0; j < (PARAM_N1 % 8); ++j) {
bit = (m[VEC_N1_SIZE_BYTES - 1] >> j) & 0x01;
index = (8 * (VEC_N1_SIZE_BYTES - 1) + j) * PARAM_N2;
for (uint8_t k = 0; k < PARAM_N2; ++k) {
tmp[index + k] = bit;
}
}

array_to_rep_codeword(em, tmp);
}



/**
* @brief Decoding the code words to a message using the repetition code
*
* We use a majority decoding. In fact we have that PARAM_N2 = 2 * PARAM_T + 1, thus,
* if the Hamming weight of the vector is greater than PARAM_T, the code word is decoded
* to 1 and 0 otherwise.
*
* @param[out] m Pointer to an array that is the message
* @param[in] em Pointer to an array that is the code word
*/
void PQCLEAN_HQC1281CCA2_LEAKTIME_repetition_code_decode(uint8_t *m, const uint8_t *em) {
size_t t = 0; // m index
uint8_t k = PARAM_N2; // block counter
uint8_t ones = 0; // number of 1 in the current block

for (size_t i = 0; i < VEC_N1N2_SIZE_BYTES; ++i) {
for (uint8_t j = 0; j < 8; ++j) {
ones += (em[i] >> j) & 0x01;

if (--k) {
continue;
}

m[t / 8] |= (ones > PARAM_T) << t % 8;
++t;
k = PARAM_N2;
ones = 0;
}
}
}



/**
* @brief Parse an array to an compact array
*
* @param[out] o Pointer to an array
* @param[in] v Pointer to an array
*/
static void array_to_rep_codeword(uint8_t *o, const uint8_t *v) {
for (size_t i = 0; i < (VEC_N1N2_SIZE_BYTES - 1); ++i) {
for (uint8_t j = 0; j < 8; ++j) {
o[i] |= v[j + 8 * i] << j;
}
}

for (uint8_t j = 0; j < PARAM_N1N2 % 8; ++j) {
o[VEC_N1N2_SIZE_BYTES - 1] |= (v[j + 8 * (VEC_N1N2_SIZE_BYTES - 1)]) << j;
}
}

+ 14
- 0
crypto_kem/hqc-128-1-cca2/leaktime/repetition.h View File

@@ -0,0 +1,14 @@
#ifndef PQCLEAN_HQC1281CCA2_LEAKTIME_REPETITION_H
#define PQCLEAN_HQC1281CCA2_LEAKTIME_REPETITION_H

/**
* @file repetition.h
* @brief Header file for repetition.c
*/

#include <stdint.h>

void PQCLEAN_HQC1281CCA2_LEAKTIME_repetition_code_encode(uint8_t *em, const uint8_t *m);
void PQCLEAN_HQC1281CCA2_LEAKTIME_repetition_code_decode(uint8_t *m, const uint8_t *em);

#endif

+ 42
- 0
crypto_kem/hqc-128-1-cca2/leaktime/tensor.c View File

@@ -0,0 +1,42 @@
/**
* @file tensor.c
* @brief Implementation of tensor code
*/

#include "bch.h"
#include "parameters.h"
#include "repetition.h"
#include "tensor.h"
#include <stdint.h>


/**
* @brief Encoding the message m to a code word em using the tensor code
*
* First we encode the message using the BCH code, then with the repetition code to obtain
* a tensor code word.
*
* @param[out] em Pointer to an array that is the tensor code word
* @param[in] m Pointer to an array that is the message
*/
void PQCLEAN_HQC1281CCA2_LEAKTIME_tensor_code_encode(uint8_t *em, const uint8_t *m) {
uint8_t tmp[VEC_N1_SIZE_BYTES] = {0};

PQCLEAN_HQC1281CCA2_LEAKTIME_bch_code_encode(tmp, m);
PQCLEAN_HQC1281CCA2_LEAKTIME_repetition_code_encode(em, tmp);
}



/**
* @brief Decoding the code word em to a message m using the tensor code
*
* @param[out] m Pointer to an array that is the message
* @param[in] em Pointer to an array that is the code word
*/
void PQCLEAN_HQC1281CCA2_LEAKTIME_tensor_code_decode(uint8_t *m, const uint8_t *em) {
uint8_t tmp[VEC_N1_SIZE_BYTES] = {0};

PQCLEAN_HQC1281CCA2_LEAKTIME_repetition_code_decode(tmp, em);
PQCLEAN_HQC1281CCA2_LEAKTIME_bch_code_decode(m, tmp);
}

+ 14
- 0
crypto_kem/hqc-128-1-cca2/leaktime/tensor.h View File

@@ -0,0 +1,14 @@
#ifndef PQCLEAN_HQC1281CCA2_LEAKTIME_TENSOR_H
#define PQCLEAN_HQC1281CCA2_LEAKTIME_TENSOR_H

/**
* @file tensor.h
* @brief Header file for tensor.c
*/

#include <stdint.h>

void PQCLEAN_HQC1281CCA2_LEAKTIME_tensor_code_encode(uint8_t *em, const uint8_t *m);
void PQCLEAN_HQC1281CCA2_LEAKTIME_tensor_code_decode(uint8_t *m, const uint8_t *em);

#endif

+ 69
- 0
crypto_kem/hqc-128-1-cca2/leaktime/util.c View File

@@ -0,0 +1,69 @@
#include "util.h"
#include "stddef.h"

#include "assert.h"

/* These functions should help with endianness-safe conversions
*
* load8 and store8 are copied from the McEliece implementations,
* which are in the public domain.
*/


void PQCLEAN_HQC1281CCA2_LEAKTIME_store8(unsigned char *out, uint64_t in) {
out[0] = (in >> 0x00) & 0xFF;
out[1] = (in >> 0x08) & 0xFF;
out[2] = (in >> 0x10) & 0xFF;
out[3] = (in >> 0x18) & 0xFF;
out[4] = (in >> 0x20) & 0xFF;
out[5] = (in >> 0x28) & 0xFF;
out[6] = (in >> 0x30) & 0xFF;
out[7] = (in >> 0x38) & 0xFF;
}


uint64_t PQCLEAN_HQC1281CCA2_LEAKTIME_load8(const unsigned char *in) {
uint64_t ret = in[7];

for (int8_t i = 6; i >= 0; i--) {
ret <<= 8;
ret |= in[i];
}

return ret;
}

void PQCLEAN_HQC1281CCA2_LEAKTIME_load8_arr(uint64_t *out64, size_t outlen, const uint8_t *in8, size_t inlen) {
size_t index_in = 0;
size_t index_out = 0;

// first copy by 8 bytes
if (inlen >= 8 && outlen >= 1) {
while (index_out < outlen && index_in + 8 <= inlen) {
out64[index_out] = PQCLEAN_HQC1281CCA2_LEAKTIME_load8(in8 + index_in);

index_in += 8;
index_out += 1;
}
}

// we now need to do the last 7 bytes if necessary
if (index_in >= inlen || index_out >= outlen) {
return;
}
out64[index_out] = in8[inlen - 1];
for (int8_t i = (int8_t)(inlen - index_in) - 2; i >= 0; i--) {
out64[index_out] <<= 8;
out64[index_out] |= in8[index_in + i];
}
}

void PQCLEAN_HQC1281CCA2_LEAKTIME_store8_arr(uint8_t *out8, size_t outlen, const uint64_t *in64, size_t inlen) {
for (size_t index_out = 0, index_in = 0; index_out < outlen && index_in < inlen;) {
out8[index_out] = (in64[index_in] >> ((index_out % 8) * 8)) & 0xFF;
index_out++;
if (index_out % 8 == 0) {
index_in++;
}
}
}

+ 9
- 0
crypto_kem/hqc-128-1-cca2/leaktime/util.h View File

@@ -0,0 +1,9 @@
/* These functions should help with endianness-safe conversions */

#include <stddef.h>
#include <stdint.h>

void PQCLEAN_HQC1281CCA2_LEAKTIME_store8(unsigned char *out, uint64_t in);
uint64_t PQCLEAN_HQC1281CCA2_LEAKTIME_load8(const unsigned char *in);
void PQCLEAN_HQC1281CCA2_LEAKTIME_load8_arr(uint64_t *out64, size_t outlen, const uint8_t *in8, size_t inlen);
void PQCLEAN_HQC1281CCA2_LEAKTIME_store8_arr(uint8_t *out8, size_t outlen, const uint64_t *in64, size_t inlen);

+ 224
- 0
crypto_kem/hqc-128-1-cca2/leaktime/vector.c View File

@@ -0,0 +1,224 @@
/**
* @file vector.c
* @brief Implementation of vectors sampling and some utilities for the HQC scheme
*/

#include "nistseedexpander.h"
#include "parameters.h"
#include "randombytes.h"
#include "vector.h"
#include <stdint.h>
#include <string.h>


/**
* @brief Generates a vector of a given Hamming weight
*
* This function generates uniformly at random a binary vector of a Hamming weight equal to the parameter <b>weight</b>. The vector
* is stored by position.
* To generate the vector we have to sample uniformly at random values in the interval [0, PARAM_N -1]. Suppose the PARAM_N is equal to \f$ 70853 \f$, to select a position \f$ r\f$ the function works as follow:
* 1. It makes a call to the seedexpander function to obtain a random number \f$ x\f$ in \f$ [0, 2^{24}[ \f$.
* 2. Let \f$ t = \lfloor {2^{24} \over 70853} \rfloor \times 70853\f$
* 3. If \f$ x \geq t\f$, go to 1
* 4. It return \f$ r = x \mod 70853\f$
*
* The parameter \f$ t \f$ is precomputed and it's denoted by UTILS_REJECTION_THRESHOLD (see the file parameters.h).
*
* @param[in] v Pointer to an array
* @param[in] weight Integer that is the Hamming weight
* @param[in] ctx Pointer to the context of the seed expander
*/
void PQCLEAN_HQC1281CCA2_LEAKTIME_vect_set_random_fixed_weight_by_coordinates(AES_XOF_struct *ctx, uint32_t *v, uint16_t weight) {
size_t random_bytes_size = 3 * weight;
uint8_t rand_bytes[3 * PARAM_OMEGA_R] = {0}; // weight is expected to be <= PARAM_OMEGA_R
uint32_t random_data = 0;
uint8_t exist = 0;
size_t j = 0;

seedexpander(ctx, rand_bytes, random_bytes_size);

for (uint32_t i = 0; i < weight; ++i) {
exist = 0;
do {
if (j == random_bytes_size) {
seedexpander(ctx, rand_bytes, random_bytes_size);
j = 0;
}

random_data = ((uint32_t) rand_bytes[j++]) << 16;
random_data |= ((uint32_t) rand_bytes[j++]) << 8;
random_data |= rand_bytes[j++];

} while (random_data >= UTILS_REJECTION_THRESHOLD);

random_data = random_data % PARAM_N;

for (uint32_t k = 0; k < i; k++) {
if (v[k] == random_data) {
exist = 1;
}
}

if (exist == 1) {
i--;
} else {
v[i] = random_data;
}
}
}



/**
* @brief Generates a vector of a given Hamming weight
*
* This function generates uniformly at random a binary vector of a Hamming weight equal to the parameter <b>weight</b>.
* To generate the vector we have to sample uniformly at random values in the interval [0, PARAM_N -1]. Suppose the PARAM_N is equal to \f$ 70853 \f$, to select a position \f$ r\f$ the function works as follow:
* 1. It makes a call to the seedexpander function to obtain a random number \f$ x\f$ in \f$ [0, 2^{24}[ \f$.
* 2. Let \f$ t = \lfloor {2^{24} \over 70853} \rfloor \times 70853\f$
* 3. If \f$ x \geq t\f$, go to 1
* 4. It return \f$ r = x \mod 70853\f$
*
* The parameter \f$ t \f$ is precomputed and it's denoted by UTILS_REJECTION_THRESHOLD (see the file parameters.h).
*
* @param[in] v Pointer to an array
* @param[in] weight Integer that is the Hamming weight
* @param[in] ctx Pointer to the context of the seed expander
*/
void PQCLEAN_HQC1281CCA2_LEAKTIME_vect_set_random_fixed_weight(AES_XOF_struct *ctx, uint8_t *v, uint16_t weight) {

size_t random_bytes_size = 3 * weight;
uint8_t rand_bytes[3 * PARAM_OMEGA_R] = {0}; // weight is expected to be <= PARAM_OMEGA_R
uint32_t random_data = 0;
uint32_t tmp[PARAM_OMEGA_R] = {0};
uint8_t exist = 0;
size_t j = 0;

seedexpander(ctx, rand_bytes, random_bytes_size);

for (uint32_t i = 0; i < weight; ++i) {
exist = 0;
do {
if (j == random_bytes_size) {
seedexpander(ctx, rand_bytes, random_bytes_size);
j = 0;
}

random_data = ((uint32_t) rand_bytes[j++]) << 16;
random_data |= ((uint32_t) rand_bytes[j++]) << 8;
random_data |= rand_bytes[j++];

} while (random_data >= UTILS_REJECTION_THRESHOLD);

random_data = random_data % PARAM_N;

for (uint32_t k = 0; k < i; k++) {
if (tmp[k] == random_data) {
exist = 1;
}
}

if (exist == 1) {
i--;
} else {
tmp[i] = random_data;
}
}

for (uint16_t i = 0; i < weight; ++i) {
int32_t index = tmp[i] / 8;
int32_t pos = tmp[i] % 8;
v[index] |= 1 << pos;
}
}



/**
* @brief Generates a random vector of dimension <b>PARAM_N</b>
*
* This function generates a random binary vector of dimension <b>PARAM_N</b>. It generates a random
* array of bytes using the seedexpander function, and drop the extra bits using a mask.
*
* @param[in] v Pointer to an array
* @param[in] ctx Pointer to the context of the seed expander
*/
void PQCLEAN_HQC1281CCA2_LEAKTIME_vect_set_random(AES_XOF_struct *ctx, uint8_t *v) {
uint8_t rand_bytes[VEC_N_SIZE_BYTES] = {0};

seedexpander(ctx, rand_bytes, VEC_N_SIZE_BYTES);

memcpy(v, rand_bytes, VEC_N_SIZE_BYTES);
v[VEC_N_SIZE_BYTES - 1] &= BITMASK(PARAM_N, 8);
}



/**
* @brief Generates a random vector
*
* This function generates a random binary vector. It uses the the randombytes function.
*
* @param[in] v Pointer to an array
*/
void PQCLEAN_HQC1281CCA2_LEAKTIME_vect_set_random_from_randombytes(uint8_t *v) {
uint8_t rand_bytes [VEC_K_SIZE_BYTES] = {0};

randombytes(rand_bytes, VEC_K_SIZE_BYTES);
memcpy(v, rand_bytes, VEC_K_SIZE_BYTES);
}



/**
* @brief Adds two vectors
*
* @param[out] o Pointer to an array that is the result
* @param[in] v1 Pointer to an array that is the first vector
* @param[in] v2 Pointer to an array that is the second vector
* @param[in] size Integer that is the size of the vectors
*/
void PQCLEAN_HQC1281CCA2_LEAKTIME_vect_add(uint8_t *o, const uint8_t *v1, const uint8_t *v2, uint32_t size) {
for (uint32_t i = 0; i < size; ++i) {
o[i] = v1[i] ^ v2[i];
}
}



/**
* @brief Compares two vectors
*
* @param[in] v1 Pointer to an array that is first vector
* @param[in] v2 Pointer to an array that is second vector
* @param[in] size Integer that is the size of the vectors
* @returns 0 if the vectors are equals and a negative/psotive value otherwise
*/
int PQCLEAN_HQC1281CCA2_LEAKTIME_vect_compare(const uint8_t *v1, const uint8_t *v2, uint32_t size) {
return memcmp(v1, v2, size);
}



/**
* @brief Resize a vector so that it contains <b>size_o</b> bits
*
* @param[out] o Pointer to the output vector
* @param[in] size_o Integer that is the size of the output vector in bits
* @param[in] v Pointer to the input vector
* @param[in] size_v Integer that is the size of the input vector in bits
*/
void PQCLEAN_HQC1281CCA2_LEAKTIME_vect_resize(uint8_t *o, uint32_t size_o, const uint8_t *v, uint32_t size_v) {
if (size_o < size_v) {
uint8_t mask = 0x7F;
int8_t val = 8 - (size_o % 8);

memcpy(o, v, VEC_N1N2_SIZE_BYTES);

for (int8_t i = 0; i < val; ++i) {
o[VEC_N1N2_SIZE_BYTES - 1] &= (mask >> i);
}
} else {
memcpy(o, v, CEIL_DIVIDE(size_v, 8));
}
}

+ 22
- 0
crypto_kem/hqc-128-1-cca2/leaktime/vector.h View File

@@ -0,0 +1,22 @@
#ifndef PQCLEAN_HQC1281CCA2_LEAKTIME_VECTOR_H
#define PQCLEAN_HQC1281CCA2_LEAKTIME_VECTOR_H

/**
* @file vector.h
* @brief Header file for vector.c
*/

#include "nistseedexpander.h"
#include <stdint.h>

void PQCLEAN_HQC1281CCA2_LEAKTIME_vect_set_random_fixed_weight_by_coordinates(AES_XOF_struct *ctx, uint32_t *v, uint16_t weight);
void PQCLEAN_HQC1281CCA2_LEAKTIME_vect_set_random_fixed_weight(AES_XOF_struct *ctx, uint8_t *v, uint16_t weight);
void PQCLEAN_HQC1281CCA2_LEAKTIME_vect_set_random(AES_XOF_struct *ctx, uint8_t *v);
void PQCLEAN_HQC1281CCA2_LEAKTIME_vect_set_random_from_randombytes(uint8_t *v);

void PQCLEAN_HQC1281CCA2_LEAKTIME_vect_add(uint8_t *o, const uint8_t *v1, const uint8_t *v2, uint32_t size);
int PQCLEAN_HQC1281CCA2_LEAKTIME_vect_compare(const uint8_t *v1, const uint8_t *v2, uint32_t size);

void PQCLEAN_HQC1281CCA2_LEAKTIME_vect_resize(uint8_t *o, uint32_t size_o, const uint8_t *v, uint32_t size_v);

#endif

+ 23
- 0
crypto_kem/hqc-192-1-cca2/META.yml View File

@@ -0,0 +1,23 @@
name: HQC_192_1_CCA2
type: kem
claimed-nist-level: 3
claimed-security: IND-CCA2
length-public-key: 5499
length-ciphertext: 10981
length-secret-key: 5539
length-shared-secret: 64
nistkat-sha256: ddff72bfd7bf33a9fa1b3c70a05378b0544e57207b5bb9205cacd6d69002d597
principal-submitters:
- Carlos Aguilar Melchor
- Nicolas Aragon
- Slim Bettaieb
- Loïc Bidoux
- Olivier Blazy
- Jean-Christophe Deneuville
- Philippe Gaborit
- Edoardo Persichetti
- Gilles Zémor
auxiliary-submitters: []
implementations:
- name: leaktime
version: https://pqc-hqc.org/doc/hqc-reference-implementation_2019-08-24.zip

+ 1
- 0
crypto_kem/hqc-192-1-cca2/leaktime/LICENSE View File

@@ -0,0 +1 @@
Public domain

+ 19
- 0
crypto_kem/hqc-192-1-cca2/leaktime/Makefile View File

@@ -0,0 +1,19 @@
# This Makefile can be used with GNU Make or BSD Make

LIB=libhqc-192-1-cca2_leaktime.a
HEADERS=api.h bch.h fft.h gf.h gf2x.h hqc.h parameters.h parsing.h repetition.h tensor.h vector.h util.h
OBJECTS=bch.o fft.o gf.o gf2x.o hqc.o kem.o parsing.o repetition.o tensor.o vector.o util.o

CFLAGS=-O3 -Wall -Wextra -Wpedantic -Wvla -Werror -Wmissing-prototypes -Wredundant-decls -std=c99 -I../../../common $(EXTRAFLAGS)

all: $(LIB)

%.o: %.c $(HEADERS)
$(CC) $(CFLAGS) -c -o $@ $<

$(LIB): $(OBJECTS)
$(AR) -r $@ $(OBJECTS)

clean:
$(RM) $(OBJECTS)
$(RM) $(LIB)

+ 23
- 0
crypto_kem/hqc-192-1-cca2/leaktime/Makefile.Microsoft_nmake View File

@@ -0,0 +1,23 @@
# This Makefile can be used with Microsoft Visual Studio's nmake using the command:
# nmake /f Makefile.Microsoft_nmake

LIBRARY=libhqc-192-1-cca2_leaktime.lib
OBJECTS=bch.obj fft.obj gf.obj gf2x.obj hqc.obj kem.obj parsing.obj repetition.obj tensor.obj vector.obj util.obj

# We ignore warning C4127: we sometimes use a conditional that depending
# on the parameters results in a case where if (const) is the case.
# The compiler should just optimise this away, but on MSVC we get
# a compiler complaint.
CFLAGS=/nologo /O2 /I ..\..\..\common /W4 /WX /wd4127

all: $(LIBRARY)

# Make sure objects are recompiled if headers change.
$(OBJECTS): *.h

$(LIBRARY): $(OBJECTS)
LIB.EXE /NOLOGO /WX /OUT:$@ $**

clean:
-DEL $(OBJECTS)
-DEL $(LIBRARY)

+ 25
- 0
crypto_kem/hqc-192-1-cca2/leaktime/api.h View File

@@ -0,0 +1,25 @@
#ifndef PQCLEAN_HQC1921CCA2_LEAKTIME_API_H
#define PQCLEAN_HQC1921CCA2_LEAKTIME_API_H

/**
* \file api.h
* \brief NIST KEM API used by the HQC_KEM IND-CCA2 scheme
*/

#include <stdint.h>

#define PQCLEAN_HQC1921CCA2_LEAKTIME_CRYPTO_ALGNAME "HQC_192_1_CCA2"

#define PQCLEAN_HQC1921CCA2_LEAKTIME_CRYPTO_SECRETKEYBYTES 5539
#define PQCLEAN_HQC1921CCA2_LEAKTIME_CRYPTO_PUBLICKEYBYTES 5499
#define PQCLEAN_HQC1921CCA2_LEAKTIME_CRYPTO_BYTES 64
#define PQCLEAN_HQC1921CCA2_LEAKTIME_CRYPTO_CIPHERTEXTBYTES 10981

// As a technicality, the public key is appended to the secret key in order to respect the NIST API.
// Without this constraint, CRYPTO_SECRETKEYBYTES would be defined as 32

int PQCLEAN_HQC1921CCA2_LEAKTIME_crypto_kem_keypair(uint8_t *pk, uint8_t *sk);
int PQCLEAN_HQC1921CCA2_LEAKTIME_crypto_kem_enc(uint8_t *ct, uint8_t *ss, const uint8_t *pk);
int PQCLEAN_HQC1921CCA2_LEAKTIME_crypto_kem_dec(uint8_t *ss, const uint8_t *ct, const uint8_t *sk);

#endif

+ 295
- 0
crypto_kem/hqc-192-1-cca2/leaktime/bch.c View File

@@ -0,0 +1,295 @@
/**
* @file bch.c
* Constant time implementation of BCH codes
*/

#include "bch.h"
#include "fft.h"
#include "gf.h"
#include "parameters.h"
#include "vector.h"
#include <stdint.h>
#include <string.h>

static void unpack_message(uint8_t *message_unpacked, const uint8_t *message);
static void lfsr_encode(uint8_t *codeword, const uint8_t *message);
static void pack_codeword(uint8_t *codeword, const uint8_t *codeword_unpacked);
static size_t compute_elp(uint16_t *sigma, const uint16_t *syndromes);
static void message_from_codeword(uint8_t *message, const uint8_t *codeword);
static void compute_syndromes(uint16_t *syndromes, const uint8_t *vector);
static void compute_roots(uint8_t *error, const uint16_t *sigma);


/**
* @brief Unpacks the message message to the array message_unpacked where each byte stores a bit of the message
*
* @param[out] message_unpacked Array of VEC_K_SIZE_BYTES bytes receiving the unpacked message
* @param[in] message Array of PARAM_K bytes storing the packed message
*/
static void unpack_message(uint8_t *message_unpacked, const uint8_t *message) {
for (size_t i = 0; i < (VEC_K_SIZE_BYTES - (PARAM_K % 8 != 0)); ++i) {
for (size_t j = 0; j < 8; ++j) {
message_unpacked[j + 8 * i] = (message[i] >> j) & 0x01;
}
}

for (int8_t j = 0; j < PARAM_K % 8; ++j) {
message_unpacked[j + 8 * (VEC_K_SIZE_BYTES - 1)] = (message[VEC_K_SIZE_BYTES - 1] >> j) & 0x01;
}
}



/**
* @brief Encodes the message message to a codeword codeword using the generator polynomial bch_poly of the code
*
* @param[out] codeword Array of PARAM_N1 bytes receiving the codeword
* @param[in] message Array of PARAM_K bytes storing the message to encode
*/
static void lfsr_encode(uint8_t *codeword, const uint8_t *message) {
uint8_t gate_value = 0;
uint8_t bch_poly[PARAM_G] = PARAM_BCH_POLY;

// Compute the Parity-check digits
for (int16_t i = PARAM_K - 1; i >= 0; --i) {
gate_value = message[i] ^ codeword[PARAM_N1 - PARAM_K - 1];

for (size_t j = PARAM_N1 - PARAM_K - 1; j; --j) {
codeword[j] = codeword[j - 1] ^ (-gate_value & bch_poly[j]);
}

codeword[0] = gate_value;
}

// Add the message
memcpy(codeword + PARAM_N1 - PARAM_K, message, PARAM_K);
}



/**
* @brief Packs the codeword from an array codeword_unpacked where each byte stores a bit to a compact array codeword
*
* @param[out] codeword Array of VEC_N1_SIZE_BYTES bytes receiving the packed codeword
* @param[in] codeword_unpacked Array of PARAM_N1 bytes storing the unpacked codeword
*/
static void pack_codeword(uint8_t *codeword, const uint8_t *codeword_unpacked) {
for (size_t i = 0; i < (VEC_N1_SIZE_BYTES - (PARAM_N1 % 8 != 0)); ++i) {
for (size_t j = 0; j < 8; ++j) {
codeword[i] |= codeword_unpacked[j + 8 * i] << j;
}
}

for (size_t j = 0; j < PARAM_N1 % 8; ++j) {
codeword[VEC_N1_SIZE_BYTES - 1] |= codeword_unpacked[j + 8 * (VEC_N1_SIZE_BYTES - 1)] << j;
}
}



/**
* @brief Encodes a message message of PARAM_K bits to a BCH codeword codeword of PARAM_N1 bits
*
* Following @cite lin1983error (Chapter 4 - Cyclic Codes),
* We perform a systematic encoding using a linear (PARAM_N1 - PARAM_K)-stage shift register
* with feedback connections based on the generator polynomial bch_poly of the BCH code.
*
* @param[out] codeword Array of size VEC_N1_SIZE_BYTES receiving the encoded message
* @param[in] message Array of size VEC_K_SIZE_BYTES storing the message
*/
void PQCLEAN_HQC1921CCA2_LEAKTIME_bch_code_encode(uint8_t *codeword, const uint8_t *message) {
uint8_t message_unpacked[PARAM_K];
uint8_t codeword_unpacked[PARAM_N1] = {0};

unpack_message(message_unpacked, message);
lfsr_encode(codeword_unpacked, message_unpacked);
pack_codeword(codeword, codeword_unpacked);
}



/**
* @brief Computes the error locator polynomial (ELP) sigma
*
* This is a constant time implementation of Berlekamp's simplified algorithm (see @cite joiner1995decoding). <br>
* We use the letter p for rho which is initialized at -1/2. <br>
* The array X_sigma_p represents the polynomial X^(2(mu-rho))*sigma_p(X). <br>
* Instead of maintaining a list of sigmas, we update in place both sigma and X_sigma_p. <br>
* sigma_copy serves as a temporary save of sigma in case X_sigma_p needs to be updated. <br>
* We can properly correct only if the degree of sigma does not exceed PARAM_DELTA.
* This means only the first PARAM_DELTA + 1 coefficients of sigma are of value
* and we only need to save its first PARAM_DELTA - 1 coefficients.
*
* @returns the degree of the ELP sigma
* @param[out] sigma Array of size (at least) PARAM_DELTA receiving the ELP
* @param[in] syndromes Array of size (at least) 2*PARAM_DELTA storing the syndromes
*/
static size_t compute_elp(uint16_t *sigma, const uint16_t *syndromes) {
sigma[0] = 1;
size_t deg_sigma = 0;
size_t deg_sigma_p = 0;
uint16_t sigma_copy[PARAM_DELTA - 1] = {0};
size_t deg_sigma_copy = 0;
uint16_t X_sigma_p[PARAM_DELTA + 1] = {0, 1};
int32_t pp = -1; // 2*rho
uint16_t d_p = 1;
uint16_t d = syndromes[0];

for (size_t mu = 0; mu < PARAM_DELTA; ++mu) {
// Save sigma in case we need it to update X_sigma_p
memcpy(sigma_copy, sigma, 2 * (PARAM_DELTA - 1));
deg_sigma_copy = deg_sigma;

uint16_t dd = PQCLEAN_HQC1921CCA2_LEAKTIME_gf_mul(d, PQCLEAN_HQC1921CCA2_LEAKTIME_gf_inverse(d_p)); // 0 if(d == 0)
for (size_t i = 1; (i <= 2 * mu + 1) && (i <= PARAM_DELTA); ++i) {
sigma[i] ^= PQCLEAN_HQC1921CCA2_LEAKTIME_gf_mul(dd, X_sigma_p[i]);
}

size_t deg_X = 2 * mu - pp; // 2*(mu-rho)
size_t deg_X_sigma_p = deg_X + deg_sigma_p;

// mask1 = 0xffff if(d != 0) and 0 otherwise
int16_t mask1 = -((uint16_t) - d >> 15);

// mask2 = 0xffff if(deg_X_sigma_p > deg_sigma) and 0 otherwise
int16_t mask2 = -((uint16_t) (deg_sigma - deg_X_sigma_p) >> 15);

// mask12 = 0xffff if the deg_sigma increased and 0 otherwise
int16_t mask12 = mask1 & mask2;
deg_sigma = (mask12 & deg_X_sigma_p) ^ (~mask12 & deg_sigma);

if (mu == PARAM_DELTA - 1) {
break;
}

// Update pp, d_p and X_sigma_p if needed
pp = (mask12 & (2 * mu)) ^ (~mask12 & pp);
d_p = (mask12 & d) ^ (~mask12 & d_p);
for (size_t i = PARAM_DELTA - 1; i; --i) {
X_sigma_p[i + 1] = (mask12 & sigma_copy[i - 1]) ^ (~mask12 & X_sigma_p[i - 1]);
}
X_sigma_p[1] = 0;
X_sigma_p[0] = 0;
deg_sigma_p = (mask12 & deg_sigma_copy) ^ (~mask12 & deg_sigma_p);

// Compute the next discrepancy
d = syndromes[2 * mu + 2];
for (size_t i = 1; (i <= 2 * mu + 1) && (i <= PARAM_DELTA); ++i) {
d ^= PQCLEAN_HQC1921CCA2_LEAKTIME_gf_mul(sigma[i], syndromes[2 * mu + 2 - i]);
}
}

return deg_sigma;
}



/**
* @brief Retrieves the message message from the codeword codeword
*
* Since we performed a systematic encoding, the message is the last PARAM_K bits of the codeword.
*
* @param[out] message Array of size VEC_K_SIZE_BYTES receiving the message
* @param[in] codeword Array of size VEC_N1_SIZE_BYTES storing the codeword
*/
static void message_from_codeword(uint8_t *message, const uint8_t *codeword) {
int32_t val = PARAM_N1 - PARAM_K;

uint8_t mask1 = 0xff << val % 8;
uint8_t mask2 = 0xff >> (8 - val % 8);
size_t index = val / 8;

for (size_t i = 0; i < VEC_K_SIZE_BYTES - 1; ++i) {
uint8_t message1 = (codeword[index] & mask1) >> val % 8;
uint8_t message2 = (codeword[++index] & mask2) << (8 - val % 8);
message[i] = message1 | message2;
}

// Last byte (8-val % 8 is the number of bits given by message1)
if ((PARAM_K % 8 == 0) || (8 - val % 8 < PARAM_K % 8)) {
uint8_t message1 = (codeword[index] & mask1) >> val % 8;
uint8_t message2 = (codeword[++index] & mask2) << (8 - val % 8);
message[VEC_K_SIZE_BYTES - 1] = message1 | message2;
} else {
uint8_t message1 = (codeword[index] & mask1) >> val % 8;
message[VEC_K_SIZE_BYTES - 1] = message1;
}
}



/**
* @brief Computes the 2^PARAM_DELTA syndromes from the received vector vector
*
* Syndromes are the sum of powers of alpha weighted by vector's coefficients.
* To do so, we use the additive FFT transpose, which takes as input a family w of GF(2^PARAM_M) elements
* and outputs the weighted power sums of these w. <br>
* Therefore, this requires twisting and applying a permutation before feeding vector to the fft transpose. <br>
* For more details see Berstein, Chou and Schawbe's explanations:
* https://binary.cr.yp.to/mcbits-20130616.pdf
*
* @param[out] syndromes Array of size 2^(PARAM_FFT_T) receiving the 2*PARAM_DELTA syndromes
* @param[in] vector Array of size VEC_N1_SIZE_BYTES storing the received word
*/
static void compute_syndromes(uint16_t *syndromes, const uint8_t *vector) {
uint16_t w[1 << PARAM_M];

PQCLEAN_HQC1921CCA2_LEAKTIME_fft_t_preprocess_bch_codeword(w, vector);
PQCLEAN_HQC1921CCA2_LEAKTIME_fft_t(syndromes, w, 2 * PARAM_DELTA);
}



/**
* @brief Computes the error polynomial error from the error locator polynomial sigma
*
* See function fft for more details.
*
* @param[out] err Array of VEC_N1_SIZE_BYTES elements receiving the error polynomial
* @param[in] sigma Array of 2^PARAM_FFT elements storing the error locator polynomial
*/
static void compute_roots(uint8_t *error, const uint16_t *sigma) {
uint16_t w[1 << PARAM_M] = {0}; // w will receive the evaluation of sigma in all field elements

PQCLEAN_HQC1921CCA2_LEAKTIME_fft(w, sigma, PARAM_DELTA + 1);
PQCLEAN_HQC1921CCA2_LEAKTIME_fft_retrieve_bch_error_poly(error, w);
}



/**
* @brief Decodes the received word
*
* This function relies on four steps:
* <ol>
* <li> The first step, done by additive FFT transpose, is the computation of the 2*PARAM_DELTA syndromes.
* <li> The second step is the computation of the error-locator polynomial sigma.
* <li> The third step, done by additive FFT, is finding the error-locator numbers by calculating the roots of the polynomial sigma and takings their inverses.
* <li> The fourth step is the correction of the errors in the received polynomial.
* </ol>
* For a more complete picture on BCH decoding, see Shu. Lin and Daniel J. Costello in Error Control Coding: Fundamentals and Applications @cite lin1983error
*
* @param[out] message Array of size VEC_K_SIZE_BYTES receiving the decoded message
* @param[in] vector Array of size VEC_N1_SIZE_BYTES storing the received word
*/
void PQCLEAN_HQC1921CCA2_LEAKTIME_bch_code_decode(uint8_t *message, uint8_t *vector) {
uint16_t syndromes[1 << PARAM_FFT_T];
uint16_t sigma[1 << PARAM_FFT] = {0};
uint8_t error[(1 << PARAM_M) / 8] = {0};

// Calculate the 2*PARAM_DELTA syndromes
compute_syndromes(syndromes, vector);

// Compute the error locator polynomial sigma
// Sigma's degree is at most PARAM_DELTA but the FFT requires the extra room
compute_elp(sigma, syndromes);

// Compute the error polynomial error
compute_roots(error, sigma);

// Add the error polynomial to the received polynomial
PQCLEAN_HQC1921CCA2_LEAKTIME_vect_add(vector, vector, error, VEC_N1_SIZE_BYTES);

// Retrieve the message from the decoded codeword
message_from_codeword(message, vector);
}

+ 16
- 0
crypto_kem/hqc-192-1-cca2/leaktime/bch.h View File

@@ -0,0 +1,16 @@
#ifndef PQCLEAN_HQC1921CCA2_LEAKTIME_BCH_H
#define PQCLEAN_HQC1921CCA2_LEAKTIME_BCH_H

/**
* @file bch.h
* Header file of bch.c
*/

#include "parameters.h"
#include <stddef.h>
#include <stdint.h>

void PQCLEAN_HQC1921CCA2_LEAKTIME_bch_code_encode(uint8_t *codeword, const uint8_t *message);
void PQCLEAN_HQC1921CCA2_LEAKTIME_bch_code_decode(uint8_t *message, uint8_t *vector);

#endif

+ 628
- 0
crypto_kem/hqc-192-1-cca2/leaktime/fft.c View File

@@ -0,0 +1,628 @@
/**
* @file fft.c
* Implementation of the additive FFT and its transpose.
* This implementation is based on the paper from Gao and Mateer: <br>
* Shuhong Gao and Todd Mateer, Additive Fast Fourier Transforms over Finite Fields,
* IEEE Transactions on Information Theory 56 (2010), 6265--6272.
* http://www.math.clemson.edu/~sgao/papers/GM10.pdf <br>
* and includes improvements proposed by Bernstein, Chou and Schwabe here:
* https://binary.cr.yp.to/mcbits-20130616.pdf
*/

#include "fft.h"
#include "gf.h"
#include "parameters.h"
#include <stdint.h>
#include <string.h>

static void compute_fft_betas(uint16_t *betas);
static void compute_subset_sums(uint16_t *subset_sums, const uint16_t *set, size_t set_size);
static void radix_t(uint16_t *f, const uint16_t *f0, const uint16_t *f1, uint32_t m_f);
static void fft_t_rec(uint16_t *f, const uint16_t *w, size_t f_coeffs, uint8_t m, uint32_t m_f, const uint16_t *betas);
static void radix(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f);
static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32_t m_f, const uint16_t *betas);


/**
* @brief Computes the basis of betas (omitting 1) used in the additive FFT and its transpose
*
* @param[out] betas Array of size PARAM_M-1
*/
static void compute_fft_betas(uint16_t *betas) {
for (size_t i = 0; i < PARAM_M - 1; ++i) {
betas[i] = 1 << (PARAM_M - 1 - i);
}
}



/**
* @brief Computes the subset sums of the given set
*
* The array subset_sums is such that its ith element is
* the subset sum of the set elements given by the binary form of i.
*
* @param[out] subset_sums Array of size 2^set_size receiving the subset sums
* @param[in] set Array of set_size elements
* @param[in] set_size Size of the array set
*/
static void compute_subset_sums(uint16_t *subset_sums, const uint16_t *set, size_t set_size) {
subset_sums[0] = 0;

for (size_t i = 0; i < set_size; ++i) {
for (size_t j = 0; j < (((size_t)1) << i); ++j) {
subset_sums[(((size_t)1) << i) + j] = set[i] ^ subset_sums[j];
}
}
}



/**
* @brief Transpose of the linear radix conversion
*
* This is a direct transposition of the radix function
* implemented following the process of transposing a linear function as exposed by Bernstein, Chou and Schwabe here:
* https://binary.cr.yp.to/mcbits-20130616.pdf
*
* @param[out] f Array of size a power of 2
* @param[in] f0 Array half the size of f
* @param[in] f1 Array half the size of f
* @param[in] m_f 2^{m_f} is the smallest power of 2 greater or equal to the number of coefficients of f
*/
static void radix_t(uint16_t *f, const uint16_t *f0, const uint16_t *f1, uint32_t m_f) {
switch (m_f) {
case 4:
f[0] = f0[0];
f[1] = f1[0];
f[2] = f0[1] ^ f1[0];
f[3] = f[2] ^ f1[1];
f[4] = f[2] ^ f0[2];
f[5] = f[3] ^ f1[2];
f[6] = f[4] ^ f0[3] ^ f1[2];
f[7] = f[3] ^ f0[3] ^ f1[3];
f[8] = f[4] ^ f0[4];
f[9] = f[5] ^ f1[4];
f[10] = f[6] ^ f0[5] ^ f1[4];
f[11] = f[7] ^ f0[5] ^ f1[4] ^ f1[5];
f[12] = f[8] ^ f0[5] ^ f0[6] ^ f1[4];
f[13] = f[7] ^ f[9] ^ f[11] ^ f1[6];
f[14] = f[6] ^ f0[6] ^ f0[7] ^ f1[6];
f[15] = f[7] ^ f0[7] ^ f1[7];
return;

case 3:
f[0] = f0[0];
f[1] = f1[0];
f[2] = f0[1] ^ f1[0];
f[3] = f[2] ^ f1[1];
f[4] = f[2] ^ f0[2];
f[5] = f[3] ^ f1[2];
f[6] = f[4] ^ f0[3] ^ f1[2];
f[7] = f[3] ^ f0[3] ^ f1[3];
return;

case 2:
f[0] = f0[0];
f[1] = f1[0];
f[2] = f0[1] ^ f1[0];
f[3] = f[2] ^ f1[1];
return;

case 1:
f[0] = f0[0];
f[1] = f1[0];
return;

default:
;

size_t n = ((size_t)1) << (m_f - 2);

uint16_t Q0[1 << (PARAM_FFT_T - 2)] = {0};
uint16_t Q1[1 << (PARAM_FFT_T - 2)] = {0};
uint16_t R0[1 << (PARAM_FFT_T - 2)] = {0};
uint16_t R1[1 << (PARAM_FFT_T - 2)] = {0};

uint16_t Q[1 << 2 * (PARAM_FFT_T - 2)] = {0};
uint16_t R[1 << 2 * (PARAM_FFT_T - 2)] = {0};

memcpy(Q0, f0 + n, 2 * n);
memcpy(Q1, f1 + n, 2 * n);
memcpy(R0, f0, 2 * n);
memcpy(R1, f1, 2 * n);

radix_t (Q, Q0, Q1, m_f - 1);
radix_t (R, R0, R1, m_f - 1);

memcpy(f, R, 4 * n);
memcpy(f + 2 * n, R + n, 2 * n);
memcpy(f + 3 * n, Q + n, 2 * n);

for (size_t i = 0; i < n; ++i) {
f[2 * n + i] ^= Q[i];
f[3 * n + i] ^= f[2 * n + i];
}
}
}



/**
* @brief Recursively computes syndromes of family w
*
* This function is a subroutine of the function fft_t
*
* @param[out] f Array receiving the syndromes
* @param[in] w Array storing the family
* @param[in] f_coeffs Length of syndromes vector
* @param[in] m 2^m is the smallest power of 2 greater or equal to the length of family w
* @param[in] m_f 2^{m_f} is the smallest power of 2 greater or equal to the length of f
* @param[in] betas FFT constants
*/
static void fft_t_rec(uint16_t *f, const uint16_t *w, size_t f_coeffs,
uint8_t m, uint32_t m_f, const uint16_t *betas) {
size_t k = ((size_t)1) << (m - 1);
uint16_t gammas[PARAM_M - 2] = {0};
uint16_t deltas[PARAM_M - 2] = {0};
uint16_t gammas_sums[1 << (PARAM_M - 1)];
uint16_t u[1 << (PARAM_M - 2)] = {0};
uint16_t f0[1 << (PARAM_FFT_T - 2)] = {0};
uint16_t f1[1 << (PARAM_FFT_T - 2)] = {0};
uint16_t betas_sums[1 << (PARAM_M - 1)] = {0};

// Step 1
if (m_f == 1) {
for (size_t i = 0; i < (((size_t)1) << m); ++i) {
f[0] ^= w[i];
}

for (size_t j = 0; j < m; ++j) {
for (size_t ki = 0; ki < (((size_t)1) << j); ++ki) {
size_t index = (((size_t)1) << j) + ki;
betas_sums[index] = betas_sums[ki] ^ betas[j];
f[1] ^= PQCLEAN_HQC1921CCA2_LEAKTIME_gf_mul(betas_sums[index], w[index]);
}
}

return;
}

// Compute gammas and deltas
for (uint8_t i = 0; i < m - 1; ++i) {
gammas[i] = PQCLEAN_HQC1921CCA2_LEAKTIME_gf_mul(betas[i], PQCLEAN_HQC1921CCA2_LEAKTIME_gf_inverse(betas[m - 1]));
deltas[i] = PQCLEAN_HQC1921CCA2_LEAKTIME_gf_square(gammas[i]) ^ gammas[i];
}

// Compute gammas subset sums
compute_subset_sums(gammas_sums, gammas, m - 1);

/* Step 6: Compute u and v from w (aka w)
* w[i] = u[i] + G[i].v[i]
* w[k+i] = w[i] + v[i] = u[i] + (G[i]+1).v[i]
* Transpose:
* u[i] = w[i] + w[k+i]
* v[i] = G[i].w[i] + (G[i]+1).w[k+i] = G[i].u[i] + w[k+i] */
if (f_coeffs <= 3) { // 3-coefficient polynomial f case
// Step 5: Compute f0 from u and f1 from v
f1[1] = 0;
u[0] = w[0] ^ w[k];
f1[0] = w[k];
for (size_t i = 1; i < k; ++i) {
u[i] = w[i] ^ w[k + i];
f1[0] ^= PQCLEAN_HQC1921CCA2_LEAKTIME_gf_mul(gammas_sums[i], u[i]) ^ w[k + i];
}
fft_t_rec(f0, u, (f_coeffs + 1) / 2, m - 1, m_f - 1, deltas);
} else {
uint16_t v[1 << (PARAM_M - 2)] = {0};

u[0] = w[0] ^ w[k];
v[0] = w[k];

for (size_t i = 1; i < k; ++i) {
u[i] = w[i] ^ w[k + i];
v[i] = PQCLEAN_HQC1921CCA2_LEAKTIME_gf_mul(gammas_sums[i], u[i]) ^ w[k + i];
}

// Step 5: Compute f0 from u and f1 from v
fft_t_rec(f0, u, (f_coeffs + 1) / 2, m - 1, m_f - 1, deltas);
fft_t_rec(f1, v, f_coeffs / 2, m - 1, m_f - 1, deltas);
}

// Step 3: Compute g from g0 and g1
radix_t(f, f0, f1, m_f);

// Step 2: compute f from g
if (betas[m - 1] != 1) {
uint16_t beta_m_pow = 1;
for (size_t i = 1; i < (((size_t)1) << m_f); ++i) {
beta_m_pow = PQCLEAN_HQC1921CCA2_LEAKTIME_gf_mul(beta_m_pow, betas[m - 1]);
f[i] = PQCLEAN_HQC1921CCA2_LEAKTIME_gf_mul(beta_m_pow, f[i]);
}
}
}



/**
* @brief Computes the syndromes f of the family w
*
* Since the syndromes linear map is the transpose of multipoint evaluation,
* it uses exactly the same constants, either hardcoded or precomputed by compute_fft_lut(...). <br>
* This follows directives from Bernstein, Chou and Schwabe given here:
* https://binary.cr.yp.to/mcbits-20130616.pdf
*
* @param[out] f Array of size 2*(PARAM_FFT_T) elements receiving the syndromes
* @param[in] w Array of PARAM_GF_MUL_ORDER+1 elements
* @param[in] f_coeffs Length of syndromes vector f
*/
void PQCLEAN_HQC1921CCA2_LEAKTIME_fft_t(uint16_t *f, const uint16_t *w, size_t f_coeffs) {
// Transposed from Gao and Mateer algorithm
uint16_t betas[PARAM_M - 1];
uint16_t betas_sums[1 << (PARAM_M - 1)];
size_t k = 1 << (PARAM_M - 1);
uint16_t u[1 << (PARAM_M - 1)] = {0};
uint16_t v[1 << (PARAM_M - 1)] = {0};
uint16_t deltas[PARAM_M - 1];
uint16_t f0[1 << (PARAM_FFT_T - 1)];
uint16_t f1[1 << (PARAM_FFT_T - 1)];

compute_fft_betas(betas);
compute_subset_sums(betas_sums, betas, PARAM_M - 1);

/* Step 6: Compute u and v from w (aka w)
*
* We had:
* w[i] = u[i] + G[i].v[i]
* w[k+i] = w[i] + v[i] = u[i] + (G[i]+1).v[i]
* Transpose:
* u[i] = w[i] + w[k+i]
* v[i] = G[i].w[i] + (G[i]+1).w[k+i] = G[i].u[i] + w[k+i] */
u[0] = w[0] ^ w[k];
v[0] = w[k];
for (size_t i = 1; i < k; ++i) {
u[i] = w[i] ^ w[k + i];
v[i] = PQCLEAN_HQC1921CCA2_LEAKTIME_gf_mul(betas_sums[i], u[i]) ^ w[k + i];
}

// Compute deltas
for (size_t i = 0; i < PARAM_M - 1; ++i) {
deltas[i] = PQCLEAN_HQC1921CCA2_LEAKTIME_gf_square(betas[i]) ^ betas[i];
}

// Step 5: Compute f0 from u and f1 from v
fft_t_rec(f0, u, (f_coeffs + 1) / 2, PARAM_M - 1, PARAM_FFT_T - 1, deltas);
fft_t_rec(f1, v, f_coeffs / 2, PARAM_M - 1, PARAM_FFT_T - 1, deltas);

// Step 3: Compute g from g0 and g1
radix_t(f, f0, f1, PARAM_FFT_T);

// Step 2: beta_m = 1 so f = g
}



/**
* @brief Computes the radix conversion of a polynomial f in GF(2^m)[x]
*
* Computes f0 and f1 such that f(x) = f0(x^2-x) + x.f1(x^2-x)
* as proposed by Bernstein, Chou and Schwabe:
* https://binary.cr.yp.to/mcbits-20130616.pdf
*
* @param[out] f0 Array half the size of f
* @param[out] f1 Array half the size of f
* @param[in] f Array of size a power of 2
* @param[in] m_f 2^{m_f} is the smallest power of 2 greater or equal to the number of coefficients of f
*/
static void radix(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f) {
switch (m_f) {
case 4:
f0[4] = f[8] ^ f[12];
f0[6] = f[12] ^ f[14];
f0[7] = f[14] ^ f[15];
f1[5] = f[11] ^ f[13];
f1[6] = f[13] ^ f[14];
f1[7] = f[15];
f0[5] = f[10] ^ f[12] ^ f1[5];
f1[4] = f[9] ^ f[13] ^ f0[5];

f0[0] = f[0];
f1[3] = f[7] ^ f[11] ^ f[15];
f0[3] = f[6] ^ f[10] ^ f[14] ^ f1[3];
f0[2] = f[4] ^ f0[4] ^ f0[3] ^ f1[3];
f1[1] = f[3] ^ f[5] ^ f[9] ^ f[13] ^ f1[3];
f1[2] = f[3] ^ f1[1] ^ f0[3];
f0[1] = f[2] ^ f0[2] ^ f1[1];
f1[0] = f[1] ^ f0[1];
return;

case 3:
f0[0] = f[0];
f0[2] = f[4] ^ f[6];
f0[3] = f[6] ^ f[7];
f1[1] = f[3] ^ f[5] ^ f[7];
f1[2] = f[5] ^ f[6];
f1[3] = f[7];
f0[1] = f[2] ^ f0[2] ^ f1[1];
f1[0] = f[1] ^ f0[1];
return;

case 2:
f0[0] = f[0];
f0[1] = f[2] ^ f[3];
f1[0] = f[1] ^ f0[1];
f1[1] = f[3];
return;

case 1:
f0[0] = f[0];
f1[0] = f[1];
return;

default:
;
size_t n = ((size_t)1) << (m_f - 2);

uint16_t Q[2 * (1 << (PARAM_FFT - 2))];
uint16_t R[2 * (1 << (PARAM_FFT - 2))];

uint16_t Q0[1 << (PARAM_FFT - 2)];
uint16_t Q1[1 << (PARAM_FFT - 2)];
uint16_t R0[1 << (PARAM_FFT - 2)];
uint16_t R1[1 << (PARAM_FFT - 2)];

memcpy(Q, f + 3 * n, 2 * n);
memcpy(Q + n, f + 3 * n, 2 * n);
memcpy(R, f, 4 * n);

for (size_t i = 0; i < n; ++i) {
Q[i] ^= f[2 * n + i];
R[n + i] ^= Q[i];
}

radix(Q0, Q1, Q, m_f - 1);
radix(R0, R1, R, m_f - 1);

memcpy(f0, R0, 2 * n);
memcpy(f0 + n, Q0, 2 * n);
memcpy(f1, R1, 2 * n);
memcpy(f1 + n, Q1, 2 * n);
}
}



/**
* @brief Evaluates f at all subset sums of a given set
*
* This function is a subroutine of the function fft.
*
* @param[out] w Array
* @param[in] f Array
* @param[in] f_coeffs Number of coefficients of f
* @param[in] m Number of betas
* @param[in] m_f Number of coefficients of f (one more than its degree)
* @param[in] betas FFT constants
*/
static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs,
uint8_t m, uint32_t m_f, const uint16_t *betas) {

uint16_t f0[1 << (PARAM_FFT - 2)] = {0};
uint16_t f1[1 << (PARAM_FFT - 2)] = {0};
uint16_t gammas[PARAM_M - 2] = {0};
uint16_t deltas[PARAM_M - 2] = {0};
size_t k = ((size_t)1) << (m - 1);
uint16_t gammas_sums[1 << (PARAM_M - 2)] = {0};
uint16_t u[1 << (PARAM_M - 2)] = {0};
uint16_t v[1 << (PARAM_M - 2)] = {0};

// Step 1
if (m_f == 1) {
uint16_t tmp[PARAM_M - (PARAM_FFT - 1)];
for (size_t i = 0; i < m; ++i) {
tmp[i] = PQCLEAN_HQC1921CCA2_LEAKTIME_gf_mul(betas[i], f[1]);
}

w[0] = f[0];
for (size_t j = 0; j < m; ++j) {
for (size_t ki = 0; ki < (((size_t)1) << j); ++ki) {
w[(((size_t)1) << j) + ki] = w[ki] ^ tmp[j];
}
}

return;
}

// Step 2: compute g
if (betas[m - 1] != 1) {
uint16_t beta_m_pow = 1;
for (size_t i = 1; i < (((size_t)1) << m_f); ++i) {
beta_m_pow = PQCLEAN_HQC1921CCA2_LEAKTIME_gf_mul(beta_m_pow, betas[m - 1]);
f[i] = PQCLEAN_HQC1921CCA2_LEAKTIME_gf_mul(beta_m_pow, f[i]);
}
}

// Step 3
radix(f0, f1, f, m_f);

// Step 4: compute gammas and deltas
for (uint8_t i = 0; i < m - 1; ++i) {
gammas[i] = PQCLEAN_HQC1921CCA2_LEAKTIME_gf_mul(betas[i], PQCLEAN_HQC1921CCA2_LEAKTIME_gf_inverse(betas[m - 1]));
deltas[i] = PQCLEAN_HQC1921CCA2_LEAKTIME_gf_square(gammas[i]) ^ gammas[i];
}

// Compute gammas sums
compute_subset_sums(gammas_sums, gammas, m - 1);

// Step 5
fft_rec(u, f0, (f_coeffs + 1) / 2, m - 1, m_f - 1, deltas);

if (f_coeffs <= 3) { // 3-coefficient polynomial f case: f1 is constant
w[0] = u[0];
w[k] = u[0] ^ f1[0];
for (size_t i = 1; i < k; ++i) {
w[i] = u[i] ^ PQCLEAN_HQC1921CCA2_LEAKTIME_gf_mul(gammas_sums[i], f1[0]);
w[k + i] = w[i] ^ f1[0];
}
} else {
fft_rec(v, f1, f_coeffs / 2, m - 1, m_f - 1, deltas);

// Step 6
memcpy(w + k, v, 2 * k);
w[0] = u[0];
w[k] ^= u[0];
for (size_t i = 1; i < k; ++i) {
w[i] = u[i] ^ PQCLEAN_HQC1921CCA2_LEAKTIME_gf_mul(gammas_sums[i], v[i]);
w[k + i] ^= w[i];
}
}
}



/**
* @brief Evaluates f on all fields elements using an additive FFT algorithm
*
* f_coeffs is the number of coefficients of f (one less than its degree). <br>
* The FFT proceeds recursively to evaluate f at all subset sums of a basis B. <br>
* This implementation is based on the paper from Gao and Mateer: <br>
* Shuhong Gao and Todd Mateer, Additive Fast Fourier Transforms over Finite Fields,
* IEEE Transactions on Information Theory 56 (2010), 6265--6272.
* http://www.math.clemson.edu/~sgao/papers/GM10.pdf <br>
* and includes improvements proposed by Bernstein, Chou and Schwabe here:
* https://binary.cr.yp.to/mcbits-20130616.pdf <br>
* Constants betas, gammas and deltas involved in the algorithm are either hardcoded or precomputed
* by the subroutine compute_fft_lut(...). <br>
* Note that on this first call (as opposed to the recursive calls to fft_rec), gammas are equal to betas,
* meaning the first gammas subset sums are actually the subset sums of betas (except 1). <br>
* Also note that f is altered during computation (twisted at each level).
*
* @param[out] w Array
* @param[in] f Array of 2^PARAM_FFT elements
* @param[in] f_coeffs Number coefficients of f (i.e. deg(f)+1)
*/
void PQCLEAN_HQC1921CCA2_LEAKTIME_fft(uint16_t *w, const uint16_t *f, size_t f_coeffs) {
uint16_t betas[PARAM_M - 1] = {0};
uint16_t betas_sums[1 << (PARAM_M - 1)] = {0};
uint16_t f0[1 << (PARAM_FFT - 1)] = {0};
uint16_t f1[1 << (PARAM_FFT - 1)] = {0};
uint16_t deltas[PARAM_M - 1];
size_t k = 1 << (PARAM_M - 1);
uint16_t u[1 << (PARAM_M - 1)] = {0};
uint16_t v[1 << (PARAM_M - 1)] = {0};

// Follows Gao and Mateer algorithm
compute_fft_betas(betas);

// Step 1: PARAM_FFT > 1, nothing to do

// Compute gammas sums
compute_subset_sums(betas_sums, betas, PARAM_M - 1);

// Step 2: beta_m = 1, nothing to do

// Step 3
radix(f0, f1, f, PARAM_FFT);

// Step 4: Compute deltas
for (size_t i = 0; i < PARAM_M - 1; ++i) {
deltas[i] = PQCLEAN_HQC1921CCA2_LEAKTIME_gf_square(betas[i]) ^ betas[i];
}

// Step 5
fft_rec(u, f0, (f_coeffs + 1) / 2, PARAM_M - 1, PARAM_FFT - 1, deltas);
fft_rec(v, f1, f_coeffs / 2, PARAM_M - 1, PARAM_FFT - 1, deltas);

// Step 6, 7 and error polynomial computation
memcpy(w + k, v, 2 * k);

// Check if 0 is root
w[0] = u[0];

// Check if 1 is root
w[k] ^= u[0];

// Find other roots
for (size_t i = 1; i < k; ++i) {
w[i] = u[i] ^ PQCLEAN_HQC1921CCA2_LEAKTIME_gf_mul(betas_sums[i], v[i]);
w[k + i] ^= w[i];
}
}



/**
* @brief Arranges the received word vector in a form w such that applying the additive FFT transpose to w yields the BCH syndromes of the received word vector.
*
* Since the received word vector gives coefficients of the primitive element alpha, we twist accordingly. <br>
* Furthermore, the additive FFT transpose needs elements indexed by their decomposition on the chosen basis,
* so we apply the adequate permutation.
*
* @param[out] w Array of size 2^PARAM_M
* @param[in] vector Array of size VEC_N1_SIZE_BYTES
*/
void PQCLEAN_HQC1921CCA2_LEAKTIME_fft_t_preprocess_bch_codeword(uint16_t *w, const uint8_t *vector) {
uint16_t r[1 << PARAM_M];
uint16_t gammas[PARAM_M - 1];
uint16_t gammas_sums[1 << (PARAM_M - 1)];
size_t k = 1 << (PARAM_M - 1);

// Unpack the received word vector into array r
size_t i;
for (i = 0; i < VEC_N1_SIZE_BYTES - (PARAM_N1 % 8 != 0); ++i) {
for (size_t j = 0; j < 8; ++j) {
r[8 * i + j] = (vector[i] >> j) & 1;
}
}

// Last byte
for (size_t j = 0; j < PARAM_N1 % 8; ++j) {
r[8 * i + j] = (vector[i] >> j) & 1;
}

// Complete r with zeros
memset(r + PARAM_N1, 0, 2 * ((1 << PARAM_M) - PARAM_N1));

compute_fft_betas(gammas);
compute_subset_sums(gammas_sums, gammas, PARAM_M - 1);

// Twist and permute r adequately to obtain w
w[0] = 0;
w[k] = -r[0] & 1;
for (i = 1; i < k; ++i) {
w[i] = -r[PQCLEAN_HQC1921CCA2_LEAKTIME_gf_log(gammas_sums[i])] & gammas_sums[i];
w[k + i] = -r[PQCLEAN_HQC1921CCA2_LEAKTIME_gf_log(gammas_sums[i] ^ 1)] & (gammas_sums[i] ^ 1);
}
}



/**
* @brief Retrieves the error polynomial error from the evaluations w of the ELP (Error Locator Polynomial) on all field elements.
*
* @param[out] error Array of size VEC_N1_SIZE_BYTES
* @param[in] w Array of size 2^PARAM_M
*/
void PQCLEAN_HQC1921CCA2_LEAKTIME_fft_retrieve_bch_error_poly(uint8_t *error, const uint16_t *w) {
uint16_t gammas[PARAM_M - 1];
uint16_t gammas_sums[1 << (PARAM_M - 1)];
size_t k = 1 << (PARAM_M - 1);
size_t index = PARAM_GF_MUL_ORDER;

compute_fft_betas(gammas);
compute_subset_sums(gammas_sums, gammas, PARAM_M - 1);

error[0] ^= 1 ^ ((uint16_t) - w[0] >> 15);
uint8_t bit = 1 ^ ((uint16_t) - w[k] >> 15);
error[index / 8] ^= bit << (index % 8);

for (size_t i = 1; i < k; ++i) {
index = PARAM_GF_MUL_ORDER - PQCLEAN_HQC1921CCA2_LEAKTIME_gf_log(gammas_sums[i]);
bit = 1 ^ ((uint16_t) - w[i] >> 15);
error[index / 8] ^= bit << (index % 8);

index = PARAM_GF_MUL_ORDER - PQCLEAN_HQC1921CCA2_LEAKTIME_gf_log(gammas_sums[i] ^ 1);
bit = 1 ^ ((uint16_t) - w[k + i] >> 15);
error[index / 8] ^= bit << (index % 8);
}
}

+ 18
- 0
crypto_kem/hqc-192-1-cca2/leaktime/fft.h View File

@@ -0,0 +1,18 @@
#ifndef PQCLEAN_HQC1921CCA2_LEAKTIME_FFT_H
#define PQCLEAN_HQC1921CCA2_LEAKTIME_FFT_H

/**
* @file fft.h
* Header file of fft.c
*/

#include <stddef.h>
#include <stdint.h>

void PQCLEAN_HQC1921CCA2_LEAKTIME_fft_t(uint16_t *f, const uint16_t *w, size_t f_coeffs);
void PQCLEAN_HQC1921CCA2_LEAKTIME_fft_t_preprocess_bch_codeword(uint16_t *w, const uint8_t *vector);

void PQCLEAN_HQC1921CCA2_LEAKTIME_fft(uint16_t *w, const uint16_t *f, size_t f_coeffs);
void PQCLEAN_HQC1921CCA2_LEAKTIME_fft_retrieve_bch_error_poly(uint8_t *error, const uint16_t *w);

#endif

+ 99
- 0
crypto_kem/hqc-192-1-cca2/leaktime/gf.c
File diff suppressed because it is too large
View File


+ 18
- 0
crypto_kem/hqc-192-1-cca2/leaktime/gf.h View File

@@ -0,0 +1,18 @@
#ifndef PQCLEAN_HQC1921CCA2_LEAKTIME_GF_H
#define PQCLEAN_HQC1921CCA2_LEAKTIME_GF_H

/**
* @file gf.h
* Header file of gf.c
*/

#include <stddef.h>
#include <stdint.h>

uint16_t PQCLEAN_HQC1921CCA2_LEAKTIME_gf_log(uint16_t elt);
uint16_t PQCLEAN_HQC1921CCA2_LEAKTIME_gf_mul(uint16_t a, uint16_t b);
uint16_t PQCLEAN_HQC1921CCA2_LEAKTIME_gf_square(uint16_t a);
uint16_t PQCLEAN_HQC1921CCA2_LEAKTIME_gf_inverse(uint16_t a);
uint16_t PQCLEAN_HQC1921CCA2_LEAKTIME_gf_mod(uint16_t i);

#endif

+ 123
- 0
crypto_kem/hqc-192-1-cca2/leaktime/gf2x.c View File

@@ -0,0 +1,123 @@
/**
* \file gf2x.c
* \brief Implementation of multiplication of two polynomials
*/

#include "gf2x.h"
#include "parameters.h"
#include "util.h"

#include <stdint.h>
#include <string.h>

#define WORD_TYPE uint64_t
#define WORD_TYPE_BITS (sizeof(WORD_TYPE) * 8)
#define UTILS_VECTOR_ARRAY_SIZE CEIL_DIVIDE(PARAM_N, WORD_TYPE_BITS)

static int vect_mul_precompute_rows(WORD_TYPE *o, const WORD_TYPE *v);


/**
* @brief A subroutine used in the function sparse_dense_mul()
*
* @param[out] o Pointer to an array
* @param[in] v Pointer to an array
* @return 0 if precomputation is successful, -1 otherwise
*/
static int vect_mul_precompute_rows(WORD_TYPE *o, const WORD_TYPE *v) {
int8_t var;
for (size_t i = 0; i < PARAM_N; ++i) {
var = 0;

// All the bits that we need are in the same block
if (((i % WORD_TYPE_BITS) == 0) && (i != PARAM_N - (PARAM_N % WORD_TYPE_BITS))) {
var = 1;
}

// Cases where the bits are in before the last block, the last block and the first block
if (i > PARAM_N - WORD_TYPE_BITS) {
if (i >= PARAM_N - (PARAM_N % WORD_TYPE_BITS)) {
var = 2;
} else {
var = 3;
}
}

switch (var) {
case 0:
// Take bits in the last block and the first one
o[i] = 0;
o[i] += v[i / WORD_TYPE_BITS] >> (i % WORD_TYPE_BITS);
o[i] += v[(i / WORD_TYPE_BITS) + 1] << (WORD_TYPE_BITS - (i % WORD_TYPE_BITS));
break;

case 1:
o[i] = v[i / WORD_TYPE_BITS];
break;

case 2:
o[i] = 0;
o[i] += v[i / WORD_TYPE_BITS] >> (i % WORD_TYPE_BITS);
o[i] += v[0] << ((PARAM_N - i) % WORD_TYPE_BITS);
break;

case 3:
o[i] = 0;
o[i] += v[i / WORD_TYPE_BITS] >> (i % WORD_TYPE_BITS);
o[i] += v[(i / WORD_TYPE_BITS) + 1] << (WORD_TYPE_BITS - (i % WORD_TYPE_BITS));
o[i] += v[0] << ((WORD_TYPE_BITS - i + (PARAM_N % WORD_TYPE_BITS)) % WORD_TYPE_BITS);
break;

default:
return -1;
}
}

return 0;
}



/**
* @brief Multiplies two vectors
*
* This function multiplies two vectors: a sparse vector of Hamming weight equal to <b>weight</b> and a dense (random) vector.
* The vector <b>a1</b> is the sparse vector and <b>a2</b> is the dense vector.
* We notice that the idea is explained using vector of 32 bits elements instead of 64 (the algorithm works in booth cases).
*
* @param[out] o Pointer to a vector that is the result of the multiplication
* @param[in] a1 Pointer to the sparse vector stored by position
* @param[in] a2 Pointer to the dense vector
* @param[in] weight Integer that is the weight of the sparse vector
*/
void PQCLEAN_HQC1921CCA2_LEAKTIME_vect_mul(uint8_t *o, const uint32_t *a1, const uint8_t *a2, uint16_t weight) {
WORD_TYPE v1[UTILS_VECTOR_ARRAY_SIZE] = {0};
WORD_TYPE res[UTILS_VECTOR_ARRAY_SIZE] = {0};
WORD_TYPE precomputation_array [PARAM_N] = {0};
WORD_TYPE row [UTILS_VECTOR_ARRAY_SIZE] = {0};
uint32_t index;

PQCLEAN_HQC1921CCA2_LEAKTIME_load8_arr(v1, UTILS_VECTOR_ARRAY_SIZE, a2, VEC_N_SIZE_BYTES);
vect_mul_precompute_rows(precomputation_array, v1);

for (size_t i = 0; i < weight; ++i) {
int32_t k = UTILS_VECTOR_ARRAY_SIZE;

for (size_t j = 0; j < UTILS_VECTOR_ARRAY_SIZE - 1; ++j) {
index = WORD_TYPE_BITS * (uint32_t)j - a1[i];
if (index > PARAM_N) {
index += PARAM_N;
}
row[j] = precomputation_array[index];
}

index = WORD_TYPE_BITS * (UTILS_VECTOR_ARRAY_SIZE - 1) - a1[i];
row[UTILS_VECTOR_ARRAY_SIZE - 1] = precomputation_array[(index < PARAM_N ? index : index + PARAM_N)] & BITMASK(PARAM_N, WORD_TYPE_BITS);

while (k--) {
res[k] ^= row[k];
}
}

PQCLEAN_HQC1921CCA2_LEAKTIME_store8_arr(o, VEC_N_SIZE_BYTES, res, UTILS_VECTOR_ARRAY_SIZE);
}

+ 13
- 0
crypto_kem/hqc-192-1-cca2/leaktime/gf2x.h View File

@@ -0,0 +1,13 @@
#ifndef PQCLEAN_HQC1921CCA2_LEAKTIME_GF2X_H
#define PQCLEAN_HQC1921CCA2_LEAKTIME_GF2X_H

/**
* @file gf2x.h
* @brief Header file for gf2x.c
*/

#include <stdint.h>

void PQCLEAN_HQC1921CCA2_LEAKTIME_vect_mul(uint8_t *o, const uint32_t *a1, const uint8_t *a2, uint16_t weight);

#endif

+ 135
- 0
crypto_kem/hqc-192-1-cca2/leaktime/hqc.c View File

@@ -0,0 +1,135 @@
/**
* @file hqc.c
* @brief Implementation of hqc.h
*/

#include "gf2x.h"
#include "hqc.h"
#include "nistseedexpander.h"
#include "parameters.h"
#include "parsing.h"
#include "randombytes.h"
#include "tensor.h"
#include "vector.h"
#include <stdint.h>


/**
* @brief Keygen of the HQC_PKE IND_CPA scheme
*
* The public key is composed of the syndrome <b>s</b> as well as the <b>seed</b> used to generate the vector <b>h</b>.
*
* The secret key is composed of the <b>seed</b> used to generate vectors <b>x</b> and <b>y</b>.
* As a technicality, the public key is appended to the secret key in order to respect NIST API.
*
* @param[out] pk String containing the public key
* @param[out] sk String containing the secret key
*/
void PQCLEAN_HQC1921CCA2_LEAKTIME_hqc_pke_keygen(uint8_t *pk, uint8_t *sk) {
AES_XOF_struct sk_seedexpander;
AES_XOF_struct pk_seedexpander;
uint8_t sk_seed[SEED_BYTES] = {0};
uint8_t pk_seed[SEED_BYTES] = {0};
uint8_t x[VEC_N_SIZE_BYTES] = {0};
uint32_t y[PARAM_OMEGA] = {0};
uint8_t h[VEC_N_SIZE_BYTES] = {0};
uint8_t s[VEC_N_SIZE_BYTES] = {0};

// Create seed_expanders for public key and secret key
randombytes(sk_seed, SEED_BYTES);
seedexpander_init(&sk_seedexpander, sk_seed, sk_seed + 32, SEEDEXPANDER_MAX_LENGTH);

randombytes(pk_seed, SEED_BYTES);
seedexpander_init(&pk_seedexpander, pk_seed, pk_seed + 32, SEEDEXPANDER_MAX_LENGTH);

// Compute secret key
PQCLEAN_HQC1921CCA2_LEAKTIME_vect_set_random_fixed_weight(&sk_seedexpander, x, PARAM_OMEGA);
PQCLEAN_HQC1921CCA2_LEAKTIME_vect_set_random_fixed_weight_by_coordinates(&sk_seedexpander, y, PARAM_OMEGA);

// Compute public key
PQCLEAN_HQC1921CCA2_LEAKTIME_vect_set_random(&pk_seedexpander, h);
PQCLEAN_HQC1921CCA2_LEAKTIME_vect_mul(s, y, h, PARAM_OMEGA);
PQCLEAN_HQC1921CCA2_LEAKTIME_vect_add(s, x, s, VEC_N_SIZE_BYTES);

// Parse keys to string
PQCLEAN_HQC1921CCA2_LEAKTIME_hqc_public_key_to_string(pk, pk_seed, s);
PQCLEAN_HQC1921CCA2_LEAKTIME_hqc_secret_key_to_string(sk, sk_seed, pk);
}



/**
* @brief Encryption of the HQC_PKE IND_CPA scheme
*
* The cihertext is composed of vectors <b>u</b> and <b>v</b>.
*
* @param[out] u Vector u (first part of the ciphertext)
* @param[out] v Vector v (second part of the ciphertext)
* @param[in] m Vector representing the message to encrypt
* @param[in] theta Seed used to derive randomness required for encryption
* @param[in] pk String containing the public key
*/
void PQCLEAN_HQC1921CCA2_LEAKTIME_hqc_pke_encrypt(uint8_t *u, uint8_t *v, const uint8_t *m, const uint8_t *theta, const uint8_t *pk) {
AES_XOF_struct seedexpander;
uint8_t h[VEC_N_SIZE_BYTES] = {0};
uint8_t s[VEC_N_SIZE_BYTES] = {0};
uint8_t r1[VEC_N_SIZE_BYTES] = {0};
uint32_t r2[PARAM_OMEGA_R] = {0};
uint8_t e[VEC_N_SIZE_BYTES] = {0};
uint8_t tmp1[VEC_N_SIZE_BYTES] = {0};
uint8_t tmp2[VEC_N_SIZE_BYTES] = {0};

// Create seed_expander from theta
seedexpander_init(&seedexpander, theta, theta + 32, SEEDEXPANDER_MAX_LENGTH);

// Retrieve h and s from public key
PQCLEAN_HQC1921CCA2_LEAKTIME_hqc_public_key_from_string(h, s, pk);

// Generate r1, r2 and e
PQCLEAN_HQC1921CCA2_LEAKTIME_vect_set_random_fixed_weight(&seedexpander, r1, PARAM_OMEGA_R);
PQCLEAN_HQC1921CCA2_LEAKTIME_vect_set_random_fixed_weight_by_coordinates(&seedexpander, r2, PARAM_OMEGA_R);
PQCLEAN_HQC1921CCA2_LEAKTIME_vect_set_random_fixed_weight(&seedexpander, e, PARAM_OMEGA_E);

// Compute u = r1 + r2.h
PQCLEAN_HQC1921CCA2_LEAKTIME_vect_mul(u, r2, h, PARAM_OMEGA_R);
PQCLEAN_HQC1921CCA2_LEAKTIME_vect_add(u, r1, u, VEC_N_SIZE_BYTES);

// Compute v = m.G by encoding the message
PQCLEAN_HQC1921CCA2_LEAKTIME_tensor_code_encode(v, m);
PQCLEAN_HQC1921CCA2_LEAKTIME_vect_resize(tmp1, PARAM_N, v, PARAM_N1N2);

// Compute v = m.G + s.r2 + e
PQCLEAN_HQC1921CCA2_LEAKTIME_vect_mul(tmp2, r2, s, PARAM_OMEGA_R);
PQCLEAN_HQC1921CCA2_LEAKTIME_vect_add(tmp2, e, tmp2, VEC_N_SIZE_BYTES);
PQCLEAN_HQC1921CCA2_LEAKTIME_vect_add(tmp2, tmp1, tmp2, VEC_N_SIZE_BYTES);
PQCLEAN_HQC1921CCA2_LEAKTIME_vect_resize(v, PARAM_N1N2, tmp2, PARAM_N);
}



/**
* @brief Decryption of the HQC_PKE IND_CPA scheme
*
* @param[out] m Vector representing the decrypted message
* @param[in] u Vector u (first part of the ciphertext)
* @param[in] v Vector v (second part of the ciphertext)
* @param[in] sk String containing the secret key
*/
void PQCLEAN_HQC1921CCA2_LEAKTIME_hqc_pke_decrypt(uint8_t *m, const uint8_t *u, const uint8_t *v, const uint8_t *sk) {
uint8_t x[VEC_N_SIZE_BYTES] = {0};
uint32_t y[PARAM_OMEGA] = {0};
uint8_t pk[PUBLIC_KEY_BYTES] = {0};
uint8_t tmp1[VEC_N_SIZE_BYTES] = {0};
uint8_t tmp2[VEC_N_SIZE_BYTES] = {0};

// Retrieve x, y, pk from secret key
PQCLEAN_HQC1921CCA2_LEAKTIME_hqc_secret_key_from_string(x, y, pk, sk);

// Compute v - u.y
PQCLEAN_HQC1921CCA2_LEAKTIME_vect_resize(tmp1, PARAM_N, v, PARAM_N1N2);
PQCLEAN_HQC1921CCA2_LEAKTIME_vect_mul(tmp2, y, u, PARAM_OMEGA);
PQCLEAN_HQC1921CCA2_LEAKTIME_vect_add(tmp2, tmp1, tmp2, VEC_N_SIZE_BYTES);

// Compute m by decoding v - u.y
PQCLEAN_HQC1921CCA2_LEAKTIME_tensor_code_decode(m, tmp2);
}

+ 15
- 0
crypto_kem/hqc-192-1-cca2/leaktime/hqc.h View File

@@ -0,0 +1,15 @@
#ifndef PQCLEAN_HQC1921CCA2_LEAKTIME_HQC_H
#define PQCLEAN_HQC1921CCA2_LEAKTIME_HQC_H

/**
* @file hqc.h
* @brief Functions of the HQC_PKE IND_CPA scheme
*/

#include <stdint.h>

void PQCLEAN_HQC1921CCA2_LEAKTIME_hqc_pke_keygen(uint8_t *pk, uint8_t *sk);
void PQCLEAN_HQC1921CCA2_LEAKTIME_hqc_pke_encrypt(uint8_t *u, uint8_t *v, const uint8_t *m, const uint8_t *theta, const uint8_t *pk);
void PQCLEAN_HQC1921CCA2_LEAKTIME_hqc_pke_decrypt(uint8_t *m, const uint8_t *u, const uint8_t *v, const uint8_t *sk);

#endif

+ 154
- 0
crypto_kem/hqc-192-1-cca2/leaktime/kem.c View File

@@ -0,0 +1,154 @@
/**
* @file kem.c
* @brief Implementation of api.h
*/

#include "api.h"
#include "hqc.h"
#include "nistseedexpander.h"
#include "parameters.h"
#include "parsing.h"
#include "sha2.h"
#include "vector.h"
#include <stdint.h>
#include <string.h>


/**
* @brief Keygen of the HQC_KEM IND_CAA2 scheme
*
* The public key is composed of the syndrome <b>s</b> as well as the seed used to generate the vector <b>h</b>.
*
* The secret key is composed of the seed used to generate vectors <b>x</b> and <b>y</b>.
* As a technicality, the public key is appended to the secret key in order to respect NIST API.
*
* @param[out] pk String containing the public key
* @param[out] sk String containing the secret key
* @returns 0 if keygen is successful
*/
int PQCLEAN_HQC1921CCA2_LEAKTIME_crypto_kem_keypair(uint8_t *pk, uint8_t *sk) {
PQCLEAN_HQC1921CCA2_LEAKTIME_hqc_pke_keygen(pk, sk);
return 0;
}



/**
* @brief Encapsulation of the HQC_KEM IND_CAA2 scheme
*
* @param[out] ct String containing the ciphertext
* @param[out] ss String containing the shared secret
* @param[in] pk String containing the public key
* @returns 0 if encapsulation is successful
*/
int PQCLEAN_HQC1921CCA2_LEAKTIME_crypto_kem_enc(uint8_t *ct, uint8_t *ss, const uint8_t *pk) {
AES_XOF_struct G_seedexpander;
uint8_t seed_G[VEC_K_SIZE_BYTES];
uint8_t diversifier_bytes[8] = {0};
uint8_t m[VEC_K_SIZE_BYTES] = {0};
uint8_t theta[SEED_BYTES] = {0};
uint8_t u[VEC_N_SIZE_BYTES] = {0};
uint8_t v[VEC_N1N2_SIZE_BYTES] = {0};
uint8_t d[SHA512_BYTES] = {0};
uint8_t mc[VEC_K_SIZE_BYTES + VEC_N_SIZE_BYTES + VEC_N1N2_SIZE_BYTES] = {0};

// Computing m
PQCLEAN_HQC1921CCA2_LEAKTIME_vect_set_random_from_randombytes(m);

// Generating G function
memcpy(seed_G, m, VEC_K_SIZE_BYTES);
seedexpander_init(&G_seedexpander, seed_G, diversifier_bytes, SEEDEXPANDER_MAX_LENGTH);

// Computing theta
seedexpander(&G_seedexpander, theta, SEED_BYTES);

// Encrypting m
PQCLEAN_HQC1921CCA2_LEAKTIME_hqc_pke_encrypt(u, v, m, theta, pk);

// Computing d
sha512(d, m, VEC_K_SIZE_BYTES);

// Computing shared secret
memcpy(mc, m, VEC_K_SIZE_BYTES);
memcpy(mc + VEC_K_SIZE_BYTES, u, VEC_N_SIZE_BYTES);
memcpy(mc + VEC_K_SIZE_BYTES + VEC_N_SIZE_BYTES, v, VEC_N1N2_SIZE_BYTES);
sha512(ss, mc, VEC_K_SIZE_BYTES + VEC_N_SIZE_BYTES + VEC_N1N2_SIZE_BYTES);

// Computing ciphertext
PQCLEAN_HQC1921CCA2_LEAKTIME_hqc_ciphertext_to_string(ct, u, v, d);

return 0;
}



/**
* @brief Decapsulation of the HQC_KEM IND_CAA2 scheme
*
* @param[out] ss String containing the shared secret
* @param[in] ct String containing the cipĥertext
* @param[in] sk String containing the secret key
* @returns 0 if decapsulation is successful, -1 otherwise
*/
int PQCLEAN_HQC1921CCA2_LEAKTIME_crypto_kem_dec(uint8_t *ss, const uint8_t *ct, const uint8_t *sk) {
AES_XOF_struct G_seedexpander;
uint8_t seed_G[VEC_K_SIZE_BYTES] = {0};
uint8_t diversifier_bytes[8] = {0};
uint8_t u[VEC_N_SIZE_BYTES] = {0};
uint8_t v[VEC_N1N2_SIZE_BYTES] = {0};
uint8_t d[SHA512_BYTES] = {0};
uint8_t pk[PUBLIC_KEY_BYTES] = {0};
uint8_t m[VEC_K_SIZE_BYTES] = {0};
uint8_t theta[SEED_BYTES] = {0};
uint8_t u2[VEC_N_SIZE_BYTES] = {0};
uint8_t v2[VEC_N1N2_SIZE_BYTES] = {0};
uint8_t d2[SHA512_BYTES] = {0};
uint8_t mc[VEC_K_SIZE_BYTES + VEC_N_SIZE_BYTES + VEC_N1N2_SIZE_BYTES] = {0};
int8_t abort = 0;

// Retrieving u, v and d from ciphertext
PQCLEAN_HQC1921CCA2_LEAKTIME_hqc_ciphertext_from_string(u, v, d, ct);

// Retrieving pk from sk
memcpy(pk, sk + SEED_BYTES, PUBLIC_KEY_BYTES);

// Decryting
PQCLEAN_HQC1921CCA2_LEAKTIME_hqc_pke_decrypt(m, u, v, sk);

// Generating G function
memcpy(seed_G, m, VEC_K_SIZE_BYTES);
seedexpander_init(&G_seedexpander, seed_G, diversifier_bytes, SEEDEXPANDER_MAX_LENGTH);

// Computing theta
seedexpander(&G_seedexpander, theta, SEED_BYTES);

// Encrypting m'
PQCLEAN_HQC1921CCA2_LEAKTIME_hqc_pke_encrypt(u2, v2, m, theta, pk);

// Checking that c = c' and abort otherwise
if (PQCLEAN_HQC1921CCA2_LEAKTIME_vect_compare(u, u2, VEC_N_SIZE_BYTES) != 0 ||
PQCLEAN_HQC1921CCA2_LEAKTIME_vect_compare(v, v2, VEC_N1N2_SIZE_BYTES) != 0) {
abort = 1;
}

// Computing d'
sha512(d2, m, VEC_K_SIZE_BYTES);

// Checking that d = d' and abort otherwise
if (memcmp(d, d2, SHA512_BYTES) != 0) {
abort = 1;
}

if (abort == 1) {
memset(ss, 0, SHARED_SECRET_BYTES);
return -1;
}

// Computing shared secret
memcpy(mc, m, VEC_K_SIZE_BYTES);
memcpy(mc + VEC_K_SIZE_BYTES, u, VEC_N_SIZE_BYTES);
memcpy(mc + VEC_K_SIZE_BYTES + VEC_N_SIZE_BYTES, v, VEC_N1N2_SIZE_BYTES);
sha512(ss, mc, VEC_K_SIZE_BYTES + VEC_N_SIZE_BYTES + VEC_N1N2_SIZE_BYTES);

return 0;
}

+ 109
- 0
crypto_kem/hqc-192-1-cca2/leaktime/parameters.h View File

@@ -0,0 +1,109 @@
#ifndef PQCLEAN_HQC1921CCA2_LEAKTIME_HQC_PARAMETERS_H
#define PQCLEAN_HQC1921CCA2_LEAKTIME_HQC_PARAMETERS_H

/**
* @file parameters.h
* @brief Parameters of the HQC_KEM IND-CCA2 scheme
*/

#include "api.h"

#define CEIL_DIVIDE(a, b) (((a)/(b)) + ((a) % (b) == 0 ? 0 : 1)) /*!< Divide a by b and ceil the result*/
#define BITMASK(a, size) ((1ULL << ((a) % (size))) - 1) /*!< Create a mask*/


/*
#define PARAM_N Define the parameter n of the scheme
#define PARAM_N1 Define the parameter n1 of the scheme (length of BCH code)
#define PARAM_N2 Define the parameter n2 of the scheme (length of the repetition code)
#define PARAM_N1N2 Define the parameter n1 * n2 of the scheme (length of the tensor code)
#define PARAM_OMEGA Define the parameter omega of the scheme
#define PARAM_OMEGA_E Define the parameter omega_e of the scheme
#define PARAM_OMEGA_R Define the parameter omega_r of the scheme
#define PARAM_SECURITY Define the security level corresponding to the chosen parameters
#define PARAM_DFR_EXP Define the decryption failure rate corresponding to the chosen parameters

#define SECRET_KEY_BYTES Define the size of the secret key in bytes
#define PUBLIC_KEY_BYTES Define the size of the public key in bytes
#define SHARED_SECRET_BYTES Define the size of the shared secret in bytes
#define CIPHERTEXT_BYTES Define the size of the ciphertext in bytes

#define UTILS_REJECTION_THRESHOLD Define the rejection threshold used to generate given weight vectors (see vector_set_random_fixed_weight function)
#define VEC_N_ARRAY_SIZE_BYTES Define the size of the array used to store a PARAM_N sized vector in bytes
#define VEC_N1_ARRAY_SIZE_BYTES Define the size of the array used to store a PARAM_N1 sized vector in bytes
#define VEC_N1N2_ARRAY_SIZE_BYTES Define the size of the array used to store a PARAM_N1N2 sized vector in bytes
#define VEC_K_ARRAY_SIZE_BYTES Define the size of the array used to store a PARAM_K sized vector in bytes

#define PARAM_T Define a threshold for decoding repetition code word (PARAM_T = (PARAM_N2 - 1) / 2)

#define PARAM_DELTA Define the parameter delta of the scheme (correcting capacity of the BCH code)
#define PARAM_M Define a positive integer
#define PARAM_GF_MUL_ORDER Define the size of the multiplicative group of GF(2^m), i.e 2^m -1
#define PARAM_K Define the size of the information bits of the BCH code
#define PARAM_G Define the size of the generator polynomial of BCH code
#define PARAM_FFT The additive FFT takes a 2^PARAM_FFT polynomial as input
We use the FFT to compute the roots of sigma, whose degree if PARAM_DELTA=60
The smallest power of 2 greater than 60+1 is 64=2^6
#define PARAM_FFT_T The additive FFT transpose computes a (2^PARAM_FFT_T)-sized syndrome vector
We want to compute 2*PARAM_DELTA=120 syndromes
The smallest power of 2 greater than 120 is 2^7
#define PARAM_BCH_POLY Generator polynomial of the BCH code

#define SHA512_BYTES Define the size of SHA512 output in bytes
#define SEED_BYTES Define the size of the seed in bytes
#define SEEDEXPANDER_MAX_LENGTH Define the seed expander max length
*/


#define PARAM_N 43669
#define PARAM_N1 766
#define PARAM_N2 57
#define PARAM_N1N2 43662
#define PARAM_OMEGA 101
#define PARAM_OMEGA_E 117
#define PARAM_OMEGA_R 117
#define PARAM_SECURITY 192
#define PARAM_DFR_EXP 128

#define SECRET_KEY_BYTES PQCLEAN_HQC1921CCA2_LEAKTIME_CRYPTO_SECRETKEYBYTES
#define PUBLIC_KEY_BYTES PQCLEAN_HQC1921CCA2_LEAKTIME_CRYPTO_PUBLICKEYBYTES
#define SHARED_SECRET_BYTES PQCLEAN_HQC1921CCA2_LEAKTIME_CRYPTO_BYTES
#define CIPHERTEXT_BYTES PQCLEAN_HQC1921CCA2_LEAKTIME_CRYPTO_CIPHERTEXTBYTES

#define UTILS_REJECTION_THRESHOLD 16768896
#define VEC_K_SIZE_BYTES CEIL_DIVIDE(PARAM_K, 8)
#define VEC_N_SIZE_BYTES CEIL_DIVIDE(PARAM_N, 8)
#define VEC_N1_SIZE_BYTES CEIL_DIVIDE(PARAM_N1, 8)
#define VEC_N1N2_SIZE_BYTES CEIL_DIVIDE(PARAM_N1N2, 8)

#define PARAM_T 28

#define PARAM_DELTA 57
#define PARAM_M 10
#define PARAM_GF_MUL_ORDER 1023
#define PARAM_K 256
#define PARAM_G 511
#define PARAM_FFT 6
#define PARAM_FFT_T 7
#define PARAM_BCH_POLY { \
1,1,0,0,0,0,1,0,0,1,1,0,1,1,0,1,0,1,1,0,0,1,0,0,1,1,1,1,1,1,0,0,1,1,0,1,1, \
1,1,0,1,1,1,1,0,1,0,0,0,1,0,0,1,1,1,0,1,1,0,1,0,1,1,1,0,1,0,1,0,0,1,0,0,0, \
0,1,1,1,1,0,1,1,1,1,1,0,0,0,0,1,0,0,1,0,0,1,1,1,0,0,0,1,1,0,0,1,0,1,0,0,0, \
1,0,0,0,0,1,0,0,0,1,0,1,1,0,0,0,0,1,1,0,0,1,1,0,1,0,1,0,1,0,1,1,1,1,0,1,0, \
0,1,1,0,1,0,1,1,0,0,1,1,0,1,1,1,1,1,0,1,0,1,1,1,0,1,0,0,0,1,1,0,1,1,1,1,0, \
1,1,1,1,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,1,1,1,1,0,0,1,1,0,1,0,0,0,0,1,0, \
0,1,0,0,1,0,1,0,0,1,1,0,1,0,1,1,1,1,1,0,1,1,0,1,0,1,1,1,1,1,1,0,0,0,1,0,1, \
1,1,1,1,1,0,1,0,1,0,1,1,0,0,0,1,1,0,0,1,1,0,1,1,1,1,1,1,1,0,0,0,1,1,1,1,0, \
1,0,0,0,1,0,0,1,1,0,1,1,0,0,1,0,1,1,0,1,0,1,0,1,1,0,0,0,0,0,1,1,1,1,1,1,1, \
1,1,1,0,1,1,0,1,0,1,1,1,1,1,1,1,0,1,1,0,1,1,0,0,0,1,0,0,1,1,1,1,1,0,1,0,1, \
0,0,0,0,1,0,1,1,1,1,0,1,0,0,0,0,0,1,0,0,1,0,1,1,1,1,1,0,0,0,0,0,0,1,1,1,1, \
1,0,1,0,0,1,0,0,1,1,0,1,0,0,0,0,0,0,0,0,1,1,0,0,0,1,1,1,0,0,1,1,0,0,0,1,1, \
0,1,0,0,1,0,0,0,1,0,1,0,1,0,0,0,1,1,1,1,1,0,0,0,1,0,0,1,1,0,1,1,0,0,1,0,1, \
1,0,1,1,1,0,0,0,0,1,1,0,1,1,1,0,1,0,0,0,0,1,0,0,0,1,0,0,1,1 \
};

#define SHA512_BYTES 64
#define SEED_BYTES 40
#define SEEDEXPANDER_MAX_LENGTH 4294967295

#endif

+ 126
- 0
crypto_kem/hqc-192-1-cca2/leaktime/parsing.c View File

@@ -0,0 +1,126 @@
/**
* @file parsing.c
* @brief Functions to parse secret key, public key and ciphertext of the HQC scheme
*/

#include "nistseedexpander.h"
#include "parameters.h"
#include "parsing.h"
#include "vector.h"
#include <stdint.h>
#include <string.h>


/**
* @brief Parse a secret key into a string
*
* The secret key is composed of the seed used to generate vectors <b>x</b> and <b>y</b>.
* As technicality, the public key is appended to the secret key in order to respect NIST API.
*
* @param[out] sk String containing the secret key
* @param[in] sk_seed Seed used to generate the secret key
* @param[in] pk String containing the public key
*/
void PQCLEAN_HQC1921CCA2_LEAKTIME_hqc_secret_key_to_string(uint8_t *sk, const uint8_t *sk_seed, const uint8_t *pk) {
memcpy(sk, sk_seed, SEED_BYTES);
memcpy(sk + SEED_BYTES, pk, PUBLIC_KEY_BYTES);
}



/**
* @brief Parse a secret key from a string
*
* The secret key is composed of the seed used to generate vectors <b>x</b> and <b>y</b>.
* As technicality, the public key is appended to the secret key in order to respect NIST API.
*
* @param[out] x uint8_t representation of vector x
* @param[out] y uint8_t representation of vector y
* @param[out] pk String containing the public key
* @param[in] sk String containing the secret key
*/
void PQCLEAN_HQC1921CCA2_LEAKTIME_hqc_secret_key_from_string(uint8_t *x, uint32_t *y, uint8_t *pk, const uint8_t *sk) {
AES_XOF_struct sk_seedexpander;
uint8_t sk_seed[SEED_BYTES] = {0};

memcpy(sk_seed, sk, SEED_BYTES);
seedexpander_init(&sk_seedexpander, sk_seed, sk_seed + 32, SEEDEXPANDER_MAX_LENGTH);

PQCLEAN_HQC1921CCA2_LEAKTIME_vect_set_random_fixed_weight(&sk_seedexpander, x, PARAM_OMEGA);
PQCLEAN_HQC1921CCA2_LEAKTIME_vect_set_random_fixed_weight_by_coordinates(&sk_seedexpander, y, PARAM_OMEGA);
memcpy(pk, sk + SEED_BYTES, PUBLIC_KEY_BYTES);
}



/**
* @brief Parse a public key into a string
*
* The public key is composed of the syndrome <b>s</b> as well as the seed used to generate the vector <b>h</b>
*
* @param[out] pk String containing the public key
* @param[in] pk_seed Seed used to generate the public key
* @param[in] s uint8_t representation of vector s
*/
void PQCLEAN_HQC1921CCA2_LEAKTIME_hqc_public_key_to_string(uint8_t *pk, const uint8_t *pk_seed, const uint8_t *s) {
memcpy(pk, pk_seed, SEED_BYTES);
memcpy(pk + SEED_BYTES, s, VEC_N_SIZE_BYTES);
}



/**
* @brief Parse a public key from a string
*
* The public key is composed of the syndrome <b>s</b> as well as the seed used to generate the vector <b>h</b>
*
* @param[out] h uint8_t representation of vector h
* @param[out] s uint8_t representation of vector s
* @param[in] pk String containing the public key
*/
void PQCLEAN_HQC1921CCA2_LEAKTIME_hqc_public_key_from_string(uint8_t *h, uint8_t *s, const uint8_t *pk) {
AES_XOF_struct pk_seedexpander;
uint8_t pk_seed[SEED_BYTES] = {0};

memcpy(pk_seed, pk, SEED_BYTES);
seedexpander_init(&pk_seedexpander, pk_seed, pk_seed + 32, SEEDEXPANDER_MAX_LENGTH);
PQCLEAN_HQC1921CCA2_LEAKTIME_vect_set_random(&pk_seedexpander, h);

memcpy(s, pk + SEED_BYTES, VEC_N_SIZE_BYTES);
}



/**
* @brief Parse a ciphertext into a string
*
* The ciphertext is composed of vectors <b>u</b>, <b>v</b> and hash <b>d</b>.
*
* @param[out] ct String containing the ciphertext
* @param[in] u uint8_t representation of vector u
* @param[in] v uint8_t representation of vector v
* @param[in] d String containing the hash d
*/
void PQCLEAN_HQC1921CCA2_LEAKTIME_hqc_ciphertext_to_string(uint8_t *ct, const uint8_t *u, const uint8_t *v, const uint8_t *d) {
memcpy(ct, u, VEC_N_SIZE_BYTES);
memcpy(ct + VEC_N_SIZE_BYTES, v, VEC_N1N2_SIZE_BYTES);
memcpy(ct + VEC_N_SIZE_BYTES + VEC_N1N2_SIZE_BYTES, d, SHA512_BYTES);
}



/**
* @brief Parse a ciphertext from a string
*
* The ciphertext is composed of vectors <b>u</b>, <b>v</b> and hash <b>d</b>.
*
* @param[out] u uint8_t representation of vector u
* @param[out] v uint8_t representation of vector v
* @param[out] d String containing the hash d
* @param[in] ct String containing the ciphertext
*/
void PQCLEAN_HQC1921CCA2_LEAKTIME_hqc_ciphertext_from_string(uint8_t *u, uint8_t *v, uint8_t *d, const uint8_t *ct) {
memcpy(u, ct, VEC_N_SIZE_BYTES);
memcpy(v, ct + VEC_N_SIZE_BYTES, VEC_N1N2_SIZE_BYTES);
memcpy(d, ct + VEC_N_SIZE_BYTES + VEC_N1N2_SIZE_BYTES, SHA512_BYTES);
}

+ 20
- 0
crypto_kem/hqc-192-1-cca2/leaktime/parsing.h View File

@@ -0,0 +1,20 @@
#ifndef PQCLEAN_HQC1921CCA2_LEAKTIME_PARSING_H
#define PQCLEAN_HQC1921CCA2_LEAKTIME_PARSING_H

/**
* @file parsing.h
* @brief Header file for parsing.c
*/

#include <stdint.h>

void PQCLEAN_HQC1921CCA2_LEAKTIME_hqc_secret_key_to_string(uint8_t *sk, const uint8_t *sk_seed, const uint8_t *pk);
void PQCLEAN_HQC1921CCA2_LEAKTIME_hqc_secret_key_from_string(uint8_t *x, uint32_t *y, uint8_t *pk, const uint8_t *sk);

void PQCLEAN_HQC1921CCA2_LEAKTIME_hqc_public_key_to_string(uint8_t *pk, const uint8_t *pk_seed, const uint8_t *s);
void PQCLEAN_HQC1921CCA2_LEAKTIME_hqc_public_key_from_string(uint8_t *h, uint8_t *s, const uint8_t *pk);

void PQCLEAN_HQC1921CCA2_LEAKTIME_hqc_ciphertext_to_string(uint8_t *ct, const uint8_t *u, const uint8_t *v, const uint8_t *d);
void PQCLEAN_HQC1921CCA2_LEAKTIME_hqc_ciphertext_from_string(uint8_t *u, uint8_t *v, uint8_t *d, const uint8_t *ct);

#endif

+ 100
- 0
crypto_kem/hqc-192-1-cca2/leaktime/repetition.c View File

@@ -0,0 +1,100 @@
/**
* @file repetition.c
* @brief Implementation of repetition codes
*/

#include "parameters.h"
#include "repetition.h"
#include <stddef.h>
#include <stdint.h>

static void array_to_rep_codeword(uint8_t *o, const uint8_t *v);


/**
* @brief Encoding each bit in the message m using the repetition code
*
* For reasons of clarity and comprehensibility, we do the encoding by storing the encoded bits in a String (each bit in an a uint8_t),
* then we parse the obtained string to an compact array using the function array_to_rep_codeword().
*
* @param[out] em Pointer to an array that is the code word
* @param[in] m Pointer to an array that is the message
*/
void PQCLEAN_HQC1921CCA2_LEAKTIME_repetition_code_encode(uint8_t *em, const uint8_t *m) {
uint8_t tmp[PARAM_N1N2] = {0};
uint8_t bit = 0;
uint32_t index;

for (size_t i = 0; i < (VEC_N1_SIZE_BYTES - 1); ++i) {
for (uint8_t j = 0; j < 8; ++j) {
bit = (m[i] >> j) & 0x01;
index = (8 * (uint32_t)i + j) * PARAM_N2;
for (uint8_t k = 0; k < PARAM_N2; ++k) {
tmp[index + k] = bit;
}
}
}

for (uint8_t j = 0; j < (PARAM_N1 % 8); ++j) {
bit = (m[VEC_N1_SIZE_BYTES - 1] >> j) & 0x01;
index = (8 * (VEC_N1_SIZE_BYTES - 1) + j) * PARAM_N2;
for (uint8_t k = 0; k < PARAM_N2; ++k) {
tmp[index + k] = bit;
}
}

array_to_rep_codeword(em, tmp);
}



/**
* @brief Decoding the code words to a message using the repetition code
*
* We use a majority decoding. In fact we have that PARAM_N2 = 2 * PARAM_T + 1, thus,
* if the Hamming weight of the vector is greater than PARAM_T, the code word is decoded
* to 1 and 0 otherwise.
*
* @param[out] m Pointer to an array that is the message
* @param[in] em Pointer to an array that is the code word
*/
void PQCLEAN_HQC1921CCA2_LEAKTIME_repetition_code_decode(uint8_t *m, const uint8_t *em) {
size_t t = 0; // m index
uint8_t k = PARAM_N2; // block counter
uint8_t ones = 0; // number of 1 in the current block

for (size_t i = 0; i < VEC_N1N2_SIZE_BYTES; ++i) {
for (uint8_t j = 0; j < 8; ++j) {
ones += (em[i] >> j) & 0x01;

if (--k) {
continue;
}

m[t / 8] |= (ones > PARAM_T) << t % 8;
++t;
k = PARAM_N2;
ones = 0;
}
}
}



/**
* @brief Parse an array to an compact array
*
* @param[out] o Pointer to an array
* @param[in] v Pointer to an array
*/
static void array_to_rep_codeword(uint8_t *o, const uint8_t *v) {
for (size_t i = 0; i < (VEC_N1N2_SIZE_BYTES - 1); ++i) {
for (uint8_t j = 0; j < 8; ++j) {
o[i] |= v[j + 8 * i] << j;
}
}

for (uint8_t j = 0; j < PARAM_N1N2 % 8; ++j) {
o[VEC_N1N2_SIZE_BYTES - 1] |= (v[j + 8 * (VEC_N1N2_SIZE_BYTES - 1)]) << j;
}
}

+ 14
- 0
crypto_kem/hqc-192-1-cca2/leaktime/repetition.h View File

@@ -0,0 +1,14 @@
#ifndef PQCLEAN_HQC1921CCA2_LEAKTIME_REPETITION_H
#define PQCLEAN_HQC1921CCA2_LEAKTIME_REPETITION_H

/**
* @file repetition.h
* @brief Header file for repetition.c
*/

#include <stdint.h>

void PQCLEAN_HQC1921CCA2_LEAKTIME_repetition_code_encode(uint8_t *em, const uint8_t *m);
void PQCLEAN_HQC1921CCA2_LEAKTIME_repetition_code_decode(uint8_t *m, const uint8_t *em);

#endif

+ 42
- 0
crypto_kem/hqc-192-1-cca2/leaktime/tensor.c View File

@@ -0,0 +1,42 @@
/**
* @file tensor.c
* @brief Implementation of tensor code
*/

#include "bch.h"
#include "parameters.h"
#include "repetition.h"
#include "tensor.h"
#include <stdint.h>


/**
* @brief Encoding the message m to a code word em using the tensor code
*
* First we encode the message using the BCH code, then with the repetition code to obtain
* a tensor code word.
*
* @param[out] em Pointer to an array that is the tensor code word
* @param[in] m Pointer to an array that is the message
*/
void PQCLEAN_HQC1921CCA2_LEAKTIME_tensor_code_encode(uint8_t *em, const uint8_t *m) {
uint8_t tmp[VEC_N1_SIZE_BYTES] = {0};

PQCLEAN_HQC1921CCA2_LEAKTIME_bch_code_encode(tmp, m);
PQCLEAN_HQC1921CCA2_LEAKTIME_repetition_code_encode(em, tmp);
}



/**
* @brief Decoding the code word em to a message m using the tensor code
*
* @param[out] m Pointer to an array that is the message
* @param[in] em Pointer to an array that is the code word
*/
void PQCLEAN_HQC1921CCA2_LEAKTIME_tensor_code_decode(uint8_t *m, const uint8_t *em) {
uint8_t tmp[VEC_N1_SIZE_BYTES] = {0};

PQCLEAN_HQC1921CCA2_LEAKTIME_repetition_code_decode(tmp, em);
PQCLEAN_HQC1921CCA2_LEAKTIME_bch_code_decode(m, tmp);
}

+ 14
- 0
crypto_kem/hqc-192-1-cca2/leaktime/tensor.h View File

@@ -0,0 +1,14 @@
#ifndef PQCLEAN_HQC1921CCA2_LEAKTIME_TENSOR_H
#define PQCLEAN_HQC1921CCA2_LEAKTIME_TENSOR_H

/**
* @file tensor.h
* @brief Header file for tensor.c
*/

#include <stdint.h>

void PQCLEAN_HQC1921CCA2_LEAKTIME_tensor_code_encode(uint8_t *em, const uint8_t *m);
void PQCLEAN_HQC1921CCA2_LEAKTIME_tensor_code_decode(uint8_t *m, const uint8_t *em);

#endif

+ 69
- 0
crypto_kem/hqc-192-1-cca2/leaktime/util.c View File

@@ -0,0 +1,69 @@
#include "util.h"
#include "stddef.h"

#include "assert.h"

/* These functions should help with endianness-safe conversions
*
* load8 and store8 are copied from the McEliece implementations,
* which are in the public domain.
*/


void PQCLEAN_HQC1921CCA2_LEAKTIME_store8(unsigned char *out, uint64_t in) {
out[0] = (in >> 0x00) & 0xFF;
out[1] = (in >> 0x08) & 0xFF;
out[2] = (in >> 0x10) & 0xFF;
out[3] = (in >> 0x18) & 0xFF;
out[4] = (in >> 0x20) & 0xFF;
out[5] = (in >> 0x28) & 0xFF;
out[6] = (in >> 0x30) & 0xFF;
out[7] = (in >> 0x38) & 0xFF;
}


uint64_t PQCLEAN_HQC1921CCA2_LEAKTIME_load8(const unsigned char *in) {
uint64_t ret = in[7];

for (int8_t i = 6; i >= 0; i--) {
ret <<= 8;
ret |= in[i];
}

return ret;
}

void PQCLEAN_HQC1921CCA2_LEAKTIME_load8_arr(uint64_t *out64, size_t outlen, const uint8_t *in8, size_t inlen) {
size_t index_in = 0;
size_t index_out = 0;

// first copy by 8 bytes
if (inlen >= 8 && outlen >= 1) {
while (index_out < outlen && index_in + 8 <= inlen) {
out64[index_out] = PQCLEAN_HQC1921CCA2_LEAKTIME_load8(in8 + index_in);

index_in += 8;
index_out += 1;
}
}

// we now need to do the last 7 bytes if necessary
if (index_in >= inlen || index_out >= outlen) {
return;
}
out64[index_out] = in8[inlen - 1];
for (int8_t i = (int8_t)(inlen - index_in) - 2; i >= 0; i--) {
out64[index_out] <<= 8;
out64[index_out] |= in8[index_in + i];
}
}

void PQCLEAN_HQC1921CCA2_LEAKTIME_store8_arr(uint8_t *out8, size_t outlen, const uint64_t *in64, size_t inlen) {
for (size_t index_out = 0, index_in = 0; index_out < outlen && index_in < inlen;) {
out8[index_out] = (in64[index_in] >> ((index_out % 8) * 8)) & 0xFF;
index_out++;
if (index_out % 8 == 0) {
index_in++;
}
}
}

+ 9
- 0
crypto_kem/hqc-192-1-cca2/leaktime/util.h View File

@@ -0,0 +1,9 @@
/* These functions should help with endianness-safe conversions */

#include <stddef.h>
#include <stdint.h>

void PQCLEAN_HQC1921CCA2_LEAKTIME_store8(unsigned char *out, uint64_t in);
uint64_t PQCLEAN_HQC1921CCA2_LEAKTIME_load8(const unsigned char *in);
void PQCLEAN_HQC1921CCA2_LEAKTIME_load8_arr(uint64_t *out64, size_t outlen, const uint8_t *in8, size_t inlen);
void PQCLEAN_HQC1921CCA2_LEAKTIME_store8_arr(uint8_t *out8, size_t outlen, const uint64_t *in64, size_t inlen);

+ 224
- 0
crypto_kem/hqc-192-1-cca2/leaktime/vector.c View File

@@ -0,0 +1,224 @@
/**
* @file vector.c
* @brief Implementation of vectors sampling and some utilities for the HQC scheme
*/

#include "nistseedexpander.h"
#include "parameters.h"
#include "randombytes.h"
#include "vector.h"
#include <stdint.h>
#include <string.h>


/**
* @brief Generates a vector of a given Hamming weight
*
* This function generates uniformly at random a binary vector of a Hamming weight equal to the parameter <b>weight</b>. The vector
* is stored by position.
* To generate the vector we have to sample uniformly at random values in the interval [0, PARAM_N -1]. Suppose the PARAM_N is equal to \f$ 70853 \f$, to select a position \f$ r\f$ the function works as follow:
* 1. It makes a call to the seedexpander function to obtain a random number \f$ x\f$ in \f$ [0, 2^{24}[ \f$.
* 2. Let \f$ t = \lfloor {2^{24} \over 70853} \rfloor \times 70853\f$
* 3. If \f$ x \geq t\f$, go to 1
* 4. It return \f$ r = x \mod 70853\f$
*
* The parameter \f$ t \f$ is precomputed and it's denoted by UTILS_REJECTION_THRESHOLD (see the file parameters.h).
*
* @param[in] v Pointer to an array
* @param[in] weight Integer that is the Hamming weight
* @param[in] ctx Pointer to the context of the seed expander
*/
void PQCLEAN_HQC1921CCA2_LEAKTIME_vect_set_random_fixed_weight_by_coordinates(AES_XOF_struct *ctx, uint32_t *v, uint16_t weight) {
size_t random_bytes_size = 3 * weight;
uint8_t rand_bytes[3 * PARAM_OMEGA_R] = {0}; // weight is expected to be <= PARAM_OMEGA_R
uint32_t random_data = 0;
uint8_t exist = 0;
size_t j = 0;

seedexpander(ctx, rand_bytes, random_bytes_size);

for (uint32_t i = 0; i < weight; ++i) {
exist = 0;
do {
if (j == random_bytes_size) {
seedexpander(ctx, rand_bytes, random_bytes_size);
j = 0;
}

random_data = ((uint32_t) rand_bytes[j++]) << 16;
random_data |= ((uint32_t) rand_bytes[j++]) << 8;
random_data |= rand_bytes[j++];

} while (random_data >= UTILS_REJECTION_THRESHOLD);

random_data = random_data % PARAM_N;

for (uint32_t k = 0; k < i; k++) {
if (v[k] == random_data) {
exist = 1;
}
}

if (exist == 1) {
i--;
} else {
v[i] = random_data;
}
}
}



/**
* @brief Generates a vector of a given Hamming weight
*
* This function generates uniformly at random a binary vector of a Hamming weight equal to the parameter <b>weight</b>.
* To generate the vector we have to sample uniformly at random values in the interval [0, PARAM_N -1]. Suppose the PARAM_N is equal to \f$ 70853 \f$, to select a position \f$ r\f$ the function works as follow:
* 1. It makes a call to the seedexpander function to obtain a random number \f$ x\f$ in \f$ [0, 2^{24}[ \f$.
* 2. Let \f$ t = \lfloor {2^{24} \over 70853} \rfloor \times 70853\f$
* 3. If \f$ x \geq t\f$, go to 1
* 4. It return \f$ r = x \mod 70853\f$
*
* The parameter \f$ t \f$ is precomputed and it's denoted by UTILS_REJECTION_THRESHOLD (see the file parameters.h).
*
* @param[in] v Pointer to an array
* @param[in] weight Integer that is the Hamming weight
* @param[in] ctx Pointer to the context of the seed expander
*/
void PQCLEAN_HQC1921CCA2_LEAKTIME_vect_set_random_fixed_weight(AES_XOF_struct *ctx, uint8_t *v, uint16_t weight) {

size_t random_bytes_size = 3 * weight;
uint8_t rand_bytes[3 * PARAM_OMEGA_R] = {0}; // weight is expected to be <= PARAM_OMEGA_R
uint32_t random_data = 0;
uint32_t tmp[PARAM_OMEGA_R] = {0};
uint8_t exist = 0;
size_t j = 0;

seedexpander(ctx, rand_bytes, random_bytes_size);

for (uint32_t i = 0; i < weight; ++i) {
exist = 0;
do {
if (j == random_bytes_size) {
seedexpander(ctx, rand_bytes, random_bytes_size);
j = 0;
}

random_data = ((uint32_t) rand_bytes[j++]) << 16;
random_data |= ((uint32_t) rand_bytes[j++]) << 8;
random_data |= rand_bytes[j++];

} while (random_data >= UTILS_REJECTION_THRESHOLD);

random_data = random_data % PARAM_N;

for (uint32_t k = 0; k < i; k++) {
if (tmp[k] == random_data) {
exist = 1;
}
}

if (exist == 1) {
i--;
} else {
tmp[i] = random_data;
}
}

for (uint16_t i = 0; i < weight; ++i) {
int32_t index = tmp[i] / 8;
int32_t pos = tmp[i] % 8;
v[index] |= 1 << pos;
}
}



/**
* @brief Generates a random vector of dimension <b>PARAM_N</b>
*
* This function generates a random binary vector of dimension <b>PARAM_N</b>. It generates a random
* array of bytes using the seedexpander function, and drop the extra bits using a mask.
*
* @param[in] v Pointer to an array
* @param[in] ctx Pointer to the context of the seed expander
*/
void PQCLEAN_HQC1921CCA2_LEAKTIME_vect_set_random(AES_XOF_struct *ctx, uint8_t *v) {
uint8_t rand_bytes[VEC_N_SIZE_BYTES] = {0};

seedexpander(ctx, rand_bytes, VEC_N_SIZE_BYTES);

memcpy(v, rand_bytes, VEC_N_SIZE_BYTES);
v[VEC_N_SIZE_BYTES - 1] &= BITMASK(PARAM_N, 8);
}



/**
* @brief Generates a random vector
*
* This function generates a random binary vector. It uses the the randombytes function.
*
* @param[in] v Pointer to an array
*/
void PQCLEAN_HQC1921CCA2_LEAKTIME_vect_set_random_from_randombytes(uint8_t *v) {
uint8_t rand_bytes [VEC_K_SIZE_BYTES] = {0};

randombytes(rand_bytes, VEC_K_SIZE_BYTES);
memcpy(v, rand_bytes, VEC_K_SIZE_BYTES);
}



/**
* @brief Adds two vectors
*
* @param[out] o Pointer to an array that is the result
* @param[in] v1 Pointer to an array that is the first vector
* @param[in] v2 Pointer to an array that is the second vector
* @param[in] size Integer that is the size of the vectors
*/
void PQCLEAN_HQC1921CCA2_LEAKTIME_vect_add(uint8_t *o, const uint8_t *v1, const uint8_t *v2, uint32_t size) {
for (uint32_t i = 0; i < size; ++i) {
o[i] = v1[i] ^ v2[i];
}
}



/**
* @brief Compares two vectors
*
* @param[in] v1 Pointer to an array that is first vector
* @param[in] v2 Pointer to an array that is second vector
* @param[in] size Integer that is the size of the vectors
* @returns 0 if the vectors are equals and a negative/psotive value otherwise
*/
int PQCLEAN_HQC1921CCA2_LEAKTIME_vect_compare(const uint8_t *v1, const uint8_t *v2, uint32_t size) {
return memcmp(v1, v2, size);
}



/**
* @brief Resize a vector so that it contains <b>size_o</b> bits
*
* @param[out] o Pointer to the output vector
* @param[in] size_o Integer that is the size of the output vector in bits
* @param[in] v Pointer to the input vector
* @param[in] size_v Integer that is the size of the input vector in bits
*/
void PQCLEAN_HQC1921CCA2_LEAKTIME_vect_resize(uint8_t *o, uint32_t size_o, const uint8_t *v, uint32_t size_v) {
if (size_o < size_v) {
uint8_t mask = 0x7F;
int8_t val = 8 - (size_o % 8);

memcpy(o, v, VEC_N1N2_SIZE_BYTES);

for (int8_t i = 0; i < val; ++i) {
o[VEC_N1N2_SIZE_BYTES - 1] &= (mask >> i);
}
} else {
memcpy(o, v, CEIL_DIVIDE(size_v, 8));
}
}

+ 22
- 0
crypto_kem/hqc-192-1-cca2/leaktime/vector.h View File

@@ -0,0 +1,22 @@
#ifndef PQCLEAN_HQC1921CCA2_LEAKTIME_VECTOR_H
#define PQCLEAN_HQC1921CCA2_LEAKTIME_VECTOR_H

/**
* @file vector.h
* @brief Header file for vector.c
*/

#include "nistseedexpander.h"
#include <stdint.h>

void PQCLEAN_HQC1921CCA2_LEAKTIME_vect_set_random_fixed_weight_by_coordinates(AES_XOF_struct *ctx, uint32_t *v, uint16_t weight);
void PQCLEAN_HQC1921CCA2_LEAKTIME_vect_set_random_fixed_weight(AES_XOF_struct *ctx, uint8_t *v, uint16_t weight);
void PQCLEAN_HQC1921CCA2_LEAKTIME_vect_set_random(AES_XOF_struct *ctx, uint8_t *v);
void PQCLEAN_HQC1921CCA2_LEAKTIME_vect_set_random_from_randombytes(uint8_t *v);

void PQCLEAN_HQC1921CCA2_LEAKTIME_vect_add(uint8_t *o, const uint8_t *v1, const uint8_t *v2, uint32_t size);
int PQCLEAN_HQC1921CCA2_LEAKTIME_vect_compare(const uint8_t *v1, const uint8_t *v2, uint32_t size);

void PQCLEAN_HQC1921CCA2_LEAKTIME_vect_resize(uint8_t *o, uint32_t size_o, const uint8_t *v, uint32_t size_v);

#endif

+ 23
- 0
crypto_kem/hqc-192-2-cca2/META.yml View File

@@ -0,0 +1,23 @@
name: HQC_192_2_CCA2
type: kem
claimed-nist-level: 3
claimed-security: IND-CCA2
length-public-key: 5884
length-ciphertext: 11749
length-secret-key: 5924
length-shared-secret: 64
nistkat-sha256: 838916e26585828d15cabb7a0a0b9dabb63986e432735b7f6cf2ee0e823bcca3
principal-submitters:
- Carlos Aguilar Melchor
- Nicolas Aragon
- Slim Bettaieb
- Loïc Bidoux
- Olivier Blazy
- Jean-Christophe Deneuville
- Philippe Gaborit
- Edoardo Persichetti
- Gilles Zémor
auxiliary-submitters: []
implementations:
- name: leaktime
version: https://pqc-hqc.org/doc/hqc-reference-implementation_2019-08-24.zip

+ 1
- 0
crypto_kem/hqc-192-2-cca2/leaktime/LICENSE View File

@@ -0,0 +1 @@
Public domain

+ 19
- 0
crypto_kem/hqc-192-2-cca2/leaktime/Makefile View File

@@ -0,0 +1,19 @@
# This Makefile can be used with GNU Make or BSD Make

LIB=libhqc-192-2-cca2_leaktime.a
HEADERS=api.h bch.h fft.h gf.h gf2x.h hqc.h parameters.h parsing.h repetition.h tensor.h vector.h util.h
OBJECTS=bch.o fft.o gf.o gf2x.o hqc.o kem.o parsing.o repetition.o tensor.o vector.o util.o

CFLAGS=-O3 -Wall -Wextra -Wpedantic -Wvla -Werror -Wmissing-prototypes -Wredundant-decls -std=c99 -I../../../common $(EXTRAFLAGS)

all: $(LIB)

%.o: %.c $(HEADERS)
$(CC) $(CFLAGS) -c -o $@ $<

$(LIB): $(OBJECTS)
$(AR) -r $@ $(OBJECTS)

clean:
$(RM) $(OBJECTS)
$(RM) $(LIB)

+ 23
- 0
crypto_kem/hqc-192-2-cca2/leaktime/Makefile.Microsoft_nmake View File

@@ -0,0 +1,23 @@
# This Makefile can be used with Microsoft Visual Studio's nmake using the command:
# nmake /f Makefile.Microsoft_nmake

LIBRARY=libhqc-192-2-cca2_leaktime.lib
OBJECTS=bch.obj fft.obj gf.obj gf2x.obj hqc.obj kem.obj parsing.obj repetition.obj tensor.obj vector.obj util.obj

# We ignore warning C4127: we sometimes use a conditional that depending
# on the parameters results in a case where if (const) is the case.
# The compiler should just optimise this away, but on MSVC we get
# a compiler complaint.
CFLAGS=/nologo /O2 /I ..\..\..\common /W4 /WX /wd4127

all: $(LIBRARY)

# Make sure objects are recompiled if headers change.
$(OBJECTS): *.h

$(LIBRARY): $(OBJECTS)
LIB.EXE /NOLOGO /WX /OUT:$@ $**

clean:
-DEL $(OBJECTS)
-DEL $(LIBRARY)

+ 25
- 0
crypto_kem/hqc-192-2-cca2/leaktime/api.h View File

@@ -0,0 +1,25 @@
#ifndef PQCLEAN_HQC1922CCA2_LEAKTIME_API_H
#define PQCLEAN_HQC1922CCA2_LEAKTIME_API_H

/**
* \file api.h
* \brief NIST KEM API used by the HQC_KEM IND-CCA2 scheme
*/

#include <stdint.h>

#define PQCLEAN_HQC1922CCA2_LEAKTIME_CRYPTO_ALGNAME "HQC_192_2_CCA2"

#define PQCLEAN_HQC1922CCA2_LEAKTIME_CRYPTO_SECRETKEYBYTES 5924
#define PQCLEAN_HQC1922CCA2_LEAKTIME_CRYPTO_PUBLICKEYBYTES 5884
#define PQCLEAN_HQC1922CCA2_LEAKTIME_CRYPTO_BYTES 64
#define PQCLEAN_HQC1922CCA2_LEAKTIME_CRYPTO_CIPHERTEXTBYTES 11749

// As a technicality, the public key is appended to the secret key in order to respect the NIST API.
// Without this constraint, CRYPTO_SECRETKEYBYTES would be defined as 32

int PQCLEAN_HQC1922CCA2_LEAKTIME_crypto_kem_keypair(uint8_t *pk, uint8_t *sk);
int PQCLEAN_HQC1922CCA2_LEAKTIME_crypto_kem_enc(uint8_t *ct, uint8_t *ss, const uint8_t *pk);
int PQCLEAN_HQC1922CCA2_LEAKTIME_crypto_kem_dec(uint8_t *ss, const uint8_t *ct, const uint8_t *sk);

#endif

+ 295
- 0
crypto_kem/hqc-192-2-cca2/leaktime/bch.c View File

@@ -0,0 +1,295 @@
/**
* @file bch.c
* Constant time implementation of BCH codes
*/

#include "bch.h"
#include "fft.h"
#include "gf.h"
#include "parameters.h"
#include "vector.h"
#include <stdint.h>
#include <string.h>

static void unpack_message(uint8_t *message_unpacked, const uint8_t *message);
static void lfsr_encode(uint8_t *codeword, const uint8_t *message);
static void pack_codeword(uint8_t *codeword, const uint8_t *codeword_unpacked);
static size_t compute_elp(uint16_t *sigma, const uint16_t *syndromes);
static void message_from_codeword(uint8_t *message, const uint8_t *codeword);
static void compute_syndromes(uint16_t *syndromes, const uint8_t *vector);
static void compute_roots(uint8_t *error, const uint16_t *sigma);


/**
* @brief Unpacks the message message to the array message_unpacked where each byte stores a bit of the message
*
* @param[out] message_unpacked Array of VEC_K_SIZE_BYTES bytes receiving the unpacked message
* @param[in] message Array of PARAM_K bytes storing the packed message
*/
static void unpack_message(uint8_t *message_unpacked, const uint8_t *message) {
for (size_t i = 0; i < (VEC_K_SIZE_BYTES - (PARAM_K % 8 != 0)); ++i) {
for (size_t j = 0; j < 8; ++j) {
message_unpacked[j + 8 * i] = (message[i] >> j) & 0x01;
}
}

for (int8_t j = 0; j < PARAM_K % 8; ++j) {
message_unpacked[j + 8 * (VEC_K_SIZE_BYTES - 1)] = (message[VEC_K_SIZE_BYTES - 1] >> j) & 0x01;
}
}



/**
* @brief Encodes the message message to a codeword codeword using the generator polynomial bch_poly of the code
*
* @param[out] codeword Array of PARAM_N1 bytes receiving the codeword
* @param[in] message Array of PARAM_K bytes storing the message to encode
*/
static void lfsr_encode(uint8_t *codeword, const uint8_t *message) {
uint8_t gate_value = 0;
uint8_t bch_poly[PARAM_G] = PARAM_BCH_POLY;

// Compute the Parity-check digits
for (int16_t i = PARAM_K - 1; i >= 0; --i) {
gate_value = message[i] ^ codeword[PARAM_N1 - PARAM_K - 1];

for (size_t j = PARAM_N1 - PARAM_K - 1; j; --j) {
codeword[j] = codeword[j - 1] ^ (-gate_value & bch_poly[j]);
}

codeword[0] = gate_value;
}

// Add the message
memcpy(codeword + PARAM_N1 - PARAM_K, message, PARAM_K);
}



/**
* @brief Packs the codeword from an array codeword_unpacked where each byte stores a bit to a compact array codeword
*
* @param[out] codeword Array of VEC_N1_SIZE_BYTES bytes receiving the packed codeword
* @param[in] codeword_unpacked Array of PARAM_N1 bytes storing the unpacked codeword
*/
static void pack_codeword(uint8_t *codeword, const uint8_t *codeword_unpacked) {
for (size_t i = 0; i < (VEC_N1_SIZE_BYTES - (PARAM_N1 % 8 != 0)); ++i) {
for (size_t j = 0; j < 8; ++j) {
codeword[i] |= codeword_unpacked[j + 8 * i] << j;
}
}

for (size_t j = 0; j < PARAM_N1 % 8; ++j) {
codeword[VEC_N1_SIZE_BYTES - 1] |= codeword_unpacked[j + 8 * (VEC_N1_SIZE_BYTES - 1)] << j;
}
}



/**
* @brief Encodes a message message of PARAM_K bits to a BCH codeword codeword of PARAM_N1 bits
*
* Following @cite lin1983error (Chapter 4 - Cyclic Codes),
* We perform a systematic encoding using a linear (PARAM_N1 - PARAM_K)-stage shift register
* with feedback connections based on the generator polynomial bch_poly of the BCH code.
*
* @param[out] codeword Array of size VEC_N1_SIZE_BYTES receiving the encoded message
* @param[in] message Array of size VEC_K_SIZE_BYTES storing the message
*/
void PQCLEAN_HQC1922CCA2_LEAKTIME_bch_code_encode(uint8_t *codeword, const uint8_t *message) {
uint8_t message_unpacked[PARAM_K];
uint8_t codeword_unpacked[PARAM_N1] = {0};

unpack_message(message_unpacked, message);
lfsr_encode(codeword_unpacked, message_unpacked);
pack_codeword(codeword, codeword_unpacked);
}



/**
* @brief Computes the error locator polynomial (ELP) sigma
*
* This is a constant time implementation of Berlekamp's simplified algorithm (see @cite joiner1995decoding). <br>
* We use the letter p for rho which is initialized at -1/2. <br>
* The array X_sigma_p represents the polynomial X^(2(mu-rho))*sigma_p(X). <br>
* Instead of maintaining a list of sigmas, we update in place both sigma and X_sigma_p. <br>
* sigma_copy serves as a temporary save of sigma in case X_sigma_p needs to be updated. <br>
* We can properly correct only if the degree of sigma does not exceed PARAM_DELTA.
* This means only the first PARAM_DELTA + 1 coefficients of sigma are of value
* and we only need to save its first PARAM_DELTA - 1 coefficients.
*
* @returns the degree of the ELP sigma
* @param[out] sigma Array of size (at least) PARAM_DELTA receiving the ELP
* @param[in] syndromes Array of size (at least) 2*PARAM_DELTA storing the syndromes
*/
static size_t compute_elp(uint16_t *sigma, const uint16_t *syndromes) {
sigma[0] = 1;
size_t deg_sigma = 0;
size_t deg_sigma_p = 0;
uint16_t sigma_copy[PARAM_DELTA - 1] = {0};
size_t deg_sigma_copy = 0;
uint16_t X_sigma_p[PARAM_DELTA + 1] = {0, 1};
int32_t pp = -1; // 2*rho
uint16_t d_p = 1;
uint16_t d = syndromes[0];

for (size_t mu = 0; mu < PARAM_DELTA; ++mu) {
// Save sigma in case we need it to update X_sigma_p
memcpy(sigma_copy, sigma, 2 * (PARAM_DELTA - 1));
deg_sigma_copy = deg_sigma;

uint16_t dd = PQCLEAN_HQC1922CCA2_LEAKTIME_gf_mul(d, PQCLEAN_HQC1922CCA2_LEAKTIME_gf_inverse(d_p)); // 0 if(d == 0)
for (size_t i = 1; (i <= 2 * mu + 1) && (i <= PARAM_DELTA); ++i) {
sigma[i] ^= PQCLEAN_HQC1922CCA2_LEAKTIME_gf_mul(dd, X_sigma_p[i]);
}

size_t deg_X = 2 * mu - pp; // 2*(mu-rho)
size_t deg_X_sigma_p = deg_X + deg_sigma_p;

// mask1 = 0xffff if(d != 0) and 0 otherwise
int16_t mask1 = -((uint16_t) - d >> 15);

// mask2 = 0xffff if(deg_X_sigma_p > deg_sigma) and 0 otherwise
int16_t mask2 = -((uint16_t) (deg_sigma - deg_X_sigma_p) >> 15);

// mask12 = 0xffff if the deg_sigma increased and 0 otherwise
int16_t mask12 = mask1 & mask2;
deg_sigma = (mask12 & deg_X_sigma_p) ^ (~mask12 & deg_sigma);

if (mu == PARAM_DELTA - 1) {
break;
}

// Update pp, d_p and X_sigma_p if needed
pp = (mask12 & (2 * mu)) ^ (~mask12 & pp);
d_p = (mask12 & d) ^ (~mask12 & d_p);
for (size_t i = PARAM_DELTA - 1; i; --i) {
X_sigma_p[i + 1] = (mask12 & sigma_copy[i - 1]) ^ (~mask12 & X_sigma_p[i - 1]);
}
X_sigma_p[1] = 0;
X_sigma_p[0] = 0;
deg_sigma_p = (mask12 & deg_sigma_copy) ^ (~mask12 & deg_sigma_p);

// Compute the next discrepancy
d = syndromes[2 * mu + 2];
for (size_t i = 1; (i <= 2 * mu + 1) && (i <= PARAM_DELTA); ++i) {
d ^= PQCLEAN_HQC1922CCA2_LEAKTIME_gf_mul(sigma[i], syndromes[2 * mu + 2 - i]);
}
}

return deg_sigma;
}



/**
* @brief Retrieves the message message from the codeword codeword
*
* Since we performed a systematic encoding, the message is the last PARAM_K bits of the codeword.
*
* @param[out] message Array of size VEC_K_SIZE_BYTES receiving the message
* @param[in] codeword Array of size VEC_N1_SIZE_BYTES storing the codeword
*/
static void message_from_codeword(uint8_t *message, const uint8_t *codeword) {
int32_t val = PARAM_N1 - PARAM_K;

uint8_t mask1 = 0xff << val % 8;
uint8_t mask2 = 0xff >> (8 - val % 8);
size_t index = val / 8;

for (size_t i = 0; i < VEC_K_SIZE_BYTES - 1; ++i) {
uint8_t message1 = (codeword[index] & mask1) >> val % 8;
uint8_t message2 = (codeword[++index] & mask2) << (8 - val % 8);
message[i] = message1 | message2;
}

// Last byte (8-val % 8 is the number of bits given by message1)
if ((PARAM_K % 8 == 0) || (8 - val % 8 < PARAM_K % 8)) {
uint8_t message1 = (codeword[index] & mask1) >> val % 8;
uint8_t message2 = (codeword[++index] & mask2) << (8 - val % 8);
message[VEC_K_SIZE_BYTES - 1] = message1 | message2;
} else {
uint8_t message1 = (codeword[index] & mask1) >> val % 8;
message[VEC_K_SIZE_BYTES - 1] = message1;
}
}



/**
* @brief Computes the 2^PARAM_DELTA syndromes from the received vector vector
*
* Syndromes are the sum of powers of alpha weighted by vector's coefficients.
* To do so, we use the additive FFT transpose, which takes as input a family w of GF(2^PARAM_M) elements
* and outputs the weighted power sums of these w. <br>
* Therefore, this requires twisting and applying a permutation before feeding vector to the fft transpose. <br>
* For more details see Berstein, Chou and Schawbe's explanations:
* https://binary.cr.yp.to/mcbits-20130616.pdf
*
* @param[out] syndromes Array of size 2^(PARAM_FFT_T) receiving the 2*PARAM_DELTA syndromes
* @param[in] vector Array of size VEC_N1_SIZE_BYTES storing the received word
*/
static void compute_syndromes(uint16_t *syndromes, const uint8_t *vector) {
uint16_t w[1 << PARAM_M];

PQCLEAN_HQC1922CCA2_LEAKTIME_fft_t_preprocess_bch_codeword(w, vector);
PQCLEAN_HQC1922CCA2_LEAKTIME_fft_t(syndromes, w, 2 * PARAM_DELTA);
}



/**
* @brief Computes the error polynomial error from the error locator polynomial sigma
*
* See function fft for more details.
*
* @param[out] err Array of VEC_N1_SIZE_BYTES elements receiving the error polynomial
* @param[in] sigma Array of 2^PARAM_FFT elements storing the error locator polynomial
*/
static void compute_roots(uint8_t *error, const uint16_t *sigma) {
uint16_t w[1 << PARAM_M] = {0}; // w will receive the evaluation of sigma in all field elements

PQCLEAN_HQC1922CCA2_LEAKTIME_fft(w, sigma, PARAM_DELTA + 1);
PQCLEAN_HQC1922CCA2_LEAKTIME_fft_retrieve_bch_error_poly(error, w);
}



/**
* @brief Decodes the received word
*
* This function relies on four steps:
* <ol>
* <li> The first step, done by additive FFT transpose, is the computation of the 2*PARAM_DELTA syndromes.
* <li> The second step is the computation of the error-locator polynomial sigma.
* <li> The third step, done by additive FFT, is finding the error-locator numbers by calculating the roots of the polynomial sigma and takings their inverses.
* <li> The fourth step is the correction of the errors in the received polynomial.
* </ol>
* For a more complete picture on BCH decoding, see Shu. Lin and Daniel J. Costello in Error Control Coding: Fundamentals and Applications @cite lin1983error
*
* @param[out] message Array of size VEC_K_SIZE_BYTES receiving the decoded message
* @param[in] vector Array of size VEC_N1_SIZE_BYTES storing the received word
*/
void PQCLEAN_HQC1922CCA2_LEAKTIME_bch_code_decode(uint8_t *message, uint8_t *vector) {
uint16_t syndromes[1 << PARAM_FFT_T];
uint16_t sigma[1 << PARAM_FFT] = {0};
uint8_t error[(1 << PARAM_M) / 8] = {0};

// Calculate the 2*PARAM_DELTA syndromes
compute_syndromes(syndromes, vector);

// Compute the error locator polynomial sigma
// Sigma's degree is at most PARAM_DELTA but the FFT requires the extra room
compute_elp(sigma, syndromes);

// Compute the error polynomial error
compute_roots(error, sigma);

// Add the error polynomial to the received polynomial
PQCLEAN_HQC1922CCA2_LEAKTIME_vect_add(vector, vector, error, VEC_N1_SIZE_BYTES);

// Retrieve the message from the decoded codeword
message_from_codeword(message, vector);
}

+ 16
- 0
crypto_kem/hqc-192-2-cca2/leaktime/bch.h View File

@@ -0,0 +1,16 @@
#ifndef PQCLEAN_HQC1922CCA2_LEAKTIME_BCH_H
#define PQCLEAN_HQC1922CCA2_LEAKTIME_BCH_H

/**
* @file bch.h
* Header file of bch.c
*/

#include "parameters.h"
#include <stddef.h>
#include <stdint.h>

void PQCLEAN_HQC1922CCA2_LEAKTIME_bch_code_encode(uint8_t *codeword, const uint8_t *message);
void PQCLEAN_HQC1922CCA2_LEAKTIME_bch_code_decode(uint8_t *message, uint8_t *vector);

#endif

+ 628
- 0
crypto_kem/hqc-192-2-cca2/leaktime/fft.c View File

@@ -0,0 +1,628 @@
/**
* @file fft.c
* Implementation of the additive FFT and its transpose.
* This implementation is based on the paper from Gao and Mateer: <br>
* Shuhong Gao and Todd Mateer, Additive Fast Fourier Transforms over Finite Fields,
* IEEE Transactions on Information Theory 56 (2010), 6265--6272.
* http://www.math.clemson.edu/~sgao/papers/GM10.pdf <br>
* and includes improvements proposed by Bernstein, Chou and Schwabe here:
* https://binary.cr.yp.to/mcbits-20130616.pdf
*/

#include "fft.h"
#include "gf.h"
#include "parameters.h"
#include <stdint.h>
#include <string.h>

static void compute_fft_betas(uint16_t *betas);
static void compute_subset_sums(uint16_t *subset_sums, const uint16_t *set, size_t set_size);
static void radix_t(uint16_t *f, const uint16_t *f0, const uint16_t *f1, uint32_t m_f);
static void fft_t_rec(uint16_t *f, const uint16_t *w, size_t f_coeffs, uint8_t m, uint32_t m_f, const uint16_t *betas);
static void radix(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f);
static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32_t m_f, const uint16_t *betas);


/**
* @brief Computes the basis of betas (omitting 1) used in the additive FFT and its transpose
*
* @param[out] betas Array of size PARAM_M-1
*/
static void compute_fft_betas(uint16_t *betas) {
for (size_t i = 0; i < PARAM_M - 1; ++i) {
betas[i] = 1 << (PARAM_M - 1 - i);
}
}



/**
* @brief Computes the subset sums of the given set
*
* The array subset_sums is such that its ith element is
* the subset sum of the set elements given by the binary form of i.
*
* @param[out] subset_sums Array of size 2^set_size receiving the subset sums
* @param[in] set Array of set_size elements
* @param[in] set_size Size of the array set
*/
static void compute_subset_sums(uint16_t *subset_sums, const uint16_t *set, size_t set_size) {
subset_sums[0] = 0;

for (size_t i = 0; i < set_size; ++i) {
for (size_t j = 0; j < (((size_t)1) << i); ++j) {
subset_sums[(((size_t)1) << i) + j] = set[i] ^ subset_sums[j];
}
}
}



/**
* @brief Transpose of the linear radix conversion
*
* This is a direct transposition of the radix function
* implemented following the process of transposing a linear function as exposed by Bernstein, Chou and Schwabe here:
* https://binary.cr.yp.to/mcbits-20130616.pdf
*
* @param[out] f Array of size a power of 2
* @param[in] f0 Array half the size of f
* @param[in] f1 Array half the size of f
* @param[in] m_f 2^{m_f} is the smallest power of 2 greater or equal to the number of coefficients of f
*/
static void radix_t(uint16_t *f, const uint16_t *f0, const uint16_t *f1, uint32_t m_f) {
switch (m_f) {
case 4:
f[0] = f0[0];
f[1] = f1[0];
f[2] = f0[1] ^ f1[0];
f[3] = f[2] ^ f1[1];
f[4] = f[2] ^ f0[2];
f[5] = f[3] ^ f1[2];
f[6] = f[4] ^ f0[3] ^ f1[2];
f[7] = f[3] ^ f0[3] ^ f1[3];
f[8] = f[4] ^ f0[4];
f[9] = f[5] ^ f1[4];
f[10] = f[6] ^ f0[5] ^ f1[4];
f[11] = f[7] ^ f0[5] ^ f1[4] ^ f1[5];
f[12] = f[8] ^ f0[5] ^ f0[6] ^ f1[4];
f[13] = f[7] ^ f[9] ^ f[11] ^ f1[6];
f[14] = f[6] ^ f0[6] ^ f0[7] ^ f1[6];
f[15] = f[7] ^ f0[7] ^ f1[7];
return;

case 3:
f[0] = f0[0];
f[1] = f1[0];
f[2] = f0[1] ^ f1[0];
f[3] = f[2] ^ f1[1];
f[4] = f[2] ^ f0[2];
f[5] = f[3] ^ f1[2];
f[6] = f[4] ^ f0[3] ^ f1[2];
f[7] = f[3] ^ f0[3] ^ f1[3];
return;

case 2:
f[0] = f0[0];
f[1] = f1[0];
f[2] = f0[1] ^ f1[0];
f[3] = f[2] ^ f1[1];
return;

case 1:
f[0] = f0[0];
f[1] = f1[0];
return;

default:
;

size_t n = ((size_t)1) << (m_f - 2);

uint16_t Q0[1 << (PARAM_FFT_T - 2)] = {0};
uint16_t Q1[1 << (PARAM_FFT_T - 2)] = {0};
uint16_t R0[1 << (PARAM_FFT_T - 2)] = {0};
uint16_t R1[1 << (PARAM_FFT_T - 2)] = {0};

uint16_t Q[1 << 2 * (PARAM_FFT_T - 2)] = {0};
uint16_t R[1 << 2 * (PARAM_FFT_T - 2)] = {0};

memcpy(Q0, f0 + n, 2 * n);
memcpy(Q1, f1 + n, 2 * n);
memcpy(R0, f0, 2 * n);
memcpy(R1, f1, 2 * n);

radix_t (Q, Q0, Q1, m_f - 1);
radix_t (R, R0, R1, m_f - 1);

memcpy(f, R, 4 * n);
memcpy(f + 2 * n, R + n, 2 * n);
memcpy(f + 3 * n, Q + n, 2 * n);

for (size_t i = 0; i < n; ++i) {
f[2 * n + i] ^= Q[i];
f[3 * n + i] ^= f[2 * n + i];
}
}
}



/**
* @brief Recursively computes syndromes of family w
*
* This function is a subroutine of the function fft_t
*
* @param[out] f Array receiving the syndromes
* @param[in] w Array storing the family
* @param[in] f_coeffs Length of syndromes vector
* @param[in] m 2^m is the smallest power of 2 greater or equal to the length of family w
* @param[in] m_f 2^{m_f} is the smallest power of 2 greater or equal to the length of f
* @param[in] betas FFT constants
*/
static void fft_t_rec(uint16_t *f, const uint16_t *w, size_t f_coeffs,
uint8_t m, uint32_t m_f, const uint16_t *betas) {
size_t k = ((size_t)1) << (m - 1);
uint16_t gammas[PARAM_M - 2] = {0};
uint16_t deltas[PARAM_M - 2] = {0};
uint16_t gammas_sums[1 << (PARAM_M - 1)];
uint16_t u[1 << (PARAM_M - 2)] = {0};
uint16_t f0[1 << (PARAM_FFT_T - 2)] = {0};
uint16_t f1[1 << (PARAM_FFT_T - 2)] = {0};
uint16_t betas_sums[1 << (PARAM_M - 1)] = {0};

// Step 1
if (m_f == 1) {
for (size_t i = 0; i < (((size_t)1) << m); ++i) {
f[0] ^= w[i];
}

for (size_t j = 0; j < m; ++j) {
for (size_t ki = 0; ki < (((size_t)1) << j); ++ki) {
size_t index = (((size_t)1) << j) + ki;
betas_sums[index] = betas_sums[ki] ^ betas[j];
f[1] ^= PQCLEAN_HQC1922CCA2_LEAKTIME_gf_mul(betas_sums[index], w[index]);
}
}

return;
}

// Compute gammas and deltas
for (uint8_t i = 0; i < m - 1; ++i) {
gammas[i] = PQCLEAN_HQC1922CCA2_LEAKTIME_gf_mul(betas[i], PQCLEAN_HQC1922CCA2_LEAKTIME_gf_inverse(betas[m - 1]));
deltas[i] = PQCLEAN_HQC1922CCA2_LEAKTIME_gf_square(gammas[i]) ^ gammas[i];
}

// Compute gammas subset sums
compute_subset_sums(gammas_sums, gammas, m - 1);

/* Step 6: Compute u and v from w (aka w)
* w[i] = u[i] + G[i].v[i]
* w[k+i] = w[i] + v[i] = u[i] + (G[i]+1).v[i]
* Transpose:
* u[i] = w[i] + w[k+i]
* v[i] = G[i].w[i] + (G[i]+1).w[k+i] = G[i].u[i] + w[k+i] */
if (f_coeffs <= 3) { // 3-coefficient polynomial f case
// Step 5: Compute f0 from u and f1 from v
f1[1] = 0;
u[0] = w[0] ^ w[k];
f1[0] = w[k];
for (size_t i = 1; i < k; ++i) {
u[i] = w[i] ^ w[k + i];
f1[0] ^= PQCLEAN_HQC1922CCA2_LEAKTIME_gf_mul(gammas_sums[i], u[i]) ^ w[k + i];
}
fft_t_rec(f0, u, (f_coeffs + 1) / 2, m - 1, m_f - 1, deltas);
} else {
uint16_t v[1 << (PARAM_M - 2)] = {0};

u[0] = w[0] ^ w[k];
v[0] = w[k];

for (size_t i = 1; i < k; ++i) {
u[i] = w[i] ^ w[k + i];
v[i] = PQCLEAN_HQC1922CCA2_LEAKTIME_gf_mul(gammas_sums[i], u[i]) ^ w[k + i];
}

// Step 5: Compute f0 from u and f1 from v
fft_t_rec(f0, u, (f_coeffs + 1) / 2, m - 1, m_f - 1, deltas);
fft_t_rec(f1, v, f_coeffs / 2, m - 1, m_f - 1, deltas);
}

// Step 3: Compute g from g0 and g1
radix_t(f, f0, f1, m_f);

// Step 2: compute f from g
if (betas[m - 1] != 1) {
uint16_t beta_m_pow = 1;
for (size_t i = 1; i < (((size_t)1) << m_f); ++i) {
beta_m_pow = PQCLEAN_HQC1922CCA2_LEAKTIME_gf_mul(beta_m_pow, betas[m - 1]);
f[i] = PQCLEAN_HQC1922CCA2_LEAKTIME_gf_mul(beta_m_pow, f[i]);
}
}
}



/**
* @brief Computes the syndromes f of the family w
*
* Since the syndromes linear map is the transpose of multipoint evaluation,
* it uses exactly the same constants, either hardcoded or precomputed by compute_fft_lut(...). <br>
* This follows directives from Bernstein, Chou and Schwabe given here:
* https://binary.cr.yp.to/mcbits-20130616.pdf
*
* @param[out] f Array of size 2*(PARAM_FFT_T) elements receiving the syndromes
* @param[in] w Array of PARAM_GF_MUL_ORDER+1 elements
* @param[in] f_coeffs Length of syndromes vector f
*/
void PQCLEAN_HQC1922CCA2_LEAKTIME_fft_t(uint16_t *f, const uint16_t *w, size_t f_coeffs) {
// Transposed from Gao and Mateer algorithm
uint16_t betas[PARAM_M - 1];
uint16_t betas_sums[1 << (PARAM_M - 1)];
size_t k = 1 << (PARAM_M - 1);
uint16_t u[1 << (PARAM_M - 1)] = {0};
uint16_t v[1 << (PARAM_M - 1)] = {0};
uint16_t deltas[PARAM_M - 1];
uint16_t f0[1 << (PARAM_FFT_T - 1)];
uint16_t f1[1 << (PARAM_FFT_T - 1)];

compute_fft_betas(betas);
compute_subset_sums(betas_sums, betas, PARAM_M - 1);

/* Step 6: Compute u and v from w (aka w)
*
* We had:
* w[i] = u[i] + G[i].v[i]
* w[k+i] = w[i] + v[i] = u[i] + (G[i]+1).v[i]
* Transpose:
* u[i] = w[i] + w[k+i]
* v[i] = G[i].w[i] + (G[i]+1).w[k+i] = G[i].u[i] + w[k+i] */
u[0] = w[0] ^ w[k];
v[0] = w[k];
for (size_t i = 1; i < k; ++i) {
u[i] = w[i] ^ w[k + i];
v[i] = PQCLEAN_HQC1922CCA2_LEAKTIME_gf_mul(betas_sums[i], u[i]) ^ w[k + i];
}

// Compute deltas
for (size_t i = 0; i < PARAM_M - 1; ++i) {
deltas[i] = PQCLEAN_HQC1922CCA2_LEAKTIME_gf_square(betas[i]) ^ betas[i];
}

// Step 5: Compute f0 from u and f1 from v
fft_t_rec(f0, u, (f_coeffs + 1) / 2, PARAM_M - 1, PARAM_FFT_T - 1, deltas);
fft_t_rec(f1, v, f_coeffs / 2, PARAM_M - 1, PARAM_FFT_T - 1, deltas);

// Step 3: Compute g from g0 and g1
radix_t(f, f0, f1, PARAM_FFT_T);

// Step 2: beta_m = 1 so f = g
}



/**
* @brief Computes the radix conversion of a polynomial f in GF(2^m)[x]
*
* Computes f0 and f1 such that f(x) = f0(x^2-x) + x.f1(x^2-x)
* as proposed by Bernstein, Chou and Schwabe:
* https://binary.cr.yp.to/mcbits-20130616.pdf
*
* @param[out] f0 Array half the size of f
* @param[out] f1 Array half the size of f
* @param[in] f Array of size a power of 2
* @param[in] m_f 2^{m_f} is the smallest power of 2 greater or equal to the number of coefficients of f
*/
static void radix(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f) {
switch (m_f) {
case 4:
f0[4] = f[8] ^ f[12];
f0[6] = f[12] ^ f[14];
f0[7] = f[14] ^ f[15];
f1[5] = f[11] ^ f[13];
f1[6] = f[13] ^ f[14];
f1[7] = f[15];
f0[5] = f[10] ^ f[12] ^ f1[5];
f1[4] = f[9] ^ f[13] ^ f0[5];

f0[0] = f[0];
f1[3] = f[7] ^ f[11] ^ f[15];
f0[3] = f[6] ^ f[10] ^ f[14] ^ f1[3];
f0[2] = f[4] ^ f0[4] ^ f0[3] ^ f1[3];
f1[1] = f[3] ^ f[5] ^ f[9] ^ f[13] ^ f1[3];
f1[2] = f[3] ^ f1[1] ^ f0[3];
f0[1] = f[2] ^ f0[2] ^ f1[1];
f1[0] = f[1] ^ f0[1];
return;

case 3:
f0[0] = f[0];
f0[2] = f[4] ^ f[6];
f0[3] = f[6] ^ f[7];
f1[1] = f[3] ^ f[5] ^ f[7];
f1[2] = f[5] ^ f[6];
f1[3] = f[7];
f0[1] = f[2] ^ f0[2] ^ f1[1];
f1[0] = f[1] ^ f0[1];
return;

case 2:
f0[0] = f[0];
f0[1] = f[2] ^ f[3];
f1[0] = f[1] ^ f0[1];
f1[1] = f[3];
return;

case 1:
f0[0] = f[0];
f1[0] = f[1];
return;

default:
;
size_t n = ((size_t)1) << (m_f - 2);

uint16_t Q[2 * (1 << (PARAM_FFT - 2))];
uint16_t R[2 * (1 << (PARAM_FFT - 2))];

uint16_t Q0[1 << (PARAM_FFT - 2)];
uint16_t Q1[1 << (PARAM_FFT - 2)];
uint16_t R0[1 << (PARAM_FFT - 2)];
uint16_t R1[1 << (PARAM_FFT - 2)];

memcpy(Q, f + 3 * n, 2 * n);
memcpy(Q + n, f + 3 * n, 2 * n);
memcpy(R, f, 4 * n);

for (size_t i = 0; i < n; ++i) {
Q[i] ^= f[2 * n + i];
R[n + i] ^= Q[i];
}

radix(Q0, Q1, Q, m_f - 1);
radix(R0, R1, R, m_f - 1);

memcpy(f0, R0, 2 * n);
memcpy(f0 + n, Q0, 2 * n);
memcpy(f1, R1, 2 * n);
memcpy(f1 + n, Q1, 2 * n);
}
}



/**
* @brief Evaluates f at all subset sums of a given set
*
* This function is a subroutine of the function fft.
*
* @param[out] w Array
* @param[in] f Array
* @param[in] f_coeffs Number of coefficients of f
* @param[in] m Number of betas
* @param[in] m_f Number of coefficients of f (one more than its degree)
* @param[in] betas FFT constants
*/
static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs,
uint8_t m, uint32_t m_f, const uint16_t *betas) {

uint16_t f0[1 << (PARAM_FFT - 2)] = {0};
uint16_t f1[1 << (PARAM_FFT - 2)] = {0};
uint16_t gammas[PARAM_M - 2] = {0};
uint16_t deltas[PARAM_M - 2] = {0};
size_t k = ((size_t)1) << (m - 1);
uint16_t gammas_sums[1 << (PARAM_M - 2)] = {0};
uint16_t u[1 << (PARAM_M - 2)] = {0};
uint16_t v[1 << (PARAM_M - 2)] = {0};

// Step 1
if (m_f == 1) {
uint16_t tmp[PARAM_M - (PARAM_FFT - 1)];
for (size_t i = 0; i < m; ++i) {
tmp[i] = PQCLEAN_HQC1922CCA2_LEAKTIME_gf_mul(betas[i], f[1]);
}

w[0] = f[0];
for (size_t j = 0; j < m; ++j) {
for (size_t ki = 0; ki < (((size_t)1) << j); ++ki) {
w[(((size_t)1) << j) + ki] = w[ki] ^ tmp[j];
}
}

return;
}

// Step 2: compute g
if (betas[m - 1] != 1) {
uint16_t beta_m_pow = 1;
for (size_t i = 1; i < (((size_t)1) << m_f); ++i) {
beta_m_pow = PQCLEAN_HQC1922CCA2_LEAKTIME_gf_mul(beta_m_pow, betas[m - 1]);
f[i] = PQCLEAN_HQC1922CCA2_LEAKTIME_gf_mul(beta_m_pow, f[i]);
}
}

// Step 3
radix(f0, f1, f, m_f);

// Step 4: compute gammas and deltas
for (uint8_t i = 0; i < m - 1; ++i) {
gammas[i] = PQCLEAN_HQC1922CCA2_LEAKTIME_gf_mul(betas[i], PQCLEAN_HQC1922CCA2_LEAKTIME_gf_inverse(betas[m - 1]));
deltas[i] = PQCLEAN_HQC1922CCA2_LEAKTIME_gf_square(gammas[i]) ^ gammas[i];
}

// Compute gammas sums
compute_subset_sums(gammas_sums, gammas, m - 1);

// Step 5
fft_rec(u, f0, (f_coeffs + 1) / 2, m - 1, m_f - 1, deltas);

if (f_coeffs <= 3) { // 3-coefficient polynomial f case: f1 is constant
w[0] = u[0];
w[k] = u[0] ^ f1[0];
for (size_t i = 1; i < k; ++i) {
w[i] = u[i] ^ PQCLEAN_HQC1922CCA2_LEAKTIME_gf_mul(gammas_sums[i], f1[0]);
w[k + i] = w[i] ^ f1[0];
}
} else {
fft_rec(v, f1, f_coeffs / 2, m - 1, m_f - 1, deltas);

// Step 6
memcpy(w + k, v, 2 * k);
w[0] = u[0];
w[k] ^= u[0];
for (size_t i = 1; i < k; ++i) {
w[i] = u[i] ^ PQCLEAN_HQC1922CCA2_LEAKTIME_gf_mul(gammas_sums[i], v[i]);
w[k + i] ^= w[i];
}
}
}



/**
* @brief Evaluates f on all fields elements using an additive FFT algorithm
*
* f_coeffs is the number of coefficients of f (one less than its degree). <br>
* The FFT proceeds recursively to evaluate f at all subset sums of a basis B. <br>
* This implementation is based on the paper from Gao and Mateer: <br>
* Shuhong Gao and Todd Mateer, Additive Fast Fourier Transforms over Finite Fields,
* IEEE Transactions on Information Theory 56 (2010), 6265--6272.
* http://www.math.clemson.edu/~sgao/papers/GM10.pdf <br>
* and includes improvements proposed by Bernstein, Chou and Schwabe here:
* https://binary.cr.yp.to/mcbits-20130616.pdf <br>
* Constants betas, gammas and deltas involved in the algorithm are either hardcoded or precomputed
* by the subroutine compute_fft_lut(...). <br>
* Note that on this first call (as opposed to the recursive calls to fft_rec), gammas are equal to betas,
* meaning the first gammas subset sums are actually the subset sums of betas (except 1). <br>
* Also note that f is altered during computation (twisted at each level).
*
* @param[out] w Array
* @param[in] f Array of 2^PARAM_FFT elements
* @param[in] f_coeffs Number coefficients of f (i.e. deg(f)+1)
*/
void PQCLEAN_HQC1922CCA2_LEAKTIME_fft(uint16_t *w, const uint16_t *f, size_t f_coeffs) {
uint16_t betas[PARAM_M - 1] = {0};
uint16_t betas_sums[1 << (PARAM_M - 1)] = {0};
uint16_t f0[1 << (PARAM_FFT - 1)] = {0};
uint16_t f1[1 << (PARAM_FFT - 1)] = {0};
uint16_t deltas[PARAM_M - 1];
size_t k = 1 << (PARAM_M - 1);
uint16_t u[1 << (PARAM_M - 1)] = {0};
uint16_t v[1 << (PARAM_M - 1)] = {0};

// Follows Gao and Mateer algorithm
compute_fft_betas(betas);

// Step 1: PARAM_FFT > 1, nothing to do

// Compute gammas sums
compute_subset_sums(betas_sums, betas, PARAM_M - 1);

// Step 2: beta_m = 1, nothing to do

// Step 3
radix(f0, f1, f, PARAM_FFT);

// Step 4: Compute deltas
for (size_t i = 0; i < PARAM_M - 1; ++i) {
deltas[i] = PQCLEAN_HQC1922CCA2_LEAKTIME_gf_square(betas[i]) ^ betas[i];
}

// Step 5
fft_rec(u, f0, (f_coeffs + 1) / 2, PARAM_M - 1, PARAM_FFT - 1, deltas);
fft_rec(v, f1, f_coeffs / 2, PARAM_M - 1, PARAM_FFT - 1, deltas);

// Step 6, 7 and error polynomial computation
memcpy(w + k, v, 2 * k);

// Check if 0 is root
w[0] = u[0];

// Check if 1 is root
w[k] ^= u[0];

// Find other roots
for (size_t i = 1; i < k; ++i) {
w[i] = u[i] ^ PQCLEAN_HQC1922CCA2_LEAKTIME_gf_mul(betas_sums[i], v[i]);
w[k + i] ^= w[i];
}
}



/**
* @brief Arranges the received word vector in a form w such that applying the additive FFT transpose to w yields the BCH syndromes of the received word vector.
*
* Since the received word vector gives coefficients of the primitive element alpha, we twist accordingly. <br>
* Furthermore, the additive FFT transpose needs elements indexed by their decomposition on the chosen basis,
* so we apply the adequate permutation.
*
* @param[out] w Array of size 2^PARAM_M
* @param[in] vector Array of size VEC_N1_SIZE_BYTES
*/
void PQCLEAN_HQC1922CCA2_LEAKTIME_fft_t_preprocess_bch_codeword(uint16_t *w, const uint8_t *vector) {
uint16_t r[1 << PARAM_M];
uint16_t gammas[PARAM_M - 1];
uint16_t gammas_sums[1 << (PARAM_M - 1)];
size_t k = 1 << (PARAM_M - 1);

// Unpack the received word vector into array r
size_t i;
for (i = 0; i < VEC_N1_SIZE_BYTES - (PARAM_N1 % 8 != 0); ++i) {
for (size_t j = 0; j < 8; ++j) {
r[8 * i + j] = (vector[i] >> j) & 1;
}
}

// Last byte
for (size_t j = 0; j < PARAM_N1 % 8; ++j) {
r[8 * i + j] = (vector[i] >> j) & 1;
}

// Complete r with zeros
memset(r + PARAM_N1, 0, 2 * ((1 << PARAM_M) - PARAM_N1));

compute_fft_betas(gammas);
compute_subset_sums(gammas_sums, gammas, PARAM_M - 1);

// Twist and permute r adequately to obtain w
w[0] = 0;
w[k] = -r[0] & 1;
for (i = 1; i < k; ++i) {
w[i] = -r[PQCLEAN_HQC1922CCA2_LEAKTIME_gf_log(gammas_sums[i])] & gammas_sums[i];
w[k + i] = -r[PQCLEAN_HQC1922CCA2_LEAKTIME_gf_log(gammas_sums[i] ^ 1)] & (gammas_sums[i] ^ 1);
}
}



/**
* @brief Retrieves the error polynomial error from the evaluations w of the ELP (Error Locator Polynomial) on all field elements.
*
* @param[out] error Array of size VEC_N1_SIZE_BYTES
* @param[in] w Array of size 2^PARAM_M
*/
void PQCLEAN_HQC1922CCA2_LEAKTIME_fft_retrieve_bch_error_poly(uint8_t *error, const uint16_t *w) {
uint16_t gammas[PARAM_M - 1];
uint16_t gammas_sums[1 << (PARAM_M - 1)];
size_t k = 1 << (PARAM_M - 1);
size_t index = PARAM_GF_MUL_ORDER;

compute_fft_betas(gammas);
compute_subset_sums(gammas_sums, gammas, PARAM_M - 1);

error[0] ^= 1 ^ ((uint16_t) - w[0] >> 15);
uint8_t bit = 1 ^ ((uint16_t) - w[k] >> 15);
error[index / 8] ^= bit << (index % 8);

for (size_t i = 1; i < k; ++i) {
index = PARAM_GF_MUL_ORDER - PQCLEAN_HQC1922CCA2_LEAKTIME_gf_log(gammas_sums[i]);
bit = 1 ^ ((uint16_t) - w[i] >> 15);
error[index / 8] ^= bit << (index % 8);

index = PARAM_GF_MUL_ORDER - PQCLEAN_HQC1922CCA2_LEAKTIME_gf_log(gammas_sums[i] ^ 1);
bit = 1 ^ ((uint16_t) - w[k + i] >> 15);
error[index / 8] ^= bit << (index % 8);
}
}

+ 18
- 0
crypto_kem/hqc-192-2-cca2/leaktime/fft.h View File

@@ -0,0 +1,18 @@
#ifndef PQCLEAN_HQC1922CCA2_LEAKTIME_FFT_H
#define PQCLEAN_HQC1922CCA2_LEAKTIME_FFT_H

/**
* @file fft.h
* Header file of fft.c
*/

#include <stddef.h>
#include <stdint.h>

void PQCLEAN_HQC1922CCA2_LEAKTIME_fft_t(uint16_t *f, const uint16_t *w, size_t f_coeffs);
void PQCLEAN_HQC1922CCA2_LEAKTIME_fft_t_preprocess_bch_codeword(uint16_t *w, const uint8_t *vector);

void PQCLEAN_HQC1922CCA2_LEAKTIME_fft(uint16_t *w, const uint16_t *f, size_t f_coeffs);
void PQCLEAN_HQC1922CCA2_LEAKTIME_fft_retrieve_bch_error_poly(uint8_t *error, const uint16_t *w);

#endif

+ 99
- 0
crypto_kem/hqc-192-2-cca2/leaktime/gf.c
File diff suppressed because it is too large
View File


+ 18
- 0
crypto_kem/hqc-192-2-cca2/leaktime/gf.h View File

@@ -0,0 +1,18 @@
#ifndef PQCLEAN_HQC1922CCA2_LEAKTIME_GF_H
#define PQCLEAN_HQC1922CCA2_LEAKTIME_GF_H

/**
* @file gf.h
* Header file of gf.c
*/

#include <stddef.h>
#include <stdint.h>

uint16_t PQCLEAN_HQC1922CCA2_LEAKTIME_gf_log(uint16_t elt);
uint16_t PQCLEAN_HQC1922CCA2_LEAKTIME_gf_mul(uint16_t a, uint16_t b);
uint16_t PQCLEAN_HQC1922CCA2_LEAKTIME_gf_square(uint16_t a);
uint16_t PQCLEAN_HQC1922CCA2_LEAKTIME_gf_inverse(uint16_t a);
uint16_t PQCLEAN_HQC1922CCA2_LEAKTIME_gf_mod(uint16_t i);

#endif

+ 123
- 0
crypto_kem/hqc-192-2-cca2/leaktime/gf2x.c View File

@@ -0,0 +1,123 @@
/**
* \file gf2x.c
* \brief Implementation of multiplication of two polynomials
*/

#include "gf2x.h"
#include "parameters.h"
#include "util.h"

#include <stdint.h>
#include <string.h>

#define WORD_TYPE uint64_t
#define WORD_TYPE_BITS (sizeof(WORD_TYPE) * 8)
#define UTILS_VECTOR_ARRAY_SIZE CEIL_DIVIDE(PARAM_N, WORD_TYPE_BITS)

static int vect_mul_precompute_rows(WORD_TYPE *o, const WORD_TYPE *v);


/**
* @brief A subroutine used in the function sparse_dense_mul()
*
* @param[out] o Pointer to an array
* @param[in] v Pointer to an array
* @return 0 if precomputation is successful, -1 otherwise
*/
static int vect_mul_precompute_rows(WORD_TYPE *o, const WORD_TYPE *v) {
int8_t var;
for (size_t i = 0; i < PARAM_N; ++i) {
var = 0;

// All the bits that we need are in the same block
if (((i % WORD_TYPE_BITS) == 0) && (i != PARAM_N - (PARAM_N % WORD_TYPE_BITS))) {
var = 1;
}

// Cases where the bits are in before the last block, the last block and the first block
if (i > PARAM_N - WORD_TYPE_BITS) {
if (i >= PARAM_N - (PARAM_N % WORD_TYPE_BITS)) {
var = 2;
} else {
var = 3;
}
}

switch (var) {
case 0:
// Take bits in the last block and the first one
o[i] = 0;
o[i] += v[i / WORD_TYPE_BITS] >> (i % WORD_TYPE_BITS);
o[i] += v[(i / WORD_TYPE_BITS) + 1] << (WORD_TYPE_BITS - (i % WORD_TYPE_BITS));
break;

case 1:
o[i] = v[i / WORD_TYPE_BITS];
break;

case 2:
o[i] = 0;
o[i] += v[i / WORD_TYPE_BITS] >> (i % WORD_TYPE_BITS);
o[i] += v[0] << ((PARAM_N - i) % WORD_TYPE_BITS);
break;

case 3:
o[i] = 0;
o[i] += v[i / WORD_TYPE_BITS] >> (i % WORD_TYPE_BITS);
o[i] += v[(i / WORD_TYPE_BITS) + 1] << (WORD_TYPE_BITS - (i % WORD_TYPE_BITS));
o[i] += v[0] << ((WORD_TYPE_BITS - i + (PARAM_N % WORD_TYPE_BITS)) % WORD_TYPE_BITS);
break;

default:
return -1;
}
}

return 0;
}



/**
* @brief Multiplies two vectors
*
* This function multiplies two vectors: a sparse vector of Hamming weight equal to <b>weight</b> and a dense (random) vector.
* The vector <b>a1</b> is the sparse vector and <b>a2</b> is the dense vector.
* We notice that the idea is explained using vector of 32 bits elements instead of 64 (the algorithm works in booth cases).
*
* @param[out] o Pointer to a vector that is the result of the multiplication
* @param[in] a1 Pointer to the sparse vector stored by position
* @param[in] a2 Pointer to the dense vector
* @param[in] weight Integer that is the weight of the sparse vector
*/
void PQCLEAN_HQC1922CCA2_LEAKTIME_vect_mul(uint8_t *o, const uint32_t *a1, const uint8_t *a2, uint16_t weight) {
WORD_TYPE v1[UTILS_VECTOR_ARRAY_SIZE] = {0};
WORD_TYPE res[UTILS_VECTOR_ARRAY_SIZE] = {0};
WORD_TYPE precomputation_array [PARAM_N] = {0};
WORD_TYPE row [UTILS_VECTOR_ARRAY_SIZE] = {0};
uint32_t index;

PQCLEAN_HQC1922CCA2_LEAKTIME_load8_arr(v1, UTILS_VECTOR_ARRAY_SIZE, a2, VEC_N_SIZE_BYTES);
vect_mul_precompute_rows(precomputation_array, v1);

for (size_t i = 0; i < weight; ++i) {
int32_t k = UTILS_VECTOR_ARRAY_SIZE;

for (size_t j = 0; j < UTILS_VECTOR_ARRAY_SIZE - 1; ++j) {
index = WORD_TYPE_BITS * (uint32_t)j - a1[i];
if (index > PARAM_N) {
index += PARAM_N;
}
row[j] = precomputation_array[index];
}

index = WORD_TYPE_BITS * (UTILS_VECTOR_ARRAY_SIZE - 1) - a1[i];
row[UTILS_VECTOR_ARRAY_SIZE - 1] = precomputation_array[(index < PARAM_N ? index : index + PARAM_N)] & BITMASK(PARAM_N, WORD_TYPE_BITS);

while (k--) {
res[k] ^= row[k];
}
}

PQCLEAN_HQC1922CCA2_LEAKTIME_store8_arr(o, VEC_N_SIZE_BYTES, res, UTILS_VECTOR_ARRAY_SIZE);
}

+ 13
- 0
crypto_kem/hqc-192-2-cca2/leaktime/gf2x.h View File

@@ -0,0 +1,13 @@
#ifndef PQCLEAN_HQC1922CCA2_LEAKTIME_GF2X_H
#define PQCLEAN_HQC1922CCA2_LEAKTIME_GF2X_H

/**
* @file gf2x.h
* @brief Header file for gf2x.c
*/

#include <stdint.h>

void PQCLEAN_HQC1922CCA2_LEAKTIME_vect_mul(uint8_t *o, const uint32_t *a1, const uint8_t *a2, uint16_t weight);

#endif

+ 135
- 0
crypto_kem/hqc-192-2-cca2/leaktime/hqc.c View File

@@ -0,0 +1,135 @@
/**
* @file hqc.c
* @brief Implementation of hqc.h
*/

#include "gf2x.h"
#include "hqc.h"
#include "nistseedexpander.h"
#include "parameters.h"
#include "parsing.h"
#include "randombytes.h"
#include "tensor.h"
#include "vector.h"
#include <stdint.h>


/**
* @brief Keygen of the HQC_PKE IND_CPA scheme
*
* The public key is composed of the syndrome <b>s</b> as well as the <b>seed</b> used to generate the vector <b>h</b>.
*
* The secret key is composed of the <b>seed</b> used to generate vectors <b>x</b> and <b>y</b>.
* As a technicality, the public key is appended to the secret key in order to respect NIST API.
*
* @param[out] pk String containing the public key
* @param[out] sk String containing the secret key
*/
void PQCLEAN_HQC1922CCA2_LEAKTIME_hqc_pke_keygen(uint8_t *pk, uint8_t *sk) {
AES_XOF_struct sk_seedexpander;
AES_XOF_struct pk_seedexpander;
uint8_t sk_seed[SEED_BYTES] = {0};
uint8_t pk_seed[SEED_BYTES] = {0};
uint8_t x[VEC_N_SIZE_BYTES] = {0};
uint32_t y[PARAM_OMEGA] = {0};
uint8_t h[VEC_N_SIZE_BYTES] = {0};
uint8_t s[VEC_N_SIZE_BYTES] = {0};

// Create seed_expanders for public key and secret key
randombytes(sk_seed, SEED_BYTES);
seedexpander_init(&sk_seedexpander, sk_seed, sk_seed + 32, SEEDEXPANDER_MAX_LENGTH);

randombytes(pk_seed, SEED_BYTES);
seedexpander_init(&pk_seedexpander, pk_seed, pk_seed + 32, SEEDEXPANDER_MAX_LENGTH);

// Compute secret key
PQCLEAN_HQC1922CCA2_LEAKTIME_vect_set_random_fixed_weight(&sk_seedexpander, x, PARAM_OMEGA);
PQCLEAN_HQC1922CCA2_LEAKTIME_vect_set_random_fixed_weight_by_coordinates(&sk_seedexpander, y, PARAM_OMEGA);

// Compute public key
PQCLEAN_HQC1922CCA2_LEAKTIME_vect_set_random(&pk_seedexpander, h);
PQCLEAN_HQC1922CCA2_LEAKTIME_vect_mul(s, y, h, PARAM_OMEGA);
PQCLEAN_HQC1922CCA2_LEAKTIME_vect_add(s, x, s, VEC_N_SIZE_BYTES);

// Parse keys to string
PQCLEAN_HQC1922CCA2_LEAKTIME_hqc_public_key_to_string(pk, pk_seed, s);
PQCLEAN_HQC1922CCA2_LEAKTIME_hqc_secret_key_to_string(sk, sk_seed, pk);
}



/**
* @brief Encryption of the HQC_PKE IND_CPA scheme
*
* The cihertext is composed of vectors <b>u</b> and <b>v</b>.
*
* @param[out] u Vector u (first part of the ciphertext)
* @param[out] v Vector v (second part of the ciphertext)
* @param[in] m Vector representing the message to encrypt
* @param[in] theta Seed used to derive randomness required for encryption
* @param[in] pk String containing the public key
*/
void PQCLEAN_HQC1922CCA2_LEAKTIME_hqc_pke_encrypt(uint8_t *u, uint8_t *v, const uint8_t *m, const uint8_t *theta, const uint8_t *pk) {
AES_XOF_struct seedexpander;
uint8_t h[VEC_N_SIZE_BYTES] = {0};
uint8_t s[VEC_N_SIZE_BYTES] = {0};
uint8_t r1[VEC_N_SIZE_BYTES] = {0};
uint32_t r2[PARAM_OMEGA_R] = {0};
uint8_t e[VEC_N_SIZE_BYTES] = {0};
uint8_t tmp1[VEC_N_SIZE_BYTES] = {0};
uint8_t tmp2[VEC_N_SIZE_BYTES] = {0};

// Create seed_expander from theta
seedexpander_init(&seedexpander, theta, theta + 32, SEEDEXPANDER_MAX_LENGTH);

// Retrieve h and s from public key
PQCLEAN_HQC1922CCA2_LEAKTIME_hqc_public_key_from_string(h, s, pk);

// Generate r1, r2 and e
PQCLEAN_HQC1922CCA2_LEAKTIME_vect_set_random_fixed_weight(&seedexpander, r1, PARAM_OMEGA_R);
PQCLEAN_HQC1922CCA2_LEAKTIME_vect_set_random_fixed_weight_by_coordinates(&seedexpander, r2, PARAM_OMEGA_R);
PQCLEAN_HQC1922CCA2_LEAKTIME_vect_set_random_fixed_weight(&seedexpander, e, PARAM_OMEGA_E);

// Compute u = r1 + r2.h
PQCLEAN_HQC1922CCA2_LEAKTIME_vect_mul(u, r2, h, PARAM_OMEGA_R);
PQCLEAN_HQC1922CCA2_LEAKTIME_vect_add(u, r1, u, VEC_N_SIZE_BYTES);

// Compute v = m.G by encoding the message
PQCLEAN_HQC1922CCA2_LEAKTIME_tensor_code_encode(v, m);
PQCLEAN_HQC1922CCA2_LEAKTIME_vect_resize(tmp1, PARAM_N, v, PARAM_N1N2);

// Compute v = m.G + s.r2 + e
PQCLEAN_HQC1922CCA2_LEAKTIME_vect_mul(tmp2, r2, s, PARAM_OMEGA_R);
PQCLEAN_HQC1922CCA2_LEAKTIME_vect_add(tmp2, e, tmp2, VEC_N_SIZE_BYTES);
PQCLEAN_HQC1922CCA2_LEAKTIME_vect_add(tmp2, tmp1, tmp2, VEC_N_SIZE_BYTES);
PQCLEAN_HQC1922CCA2_LEAKTIME_vect_resize(v, PARAM_N1N2, tmp2, PARAM_N);
}



/**
* @brief Decryption of the HQC_PKE IND_CPA scheme
*
* @param[out] m Vector representing the decrypted message
* @param[in] u Vector u (first part of the ciphertext)
* @param[in] v Vector v (second part of the ciphertext)
* @param[in] sk String containing the secret key
*/
void PQCLEAN_HQC1922CCA2_LEAKTIME_hqc_pke_decrypt(uint8_t *m, const uint8_t *u, const uint8_t *v, const uint8_t *sk) {
uint8_t x[VEC_N_SIZE_BYTES] = {0};
uint32_t y[PARAM_OMEGA] = {0};
uint8_t pk[PUBLIC_KEY_BYTES] = {0};
uint8_t tmp1[VEC_N_SIZE_BYTES] = {0};
uint8_t tmp2[VEC_N_SIZE_BYTES] = {0};

// Retrieve x, y, pk from secret key
PQCLEAN_HQC1922CCA2_LEAKTIME_hqc_secret_key_from_string(x, y, pk, sk);

// Compute v - u.y
PQCLEAN_HQC1922CCA2_LEAKTIME_vect_resize(tmp1, PARAM_N, v, PARAM_N1N2);
PQCLEAN_HQC1922CCA2_LEAKTIME_vect_mul(tmp2, y, u, PARAM_OMEGA);
PQCLEAN_HQC1922CCA2_LEAKTIME_vect_add(tmp2, tmp1, tmp2, VEC_N_SIZE_BYTES);

// Compute m by decoding v - u.y
PQCLEAN_HQC1922CCA2_LEAKTIME_tensor_code_decode(m, tmp2);
}

+ 15
- 0
crypto_kem/hqc-192-2-cca2/leaktime/hqc.h View File

@@ -0,0 +1,15 @@
#ifndef PQCLEAN_HQC1922CCA2_LEAKTIME_HQC_H
#define PQCLEAN_HQC1922CCA2_LEAKTIME_HQC_H

/**
* @file hqc.h
* @brief Functions of the HQC_PKE IND_CPA scheme
*/

#include <stdint.h>

void PQCLEAN_HQC1922CCA2_LEAKTIME_hqc_pke_keygen(uint8_t *pk, uint8_t *sk);
void PQCLEAN_HQC1922CCA2_LEAKTIME_hqc_pke_encrypt(uint8_t *u, uint8_t *v, const uint8_t *m, const uint8_t *theta, const uint8_t *pk);
void PQCLEAN_HQC1922CCA2_LEAKTIME_hqc_pke_decrypt(uint8_t *m, const uint8_t *u, const uint8_t *v, const uint8_t *sk);

#endif

+ 154
- 0
crypto_kem/hqc-192-2-cca2/leaktime/kem.c View File

@@ -0,0 +1,154 @@
/**
* @file kem.c
* @brief Implementation of api.h
*/

#include "api.h"
#include "hqc.h"
#include "nistseedexpander.h"
#include "parameters.h"
#include "parsing.h"
#include "sha2.h"
#include "vector.h"
#include <stdint.h>
#include <string.h>


/**
* @brief Keygen of the HQC_KEM IND_CAA2 scheme
*
* The public key is composed of the syndrome <b>s</b> as well as the seed used to generate the vector <b>h</b>.
*
* The secret key is composed of the seed used to generate vectors <b>x</b> and <b>y</b>.
* As a technicality, the public key is appended to the secret key in order to respect NIST API.
*
* @param[out] pk String containing the public key
* @param[out] sk String containing the secret key
* @returns 0 if keygen is successful
*/
int PQCLEAN_HQC1922CCA2_LEAKTIME_crypto_kem_keypair(uint8_t *pk, uint8_t *sk) {
PQCLEAN_HQC1922CCA2_LEAKTIME_hqc_pke_keygen(pk, sk);
return 0;
}



/**
* @brief Encapsulation of the HQC_KEM IND_CAA2 scheme
*
* @param[out] ct String containing the ciphertext
* @param[out] ss String containing the shared secret
* @param[in] pk String containing the public key
* @returns 0 if encapsulation is successful
*/
int PQCLEAN_HQC1922CCA2_LEAKTIME_crypto_kem_enc(uint8_t *ct, uint8_t *ss, const uint8_t *pk) {
AES_XOF_struct G_seedexpander;
uint8_t seed_G[VEC_K_SIZE_BYTES];
uint8_t diversifier_bytes[8] = {0};
uint8_t m[VEC_K_SIZE_BYTES] = {0};
uint8_t theta[SEED_BYTES] = {0};
uint8_t u[VEC_N_SIZE_BYTES] = {0};
uint8_t v[VEC_N1N2_SIZE_BYTES] = {0};
uint8_t d[SHA512_BYTES] = {0};
uint8_t mc[VEC_K_SIZE_BYTES + VEC_N_SIZE_BYTES + VEC_N1N2_SIZE_BYTES] = {0};

// Computing m
PQCLEAN_HQC1922CCA2_LEAKTIME_vect_set_random_from_randombytes(m);

// Generating G function
memcpy(seed_G, m, VEC_K_SIZE_BYTES);
seedexpander_init(&G_seedexpander, seed_G, diversifier_bytes, SEEDEXPANDER_MAX_LENGTH);

// Computing theta
seedexpander(&G_seedexpander, theta, SEED_BYTES);

// Encrypting m
PQCLEAN_HQC1922CCA2_LEAKTIME_hqc_pke_encrypt(u, v, m, theta, pk);

// Computing d
sha512(d, m, VEC_K_SIZE_BYTES);

// Computing shared secret
memcpy(mc, m, VEC_K_SIZE_BYTES);
memcpy(mc + VEC_K_SIZE_BYTES, u, VEC_N_SIZE_BYTES);
memcpy(mc + VEC_K_SIZE_BYTES + VEC_N_SIZE_BYTES, v, VEC_N1N2_SIZE_BYTES);
sha512(ss, mc, VEC_K_SIZE_BYTES + VEC_N_SIZE_BYTES + VEC_N1N2_SIZE_BYTES);

// Computing ciphertext
PQCLEAN_HQC1922CCA2_LEAKTIME_hqc_ciphertext_to_string(ct, u, v, d);

return 0;
}



/**
* @brief Decapsulation of the HQC_KEM IND_CAA2 scheme
*
* @param[out] ss String containing the shared secret
* @param[in] ct String containing the cipĥertext
* @param[in] sk String containing the secret key
* @returns 0 if decapsulation is successful, -1 otherwise
*/
int PQCLEAN_HQC1922CCA2_LEAKTIME_crypto_kem_dec(uint8_t *ss, const uint8_t *ct, const uint8_t *sk) {
AES_XOF_struct G_seedexpander;
uint8_t seed_G[VEC_K_SIZE_BYTES] = {0};
uint8_t diversifier_bytes[8] = {0};
uint8_t u[VEC_N_SIZE_BYTES] = {0};
uint8_t v[VEC_N1N2_SIZE_BYTES] = {0};
uint8_t d[SHA512_BYTES] = {0};
uint8_t pk[PUBLIC_KEY_BYTES] = {0};
uint8_t m[VEC_K_SIZE_BYTES] = {0};
uint8_t theta[SEED_BYTES] = {0};
uint8_t u2[VEC_N_SIZE_BYTES] = {0};
uint8_t v2[VEC_N1N2_SIZE_BYTES] = {0};
uint8_t d2[SHA512_BYTES] = {0};
uint8_t mc[VEC_K_SIZE_BYTES + VEC_N_SIZE_BYTES + VEC_N1N2_SIZE_BYTES] = {0};
int8_t abort = 0;

// Retrieving u, v and d from ciphertext
PQCLEAN_HQC1922CCA2_LEAKTIME_hqc_ciphertext_from_string(u, v, d, ct);

// Retrieving pk from sk
memcpy(pk, sk + SEED_BYTES, PUBLIC_KEY_BYTES);

// Decryting
PQCLEAN_HQC1922CCA2_LEAKTIME_hqc_pke_decrypt(m, u, v, sk);

// Generating G function
memcpy(seed_G, m, VEC_K_SIZE_BYTES);
seedexpander_init(&G_seedexpander, seed_G, diversifier_bytes, SEEDEXPANDER_MAX_LENGTH);

// Computing theta
seedexpander(&G_seedexpander, theta, SEED_BYTES);

// Encrypting m'
PQCLEAN_HQC1922CCA2_LEAKTIME_hqc_pke_encrypt(u2, v2, m, theta, pk);

// Checking that c = c' and abort otherwise
if (PQCLEAN_HQC1922CCA2_LEAKTIME_vect_compare(u, u2, VEC_N_SIZE_BYTES) != 0 ||
PQCLEAN_HQC1922CCA2_LEAKTIME_vect_compare(v, v2, VEC_N1N2_SIZE_BYTES) != 0) {
abort = 1;
}

// Computing d'
sha512(d2, m, VEC_K_SIZE_BYTES);

// Checking that d = d' and abort otherwise
if (memcmp(d, d2, SHA512_BYTES) != 0) {
abort = 1;
}

if (abort == 1) {
memset(ss, 0, SHARED_SECRET_BYTES);
return -1;
}

// Computing shared secret
memcpy(mc, m, VEC_K_SIZE_BYTES);
memcpy(mc + VEC_K_SIZE_BYTES, u, VEC_N_SIZE_BYTES);
memcpy(mc + VEC_K_SIZE_BYTES + VEC_N_SIZE_BYTES, v, VEC_N1N2_SIZE_BYTES);
sha512(ss, mc, VEC_K_SIZE_BYTES + VEC_N_SIZE_BYTES + VEC_N1N2_SIZE_BYTES);

return 0;
}

+ 109
- 0
crypto_kem/hqc-192-2-cca2/leaktime/parameters.h View File

@@ -0,0 +1,109 @@
#ifndef PQCLEAN_HQC1922CCA2_LEAKTIME_HQC_PARAMETERS_H
#define PQCLEAN_HQC1922CCA2_LEAKTIME_HQC_PARAMETERS_H

/**
* @file parameters.h
* @brief Parameters of the HQC_KEM IND-CCA2 scheme
*/

#include "api.h"

#define CEIL_DIVIDE(a, b) (((a)/(b)) + ((a) % (b) == 0 ? 0 : 1)) /*!< Divide a by b and ceil the result*/
#define BITMASK(a, size) ((1ULL << ((a) % (size))) - 1) /*!< Create a mask*/


/*
#define PARAM_N Define the parameter n of the scheme
#define PARAM_N1 Define the parameter n1 of the scheme (length of BCH code)
#define PARAM_N2 Define the parameter n2 of the scheme (length of the repetition code)
#define PARAM_N1N2 Define the parameter n1 * n2 of the scheme (length of the tensor code)
#define PARAM_OMEGA Define the parameter omega of the scheme
#define PARAM_OMEGA_E Define the parameter omega_e of the scheme
#define PARAM_OMEGA_R Define the parameter omega_r of the scheme
#define PARAM_SECURITY Define the security level corresponding to the chosen parameters
#define PARAM_DFR_EXP Define the decryption failure rate corresponding to the chosen parameters

#define SECRET_KEY_BYTES Define the size of the secret key in bytes
#define PUBLIC_KEY_BYTES Define the size of the public key in bytes
#define SHARED_SECRET_BYTES Define the size of the shared secret in bytes
#define CIPHERTEXT_BYTES Define the size of the ciphertext in bytes

#define UTILS_REJECTION_THRESHOLD Define the rejection threshold used to generate given weight vectors (see vector_set_random_fixed_weight function)
#define VEC_N_ARRAY_SIZE_BYTES Define the size of the array used to store a PARAM_N sized vector in bytes
#define VEC_N1_ARRAY_SIZE_BYTES Define the size of the array used to store a PARAM_N1 sized vector in bytes
#define VEC_N1N2_ARRAY_SIZE_BYTES Define the size of the array used to store a PARAM_N1N2 sized vector in bytes
#define VEC_K_ARRAY_SIZE_BYTES Define the size of the array used to store a PARAM_K sized vector in bytes

#define PARAM_T Define a threshold for decoding repetition code word (PARAM_T = (PARAM_N2 - 1) / 2)

#define PARAM_DELTA Define the parameter delta of the scheme (correcting capacity of the BCH code)
#define PARAM_M Define a positive integer
#define PARAM_GF_MUL_ORDER Define the size of the multiplicative group of GF(2^m), i.e 2^m -1
#define PARAM_K Define the size of the information bits of the BCH code
#define PARAM_G Define the size of the generator polynomial of BCH code
#define PARAM_FFT The additive FFT takes a 2^PARAM_FFT polynomial as input
We use the FFT to compute the roots of sigma, whose degree if PARAM_DELTA=60
The smallest power of 2 greater than 60+1 is 64=2^6
#define PARAM_FFT_T The additive FFT transpose computes a (2^PARAM_FFT_T)-sized syndrome vector
We want to compute 2*PARAM_DELTA=120 syndromes
The smallest power of 2 greater than 120 is 2^7
#define PARAM_BCH_POLY Generator polynomial of the BCH code

#define SHA512_BYTES Define the size of SHA512 output in bytes
#define SEED_BYTES Define the size of the seed in bytes
#define SEEDEXPANDER_MAX_LENGTH Define the seed expander max length
*/


#define PARAM_N 46747
#define PARAM_N1 766
#define PARAM_N2 61
#define PARAM_N1N2 46726
#define PARAM_OMEGA 101
#define PARAM_OMEGA_E 117
#define PARAM_OMEGA_R 117
#define PARAM_SECURITY 192
#define PARAM_DFR_EXP 192

#define SECRET_KEY_BYTES PQCLEAN_HQC1922CCA2_LEAKTIME_CRYPTO_SECRETKEYBYTES
#define PUBLIC_KEY_BYTES PQCLEAN_HQC1922CCA2_LEAKTIME_CRYPTO_PUBLICKEYBYTES
#define SHARED_SECRET_BYTES PQCLEAN_HQC1922CCA2_LEAKTIME_CRYPTO_BYTES
#define CIPHERTEXT_BYTES PQCLEAN_HQC1922CCA2_LEAKTIME_CRYPTO_CIPHERTEXTBYTES

#define UTILS_REJECTION_THRESHOLD 16735426
#define VEC_K_SIZE_BYTES CEIL_DIVIDE(PARAM_K, 8)
#define VEC_N_SIZE_BYTES CEIL_DIVIDE(PARAM_N, 8)
#define VEC_N1_SIZE_BYTES CEIL_DIVIDE(PARAM_N1, 8)
#define VEC_N1N2_SIZE_BYTES CEIL_DIVIDE(PARAM_N1N2, 8)

#define PARAM_T 30

#define PARAM_DELTA 57
#define PARAM_M 10
#define PARAM_GF_MUL_ORDER 1023
#define PARAM_K 256
#define PARAM_G 511
#define PARAM_FFT 6
#define PARAM_FFT_T 7
#define PARAM_BCH_POLY { \
1,1,0,0,0,0,1,0,0,1,1,0,1,1,0,1,0,1,1,0,0,1,0,0,1,1,1,1,1,1,0,0,1,1,0,1,1, \
1,1,0,1,1,1,1,0,1,0,0,0,1,0,0,1,1,1,0,1,1,0,1,0,1,1,1,0,1,0,1,0,0,1,0,0,0, \
0,1,1,1,1,0,1,1,1,1,1,0,0,0,0,1,0,0,1,0,0,1,1,1,0,0,0,1,1,0,0,1,0,1,0,0,0, \
1,0,0,0,0,1,0,0,0,1,0,1,1,0,0,0,0,1,1,0,0,1,1,0,1,0,1,0,1,0,1,1,1,1,0,1,0, \
0,1,1,0,1,0,1,1,0,0,1,1,0,1,1,1,1,1,0,1,0,1,1,1,0,1,0,0,0,1,1,0,1,1,1,1,0, \
1,1,1,1,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,1,1,1,1,0,0,1,1,0,1,0,0,0,0,1,0, \
0,1,0,0,1,0,1,0,0,1,1,0,1,0,1,1,1,1,1,0,1,1,0,1,0,1,1,1,1,1,1,0,0,0,1,0,1, \
1,1,1,1,1,0,1,0,1,0,1,1,0,0,0,1,1,0,0,1,1,0,1,1,1,1,1,1,1,0,0,0,1,1,1,1,0, \
1,0,0,0,1,0,0,1,1,0,1,1,0,0,1,0,1,1,0,1,0,1,0,1,1,0,0,0,0,0,1,1,1,1,1,1,1, \
1,1,1,0,1,1,0,1,0,1,1,1,1,1,1,1,0,1,1,0,1,1,0,0,0,1,0,0,1,1,1,1,1,0,1,0,1, \
0,0,0,0,1,0,1,1,1,1,0,1,0,0,0,0,0,1,0,0,1,0,1,1,1,1,1,0,0,0,0,0,0,1,1,1,1, \
1,0,1,0,0,1,0,0,1,1,0,1,0,0,0,0,0,0,0,0,1,1,0,0,0,1,1,1,0,0,1,1,0,0,0,1,1, \
0,1,0,0,1,0,0,0,1,0,1,0,1,0,0,0,1,1,1,1,1,0,0,0,1,0,0,1,1,0,1,1,0,0,1,0,1, \
1,0,1,1,1,0,0,0,0,1,1,0,1,1,1,0,1,0,0,0,0,1,0,0,0,1,0,0,1,1 \
};

#define SHA512_BYTES 64
#define SEED_BYTES 40
#define SEEDEXPANDER_MAX_LENGTH 4294967295

#endif

+ 126
- 0
crypto_kem/hqc-192-2-cca2/leaktime/parsing.c View File

@@ -0,0 +1,126 @@
/**
* @file parsing.c
* @brief Functions to parse secret key, public key and ciphertext of the HQC scheme
*/

#include "nistseedexpander.h"
#include "parameters.h"
#include "parsing.h"
#include "vector.h"
#include <stdint.h>
#include <string.h>


/**
* @brief Parse a secret key into a string
*
* The secret key is composed of the seed used to generate vectors <b>x</b> and <b>y</b>.
* As technicality, the public key is appended to the secret key in order to respect NIST API.
*
* @param[out] sk String containing the secret key
* @param[in] sk_seed Seed used to generate the secret key
* @param[in] pk String containing the public key
*/
void PQCLEAN_HQC1922CCA2_LEAKTIME_hqc_secret_key_to_string(uint8_t *sk, const uint8_t *sk_seed, const uint8_t *pk) {
memcpy(sk, sk_seed, SEED_BYTES);
memcpy(sk + SEED_BYTES, pk, PUBLIC_KEY_BYTES);
}



/**
* @brief Parse a secret key from a string
*
* The secret key is composed of the seed used to generate vectors <b>x</b> and <b>y</b>.
* As technicality, the public key is appended to the secret key in order to respect NIST API.
*
* @param[out] x uint8_t representation of vector x
* @param[out] y uint8_t representation of vector y
* @param[out] pk String containing the public key
* @param[in] sk String containing the secret key
*/
void PQCLEAN_HQC1922CCA2_LEAKTIME_hqc_secret_key_from_string(uint8_t *x, uint32_t *y, uint8_t *pk, const uint8_t *sk) {
AES_XOF_struct sk_seedexpander;
uint8_t sk_seed[SEED_BYTES] = {0};

memcpy(sk_seed, sk, SEED_BYTES);
seedexpander_init(&sk_seedexpander, sk_seed, sk_seed + 32, SEEDEXPANDER_MAX_LENGTH);

PQCLEAN_HQC1922CCA2_LEAKTIME_vect_set_random_fixed_weight(&sk_seedexpander, x, PARAM_OMEGA);
PQCLEAN_HQC1922CCA2_LEAKTIME_vect_set_random_fixed_weight_by_coordinates(&sk_seedexpander, y, PARAM_OMEGA);
memcpy(pk, sk + SEED_BYTES, PUBLIC_KEY_BYTES);
}



/**
* @brief Parse a public key into a string
*
* The public key is composed of the syndrome <b>s</b> as well as the seed used to generate the vector <b>h</b>
*
* @param[out] pk String containing the public key
* @param[in] pk_seed Seed used to generate the public key
* @param[in] s uint8_t representation of vector s
*/
void PQCLEAN_HQC1922CCA2_LEAKTIME_hqc_public_key_to_string(uint8_t *pk, const uint8_t *pk_seed, const uint8_t *s) {
memcpy(pk, pk_seed, SEED_BYTES);
memcpy(pk + SEED_BYTES, s, VEC_N_SIZE_BYTES);
}



/**
* @brief Parse a public key from a string
*
* The public key is composed of the syndrome <b>s</b> as well as the seed used to generate the vector <b>h</b>
*
* @param[out] h uint8_t representation of vector h
* @param[out] s uint8_t representation of vector s
* @param[in] pk String containing the public key
*/
void PQCLEAN_HQC1922CCA2_LEAKTIME_hqc_public_key_from_string(uint8_t *h, uint8_t *s, const uint8_t *pk) {
AES_XOF_struct pk_seedexpander;
uint8_t pk_seed[SEED_BYTES] = {0};

memcpy(pk_seed, pk, SEED_BYTES);
seedexpander_init(&pk_seedexpander, pk_seed, pk_seed + 32, SEEDEXPANDER_MAX_LENGTH);
PQCLEAN_HQC1922CCA2_LEAKTIME_vect_set_random(&pk_seedexpander, h);

memcpy(s, pk + SEED_BYTES, VEC_N_SIZE_BYTES);
}



/**
* @brief Parse a ciphertext into a string
*
* The ciphertext is composed of vectors <b>u</b>, <b>v</b> and hash <b>d</b>.
*
* @param[out] ct String containing the ciphertext
* @param[in] u uint8_t representation of vector u
* @param[in] v uint8_t representation of vector v
* @param[in] d String containing the hash d
*/
void PQCLEAN_HQC1922CCA2_LEAKTIME_hqc_ciphertext_to_string(uint8_t *ct, const uint8_t *u, const uint8_t *v, const uint8_t *d) {
memcpy(ct, u, VEC_N_SIZE_BYTES);
memcpy(ct + VEC_N_SIZE_BYTES, v, VEC_N1N2_SIZE_BYTES);
memcpy(ct + VEC_N_SIZE_BYTES + VEC_N1N2_SIZE_BYTES, d, SHA512_BYTES);
}



/**
* @brief Parse a ciphertext from a string
*
* The ciphertext is composed of vectors <b>u</b>, <b>v</b> and hash <b>d</b>.
*
* @param[out] u uint8_t representation of vector u
* @param[out] v uint8_t representation of vector v
* @param[out] d String containing the hash d
* @param[in] ct String containing the ciphertext
*/
void PQCLEAN_HQC1922CCA2_LEAKTIME_hqc_ciphertext_from_string(uint8_t *u, uint8_t *v, uint8_t *d, const uint8_t *ct) {
memcpy(u, ct, VEC_N_SIZE_BYTES);
memcpy(v, ct + VEC_N_SIZE_BYTES, VEC_N1N2_SIZE_BYTES);
memcpy(d, ct + VEC_N_SIZE_BYTES + VEC_N1N2_SIZE_BYTES, SHA512_BYTES);
}

+ 20
- 0
crypto_kem/hqc-192-2-cca2/leaktime/parsing.h View File

@@ -0,0 +1,20 @@
#ifndef PQCLEAN_HQC1922CCA2_LEAKTIME_PARSING_H
#define PQCLEAN_HQC1922CCA2_LEAKTIME_PARSING_H

/**
* @file parsing.h
* @brief Header file for parsing.c
*/

#include <stdint.h>

void PQCLEAN_HQC1922CCA2_LEAKTIME_hqc_secret_key_to_string(uint8_t *sk, const uint8_t *sk_seed, const uint8_t *pk);
void PQCLEAN_HQC1922CCA2_LEAKTIME_hqc_secret_key_from_string(uint8_t *x, uint32_t *y, uint8_t *pk, const uint8_t *sk);

void PQCLEAN_HQC1922CCA2_LEAKTIME_hqc_public_key_to_string(uint8_t *pk, const uint8_t *pk_seed, const uint8_t *s);
void PQCLEAN_HQC1922CCA2_LEAKTIME_hqc_public_key_from_string(uint8_t *h, uint8_t *s, const uint8_t *pk);

void PQCLEAN_HQC1922CCA2_LEAKTIME_hqc_ciphertext_to_string(uint8_t *ct, const uint8_t *u, const uint8_t *v, const uint8_t *d);
void PQCLEAN_HQC1922CCA2_LEAKTIME_hqc_ciphertext_from_string(uint8_t *u, uint8_t *v, uint8_t *d, const uint8_t *ct);

#endif

+ 100
- 0
crypto_kem/hqc-192-2-cca2/leaktime/repetition.c View File

@@ -0,0 +1,100 @@
/**
* @file repetition.c
* @brief Implementation of repetition codes
*/

#include "parameters.h"
#include "repetition.h"
#include <stddef.h>
#include <stdint.h>

static void array_to_rep_codeword(uint8_t *o, const uint8_t *v);


/**
* @brief Encoding each bit in the message m using the repetition code
*
* For reasons of clarity and comprehensibility, we do the encoding by storing the encoded bits in a String (each bit in an a uint8_t),
* then we parse the obtained string to an compact array using the function array_to_rep_codeword().
*
* @param[out] em Pointer to an array that is the code word
* @param[in] m Pointer to an array that is the message
*/
void PQCLEAN_HQC1922CCA2_LEAKTIME_repetition_code_encode(uint8_t *em, const uint8_t *m) {
uint8_t tmp[PARAM_N1N2] = {0};
uint8_t bit = 0;
uint32_t index;

for (size_t i = 0; i < (VEC_N1_SIZE_BYTES - 1); ++i) {
for (uint8_t j = 0; j < 8; ++j) {
bit = (m[i] >> j) & 0x01;
index = (8 * (uint32_t)i + j) * PARAM_N2;
for (uint8_t k = 0; k < PARAM_N2; ++k) {
tmp[index + k] = bit;
}
}
}

for (uint8_t j = 0; j < (PARAM_N1 % 8); ++j) {
bit = (m[VEC_N1_SIZE_BYTES - 1] >> j) & 0x01;
index = (8 * (VEC_N1_SIZE_BYTES - 1) + j) * PARAM_N2;
for (uint8_t k = 0; k < PARAM_N2; ++k) {
tmp[index + k] = bit;
}
}

array_to_rep_codeword(em, tmp);
}



/**
* @brief Decoding the code words to a message using the repetition code
*
* We use a majority decoding. In fact we have that PARAM_N2 = 2 * PARAM_T + 1, thus,
* if the Hamming weight of the vector is greater than PARAM_T, the code word is decoded
* to 1 and 0 otherwise.
*
* @param[out] m Pointer to an array that is the message
* @param[in] em Pointer to an array that is the code word
*/
void PQCLEAN_HQC1922CCA2_LEAKTIME_repetition_code_decode(uint8_t *m, const uint8_t *em) {
size_t t = 0; // m index
uint8_t k = PARAM_N2; // block counter
uint8_t ones = 0; // number of 1 in the current block

for (size_t i = 0; i < VEC_N1N2_SIZE_BYTES; ++i) {
for (uint8_t j = 0; j < 8; ++j) {
ones += (em[i] >> j) & 0x01;

if (--k) {
continue;
}

m[t / 8] |= (ones > PARAM_T) << t % 8;
++t;
k = PARAM_N2;
ones = 0;
}
}
}



/**
* @brief Parse an array to an compact array
*
* @param[out] o Pointer to an array
* @param[in] v Pointer to an array
*/
static void array_to_rep_codeword(uint8_t *o, const uint8_t *v) {
for (size_t i = 0; i < (VEC_N1N2_SIZE_BYTES - 1); ++i) {
for (uint8_t j = 0; j < 8; ++j) {
o[i] |= v[j + 8 * i] << j;
}
}

for (uint8_t j = 0; j < PARAM_N1N2 % 8; ++j) {
o[VEC_N1N2_SIZE_BYTES - 1] |= (v[j + 8 * (VEC_N1N2_SIZE_BYTES - 1)]) << j;
}
}

+ 14
- 0
crypto_kem/hqc-192-2-cca2/leaktime/repetition.h View File

@@ -0,0 +1,14 @@
#ifndef PQCLEAN_HQC1922CCA2_LEAKTIME_REPETITION_H
#define PQCLEAN_HQC1922CCA2_LEAKTIME_REPETITION_H

/**
* @file repetition.h
* @brief Header file for repetition.c
*/

#include <stdint.h>

void PQCLEAN_HQC1922CCA2_LEAKTIME_repetition_code_encode(uint8_t *em, const uint8_t *m);
void PQCLEAN_HQC1922CCA2_LEAKTIME_repetition_code_decode(uint8_t *m, const uint8_t *em);

#endif

+ 42
- 0
crypto_kem/hqc-192-2-cca2/leaktime/tensor.c View File

@@ -0,0 +1,42 @@
/**
* @file tensor.c
* @brief Implementation of tensor code
*/

#include "bch.h"
#include "parameters.h"
#include "repetition.h"
#include "tensor.h"
#include <stdint.h>


/**
* @brief Encoding the message m to a code word em using the tensor code
*
* First we encode the message using the BCH code, then with the repetition code to obtain
* a tensor code word.
*
* @param[out] em Pointer to an array that is the tensor code word
* @param[in] m Pointer to an array that is the message
*/
void PQCLEAN_HQC1922CCA2_LEAKTIME_tensor_code_encode(uint8_t *em, const uint8_t *m) {
uint8_t tmp[VEC_N1_SIZE_BYTES] = {0};

PQCLEAN_HQC1922CCA2_LEAKTIME_bch_code_encode(tmp, m);
PQCLEAN_HQC1922CCA2_LEAKTIME_repetition_code_encode(em, tmp);
}



/**
* @brief Decoding the code word em to a message m using the tensor code
*
* @param[out] m Pointer to an array that is the message
* @param[in] em Pointer to an array that is the code word
*/
void PQCLEAN_HQC1922CCA2_LEAKTIME_tensor_code_decode(uint8_t *m, const uint8_t *em) {
uint8_t tmp[VEC_N1_SIZE_BYTES] = {0};

PQCLEAN_HQC1922CCA2_LEAKTIME_repetition_code_decode(tmp, em);
PQCLEAN_HQC1922CCA2_LEAKTIME_bch_code_decode(m, tmp);
}

+ 14
- 0
crypto_kem/hqc-192-2-cca2/leaktime/tensor.h View File

@@ -0,0 +1,14 @@
#ifndef PQCLEAN_HQC1922CCA2_LEAKTIME_TENSOR_H
#define PQCLEAN_HQC1922CCA2_LEAKTIME_TENSOR_H

/**
* @file tensor.h
* @brief Header file for tensor.c
*/

#include <stdint.h>

void PQCLEAN_HQC1922CCA2_LEAKTIME_tensor_code_encode(uint8_t *em, const uint8_t *m);
void PQCLEAN_HQC1922CCA2_LEAKTIME_tensor_code_decode(uint8_t *m, const uint8_t *em);

#endif

+ 69
- 0
crypto_kem/hqc-192-2-cca2/leaktime/util.c View File

@@ -0,0 +1,69 @@
#include "util.h"
#include "stddef.h"

#include "assert.h"

/* These functions should help with endianness-safe conversions
*
* load8 and store8 are copied from the McEliece implementations,
* which are in the public domain.
*/


void PQCLEAN_HQC1922CCA2_LEAKTIME_store8(unsigned char *out, uint64_t in) {
out[0] = (in >> 0x00) & 0xFF;
out[1] = (in >> 0x08) & 0xFF;
out[2] = (in >> 0x10) & 0xFF;
out[3] = (in >> 0x18) & 0xFF;
out[4] = (in >> 0x20) & 0xFF;
out[5] = (in >> 0x28) & 0xFF;
out[6] = (in >> 0x30) & 0xFF;
out[7] = (in >> 0x38) & 0xFF;
}


uint64_t PQCLEAN_HQC1922CCA2_LEAKTIME_load8(const unsigned char *in) {
uint64_t ret = in[7];

for (int8_t i = 6; i >= 0; i--) {
ret <<= 8;
ret |= in[i];
}

return ret;
}

void PQCLEAN_HQC1922CCA2_LEAKTIME_load8_arr(uint64_t *out64, size_t outlen, const uint8_t *in8, size_t inlen) {
size_t index_in = 0;
size_t index_out = 0;

// first copy by 8 bytes
if (inlen >= 8 && outlen >= 1) {
while (index_out < outlen && index_in + 8 <= inlen) {
out64[index_out] = PQCLEAN_HQC1922CCA2_LEAKTIME_load8(in8 + index_in);

index_in += 8;
index_out += 1;
}
}

// we now need to do the last 7 bytes if necessary
if (index_in >= inlen || index_out >= outlen) {
return;
}
out64[index_out] = in8[inlen - 1];
for (int8_t i = (int8_t)(inlen - index_in) - 2; i >= 0; i--) {
out64[index_out] <<= 8;
out64[index_out] |= in8[index_in + i];
}
}

void PQCLEAN_HQC1922CCA2_LEAKTIME_store8_arr(uint8_t *out8, size_t outlen, const uint64_t *in64, size_t inlen) {
for (size_t index_out = 0, index_in = 0; index_out < outlen && index_in < inlen;) {
out8[index_out] = (in64[index_in] >> ((index_out % 8) * 8)) & 0xFF;
index_out++;
if (index_out % 8 == 0) {
index_in++;
}
}
}

+ 9
- 0
crypto_kem/hqc-192-2-cca2/leaktime/util.h View File

@@ -0,0 +1,9 @@
/* These functions should help with endianness-safe conversions */

#include <stddef.h>
#include <stdint.h>

void PQCLEAN_HQC1922CCA2_LEAKTIME_store8(unsigned char *out, uint64_t in);
uint64_t PQCLEAN_HQC1922CCA2_LEAKTIME_load8(const unsigned char *in);
void PQCLEAN_HQC1922CCA2_LEAKTIME_load8_arr(uint64_t *out64, size_t outlen, const uint8_t *in8, size_t inlen);
void PQCLEAN_HQC1922CCA2_LEAKTIME_store8_arr(uint8_t *out8, size_t outlen, const uint64_t *in64, size_t inlen);

+ 224
- 0
crypto_kem/hqc-192-2-cca2/leaktime/vector.c View File

@@ -0,0 +1,224 @@
/**
* @file vector.c
* @brief Implementation of vectors sampling and some utilities for the HQC scheme
*/

#include "nistseedexpander.h"
#include "parameters.h"
#include "randombytes.h"
#include "vector.h"
#include <stdint.h>
#include <string.h>


/**
* @brief Generates a vector of a given Hamming weight
*
* This function generates uniformly at random a binary vector of a Hamming weight equal to the parameter <b>weight</b>. The vector
* is stored by position.
* To generate the vector we have to sample uniformly at random values in the interval [0, PARAM_N -1]. Suppose the PARAM_N is equal to \f$ 70853 \f$, to select a position \f$ r\f$ the function works as follow:
* 1. It makes a call to the seedexpander function to obtain a random number \f$ x\f$ in \f$ [0, 2^{24}[ \f$.
* 2. Let \f$ t = \lfloor {2^{24} \over 70853} \rfloor \times 70853\f$
* 3. If \f$ x \geq t\f$, go to 1
* 4. It return \f$ r = x \mod 70853\f$
*
* The parameter \f$ t \f$ is precomputed and it's denoted by UTILS_REJECTION_THRESHOLD (see the file parameters.h).
*
* @param[in] v Pointer to an array
* @param[in] weight Integer that is the Hamming weight
* @param[in] ctx Pointer to the context of the seed expander
*/
void PQCLEAN_HQC1922CCA2_LEAKTIME_vect_set_random_fixed_weight_by_coordinates(AES_XOF_struct *ctx, uint32_t *v, uint16_t weight) {
size_t random_bytes_size = 3 * weight;
uint8_t rand_bytes[3 * PARAM_OMEGA_R] = {0}; // weight is expected to be <= PARAM_OMEGA_R
uint32_t random_data = 0;
uint8_t exist = 0;
size_t j = 0;

seedexpander(ctx, rand_bytes, random_bytes_size);

for (uint32_t i = 0; i < weight; ++i) {
exist = 0;
do {
if (j == random_bytes_size) {
seedexpander(ctx, rand_bytes, random_bytes_size);
j = 0;
}

random_data = ((uint32_t) rand_bytes[j++]) << 16;
random_data |= ((uint32_t) rand_bytes[j++]) << 8;
random_data |= rand_bytes[j++];

} while (random_data >= UTILS_REJECTION_THRESHOLD);

random_data = random_data % PARAM_N;

for (uint32_t k = 0; k < i; k++) {
if (v[k] == random_data) {
exist = 1;
}
}

if (exist == 1) {
i--;
} else {
v[i] = random_data;
}
}
}



/**
* @brief Generates a vector of a given Hamming weight
*
* This function generates uniformly at random a binary vector of a Hamming weight equal to the parameter <b>weight</b>.
* To generate the vector we have to sample uniformly at random values in the interval [0, PARAM_N -1]. Suppose the PARAM_N is equal to \f$ 70853 \f$, to select a position \f$ r\f$ the function works as follow:
* 1. It makes a call to the seedexpander function to obtain a random number \f$ x\f$ in \f$ [0, 2^{24}[ \f$.
* 2. Let \f$ t = \lfloor {2^{24} \over 70853} \rfloor \times 70853\f$
* 3. If \f$ x \geq t\f$, go to 1
* 4. It return \f$ r = x \mod 70853\f$
*
* The parameter \f$ t \f$ is precomputed and it's denoted by UTILS_REJECTION_THRESHOLD (see the file parameters.h).
*
* @param[in] v Pointer to an array
* @param[in] weight Integer that is the Hamming weight
* @param[in] ctx Pointer to the context of the seed expander
*/
void PQCLEAN_HQC1922CCA2_LEAKTIME_vect_set_random_fixed_weight(AES_XOF_struct *ctx, uint8_t *v, uint16_t weight) {

size_t random_bytes_size = 3 * weight;
uint8_t rand_bytes[3 * PARAM_OMEGA_R] = {0}; // weight is expected to be <= PARAM_OMEGA_R
uint32_t random_data = 0;
uint32_t tmp[PARAM_OMEGA_R] = {0};
uint8_t exist = 0;
size_t j = 0;

seedexpander(ctx, rand_bytes, random_bytes_size);

for (uint32_t i = 0; i < weight; ++i) {
exist = 0;
do {
if (j == random_bytes_size) {
seedexpander(ctx, rand_bytes, random_bytes_size);
j = 0;
}

random_data = ((uint32_t) rand_bytes[j++]) << 16;
random_data |= ((uint32_t) rand_bytes[j++]) << 8;
random_data |= rand_bytes[j++];

} while (random_data >= UTILS_REJECTION_THRESHOLD);

random_data = random_data % PARAM_N;

for (uint32_t k = 0; k < i; k++) {
if (tmp[k] == random_data) {
exist = 1;
}
}

if (exist == 1) {
i--;
} else {
tmp[i] = random_data;
}
}

for (uint16_t i = 0; i < weight; ++i) {
int32_t index = tmp[i] / 8;
int32_t pos = tmp[i] % 8;
v[index] |= 1 << pos;
}
}



/**
* @brief Generates a random vector of dimension <b>PARAM_N</b>
*
* This function generates a random binary vector of dimension <b>PARAM_N</b>. It generates a random
* array of bytes using the seedexpander function, and drop the extra bits using a mask.
*
* @param[in] v Pointer to an array
* @param[in] ctx Pointer to the context of the seed expander
*/
void PQCLEAN_HQC1922CCA2_LEAKTIME_vect_set_random(AES_XOF_struct *ctx, uint8_t *v) {
uint8_t rand_bytes[VEC_N_SIZE_BYTES] = {0};

seedexpander(ctx, rand_bytes, VEC_N_SIZE_BYTES);

memcpy(v, rand_bytes, VEC_N_SIZE_BYTES);
v[VEC_N_SIZE_BYTES - 1] &= BITMASK(PARAM_N, 8);
}



/**
* @brief Generates a random vector
*
* This function generates a random binary vector. It uses the the randombytes function.
*
* @param[in] v Pointer to an array
*/
void PQCLEAN_HQC1922CCA2_LEAKTIME_vect_set_random_from_randombytes(uint8_t *v) {
uint8_t rand_bytes [VEC_K_SIZE_BYTES] = {0};

randombytes(rand_bytes, VEC_K_SIZE_BYTES);
memcpy(v, rand_bytes, VEC_K_SIZE_BYTES);
}



/**
* @brief Adds two vectors
*
* @param[out] o Pointer to an array that is the result
* @param[in] v1 Pointer to an array that is the first vector
* @param[in] v2 Pointer to an array that is the second vector
* @param[in] size Integer that is the size of the vectors
*/
void PQCLEAN_HQC1922CCA2_LEAKTIME_vect_add(uint8_t *o, const uint8_t *v1, const uint8_t *v2, uint32_t size) {
for (uint32_t i = 0; i < size; ++i) {
o[i] = v1[i] ^ v2[i];
}
}



/**
* @brief Compares two vectors
*
* @param[in] v1 Pointer to an array that is first vector
* @param[in] v2 Pointer to an array that is second vector
* @param[in] size Integer that is the size of the vectors
* @returns 0 if the vectors are equals and a negative/psotive value otherwise
*/
int PQCLEAN_HQC1922CCA2_LEAKTIME_vect_compare(const uint8_t *v1, const uint8_t *v2, uint32_t size) {
return memcmp(v1, v2, size);
}



/**
* @brief Resize a vector so that it contains <b>size_o</b> bits
*
* @param[out] o Pointer to the output vector
* @param[in] size_o Integer that is the size of the output vector in bits
* @param[in] v Pointer to the input vector
* @param[in] size_v Integer that is the size of the input vector in bits
*/
void PQCLEAN_HQC1922CCA2_LEAKTIME_vect_resize(uint8_t *o, uint32_t size_o, const uint8_t *v, uint32_t size_v) {
if (size_o < size_v) {
uint8_t mask = 0x7F;
int8_t val = 8 - (size_o % 8);

memcpy(o, v, VEC_N1N2_SIZE_BYTES);

for (int8_t i = 0; i < val; ++i) {
o[VEC_N1N2_SIZE_BYTES - 1] &= (mask >> i);
}
} else {
memcpy(o, v, CEIL_DIVIDE(size_v, 8));
}
}

+ 22
- 0
crypto_kem/hqc-192-2-cca2/leaktime/vector.h View File

@@ -0,0 +1,22 @@
#ifndef PQCLEAN_HQC1922CCA2_LEAKTIME_VECTOR_H
#define PQCLEAN_HQC1922CCA2_LEAKTIME_VECTOR_H

/**
* @file vector.h
* @brief Header file for vector.c
*/

#include "nistseedexpander.h"
#include <stdint.h>

void PQCLEAN_HQC1922CCA2_LEAKTIME_vect_set_random_fixed_weight_by_coordinates(AES_XOF_struct *ctx, uint32_t *v, uint16_t weight);
void PQCLEAN_HQC1922CCA2_LEAKTIME_vect_set_random_fixed_weight(AES_XOF_struct *ctx, uint8_t *v, uint16_t weight);
void PQCLEAN_HQC1922CCA2_LEAKTIME_vect_set_random(AES_XOF_struct *ctx, uint8_t *v);
void PQCLEAN_HQC1922CCA2_LEAKTIME_vect_set_random_from_randombytes(uint8_t *v);

void PQCLEAN_HQC1922CCA2_LEAKTIME_vect_add(uint8_t *o, const uint8_t *v1, const uint8_t *v2, uint32_t size);
int PQCLEAN_HQC1922CCA2_LEAKTIME_vect_compare(const uint8_t *v1, const uint8_t *v2, uint32_t size);

void PQCLEAN_HQC1922CCA2_LEAKTIME_vect_resize(uint8_t *o, uint32_t size_o, const uint8_t *v, uint32_t size_v);

#endif

+ 23
- 0
crypto_kem/hqc-256-1-cca2/META.yml View File

@@ -0,0 +1,23 @@
name: HQC_256_1_CCA2
type: kem
claimed-nist-level: 5
claimed-security: IND-CCA2
length-public-key: 7989
length-ciphertext: 15961
length-secret-key: 8029
length-shared-secret: 64
nistkat-sha256: 339bd96be8b2d6bfb12315550b16827c612b41ab7aa4585ded55d2bf87410968
principal-submitters:
- Carlos Aguilar Melchor
- Nicolas Aragon
- Slim Bettaieb
- Loïc Bidoux
- Olivier Blazy
- Jean-Christophe Deneuville
- Philippe Gaborit
- Edoardo Persichetti
- Gilles Zémor
auxiliary-submitters: []
implementations:
- name: leaktime
version: https://pqc-hqc.org/doc/hqc-reference-implementation_2019-08-24.zip

+ 1
- 0
crypto_kem/hqc-256-1-cca2/leaktime/LICENSE View File

@@ -0,0 +1 @@
Public domain

+ 19
- 0
crypto_kem/hqc-256-1-cca2/leaktime/Makefile View File

@@ -0,0 +1,19 @@
# This Makefile can be used with GNU Make or BSD Make

LIB=libhqc-256-1-cca2_leaktime.a
HEADERS=api.h bch.h fft.h gf.h gf2x.h hqc.h parameters.h parsing.h repetition.h tensor.h vector.h util.h
OBJECTS=bch.o fft.o gf.o gf2x.o hqc.o kem.o parsing.o repetition.o tensor.o vector.o util.o

CFLAGS=-O3 -Wall -Wextra -Wpedantic -Wvla -Werror -Wmissing-prototypes -Wredundant-decls -std=c99 -I../../../common $(EXTRAFLAGS)

all: $(LIB)

%.o: %.c $(HEADERS)
$(CC) $(CFLAGS) -c -o $@ $<

$(LIB): $(OBJECTS)
$(AR) -r $@ $(OBJECTS)

clean:
$(RM) $(OBJECTS)
$(RM) $(LIB)

+ 23
- 0
crypto_kem/hqc-256-1-cca2/leaktime/Makefile.Microsoft_nmake View File

@@ -0,0 +1,23 @@
# This Makefile can be used with Microsoft Visual Studio's nmake using the command:
# nmake /f Makefile.Microsoft_nmake

LIBRARY=libhqc-256-1-cca2_leaktime.lib
OBJECTS=bch.obj fft.obj gf.obj gf2x.obj hqc.obj kem.obj parsing.obj repetition.obj tensor.obj vector.obj util.obj

# We ignore warning C4127: we sometimes use a conditional that depending
# on the parameters results in a case where if (const) is the case.
# The compiler should just optimise this away, but on MSVC we get
# a compiler complaint.
CFLAGS=/nologo /O2 /I ..\..\..\common /W4 /WX /wd4127

all: $(LIBRARY)

# Make sure objects are recompiled if headers change.
$(OBJECTS): *.h

$(LIBRARY): $(OBJECTS)
LIB.EXE /NOLOGO /WX /OUT:$@ $**

clean:
-DEL $(OBJECTS)
-DEL $(LIBRARY)

+ 25
- 0
crypto_kem/hqc-256-1-cca2/leaktime/api.h View File

@@ -0,0 +1,25 @@
#ifndef PQCLEAN_HQC2561CCA2_LEAKTIME_API_H
#define PQCLEAN_HQC2561CCA2_LEAKTIME_API_H

/**
* \file api.h
* \brief NIST KEM API used by the HQC_KEM IND-CCA2 scheme
*/

#include <stdint.h>

#define PQCLEAN_HQC2561CCA2_LEAKTIME_CRYPTO_ALGNAME "HQC_256_1_CCA2"

#define PQCLEAN_HQC2561CCA2_LEAKTIME_CRYPTO_SECRETKEYBYTES 8029
#define PQCLEAN_HQC2561CCA2_LEAKTIME_CRYPTO_PUBLICKEYBYTES 7989
#define PQCLEAN_HQC2561CCA2_LEAKTIME_CRYPTO_BYTES 64
#define PQCLEAN_HQC2561CCA2_LEAKTIME_CRYPTO_CIPHERTEXTBYTES 15961

// As a technicality, the public key is appended to the secret key in order to respect the NIST API.
// Without this constraint, CRYPTO_SECRETKEYBYTES would be defined as 32

int PQCLEAN_HQC2561CCA2_LEAKTIME_crypto_kem_keypair(uint8_t *pk, uint8_t *sk);
int PQCLEAN_HQC2561CCA2_LEAKTIME_crypto_kem_enc(uint8_t *ct, uint8_t *ss, const uint8_t *pk);
int PQCLEAN_HQC2561CCA2_LEAKTIME_crypto_kem_dec(uint8_t *ss, const uint8_t *ct, const uint8_t *sk);

#endif

+ 295
- 0
crypto_kem/hqc-256-1-cca2/leaktime/bch.c View File

@@ -0,0 +1,295 @@
/**
* @file bch.c
* Constant time implementation of BCH codes
*/

#include "bch.h"
#include "fft.h"
#include "gf.h"
#include "parameters.h"
#include "vector.h"
#include <stdint.h>
#include <string.h>

static void unpack_message(uint8_t *message_unpacked, const uint8_t *message);
static void lfsr_encode(uint8_t *codeword, const uint8_t *message);
static void pack_codeword(uint8_t *codeword, const uint8_t *codeword_unpacked);
static size_t compute_elp(uint16_t *sigma, const uint16_t *syndromes);
static void message_from_codeword(uint8_t *message, const uint8_t *codeword);
static void compute_syndromes(uint16_t *syndromes, const uint8_t *vector);
static void compute_roots(uint8_t *error, const uint16_t *sigma);


/**
* @brief Unpacks the message message to the array message_unpacked where each byte stores a bit of the message
*
* @param[out] message_unpacked Array of VEC_K_SIZE_BYTES bytes receiving the unpacked message
* @param[in] message Array of PARAM_K bytes storing the packed message
*/
static void unpack_message(uint8_t *message_unpacked, const uint8_t *message) {
for (size_t i = 0; i < (VEC_K_SIZE_BYTES - (PARAM_K % 8 != 0)); ++i) {
for (size_t j = 0; j < 8; ++j) {
message_unpacked[j + 8 * i] = (message[i] >> j) & 0x01;
}
}

for (int8_t j = 0; j < PARAM_K % 8; ++j) {
message_unpacked[j + 8 * (VEC_K_SIZE_BYTES - 1)] = (message[VEC_K_SIZE_BYTES - 1] >> j) & 0x01;
}
}



/**
* @brief Encodes the message message to a codeword codeword using the generator polynomial bch_poly of the code
*
* @param[out] codeword Array of PARAM_N1 bytes receiving the codeword
* @param[in] message Array of PARAM_K bytes storing the message to encode
*/
static void lfsr_encode(uint8_t *codeword, const uint8_t *message) {
uint8_t gate_value = 0;
uint8_t bch_poly[PARAM_G] = PARAM_BCH_POLY;

// Compute the Parity-check digits
for (int16_t i = PARAM_K - 1; i >= 0; --i) {
gate_value = message[i] ^ codeword[PARAM_N1 - PARAM_K - 1];

for (size_t j = PARAM_N1 - PARAM_K - 1; j; --j) {
codeword[j] = codeword[j - 1] ^ (-gate_value & bch_poly[j]);
}

codeword[0] = gate_value;
}

// Add the message
memcpy(codeword + PARAM_N1 - PARAM_K, message, PARAM_K);
}



/**
* @brief Packs the codeword from an array codeword_unpacked where each byte stores a bit to a compact array codeword
*
* @param[out] codeword Array of VEC_N1_SIZE_BYTES bytes receiving the packed codeword
* @param[in] codeword_unpacked Array of PARAM_N1 bytes storing the unpacked codeword
*/
static void pack_codeword(uint8_t *codeword, const uint8_t *codeword_unpacked) {
for (size_t i = 0; i < (VEC_N1_SIZE_BYTES - (PARAM_N1 % 8 != 0)); ++i) {
for (size_t j = 0; j < 8; ++j) {
codeword[i] |= codeword_unpacked[j + 8 * i] << j;
}
}

for (size_t j = 0; j < PARAM_N1 % 8; ++j) {
codeword[VEC_N1_SIZE_BYTES - 1] |= codeword_unpacked[j + 8 * (VEC_N1_SIZE_BYTES - 1)] << j;
}
}



/**
* @brief Encodes a message message of PARAM_K bits to a BCH codeword codeword of PARAM_N1 bits
*
* Following @cite lin1983error (Chapter 4 - Cyclic Codes),
* We perform a systematic encoding using a linear (PARAM_N1 - PARAM_K)-stage shift register
* with feedback connections based on the generator polynomial bch_poly of the BCH code.
*
* @param[out] codeword Array of size VEC_N1_SIZE_BYTES receiving the encoded message
* @param[in] message Array of size VEC_K_SIZE_BYTES storing the message
*/
void PQCLEAN_HQC2561CCA2_LEAKTIME_bch_code_encode(uint8_t *codeword, const uint8_t *message) {
uint8_t message_unpacked[PARAM_K];
uint8_t codeword_unpacked[PARAM_N1] = {0};

unpack_message(message_unpacked, message);
lfsr_encode(codeword_unpacked, message_unpacked);
pack_codeword(codeword, codeword_unpacked);
}



/**
* @brief Computes the error locator polynomial (ELP) sigma
*
* This is a constant time implementation of Berlekamp's simplified algorithm (see @cite joiner1995decoding). <br>
* We use the letter p for rho which is initialized at -1/2. <br>
* The array X_sigma_p represents the polynomial X^(2(mu-rho))*sigma_p(X). <br>
* Instead of maintaining a list of sigmas, we update in place both sigma and X_sigma_p. <br>
* sigma_copy serves as a temporary save of sigma in case X_sigma_p needs to be updated. <br>
* We can properly correct only if the degree of sigma does not exceed PARAM_DELTA.
* This means only the first PARAM_DELTA + 1 coefficients of sigma are of value
* and we only need to save its first PARAM_DELTA - 1 coefficients.
*
* @returns the degree of the ELP sigma
* @param[out] sigma Array of size (at least) PARAM_DELTA receiving the ELP
* @param[in] syndromes Array of size (at least) 2*PARAM_DELTA storing the syndromes
*/
static size_t compute_elp(uint16_t *sigma, const uint16_t *syndromes) {
sigma[0] = 1;
size_t deg_sigma = 0;
size_t deg_sigma_p = 0;
uint16_t sigma_copy[PARAM_DELTA - 1] = {0};
size_t deg_sigma_copy = 0;
uint16_t X_sigma_p[PARAM_DELTA + 1] = {0, 1};
int32_t pp = -1; // 2*rho
uint16_t d_p = 1;
uint16_t d = syndromes[0];

for (size_t mu = 0; mu < PARAM_DELTA; ++mu) {
// Save sigma in case we need it to update X_sigma_p
memcpy(sigma_copy, sigma, 2 * (PARAM_DELTA - 1));
deg_sigma_copy = deg_sigma;

uint16_t dd = PQCLEAN_HQC2561CCA2_LEAKTIME_gf_mul(d, PQCLEAN_HQC2561CCA2_LEAKTIME_gf_inverse(d_p)); // 0 if(d == 0)
for (size_t i = 1; (i <= 2 * mu + 1) && (i <= PARAM_DELTA); ++i) {
sigma[i] ^= PQCLEAN_HQC2561CCA2_LEAKTIME_gf_mul(dd, X_sigma_p[i]);
}

size_t deg_X = 2 * mu - pp; // 2*(mu-rho)
size_t deg_X_sigma_p = deg_X + deg_sigma_p;

// mask1 = 0xffff if(d != 0) and 0 otherwise
int16_t mask1 = -((uint16_t) - d >> 15);

// mask2 = 0xffff if(deg_X_sigma_p > deg_sigma) and 0 otherwise
int16_t mask2 = -((uint16_t) (deg_sigma - deg_X_sigma_p) >> 15);

// mask12 = 0xffff if the deg_sigma increased and 0 otherwise
int16_t mask12 = mask1 & mask2;
deg_sigma = (mask12 & deg_X_sigma_p) ^ (~mask12 & deg_sigma);

if (mu == PARAM_DELTA - 1) {
break;
}

// Update pp, d_p and X_sigma_p if needed
pp = (mask12 & (2 * mu)) ^ (~mask12 & pp);
d_p = (mask12 & d) ^ (~mask12 & d_p);
for (size_t i = PARAM_DELTA - 1; i; --i) {
X_sigma_p[i + 1] = (mask12 & sigma_copy[i - 1]) ^ (~mask12 & X_sigma_p[i - 1]);
}
X_sigma_p[1] = 0;
X_sigma_p[0] = 0;
deg_sigma_p = (mask12 & deg_sigma_copy) ^ (~mask12 & deg_sigma_p);

// Compute the next discrepancy
d = syndromes[2 * mu + 2];
for (size_t i = 1; (i <= 2 * mu + 1) && (i <= PARAM_DELTA); ++i) {
d ^= PQCLEAN_HQC2561CCA2_LEAKTIME_gf_mul(sigma[i], syndromes[2 * mu + 2 - i]);
}
}

return deg_sigma;
}



/**
* @brief Retrieves the message message from the codeword codeword
*
* Since we performed a systematic encoding, the message is the last PARAM_K bits of the codeword.
*
* @param[out] message Array of size VEC_K_SIZE_BYTES receiving the message
* @param[in] codeword Array of size VEC_N1_SIZE_BYTES storing the codeword
*/
static void message_from_codeword(uint8_t *message, const uint8_t *codeword) {
int32_t val = PARAM_N1 - PARAM_K;

uint8_t mask1 = 0xff << val % 8;
uint8_t mask2 = 0xff >> (8 - val % 8);
size_t index = val / 8;

for (size_t i = 0; i < VEC_K_SIZE_BYTES - 1; ++i) {
uint8_t message1 = (codeword[index] & mask1) >> val % 8;
uint8_t message2 = (codeword[++index] & mask2) << (8 - val % 8);
message[i] = message1 | message2;
}

// Last byte (8-val % 8 is the number of bits given by message1)
if ((PARAM_K % 8 == 0) || (8 - val % 8 < PARAM_K % 8)) {
uint8_t message1 = (codeword[index] & mask1) >> val % 8;
uint8_t message2 = (codeword[++index] & mask2) << (8 - val % 8);
message[VEC_K_SIZE_BYTES - 1] = message1 | message2;
} else {
uint8_t message1 = (codeword[index] & mask1) >> val % 8;
message[VEC_K_SIZE_BYTES - 1] = message1;
}
}



/**
* @brief Computes the 2^PARAM_DELTA syndromes from the received vector vector
*
* Syndromes are the sum of powers of alpha weighted by vector's coefficients.
* To do so, we use the additive FFT transpose, which takes as input a family w of GF(2^PARAM_M) elements
* and outputs the weighted power sums of these w. <br>
* Therefore, this requires twisting and applying a permutation before feeding vector to the fft transpose. <br>
* For more details see Berstein, Chou and Schawbe's explanations:
* https://binary.cr.yp.to/mcbits-20130616.pdf
*
* @param[out] syndromes Array of size 2^(PARAM_FFT_T) receiving the 2*PARAM_DELTA syndromes
* @param[in] vector Array of size VEC_N1_SIZE_BYTES storing the received word
*/
static void compute_syndromes(uint16_t *syndromes, const uint8_t *vector) {
uint16_t w[1 << PARAM_M];

PQCLEAN_HQC2561CCA2_LEAKTIME_fft_t_preprocess_bch_codeword(w, vector);
PQCLEAN_HQC2561CCA2_LEAKTIME_fft_t(syndromes, w, 2 * PARAM_DELTA);
}



/**
* @brief Computes the error polynomial error from the error locator polynomial sigma
*
* See function fft for more details.
*
* @param[out] err Array of VEC_N1_SIZE_BYTES elements receiving the error polynomial
* @param[in] sigma Array of 2^PARAM_FFT elements storing the error locator polynomial
*/
static void compute_roots(uint8_t *error, const uint16_t *sigma) {
uint16_t w[1 << PARAM_M] = {0}; // w will receive the evaluation of sigma in all field elements

PQCLEAN_HQC2561CCA2_LEAKTIME_fft(w, sigma, PARAM_DELTA + 1);
PQCLEAN_HQC2561CCA2_LEAKTIME_fft_retrieve_bch_error_poly(error, w);
}



/**
* @brief Decodes the received word
*
* This function relies on four steps:
* <ol>
* <li> The first step, done by additive FFT transpose, is the computation of the 2*PARAM_DELTA syndromes.
* <li> The second step is the computation of the error-locator polynomial sigma.
* <li> The third step, done by additive FFT, is finding the error-locator numbers by calculating the roots of the polynomial sigma and takings their inverses.
* <li> The fourth step is the correction of the errors in the received polynomial.
* </ol>
* For a more complete picture on BCH decoding, see Shu. Lin and Daniel J. Costello in Error Control Coding: Fundamentals and Applications @cite lin1983error
*
* @param[out] message Array of size VEC_K_SIZE_BYTES receiving the decoded message
* @param[in] vector Array of size VEC_N1_SIZE_BYTES storing the received word
*/
void PQCLEAN_HQC2561CCA2_LEAKTIME_bch_code_decode(uint8_t *message, uint8_t *vector) {
uint16_t syndromes[1 << PARAM_FFT_T];
uint16_t sigma[1 << PARAM_FFT] = {0};
uint8_t error[(1 << PARAM_M) / 8] = {0};

// Calculate the 2*PARAM_DELTA syndromes
compute_syndromes(syndromes, vector);

// Compute the error locator polynomial sigma
// Sigma's degree is at most PARAM_DELTA but the FFT requires the extra room
compute_elp(sigma, syndromes);

// Compute the error polynomial error
compute_roots(error, sigma);

// Add the error polynomial to the received polynomial
PQCLEAN_HQC2561CCA2_LEAKTIME_vect_add(vector, vector, error, VEC_N1_SIZE_BYTES);

// Retrieve the message from the decoded codeword
message_from_codeword(message, vector);
}

+ 16
- 0
crypto_kem/hqc-256-1-cca2/leaktime/bch.h View File

@@ -0,0 +1,16 @@
#ifndef PQCLEAN_HQC2561CCA2_LEAKTIME_BCH_H
#define PQCLEAN_HQC2561CCA2_LEAKTIME_BCH_H

/**
* @file bch.h
* Header file of bch.c
*/

#include "parameters.h"
#include <stddef.h>
#include <stdint.h>

void PQCLEAN_HQC2561CCA2_LEAKTIME_bch_code_encode(uint8_t *codeword, const uint8_t *message);
void PQCLEAN_HQC2561CCA2_LEAKTIME_bch_code_decode(uint8_t *message, uint8_t *vector);

#endif

+ 628
- 0
crypto_kem/hqc-256-1-cca2/leaktime/fft.c View File

@@ -0,0 +1,628 @@
/**
* @file fft.c
* Implementation of the additive FFT and its transpose.
* This implementation is based on the paper from Gao and Mateer: <br>
* Shuhong Gao and Todd Mateer, Additive Fast Fourier Transforms over Finite Fields,
* IEEE Transactions on Information Theory 56 (2010), 6265--6272.
* http://www.math.clemson.edu/~sgao/papers/GM10.pdf <br>
* and includes improvements proposed by Bernstein, Chou and Schwabe here:
* https://binary.cr.yp.to/mcbits-20130616.pdf
*/

#include "fft.h"
#include "gf.h"
#include "parameters.h"
#include <stdint.h>
#include <string.h>

static void compute_fft_betas(uint16_t *betas);
static void compute_subset_sums(uint16_t *subset_sums, const uint16_t *set, size_t set_size);
static void radix_t(uint16_t *f, const uint16_t *f0, const uint16_t *f1, uint32_t m_f);
static void fft_t_rec(uint16_t *f, const uint16_t *w, size_t f_coeffs, uint8_t m, uint32_t m_f, const uint16_t *betas);
static void radix(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f);
static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32_t m_f, const uint16_t *betas);


/**
* @brief Computes the basis of betas (omitting 1) used in the additive FFT and its transpose
*
* @param[out] betas Array of size PARAM_M-1
*/
static void compute_fft_betas(uint16_t *betas) {
for (size_t i = 0; i < PARAM_M - 1; ++i) {
betas[i] = 1 << (PARAM_M - 1 - i);
}
}



/**
* @brief Computes the subset sums of the given set
*
* The array subset_sums is such that its ith element is
* the subset sum of the set elements given by the binary form of i.
*
* @param[out] subset_sums Array of size 2^set_size receiving the subset sums
* @param[in] set Array of set_size elements
* @param[in] set_size Size of the array set
*/
static void compute_subset_sums(uint16_t *subset_sums, const uint16_t *set, size_t set_size) {
subset_sums[0] = 0;

for (size_t i = 0; i < set_size; ++i) {
for (size_t j = 0; j < (((size_t)1) << i); ++j) {
subset_sums[(((size_t)1) << i) + j] = set[i] ^ subset_sums[j];
}
}
}



/**
* @brief Transpose of the linear radix conversion
*
* This is a direct transposition of the radix function
* implemented following the process of transposing a linear function as exposed by Bernstein, Chou and Schwabe here:
* https://binary.cr.yp.to/mcbits-20130616.pdf
*
* @param[out] f Array of size a power of 2
* @param[in] f0 Array half the size of f
* @param[in] f1 Array half the size of f
* @param[in] m_f 2^{m_f} is the smallest power of 2 greater or equal to the number of coefficients of f
*/
static void radix_t(uint16_t *f, const uint16_t *f0, const uint16_t *f1, uint32_t m_f) {
switch (m_f) {
case 4:
f[0] = f0[0];
f[1] = f1[0];
f[2] = f0[1] ^ f1[0];
f[3] = f[2] ^ f1[1];
f[4] = f[2] ^ f0[2];
f[5] = f[3] ^ f1[2];
f[6] = f[4] ^ f0[3] ^ f1[2];
f[7] = f[3] ^ f0[3] ^ f1[3];
f[8] = f[4] ^ f0[4];
f[9] = f[5] ^ f1[4];
f[10] = f[6] ^ f0[5] ^ f1[4];
f[11] = f[7] ^ f0[5] ^ f1[4] ^ f1[5];
f[12] = f[8] ^ f0[5] ^ f0[6] ^ f1[4];
f[13] = f[7] ^ f[9] ^ f[11] ^ f1[6];
f[14] = f[6] ^ f0[6] ^ f0[7] ^ f1[6];
f[15] = f[7] ^ f0[7] ^ f1[7];
return;

case 3:
f[0] = f0[0];
f[1] = f1[0];
f[2] = f0[1] ^ f1[0];
f[3] = f[2] ^ f1[1];
f[4] = f[2] ^ f0[2];
f[5] = f[3] ^ f1[2];
f[6] = f[4] ^ f0[3] ^ f1[2];
f[7] = f[3] ^ f0[3] ^ f1[3];
return;

case 2:
f[0] = f0[0];
f[1] = f1[0];
f[2] = f0[1] ^ f1[0];
f[3] = f[2] ^ f1[1];
return;

case 1:
f[0] = f0[0];
f[1] = f1[0];
return;

default:
;

size_t n = ((size_t)1) << (m_f - 2);

uint16_t Q0[1 << (PARAM_FFT_T - 2)] = {0};
uint16_t Q1[1 << (PARAM_FFT_T - 2)] = {0};
uint16_t R0[1 << (PARAM_FFT_T - 2)] = {0};
uint16_t R1[1 << (PARAM_FFT_T - 2)] = {0};

uint16_t Q[1 << 2 * (PARAM_FFT_T - 2)] = {0};
uint16_t R[1 << 2 * (PARAM_FFT_T - 2)] = {0};

memcpy(Q0, f0 + n, 2 * n);
memcpy(Q1, f1 + n, 2 * n);
memcpy(R0, f0, 2 * n);
memcpy(R1, f1, 2 * n);

radix_t (Q, Q0, Q1, m_f - 1);
radix_t (R, R0, R1, m_f - 1);

memcpy(f, R, 4 * n);
memcpy(f + 2 * n, R + n, 2 * n);
memcpy(f + 3 * n, Q + n, 2 * n);

for (size_t i = 0; i < n; ++i) {
f[2 * n + i] ^= Q[i];
f[3 * n + i] ^= f[2 * n + i];
}
}
}



/**
* @brief Recursively computes syndromes of family w
*
* This function is a subroutine of the function fft_t
*
* @param[out] f Array receiving the syndromes
* @param[in] w Array storing the family
* @param[in] f_coeffs Length of syndromes vector
* @param[in] m 2^m is the smallest power of 2 greater or equal to the length of family w
* @param[in] m_f 2^{m_f} is the smallest power of 2 greater or equal to the length of f
* @param[in] betas FFT constants
*/
static void fft_t_rec(uint16_t *f, const uint16_t *w, size_t f_coeffs,
uint8_t m, uint32_t m_f, const uint16_t *betas) {
size_t k = ((size_t)1) << (m - 1);
uint16_t gammas[PARAM_M - 2] = {0};
uint16_t deltas[PARAM_M - 2] = {0};
uint16_t gammas_sums[1 << (PARAM_M - 1)];
uint16_t u[1 << (PARAM_M - 2)] = {0};
uint16_t f0[1 << (PARAM_FFT_T - 2)] = {0};
uint16_t f1[1 << (PARAM_FFT_T - 2)] = {0};
uint16_t betas_sums[1 << (PARAM_M - 1)] = {0};

// Step 1
if (m_f == 1) {
for (size_t i = 0; i < (((size_t)1) << m); ++i) {
f[0] ^= w[i];
}

for (size_t j = 0; j < m; ++j) {
for (size_t ki = 0; ki < (((size_t)1) << j); ++ki) {
size_t index = (((size_t)1) << j) + ki;
betas_sums[index] = betas_sums[ki] ^ betas[j];
f[1] ^= PQCLEAN_HQC2561CCA2_LEAKTIME_gf_mul(betas_sums[index], w[index]);
}
}

return;
}

// Compute gammas and deltas
for (uint8_t i = 0; i < m - 1; ++i) {
gammas[i] = PQCLEAN_HQC2561CCA2_LEAKTIME_gf_mul(betas[i], PQCLEAN_HQC2561CCA2_LEAKTIME_gf_inverse(betas[m - 1]));
deltas[i] = PQCLEAN_HQC2561CCA2_LEAKTIME_gf_square(gammas[i]) ^ gammas[i];
}

// Compute gammas subset sums
compute_subset_sums(gammas_sums, gammas, m - 1);

/* Step 6: Compute u and v from w (aka w)
* w[i] = u[i] + G[i].v[i]
* w[k+i] = w[i] + v[i] = u[i] + (G[i]+1).v[i]
* Transpose:
* u[i] = w[i] + w[k+i]
* v[i] = G[i].w[i] + (G[i]+1).w[k+i] = G[i].u[i] + w[k+i] */
if (f_coeffs <= 3) { // 3-coefficient polynomial f case
// Step 5: Compute f0 from u and f1 from v
f1[1] = 0;
u[0] = w[0] ^ w[k];
f1[0] = w[k];
for (size_t i = 1; i < k; ++i) {
u[i] = w[i] ^ w[k + i];
f1[0] ^= PQCLEAN_HQC2561CCA2_LEAKTIME_gf_mul(gammas_sums[i], u[i]) ^ w[k + i];
}
fft_t_rec(f0, u, (f_coeffs + 1) / 2, m - 1, m_f - 1, deltas);
} else {
uint16_t v[1 << (PARAM_M - 2)] = {0};

u[0] = w[0] ^ w[k];
v[0] = w[k];

for (size_t i = 1; i < k; ++i) {
u[i] = w[i] ^ w[k + i];
v[i] = PQCLEAN_HQC2561CCA2_LEAKTIME_gf_mul(gammas_sums[i], u[i]) ^ w[k + i];
}

// Step 5: Compute f0 from u and f1 from v
fft_t_rec(f0, u, (f_coeffs + 1) / 2, m - 1, m_f - 1, deltas);
fft_t_rec(f1, v, f_coeffs / 2, m - 1, m_f - 1, deltas);
}

// Step 3: Compute g from g0 and g1
radix_t(f, f0, f1, m_f);

// Step 2: compute f from g
if (betas[m - 1] != 1) {
uint16_t beta_m_pow = 1;
for (size_t i = 1; i < (((size_t)1) << m_f); ++i) {
beta_m_pow = PQCLEAN_HQC2561CCA2_LEAKTIME_gf_mul(beta_m_pow, betas[m - 1]);
f[i] = PQCLEAN_HQC2561CCA2_LEAKTIME_gf_mul(beta_m_pow, f[i]);
}
}
}



/**
* @brief Computes the syndromes f of the family w
*
* Since the syndromes linear map is the transpose of multipoint evaluation,
* it uses exactly the same constants, either hardcoded or precomputed by compute_fft_lut(...). <br>
* This follows directives from Bernstein, Chou and Schwabe given here:
* https://binary.cr.yp.to/mcbits-20130616.pdf
*
* @param[out] f Array of size 2*(PARAM_FFT_T) elements receiving the syndromes
* @param[in] w Array of PARAM_GF_MUL_ORDER+1 elements
* @param[in] f_coeffs Length of syndromes vector f
*/
void PQCLEAN_HQC2561CCA2_LEAKTIME_fft_t(uint16_t *f, const uint16_t *w, size_t f_coeffs) {
// Transposed from Gao and Mateer algorithm
uint16_t betas[PARAM_M - 1];
uint16_t betas_sums[1 << (PARAM_M - 1)];
size_t k = 1 << (PARAM_M - 1);
uint16_t u[1 << (PARAM_M - 1)] = {0};
uint16_t v[1 << (PARAM_M - 1)] = {0};
uint16_t deltas[PARAM_M - 1];
uint16_t f0[1 << (PARAM_FFT_T - 1)];
uint16_t f1[1 << (PARAM_FFT_T - 1)];

compute_fft_betas(betas);
compute_subset_sums(betas_sums, betas, PARAM_M - 1);

/* Step 6: Compute u and v from w (aka w)
*
* We had:
* w[i] = u[i] + G[i].v[i]
* w[k+i] = w[i] + v[i] = u[i] + (G[i]+1).v[i]
* Transpose:
* u[i] = w[i] + w[k+i]
* v[i] = G[i].w[i] + (G[i]+1).w[k+i] = G[i].u[i] + w[k+i] */
u[0] = w[0] ^ w[k];
v[0] = w[k];
for (size_t i = 1; i < k; ++i) {
u[i] = w[i] ^ w[k + i];
v[i] = PQCLEAN_HQC2561CCA2_LEAKTIME_gf_mul(betas_sums[i], u[i]) ^ w[k + i];
}

// Compute deltas
for (size_t i = 0; i < PARAM_M - 1; ++i) {
deltas[i] = PQCLEAN_HQC2561CCA2_LEAKTIME_gf_square(betas[i]) ^ betas[i];
}

// Step 5: Compute f0 from u and f1 from v
fft_t_rec(f0, u, (f_coeffs + 1) / 2, PARAM_M - 1, PARAM_FFT_T - 1, deltas);
fft_t_rec(f1, v, f_coeffs / 2, PARAM_M - 1, PARAM_FFT_T - 1, deltas);

// Step 3: Compute g from g0 and g1
radix_t(f, f0, f1, PARAM_FFT_T);

// Step 2: beta_m = 1 so f = g
}



/**
* @brief Computes the radix conversion of a polynomial f in GF(2^m)[x]
*
* Computes f0 and f1 such that f(x) = f0(x^2-x) + x.f1(x^2-x)
* as proposed by Bernstein, Chou and Schwabe:
* https://binary.cr.yp.to/mcbits-20130616.pdf
*
* @param[out] f0 Array half the size of f
* @param[out] f1 Array half the size of f
* @param[in] f Array of size a power of 2
* @param[in] m_f 2^{m_f} is the smallest power of 2 greater or equal to the number of coefficients of f
*/
static void radix(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f) {
switch (m_f) {
case 4:
f0[4] = f[8] ^ f[12];
f0[6] = f[12] ^ f[14];
f0[7] = f[14] ^ f[15];
f1[5] = f[11] ^ f[13];
f1[6] = f[13] ^ f[14];
f1[7] = f[15];
f0[5] = f[10] ^ f[12] ^ f1[5];
f1[4] = f[9] ^ f[13] ^ f0[5];

f0[0] = f[0];
f1[3] = f[7] ^ f[11] ^ f[15];
f0[3] = f[6] ^ f[10] ^ f[14] ^ f1[3];
f0[2] = f[4] ^ f0[4] ^ f0[3] ^ f1[3];
f1[1] = f[3] ^ f[5] ^ f[9] ^ f[13] ^ f1[3];
f1[2] = f[3] ^ f1[1] ^ f0[3];
f0[1] = f[2] ^ f0[2] ^ f1[1];
f1[0] = f[1] ^ f0[1];
return;

case 3:
f0[0] = f[0];
f0[2] = f[4] ^ f[6];
f0[3] = f[6] ^ f[7];
f1[1] = f[3] ^ f[5] ^ f[7];
f1[2] = f[5] ^ f[6];
f1[3] = f[7];
f0[1] = f[2] ^ f0[2] ^ f1[1];
f1[0] = f[1] ^ f0[1];
return;

case 2:
f0[0] = f[0];
f0[1] = f[2] ^ f[3];
f1[0] = f[1] ^ f0[1];
f1[1] = f[3];
return;

case 1:
f0[0] = f[0];
f1[0] = f[1];
return;

default:
;
size_t n = ((size_t)1) << (m_f - 2);

uint16_t Q[2 * (1 << (PARAM_FFT - 2))];
uint16_t R[2 * (1 << (PARAM_FFT - 2))];

uint16_t Q0[1 << (PARAM_FFT - 2)];
uint16_t Q1[1 << (PARAM_FFT - 2)];
uint16_t R0[1 << (PARAM_FFT - 2)];
uint16_t R1[1 << (PARAM_FFT - 2)];

memcpy(Q, f + 3 * n, 2 * n);
memcpy(Q + n, f + 3 * n, 2 * n);
memcpy(R, f, 4 * n);

for (size_t i = 0; i < n; ++i) {
Q[i] ^= f[2 * n + i];
R[n + i] ^= Q[i];
}

radix(Q0, Q1, Q, m_f - 1);
radix(R0, R1, R, m_f - 1);

memcpy(f0, R0, 2 * n);
memcpy(f0 + n, Q0, 2 * n);
memcpy(f1, R1, 2 * n);
memcpy(f1 + n, Q1, 2 * n);
}
}



/**
* @brief Evaluates f at all subset sums of a given set
*
* This function is a subroutine of the function fft.
*
* @param[out] w Array
* @param[in] f Array
* @param[in] f_coeffs Number of coefficients of f
* @param[in] m Number of betas
* @param[in] m_f Number of coefficients of f (one more than its degree)
* @param[in] betas FFT constants
*/
static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs,
uint8_t m, uint32_t m_f, const uint16_t *betas) {

uint16_t f0[1 << (PARAM_FFT - 2)] = {0};
uint16_t f1[1 << (PARAM_FFT - 2)] = {0};
uint16_t gammas[PARAM_M - 2] = {0};
uint16_t deltas[PARAM_M - 2] = {0};
size_t k = ((size_t)1) << (m - 1);
uint16_t gammas_sums[1 << (PARAM_M - 2)] = {0};
uint16_t u[1 << (PARAM_M - 2)] = {0};
uint16_t v[1 << (PARAM_M - 2)] = {0};

// Step 1
if (m_f == 1) {
uint16_t tmp[PARAM_M - (PARAM_FFT - 1)];
for (size_t i = 0; i < m; ++i) {
tmp[i] = PQCLEAN_HQC2561CCA2_LEAKTIME_gf_mul(betas[i], f[1]);
}

w[0] = f[0];
for (size_t j = 0; j < m; ++j) {
for (size_t ki = 0; ki < (((size_t)1) << j); ++ki) {
w[(((size_t)1) << j) + ki] = w[ki] ^ tmp[j];
}
}

return;
}

// Step 2: compute g
if (betas[m - 1] != 1) {
uint16_t beta_m_pow = 1;
for (size_t i = 1; i < (((size_t)1) << m_f); ++i) {
beta_m_pow = PQCLEAN_HQC2561CCA2_LEAKTIME_gf_mul(beta_m_pow, betas[m - 1]);
f[i] = PQCLEAN_HQC2561CCA2_LEAKTIME_gf_mul(beta_m_pow, f[i]);
}
}

// Step 3
radix(f0, f1, f, m_f);

// Step 4: compute gammas and deltas
for (uint8_t i = 0; i < m - 1; ++i) {
gammas[i] = PQCLEAN_HQC2561CCA2_LEAKTIME_gf_mul(betas[i], PQCLEAN_HQC2561CCA2_LEAKTIME_gf_inverse(betas[m - 1]));
deltas[i] = PQCLEAN_HQC2561CCA2_LEAKTIME_gf_square(gammas[i]) ^ gammas[i];
}

// Compute gammas sums
compute_subset_sums(gammas_sums, gammas, m - 1);

// Step 5
fft_rec(u, f0, (f_coeffs + 1) / 2, m - 1, m_f - 1, deltas);

if (f_coeffs <= 3) { // 3-coefficient polynomial f case: f1 is constant
w[0] = u[0];
w[k] = u[0] ^ f1[0];
for (size_t i = 1; i < k; ++i) {
w[i] = u[i] ^ PQCLEAN_HQC2561CCA2_LEAKTIME_gf_mul(gammas_sums[i], f1[0]);
w[k + i] = w[i] ^ f1[0];
}
} else {
fft_rec(v, f1, f_coeffs / 2, m - 1, m_f - 1, deltas);

// Step 6
memcpy(w + k, v, 2 * k);
w[0] = u[0];
w[k] ^= u[0];
for (size_t i = 1; i < k; ++i) {
w[i] = u[i] ^ PQCLEAN_HQC2561CCA2_LEAKTIME_gf_mul(gammas_sums[i], v[i]);
w[k + i] ^= w[i];
}
}
}



/**
* @brief Evaluates f on all fields elements using an additive FFT algorithm
*
* f_coeffs is the number of coefficients of f (one less than its degree). <br>
* The FFT proceeds recursively to evaluate f at all subset sums of a basis B. <br>
* This implementation is based on the paper from Gao and Mateer: <br>
* Shuhong Gao and Todd Mateer, Additive Fast Fourier Transforms over Finite Fields,
* IEEE Transactions on Information Theory 56 (2010), 6265--6272.
* http://www.math.clemson.edu/~sgao/papers/GM10.pdf <br>
* and includes improvements proposed by Bernstein, Chou and Schwabe here:
* https://binary.cr.yp.to/mcbits-20130616.pdf <br>
* Constants betas, gammas and deltas involved in the algorithm are either hardcoded or precomputed
* by the subroutine compute_fft_lut(...). <br>
* Note that on this first call (as opposed to the recursive calls to fft_rec), gammas are equal to betas,
* meaning the first gammas subset sums are actually the subset sums of betas (except 1). <br>
* Also note that f is altered during computation (twisted at each level).
*
* @param[out] w Array
* @param[in] f Array of 2^PARAM_FFT elements
* @param[in] f_coeffs Number coefficients of f (i.e. deg(f)+1)
*/
void PQCLEAN_HQC2561CCA2_LEAKTIME_fft(uint16_t *w, const uint16_t *f, size_t f_coeffs) {
uint16_t betas[PARAM_M - 1] = {0};
uint16_t betas_sums[1 << (PARAM_M - 1)] = {0};
uint16_t f0[1 << (PARAM_FFT - 1)] = {0};
uint16_t f1[1 << (PARAM_FFT - 1)] = {0};
uint16_t deltas[PARAM_M - 1];
size_t k = 1 << (PARAM_M - 1);
uint16_t u[1 << (PARAM_M - 1)] = {0};
uint16_t v[1 << (PARAM_M - 1)] = {0};

// Follows Gao and Mateer algorithm
compute_fft_betas(betas);

// Step 1: PARAM_FFT > 1, nothing to do

// Compute gammas sums
compute_subset_sums(betas_sums, betas, PARAM_M - 1);

// Step 2: beta_m = 1, nothing to do

// Step 3
radix(f0, f1, f, PARAM_FFT);

// Step 4: Compute deltas
for (size_t i = 0; i < PARAM_M - 1; ++i) {
deltas[i] = PQCLEAN_HQC2561CCA2_LEAKTIME_gf_square(betas[i]) ^ betas[i];
}

// Step 5
fft_rec(u, f0, (f_coeffs + 1) / 2, PARAM_M - 1, PARAM_FFT - 1, deltas);
fft_rec(v, f1, f_coeffs / 2, PARAM_M - 1, PARAM_FFT - 1, deltas);

// Step 6, 7 and error polynomial computation
memcpy(w + k, v, 2 * k);

// Check if 0 is root
w[0] = u[0];

// Check if 1 is root
w[k] ^= u[0];

// Find other roots
for (size_t i = 1; i < k; ++i) {
w[i] = u[i] ^ PQCLEAN_HQC2561CCA2_LEAKTIME_gf_mul(betas_sums[i], v[i]);
w[k + i] ^= w[i];
}
}



/**
* @brief Arranges the received word vector in a form w such that applying the additive FFT transpose to w yields the BCH syndromes of the received word vector.
*
* Since the received word vector gives coefficients of the primitive element alpha, we twist accordingly. <br>
* Furthermore, the additive FFT transpose needs elements indexed by their decomposition on the chosen basis,
* so we apply the adequate permutation.
*
* @param[out] w Array of size 2^PARAM_M
* @param[in] vector Array of size VEC_N1_SIZE_BYTES
*/
void PQCLEAN_HQC2561CCA2_LEAKTIME_fft_t_preprocess_bch_codeword(uint16_t *w, const uint8_t *vector) {
uint16_t r[1 << PARAM_M];
uint16_t gammas[PARAM_M - 1];
uint16_t gammas_sums[1 << (PARAM_M - 1)];
size_t k = 1 << (PARAM_M - 1);

// Unpack the received word vector into array r
size_t i;
for (i = 0; i < VEC_N1_SIZE_BYTES - (PARAM_N1 % 8 != 0); ++i) {
for (size_t j = 0; j < 8; ++j) {
r[8 * i + j] = (vector[i] >> j) & 1;
}
}

// Last byte
for (size_t j = 0; j < PARAM_N1 % 8; ++j) {
r[8 * i + j] = (vector[i] >> j) & 1;
}

// Complete r with zeros
memset(r + PARAM_N1, 0, 2 * ((1 << PARAM_M) - PARAM_N1));

compute_fft_betas(gammas);
compute_subset_sums(gammas_sums, gammas, PARAM_M - 1);

// Twist and permute r adequately to obtain w
w[0] = 0;
w[k] = -r[0] & 1;
for (i = 1; i < k; ++i) {
w[i] = -r[PQCLEAN_HQC2561CCA2_LEAKTIME_gf_log(gammas_sums[i])] & gammas_sums[i];
w[k + i] = -r[PQCLEAN_HQC2561CCA2_LEAKTIME_gf_log(gammas_sums[i] ^ 1)] & (gammas_sums[i] ^ 1);
}
}



/**
* @brief Retrieves the error polynomial error from the evaluations w of the ELP (Error Locator Polynomial) on all field elements.
*
* @param[out] error Array of size VEC_N1_SIZE_BYTES
* @param[in] w Array of size 2^PARAM_M
*/
void PQCLEAN_HQC2561CCA2_LEAKTIME_fft_retrieve_bch_error_poly(uint8_t *error, const uint16_t *w) {
uint16_t gammas[PARAM_M - 1];
uint16_t gammas_sums[1 << (PARAM_M - 1)];
size_t k = 1 << (PARAM_M - 1);
size_t index = PARAM_GF_MUL_ORDER;

compute_fft_betas(gammas);
compute_subset_sums(gammas_sums, gammas, PARAM_M - 1);

error[0] ^= 1 ^ ((uint16_t) - w[0] >> 15);
uint8_t bit = 1 ^ ((uint16_t) - w[k] >> 15);
error[index / 8] ^= bit << (index % 8);

for (size_t i = 1; i < k; ++i) {
index = PARAM_GF_MUL_ORDER - PQCLEAN_HQC2561CCA2_LEAKTIME_gf_log(gammas_sums[i]);
bit = 1 ^ ((uint16_t) - w[i] >> 15);
error[index / 8] ^= bit << (index % 8);

index = PARAM_GF_MUL_ORDER - PQCLEAN_HQC2561CCA2_LEAKTIME_gf_log(gammas_sums[i] ^ 1);
bit = 1 ^ ((uint16_t) - w[k + i] >> 15);
error[index / 8] ^= bit << (index % 8);
}
}

+ 18
- 0
crypto_kem/hqc-256-1-cca2/leaktime/fft.h View File

@@ -0,0 +1,18 @@
#ifndef PQCLEAN_HQC2561CCA2_LEAKTIME_FFT_H
#define PQCLEAN_HQC2561CCA2_LEAKTIME_FFT_H

/**
* @file fft.h
* Header file of fft.c
*/

#include <stddef.h>
#include <stdint.h>

void PQCLEAN_HQC2561CCA2_LEAKTIME_fft_t(uint16_t *f, const uint16_t *w, size_t f_coeffs);
void PQCLEAN_HQC2561CCA2_LEAKTIME_fft_t_preprocess_bch_codeword(uint16_t *w, const uint8_t *vector);

void PQCLEAN_HQC2561CCA2_LEAKTIME_fft(uint16_t *w, const uint16_t *f, size_t f_coeffs);
void PQCLEAN_HQC2561CCA2_LEAKTIME_fft_retrieve_bch_error_poly(uint8_t *error, const uint16_t *w);

#endif

+ 99
- 0
crypto_kem/hqc-256-1-cca2/leaktime/gf.c
File diff suppressed because it is too large
View File


+ 18
- 0
crypto_kem/hqc-256-1-cca2/leaktime/gf.h View File

@@ -0,0 +1,18 @@
#ifndef PQCLEAN_HQC2561CCA2_LEAKTIME_GF_H
#define PQCLEAN_HQC2561CCA2_LEAKTIME_GF_H

/**
* @file gf.h
* Header file of gf.c
*/

#include <stddef.h>
#include <stdint.h>

uint16_t PQCLEAN_HQC2561CCA2_LEAKTIME_gf_log(uint16_t elt);
uint16_t PQCLEAN_HQC2561CCA2_LEAKTIME_gf_mul(uint16_t a, uint16_t b);
uint16_t PQCLEAN_HQC2561CCA2_LEAKTIME_gf_square(uint16_t a);
uint16_t PQCLEAN_HQC2561CCA2_LEAKTIME_gf_inverse(uint16_t a);
uint16_t PQCLEAN_HQC2561CCA2_LEAKTIME_gf_mod(uint16_t i);

#endif

+ 123
- 0
crypto_kem/hqc-256-1-cca2/leaktime/gf2x.c View File

@@ -0,0 +1,123 @@
/**
* \file gf2x.c
* \brief Implementation of multiplication of two polynomials
*/

#include "gf2x.h"
#include "parameters.h"
#include "util.h"

#include <stdint.h>
#include <string.h>

#define WORD_TYPE uint64_t
#define WORD_TYPE_BITS (sizeof(WORD_TYPE) * 8)
#define UTILS_VECTOR_ARRAY_SIZE CEIL_DIVIDE(PARAM_N, WORD_TYPE_BITS)

static int vect_mul_precompute_rows(WORD_TYPE *o, const WORD_TYPE *v);


/**
* @brief A subroutine used in the function sparse_dense_mul()
*
* @param[out] o Pointer to an array
* @param[in] v Pointer to an array
* @return 0 if precomputation is successful, -1 otherwise
*/
static int vect_mul_precompute_rows(WORD_TYPE *o, const WORD_TYPE *v) {
int8_t var;
for (size_t i = 0; i < PARAM_N; ++i) {
var = 0;

// All the bits that we need are in the same block
if (((i % WORD_TYPE_BITS) == 0) && (i != PARAM_N - (PARAM_N % WORD_TYPE_BITS))) {
var = 1;
}

// Cases where the bits are in before the last block, the last block and the first block
if (i > PARAM_N - WORD_TYPE_BITS) {
if (i >= PARAM_N - (PARAM_N % WORD_TYPE_BITS)) {
var = 2;
} else {
var = 3;
}
}

switch (var) {
case 0:
// Take bits in the last block and the first one
o[i] = 0;
o[i] += v[i / WORD_TYPE_BITS] >> (i % WORD_TYPE_BITS);
o[i] += v[(i / WORD_TYPE_BITS) + 1] << (WORD_TYPE_BITS - (i % WORD_TYPE_BITS));
break;

case 1:
o[i] = v[i / WORD_TYPE_BITS];
break;

case 2:
o[i] = 0;
o[i] += v[i / WORD_TYPE_BITS] >> (i % WORD_TYPE_BITS);
o[i] += v[0] << ((PARAM_N - i) % WORD_TYPE_BITS);
break;

case 3:
o[i] = 0;
o[i] += v[i / WORD_TYPE_BITS] >> (i % WORD_TYPE_BITS);
o[i] += v[(i / WORD_TYPE_BITS) + 1] << (WORD_TYPE_BITS - (i % WORD_TYPE_BITS));
o[i] += v[0] << ((WORD_TYPE_BITS - i + (PARAM_N % WORD_TYPE_BITS)) % WORD_TYPE_BITS);
break;

default:
return -1;
}
}

return 0;
}



/**
* @brief Multiplies two vectors
*
* This function multiplies two vectors: a sparse vector of Hamming weight equal to <b>weight</b> and a dense (random) vector.
* The vector <b>a1</b> is the sparse vector and <b>a2</b> is the dense vector.
* We notice that the idea is explained using vector of 32 bits elements instead of 64 (the algorithm works in booth cases).
*
* @param[out] o Pointer to a vector that is the result of the multiplication
* @param[in] a1 Pointer to the sparse vector stored by position
* @param[in] a2 Pointer to the dense vector
* @param[in] weight Integer that is the weight of the sparse vector
*/
void PQCLEAN_HQC2561CCA2_LEAKTIME_vect_mul(uint8_t *o, const uint32_t *a1, const uint8_t *a2, uint16_t weight) {
WORD_TYPE v1[UTILS_VECTOR_ARRAY_SIZE] = {0};
WORD_TYPE res[UTILS_VECTOR_ARRAY_SIZE] = {0};
WORD_TYPE precomputation_array [PARAM_N] = {0};
WORD_TYPE row [UTILS_VECTOR_ARRAY_SIZE] = {0};
uint32_t index;

PQCLEAN_HQC2561CCA2_LEAKTIME_load8_arr(v1, UTILS_VECTOR_ARRAY_SIZE, a2, VEC_N_SIZE_BYTES);
vect_mul_precompute_rows(precomputation_array, v1);

for (size_t i = 0; i < weight; ++i) {
int32_t k = UTILS_VECTOR_ARRAY_SIZE;

for (size_t j = 0; j < UTILS_VECTOR_ARRAY_SIZE - 1; ++j) {
index = WORD_TYPE_BITS * (uint32_t)j - a1[i];
if (index > PARAM_N) {
index += PARAM_N;
}
row[j] = precomputation_array[index];
}

index = WORD_TYPE_BITS * (UTILS_VECTOR_ARRAY_SIZE - 1) - a1[i];
row[UTILS_VECTOR_ARRAY_SIZE - 1] = precomputation_array[(index < PARAM_N ? index : index + PARAM_N)] & BITMASK(PARAM_N, WORD_TYPE_BITS);

while (k--) {
res[k] ^= row[k];
}
}

PQCLEAN_HQC2561CCA2_LEAKTIME_store8_arr(o, VEC_N_SIZE_BYTES, res, UTILS_VECTOR_ARRAY_SIZE);
}

+ 13
- 0
crypto_kem/hqc-256-1-cca2/leaktime/gf2x.h View File

@@ -0,0 +1,13 @@
#ifndef PQCLEAN_HQC2561CCA2_LEAKTIME_GF2X_H
#define PQCLEAN_HQC2561CCA2_LEAKTIME_GF2X_H

/**
* @file gf2x.h
* @brief Header file for gf2x.c
*/

#include <stdint.h>

void PQCLEAN_HQC2561CCA2_LEAKTIME_vect_mul(uint8_t *o, const uint32_t *a1, const uint8_t *a2, uint16_t weight);

#endif

+ 135
- 0
crypto_kem/hqc-256-1-cca2/leaktime/hqc.c View File

@@ -0,0 +1,135 @@
/**
* @file hqc.c
* @brief Implementation of hqc.h
*/

#include "gf2x.h"
#include "hqc.h"
#include "nistseedexpander.h"
#include "parameters.h"
#include "parsing.h"
#include "randombytes.h"
#include "tensor.h"
#include "vector.h"
#include <stdint.h>


/**
* @brief Keygen of the HQC_PKE IND_CPA scheme
*
* The public key is composed of the syndrome <b>s</b> as well as the <b>seed</b> used to generate the vector <b>h</b>.
*
* The secret key is composed of the <b>seed</b> used to generate vectors <b>x</b> and <b>y</b>.
* As a technicality, the public key is appended to the secret key in order to respect NIST API.
*
* @param[out] pk String containing the public key
* @param[out] sk String containing the secret key
*/
void PQCLEAN_HQC2561CCA2_LEAKTIME_hqc_pke_keygen(uint8_t *pk, uint8_t *sk) {
AES_XOF_struct sk_seedexpander;
AES_XOF_struct pk_seedexpander;
uint8_t sk_seed[SEED_BYTES] = {0};
uint8_t pk_seed[SEED_BYTES] = {0};
uint8_t x[VEC_N_SIZE_BYTES] = {0};
uint32_t y[PARAM_OMEGA] = {0};
uint8_t h[VEC_N_SIZE_BYTES] = {0};
uint8_t s[VEC_N_SIZE_BYTES] = {0};

// Create seed_expanders for public key and secret key
randombytes(sk_seed, SEED_BYTES);
seedexpander_init(&sk_seedexpander, sk_seed, sk_seed + 32, SEEDEXPANDER_MAX_LENGTH);

randombytes(pk_seed, SEED_BYTES);
seedexpander_init(&pk_seedexpander, pk_seed, pk_seed + 32, SEEDEXPANDER_MAX_LENGTH);

// Compute secret key
PQCLEAN_HQC2561CCA2_LEAKTIME_vect_set_random_fixed_weight(&sk_seedexpander, x, PARAM_OMEGA);
PQCLEAN_HQC2561CCA2_LEAKTIME_vect_set_random_fixed_weight_by_coordinates(&sk_seedexpander, y, PARAM_OMEGA);

// Compute public key
PQCLEAN_HQC2561CCA2_LEAKTIME_vect_set_random(&pk_seedexpander, h);
PQCLEAN_HQC2561CCA2_LEAKTIME_vect_mul(s, y, h, PARAM_OMEGA);
PQCLEAN_HQC2561CCA2_LEAKTIME_vect_add(s, x, s, VEC_N_SIZE_BYTES);

// Parse keys to string
PQCLEAN_HQC2561CCA2_LEAKTIME_hqc_public_key_to_string(pk, pk_seed, s);
PQCLEAN_HQC2561CCA2_LEAKTIME_hqc_secret_key_to_string(sk, sk_seed, pk);
}



/**
* @brief Encryption of the HQC_PKE IND_CPA scheme
*
* The cihertext is composed of vectors <b>u</b> and <b>v</b>.
*
* @param[out] u Vector u (first part of the ciphertext)
* @param[out] v Vector v (second part of the ciphertext)
* @param[in] m Vector representing the message to encrypt
* @param[in] theta Seed used to derive randomness required for encryption
* @param[in] pk String containing the public key
*/
void PQCLEAN_HQC2561CCA2_LEAKTIME_hqc_pke_encrypt(uint8_t *u, uint8_t *v, const uint8_t *m, const uint8_t *theta, const uint8_t *pk) {
AES_XOF_struct seedexpander;
uint8_t h[VEC_N_SIZE_BYTES] = {0};
uint8_t s[VEC_N_SIZE_BYTES] = {0};
uint8_t r1[VEC_N_SIZE_BYTES] = {0};
uint32_t r2[PARAM_OMEGA_R] = {0};
uint8_t e[VEC_N_SIZE_BYTES] = {0};
uint8_t tmp1[VEC_N_SIZE_BYTES] = {0};
uint8_t tmp2[VEC_N_SIZE_BYTES] = {0};

// Create seed_expander from theta
seedexpander_init(&seedexpander, theta, theta + 32, SEEDEXPANDER_MAX_LENGTH);

// Retrieve h and s from public key
PQCLEAN_HQC2561CCA2_LEAKTIME_hqc_public_key_from_string(h, s, pk);

// Generate r1, r2 and e
PQCLEAN_HQC2561CCA2_LEAKTIME_vect_set_random_fixed_weight(&seedexpander, r1, PARAM_OMEGA_R);
PQCLEAN_HQC2561CCA2_LEAKTIME_vect_set_random_fixed_weight_by_coordinates(&seedexpander, r2, PARAM_OMEGA_R);
PQCLEAN_HQC2561CCA2_LEAKTIME_vect_set_random_fixed_weight(&seedexpander, e, PARAM_OMEGA_E);

// Compute u = r1 + r2.h
PQCLEAN_HQC2561CCA2_LEAKTIME_vect_mul(u, r2, h, PARAM_OMEGA_R);
PQCLEAN_HQC2561CCA2_LEAKTIME_vect_add(u, r1, u, VEC_N_SIZE_BYTES);

// Compute v = m.G by encoding the message
PQCLEAN_HQC2561CCA2_LEAKTIME_tensor_code_encode(v, m);
PQCLEAN_HQC2561CCA2_LEAKTIME_vect_resize(tmp1, PARAM_N, v, PARAM_N1N2);

// Compute v = m.G + s.r2 + e
PQCLEAN_HQC2561CCA2_LEAKTIME_vect_mul(tmp2, r2, s, PARAM_OMEGA_R);
PQCLEAN_HQC2561CCA2_LEAKTIME_vect_add(tmp2, e, tmp2, VEC_N_SIZE_BYTES);
PQCLEAN_HQC2561CCA2_LEAKTIME_vect_add(tmp2, tmp1, tmp2, VEC_N_SIZE_BYTES);
PQCLEAN_HQC2561CCA2_LEAKTIME_vect_resize(v, PARAM_N1N2, tmp2, PARAM_N);
}



/**
* @brief Decryption of the HQC_PKE IND_CPA scheme
*
* @param[out] m Vector representing the decrypted message
* @param[in] u Vector u (first part of the ciphertext)
* @param[in] v Vector v (second part of the ciphertext)
* @param[in] sk String containing the secret key
*/
void PQCLEAN_HQC2561CCA2_LEAKTIME_hqc_pke_decrypt(uint8_t *m, const uint8_t *u, const uint8_t *v, const uint8_t *sk) {
uint8_t x[VEC_N_SIZE_BYTES] = {0};
uint32_t y[PARAM_OMEGA] = {0};
uint8_t pk[PUBLIC_KEY_BYTES] = {0};
uint8_t tmp1[VEC_N_SIZE_BYTES] = {0};
uint8_t tmp2[VEC_N_SIZE_BYTES] = {0};

// Retrieve x, y, pk from secret key
PQCLEAN_HQC2561CCA2_LEAKTIME_hqc_secret_key_from_string(x, y, pk, sk);

// Compute v - u.y
PQCLEAN_HQC2561CCA2_LEAKTIME_vect_resize(tmp1, PARAM_N, v, PARAM_N1N2);
PQCLEAN_HQC2561CCA2_LEAKTIME_vect_mul(tmp2, y, u, PARAM_OMEGA);
PQCLEAN_HQC2561CCA2_LEAKTIME_vect_add(tmp2, tmp1, tmp2, VEC_N_SIZE_BYTES);

// Compute m by decoding v - u.y
PQCLEAN_HQC2561CCA2_LEAKTIME_tensor_code_decode(m, tmp2);
}

+ 15
- 0
crypto_kem/hqc-256-1-cca2/leaktime/hqc.h View File

@@ -0,0 +1,15 @@
#ifndef PQCLEAN_HQC2561CCA2_LEAKTIME_HQC_H
#define PQCLEAN_HQC2561CCA2_LEAKTIME_HQC_H

/**
* @file hqc.h
* @brief Functions of the HQC_PKE IND_CPA scheme
*/

#include <stdint.h>

void PQCLEAN_HQC2561CCA2_LEAKTIME_hqc_pke_keygen(uint8_t *pk, uint8_t *sk);
void PQCLEAN_HQC2561CCA2_LEAKTIME_hqc_pke_encrypt(uint8_t *u, uint8_t *v, const uint8_t *m, const uint8_t *theta, const uint8_t *pk);
void PQCLEAN_HQC2561CCA2_LEAKTIME_hqc_pke_decrypt(uint8_t *m, const uint8_t *u, const uint8_t *v, const uint8_t *sk);

#endif

+ 154
- 0
crypto_kem/hqc-256-1-cca2/leaktime/kem.c View File

@@ -0,0 +1,154 @@
/**
* @file kem.c
* @brief Implementation of api.h
*/

#include "api.h"
#include "hqc.h"
#include "nistseedexpander.h"
#include "parameters.h"
#include "parsing.h"
#include "sha2.h"
#include "vector.h"
#include <stdint.h>
#include <string.h>


/**
* @brief Keygen of the HQC_KEM IND_CAA2 scheme
*
* The public key is composed of the syndrome <b>s</b> as well as the seed used to generate the vector <b>h</b>.
*
* The secret key is composed of the seed used to generate vectors <b>x</b> and <b>y</b>.
* As a technicality, the public key is appended to the secret key in order to respect NIST API.
*
* @param[out] pk String containing the public key
* @param[out] sk String containing the secret key
* @returns 0 if keygen is successful
*/
int PQCLEAN_HQC2561CCA2_LEAKTIME_crypto_kem_keypair(uint8_t *pk, uint8_t *sk) {
PQCLEAN_HQC2561CCA2_LEAKTIME_hqc_pke_keygen(pk, sk);
return 0;
}



/**
* @brief Encapsulation of the HQC_KEM IND_CAA2 scheme
*
* @param[out] ct String containing the ciphertext
* @param[out] ss String containing the shared secret
* @param[in] pk String containing the public key
* @returns 0 if encapsulation is successful
*/
int PQCLEAN_HQC2561CCA2_LEAKTIME_crypto_kem_enc(uint8_t *ct, uint8_t *ss, const uint8_t *pk) {
AES_XOF_struct G_seedexpander;
uint8_t seed_G[VEC_K_SIZE_BYTES];
uint8_t diversifier_bytes[8] = {0};
uint8_t m[VEC_K_SIZE_BYTES] = {0};
uint8_t theta[SEED_BYTES] = {0};
uint8_t u[VEC_N_SIZE_BYTES] = {0};
uint8_t v[VEC_N1N2_SIZE_BYTES] = {0};
uint8_t d[SHA512_BYTES] = {0};
uint8_t mc[VEC_K_SIZE_BYTES + VEC_N_SIZE_BYTES + VEC_N1N2_SIZE_BYTES] = {0};

// Computing m
PQCLEAN_HQC2561CCA2_LEAKTIME_vect_set_random_from_randombytes(m);

// Generating G function
memcpy(seed_G, m, VEC_K_SIZE_BYTES);
seedexpander_init(&G_seedexpander, seed_G, diversifier_bytes, SEEDEXPANDER_MAX_LENGTH);

// Computing theta
seedexpander(&G_seedexpander, theta, SEED_BYTES);

// Encrypting m
PQCLEAN_HQC2561CCA2_LEAKTIME_hqc_pke_encrypt(u, v, m, theta, pk);

// Computing d
sha512(d, m, VEC_K_SIZE_BYTES);

// Computing shared secret
memcpy(mc, m, VEC_K_SIZE_BYTES);
memcpy(mc + VEC_K_SIZE_BYTES, u, VEC_N_SIZE_BYTES);
memcpy(mc + VEC_K_SIZE_BYTES + VEC_N_SIZE_BYTES, v, VEC_N1N2_SIZE_BYTES);
sha512(ss, mc, VEC_K_SIZE_BYTES + VEC_N_SIZE_BYTES + VEC_N1N2_SIZE_BYTES);

// Computing ciphertext
PQCLEAN_HQC2561CCA2_LEAKTIME_hqc_ciphertext_to_string(ct, u, v, d);

return 0;
}



/**
* @brief Decapsulation of the HQC_KEM IND_CAA2 scheme
*
* @param[out] ss String containing the shared secret
* @param[in] ct String containing the cipĥertext
* @param[in] sk String containing the secret key
* @returns 0 if decapsulation is successful, -1 otherwise
*/
int PQCLEAN_HQC2561CCA2_LEAKTIME_crypto_kem_dec(uint8_t *ss, const uint8_t *ct, const uint8_t *sk) {
AES_XOF_struct G_seedexpander;
uint8_t seed_G[VEC_K_SIZE_BYTES] = {0};
uint8_t diversifier_bytes[8] = {0};
uint8_t u[VEC_N_SIZE_BYTES] = {0};
uint8_t v[VEC_N1N2_SIZE_BYTES] = {0};
uint8_t d[SHA512_BYTES] = {0};
uint8_t pk[PUBLIC_KEY_BYTES] = {0};
uint8_t m[VEC_K_SIZE_BYTES] = {0};
uint8_t theta[SEED_BYTES] = {0};
uint8_t u2[VEC_N_SIZE_BYTES] = {0};
uint8_t v2[VEC_N1N2_SIZE_BYTES] = {0};
uint8_t d2[SHA512_BYTES] = {0};
uint8_t mc[VEC_K_SIZE_BYTES + VEC_N_SIZE_BYTES + VEC_N1N2_SIZE_BYTES] = {0};
int8_t abort = 0;

// Retrieving u, v and d from ciphertext
PQCLEAN_HQC2561CCA2_LEAKTIME_hqc_ciphertext_from_string(u, v, d, ct);

// Retrieving pk from sk
memcpy(pk, sk + SEED_BYTES, PUBLIC_KEY_BYTES);

// Decryting
PQCLEAN_HQC2561CCA2_LEAKTIME_hqc_pke_decrypt(m, u, v, sk);

// Generating G function
memcpy(seed_G, m, VEC_K_SIZE_BYTES);
seedexpander_init(&G_seedexpander, seed_G, diversifier_bytes, SEEDEXPANDER_MAX_LENGTH);

// Computing theta
seedexpander(&G_seedexpander, theta, SEED_BYTES);

// Encrypting m'
PQCLEAN_HQC2561CCA2_LEAKTIME_hqc_pke_encrypt(u2, v2, m, theta, pk);

// Checking that c = c' and abort otherwise
if (PQCLEAN_HQC2561CCA2_LEAKTIME_vect_compare(u, u2, VEC_N_SIZE_BYTES) != 0 ||
PQCLEAN_HQC2561CCA2_LEAKTIME_vect_compare(v, v2, VEC_N1N2_SIZE_BYTES) != 0) {
abort = 1;
}

// Computing d'
sha512(d2, m, VEC_K_SIZE_BYTES);

// Checking that d = d' and abort otherwise
if (memcmp(d, d2, SHA512_BYTES) != 0) {
abort = 1;
}

if (abort == 1) {
memset(ss, 0, SHARED_SECRET_BYTES);
return -1;
}

// Computing shared secret
memcpy(mc, m, VEC_K_SIZE_BYTES);
memcpy(mc + VEC_K_SIZE_BYTES, u, VEC_N_SIZE_BYTES);
memcpy(mc + VEC_K_SIZE_BYTES + VEC_N_SIZE_BYTES, v, VEC_N1N2_SIZE_BYTES);
sha512(ss, mc, VEC_K_SIZE_BYTES + VEC_N_SIZE_BYTES + VEC_N1N2_SIZE_BYTES);

return 0;
}

Some files were not shown because too many files changed in this diff

Loading…
Cancel
Save