barett based reduction
This commit is contained in:
부모
85148087ad
커밋
54d54ce47b
@ -555,6 +555,14 @@ target_link_libraries(
|
||||
pqclean_dilithium5_clean
|
||||
)
|
||||
|
||||
install(TARGETS pqclean pqclean_s
|
||||
PERMISSIONS OWNER_READ OWNER_WRITE GROUP_READ GROUP_WRITE WORLD_READ WORLD_WRITE
|
||||
LIBRARY DESTINATION lib
|
||||
ARCHIVE DESTINATION lib)
|
||||
install(FILES
|
||||
${QRS_PUBLIC_INC}
|
||||
DESTINATION include/pqclean)
|
||||
|
||||
# TODO: this requires changes to testvectors.c
|
||||
# add_executable(
|
||||
# test
|
||||
|
@ -38,66 +38,126 @@ int32_t PQCLEAN_DILITHIUM2_CLEAN_power2round(int32_t *a0, int32_t a) {
|
||||
*
|
||||
* Returns a1.
|
||||
**************************************************/
|
||||
int32_t PQCLEAN_DILITHIUM2_CLEAN_decompose(int32_t *a0, int32_t a) {
|
||||
int32_t a1 = 0;
|
||||
uint64_t r;
|
||||
|
||||
int32_t r0, r1;
|
||||
int32_t PQCLEAN_DILITHIUM2_CLEAN_decompose_ORG(int32_t *a0, int32_t a) {
|
||||
/* TODO:
|
||||
a % Q is skipped, as it seems a<Q always. In case this
|
||||
needs to be done, then we can use a fact that Q is a
|
||||
Generalized Marsenne Prime, so modular redc is fast
|
||||
(see work by Jerome Solina and Crandall '92 algo).
|
||||
*/
|
||||
|
||||
assert(a>0); assert(a<Q);
|
||||
|
||||
// mod ALPHA
|
||||
static const uint32_t u = 360800;
|
||||
r = ((uint64_t)a)*u;
|
||||
r >>= 36;
|
||||
r *= 2 * GAMMA2;
|
||||
r = a - r;
|
||||
// Use Barrett reduction to calculate r0 = r % A. The
|
||||
// code calculates:
|
||||
// floor(a/A) = floor( (a * R) / 2^M)
|
||||
// where,
|
||||
// M is so that 2^M>= A^2
|
||||
// r = floor(2^M / A)
|
||||
static const uint32_t M = 36;
|
||||
// Precomputed reciprocal r = floor((2^36) / 190464
|
||||
static const uint32_t R = 360800;
|
||||
// As per spec ALPHA, A = 2*GAMMA2 = (Q-1)/88 * 2 (Dilithium2)
|
||||
static const uint32_t A = 2*GAMMA2;
|
||||
|
||||
if (r>(2*GAMMA2)) {
|
||||
r -= 2*GAMMA2;
|
||||
// a0
|
||||
int32_t r;
|
||||
int32_t v,w,z;
|
||||
// Barrett reduction:
|
||||
// a0' = a mod A = a - A*floor((a*r) / 2^M)
|
||||
r = (int32_t)((((uint64_t)a)*R) >> M);
|
||||
r = a - r*A;
|
||||
|
||||
v = ((A-r)>>31) & 1;
|
||||
w = ((GAMMA2 - r)>>31) & 1;
|
||||
z = (((A + GAMMA2) -r) >> 31) & 1;
|
||||
// printf("%d %d %d\n", v,w,z);
|
||||
*a0 = r - (((!z)&(v|w))*A) - (z)*2*A;
|
||||
|
||||
/*
|
||||
// REDC
|
||||
if (r>(int32_t)A) {
|
||||
r -= A;
|
||||
}
|
||||
|
||||
r1 = ((int32_t)r)*2*GAMMA2;
|
||||
|
||||
// centrize
|
||||
if (r > GAMMA2) {
|
||||
*a0 = (int32_t)r - 2*GAMMA2;
|
||||
if (r > (int32_t)GAMMA2) {
|
||||
*a0 = (int32_t)r - A;
|
||||
} else {
|
||||
*a0 = r;
|
||||
}
|
||||
*/
|
||||
|
||||
// a1
|
||||
uint64_t a2 = a - *a0;
|
||||
|
||||
// OLD
|
||||
a1 = (a + 127) >> 7;
|
||||
a1 = (a1 * 11275 + (1 << 23)) >> 24;
|
||||
a1 ^= ((43 - a1) >> 31) & a1;
|
||||
|
||||
v = ((int32_t)a2 - Q + 1);
|
||||
//a2 = (!v);
|
||||
*a0 -= !v;
|
||||
a2 = (!!v)*a2;
|
||||
// CASE: r-r0 = q-1 => r1=0, r0 = r0-1
|
||||
uint64_t a2 = (uint64_t)a - *a0;
|
||||
#if 0
|
||||
if (a2 == (Q-1)) {
|
||||
a2 = 0;
|
||||
*a0--;
|
||||
*a0 = *a0-1;
|
||||
}
|
||||
#endif
|
||||
|
||||
// divide (r-r0)/alpha
|
||||
// int32_t a2 = ((uint64_t)a-*a0)/(2*GAMMA2);
|
||||
if ( (a2 >= (2*GAMMA2))) {
|
||||
a2 = (a2*u) >> 36;
|
||||
// a2 is divisible by ALPHA=(2*GAMMA2) and hence
|
||||
// divide (r-r0)/A
|
||||
// int32_t a2 = ((uint64_t)a-*a0)/(A);
|
||||
v = ((int32_t)a2-A) >> 31;
|
||||
a2 = (!v)*(((a2*R) >> M) + 1) + v*a2;
|
||||
/*
|
||||
if ( (a2 >= (A))) {
|
||||
a2 = (a2*R) >> M;
|
||||
// a2 is divisible by ALPHA=(A) and hence
|
||||
// it will always be off by one.
|
||||
a2++;
|
||||
}
|
||||
*/
|
||||
return a2;
|
||||
}
|
||||
|
||||
int32_t PQCLEAN_DILITHIUM2_CLEAN_decompose(int32_t *a0, int32_t a) {
|
||||
/* TODO:
|
||||
a % Q is skipped, as it seems a<Q always. In case this
|
||||
needs to be done, then we can use a fact that Q is a
|
||||
Generalized Marsenne Prime, so modular redc is fast
|
||||
(see work by Jerome Solina and Crandall '92 algo).
|
||||
*/
|
||||
|
||||
// Use Barrett reduction to calculate r0 = r % A. The
|
||||
// code calculates:
|
||||
// floor(a/A) = floor( (a * R) / 2^M)
|
||||
// where,
|
||||
// M is so that 2^M>= A^2
|
||||
// r = floor(2^M / A)
|
||||
static const uint32_t M = 36;
|
||||
// Precomputed reciprocal r = floor((2^36) / 190464
|
||||
static const uint32_t R = 360800;
|
||||
// As per spec ALPHA, A = 2*GAMMA2 = (Q-1)/88 * 2 (Dilithium2)
|
||||
static const uint32_t A = 2*GAMMA2;
|
||||
|
||||
//if (!a1) a2 = a1;
|
||||
// a0
|
||||
int32_t r;
|
||||
int32_t v,w,z;
|
||||
// Barrett reduction:
|
||||
// a0' = a mod A = a - A*floor((a*r) / 2^M)
|
||||
r = (int32_t)((((uint64_t)a)*R) >> M);
|
||||
r = a - r*A;
|
||||
|
||||
//*a0 = a - a1 * 2 * GAMMA2;
|
||||
//*a0 -= (((Q - 1) / 2 - *a0) >> 31) & Q;
|
||||
if (a1 != (int32_t)a2)
|
||||
printf("OZAPTF: (A1=%d, A2=%d, A=%d R=%d)\n",
|
||||
a1, (int32_t)a2, a, (a-(*a0)));
|
||||
// printf("OZAPTF: %d %d %d\n", a, *a0, (a-*a0));
|
||||
v = ((A-r)>>31) & 1;
|
||||
w = ((GAMMA2 - r)>>31) & 1;
|
||||
z = (((A + GAMMA2) -r) >> 31) & 1;
|
||||
*a0 = r - (((!z)&(v|w))*A) - (z)*2*A;
|
||||
|
||||
// a1
|
||||
uint64_t a2 = a - *a0;
|
||||
v = ((int32_t)a2 - Q + 1);
|
||||
*a0 -= !v;
|
||||
a2 = (!!v)*a2;
|
||||
v = ((int32_t)a2-A) >> 31;
|
||||
a2 = (!v)*(((a2*R) >> M) + 1) + v*a2;
|
||||
return a2;
|
||||
}
|
||||
|
||||
|
불러오는 중...
Reference in New Issue
Block a user