Initialize arrays in fft.c and fix a few compiler warnings

This commit is contained in:
John M. Schanck 2020-09-10 10:00:09 -04:00 提交者 Kris Kwiatkowski
父節點 2767acd007
當前提交 63d033cf02
共有 12 個檔案被更改,包括 678 行新增582 行删除

查看文件

@ -19,8 +19,10 @@
static void compute_fft_betas(uint16_t *betas);
static void compute_subset_sums(uint16_t *subset_sums, const uint16_t *set, size_t set_size);
static void radix_t(uint16_t *f, const uint16_t *f0, const uint16_t *f1, uint32_t m_f);
static void radix_t_big(uint16_t *f, const uint16_t *f0, const uint16_t *f1, uint32_t m_f);
static void fft_t_rec(uint16_t *f, const uint16_t *w, size_t f_coeffs, uint8_t m, uint32_t m_f, const uint16_t *betas);
static void radix(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f);
static void radix_big(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f);
static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32_t m_f, const uint16_t *betas);
@ -30,7 +32,8 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32
* @param[out] betas Array of size PARAM_M-1
*/
static void compute_fft_betas(uint16_t *betas) {
for (size_t i = 0 ; i < PARAM_M - 1 ; ++i) {
size_t i;
for (i = 0 ; i < PARAM_M - 1 ; ++i) {
betas[i] = 1 << (PARAM_M - 1 - i);
}
}
@ -48,10 +51,11 @@ static void compute_fft_betas(uint16_t *betas) {
* @param[in] set_size Size of the array set
*/
static void compute_subset_sums(uint16_t *subset_sums, const uint16_t *set, size_t set_size) {
size_t i, j;
subset_sums[0] = 0;
for (size_t i = 0 ; i < set_size ; ++i) {
for (size_t j = 0 ; j < (1U << i) ; ++j) {
for (i = 0 ; i < set_size ; ++i) {
for (j = 0 ; j < (1U << i) ; ++j) {
subset_sums[(1 << i) + j] = set[i] ^ subset_sums[j];
}
}
@ -90,7 +94,7 @@ static void radix_t(uint16_t *f, const uint16_t *f0, const uint16_t *f1, uint32_
f[13] = f[7] ^ f[9] ^ f[11] ^ f1[6];
f[14] = f[6] ^ f0[6] ^ f0[7] ^ f1[6];
f[15] = f[7] ^ f0[7] ^ f1[7];
return;
break;
case 3:
f[0] = f0[0];
@ -101,49 +105,53 @@ static void radix_t(uint16_t *f, const uint16_t *f0, const uint16_t *f1, uint32_
f[5] = f[3] ^ f1[2];
f[6] = f[4] ^ f0[3] ^ f1[2];
f[7] = f[3] ^ f0[3] ^ f1[3];
return;
break;
case 2:
f[0] = f0[0];
f[1] = f1[0];
f[2] = f0[1] ^ f1[0];
f[3] = f[2] ^ f1[1];
return;
break;
case 1:
f[0] = f0[0];
f[1] = f1[0];
return;
break;
default:
;
radix_t_big(f, f0, f1, m_f);
break;
}
}
size_t n = 1 << (m_f - 2);
static void radix_t_big(uint16_t *f, const uint16_t *f0, const uint16_t *f1, uint32_t m_f) {
uint16_t Q0[1 << (PARAM_FFT_T - 2)] = {0};
uint16_t Q1[1 << (PARAM_FFT_T - 2)] = {0};
uint16_t R0[1 << (PARAM_FFT_T - 2)] = {0};
uint16_t R1[1 << (PARAM_FFT_T - 2)] = {0};
uint16_t Q0[1 << (PARAM_FFT_T - 2)];
uint16_t Q1[1 << (PARAM_FFT_T - 2)];
uint16_t R0[1 << (PARAM_FFT_T - 2)];
uint16_t R1[1 << (PARAM_FFT_T - 2)];
uint16_t Q[1 << 2 * (PARAM_FFT_T - 2)] = {0};
uint16_t R[1 << 2 * (PARAM_FFT_T - 2)] = {0};
uint16_t Q[1 << 2 * (PARAM_FFT_T - 2)];
uint16_t R[1 << 2 * (PARAM_FFT_T - 2)];
size_t i, n;
memcpy(Q0, f0 + n, 2 * n);
memcpy(Q1, f1 + n, 2 * n);
memcpy(R0, f0, 2 * n);
memcpy(R1, f1, 2 * n);
n = 1 << (m_f - 2);
memcpy(Q0, f0 + n, 2 * n);
memcpy(Q1, f1 + n, 2 * n);
memcpy(R0, f0, 2 * n);
memcpy(R1, f1, 2 * n);
radix_t (Q, Q0, Q1, m_f - 1);
radix_t (R, R0, R1, m_f - 1);
radix_t (Q, Q0, Q1, m_f - 1);
radix_t (R, R0, R1, m_f - 1);
memcpy(f, R, 4 * n);
memcpy(f + 2 * n, R + n, 2 * n);
memcpy(f + 3 * n, Q + n, 2 * n);
memcpy(f, R, 4 * n);
memcpy(f + 2 * n, R + n, 2 * n);
memcpy(f + 3 * n, Q + n, 2 * n);
for (size_t i = 0 ; i < n ; ++i) {
f[2 * n + i] ^= Q[i];
f[3 * n + i] ^= f[2 * n + i];
}
for (i = 0 ; i < n ; ++i) {
f[2 * n + i] ^= Q[i];
f[3 * n + i] ^= f[2 * n + i];
}
}
@ -162,29 +170,31 @@ static void radix_t(uint16_t *f, const uint16_t *f0, const uint16_t *f1, uint32_
* @param[in] betas FFT constants
*/
static void fft_t_rec(uint16_t *f, const uint16_t *w, size_t f_coeffs, uint8_t m, uint32_t m_f, const uint16_t *betas) {
size_t k = 1 << (m - 1);
uint16_t gammas[PARAM_M - 2];
uint16_t deltas[PARAM_M - 2];
uint16_t gammas_sums[1 << (PARAM_M - 1)];
uint16_t gammas[PARAM_M - 2] = {0};
uint16_t deltas[PARAM_M - 2] = {0};
uint16_t gammas_sums[1 << (PARAM_M - 1)] = {0};
uint16_t u[1 << (PARAM_M - 2)] = {0};
uint16_t f0[1 << (PARAM_FFT_T - 2)] = {0};
uint16_t f1[1 << (PARAM_FFT_T - 2)] = {0};
uint16_t betas_sums[1 << (PARAM_M - 1)] = {0};
uint16_t v[1 << (PARAM_M - 2)] = {0};
uint16_t beta_m_pow;
size_t i, j, k;
// Step 1
if (m_f == 1) {
f[0] = 0;
for (size_t i = 0 ; i < (1U << m) ; ++i) {
for (i = 0 ; i < (1U << m) ; ++i) {
f[0] ^= w[i];
}
f[1] = 0;
uint16_t betas_sums[1 << (PARAM_M - 1)];
betas_sums[0] = 0;
for (size_t j = 0 ; j < m ; ++j) {
for (size_t k = 0 ; k < (1U << j) ; ++k) {
size_t index = (1 << j) + k;
betas_sums[index] = betas_sums[k] ^ betas[j];
f[1] ^= PQCLEAN_HQC128_CLEAN_gf_mul(betas_sums[index], w[index]);
for (j = 0 ; j < m ; ++j) {
for (k = 0 ; k < (1U << j) ; ++k) {
betas_sums[(1 << j) + k] = betas_sums[k] ^ betas[j];
f[1] ^= PQCLEAN_HQC128_CLEAN_gf_mul(betas_sums[(1 << j) + k], w[(1 << j) + k]);
}
}
@ -192,7 +202,7 @@ static void fft_t_rec(uint16_t *f, const uint16_t *w, size_t f_coeffs, uint8_t m
}
// Compute gammas and deltas
for (uint8_t i = 0 ; i < m - 1 ; ++i) {
for (i = 0 ; i + 1 < m ; ++i) {
gammas[i] = PQCLEAN_HQC128_CLEAN_gf_mul(betas[i], PQCLEAN_HQC128_CLEAN_gf_inverse(betas[m - 1]));
deltas[i] = PQCLEAN_HQC128_CLEAN_gf_square(gammas[i]) ^ gammas[i];
}
@ -206,23 +216,22 @@ static void fft_t_rec(uint16_t *f, const uint16_t *w, size_t f_coeffs, uint8_t m
* Transpose:
* u[i] = w[i] + w[k+i]
* v[i] = G[i].w[i] + (G[i]+1).w[k+i] = G[i].u[i] + w[k+i] */
k = 1 << ((m - 1) & 0xf); // &0xf is to let the compiler know that m-1 is small.
if (f_coeffs <= 3) { // 3-coefficient polynomial f case
// Step 5: Compute f0 from u and f1 from v
f1[1] = 0;
u[0] = w[0] ^ w[k];
f1[0] = w[k];
for (size_t i = 1 ; i < k ; ++i) {
for (i = 1 ; i < k ; ++i) {
u[i] = w[i] ^ w[k + i];
f1[0] ^= PQCLEAN_HQC128_CLEAN_gf_mul(gammas_sums[i], u[i]) ^ w[k + i];
}
fft_t_rec(f0, u, (f_coeffs + 1) / 2, m - 1, m_f - 1, deltas);
} else {
uint16_t v[1 << (PARAM_M - 2)] = {0};
u[0] = w[0] ^ w[k];
v[0] = w[k];
for (size_t i = 1 ; i < k ; ++i) {
for (i = 1 ; i < k ; ++i) {
u[i] = w[i] ^ w[k + i];
v[i] = PQCLEAN_HQC128_CLEAN_gf_mul(gammas_sums[i], u[i]) ^ w[k + i];
}
@ -237,8 +246,8 @@ static void fft_t_rec(uint16_t *f, const uint16_t *w, size_t f_coeffs, uint8_t m
// Step 2: compute f from g
if (betas[m - 1] != 1) {
uint16_t beta_m_pow = 1;
for (size_t i = 1 ; i < (1U << m_f) ; ++i) {
beta_m_pow = 1;
for (i = 1 ; i < (1U << m_f) ; ++i) {
beta_m_pow = PQCLEAN_HQC128_CLEAN_gf_mul(beta_m_pow, betas[m - 1]);
f[i] = PQCLEAN_HQC128_CLEAN_gf_mul(beta_m_pow, f[i]);
}
@ -261,14 +270,15 @@ static void fft_t_rec(uint16_t *f, const uint16_t *w, size_t f_coeffs, uint8_t m
*/
void PQCLEAN_HQC128_CLEAN_fft_t(uint16_t *f, const uint16_t *w, size_t f_coeffs) {
// Transposed from Gao and Mateer algorithm
uint16_t betas[PARAM_M - 1];
uint16_t betas_sums[1 << (PARAM_M - 1)];
size_t k = 1 << (PARAM_M - 1);
uint16_t betas[PARAM_M - 1] = {0};
uint16_t betas_sums[1 << (PARAM_M - 1)] = {0};
uint16_t u[1 << (PARAM_M - 1)] = {0};
uint16_t v[1 << (PARAM_M - 1)] = {0};
uint16_t deltas[PARAM_M - 1];
uint16_t f0[1 << (PARAM_FFT_T - 1)];
uint16_t f1[1 << (PARAM_FFT_T - 1)];
uint16_t deltas[PARAM_M - 1] = {0};
uint16_t f0[1 << (PARAM_FFT_T - 1)] = {0};
uint16_t f1[1 << (PARAM_FFT_T - 1)] = {0};
size_t i, k;
compute_fft_betas(betas);
compute_subset_sums(betas_sums, betas, PARAM_M - 1);
@ -281,15 +291,16 @@ void PQCLEAN_HQC128_CLEAN_fft_t(uint16_t *f, const uint16_t *w, size_t f_coeffs)
* Transpose:
* u[i] = w[i] + w[k+i]
* v[i] = G[i].w[i] + (G[i]+1).w[k+i] = G[i].u[i] + w[k+i] */
k = 1 << (PARAM_M - 1);
u[0] = w[0] ^ w[k];
v[0] = w[k];
for (size_t i = 1 ; i < k ; ++i) {
for (i = 1 ; i < k ; ++i) {
u[i] = w[i] ^ w[k + i];
v[i] = PQCLEAN_HQC128_CLEAN_gf_mul(betas_sums[i], u[i]) ^ w[k + i];
}
// Compute deltas
for (size_t i = 0 ; i < PARAM_M - 1 ; ++i) {
for (i = 0 ; i < PARAM_M - 1 ; ++i) {
deltas[i] = PQCLEAN_HQC128_CLEAN_gf_square(betas[i]) ^ betas[i];
}
@ -337,7 +348,7 @@ static void radix(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f) {
f1[2] = f[3] ^ f1[1] ^ f0[3];
f0[1] = f[2] ^ f0[2] ^ f1[1];
f1[0] = f[1] ^ f0[1];
return;
break;
case 3:
f0[0] = f[0];
@ -348,51 +359,56 @@ static void radix(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f) {
f1[3] = f[7];
f0[1] = f[2] ^ f0[2] ^ f1[1];
f1[0] = f[1] ^ f0[1];
return;
break;
case 2:
f0[0] = f[0];
f0[1] = f[2] ^ f[3];
f1[0] = f[1] ^ f0[1];
f1[1] = f[3];
return;
break;
case 1:
f0[0] = f[0];
f1[0] = f[1];
return;
break;
default:
;
size_t n = 1 << (m_f - 2);
uint16_t Q[2 * (1 << (PARAM_FFT - 2))];
uint16_t R[2 * (1 << (PARAM_FFT - 2))];
uint16_t Q0[1 << (PARAM_FFT - 2)];
uint16_t Q1[1 << (PARAM_FFT - 2)];
uint16_t R0[1 << (PARAM_FFT - 2)];
uint16_t R1[1 << (PARAM_FFT - 2)];
memcpy(Q, f + 3 * n, 2 * n);
memcpy(Q + n, f + 3 * n, 2 * n);
memcpy(R, f, 4 * n);
for (size_t i = 0 ; i < n ; ++i) {
Q[i] ^= f[2 * n + i];
R[n + i] ^= Q[i];
}
radix(Q0, Q1, Q, m_f - 1);
radix(R0, R1, R, m_f - 1);
memcpy(f0, R0, 2 * n);
memcpy(f0 + n, Q0, 2 * n);
memcpy(f1, R1, 2 * n);
memcpy(f1 + n, Q1, 2 * n);
radix_big(f0, f1, f, m_f);
break;
}
}
static void radix_big(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f) {
uint16_t Q[2 * (1 << (PARAM_FFT - 2))] = {0};
uint16_t R[2 * (1 << (PARAM_FFT - 2))] = {0};
uint16_t Q0[1 << (PARAM_FFT - 2)] = {0};
uint16_t Q1[1 << (PARAM_FFT - 2)] = {0};
uint16_t R0[1 << (PARAM_FFT - 2)] = {0};
uint16_t R1[1 << (PARAM_FFT - 2)] = {0};
size_t i, n;
n = 1 << (m_f - 2);
memcpy(Q, f + 3 * n, 2 * n);
memcpy(Q + n, f + 3 * n, 2 * n);
memcpy(R, f, 4 * n);
for (i = 0 ; i < n ; ++i) {
Q[i] ^= f[2 * n + i];
R[n + i] ^= Q[i];
}
radix(Q0, Q1, Q, m_f - 1);
radix(R0, R1, R, m_f - 1);
memcpy(f0, R0, 2 * n);
memcpy(f0 + n, Q0, 2 * n);
memcpy(f1, R1, 2 * n);
memcpy(f1 + n, Q1, 2 * n);
}
/**
@ -408,25 +424,27 @@ static void radix(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f) {
* @param[in] betas FFT constants
*/
static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32_t m_f, const uint16_t *betas) {
uint16_t f0[1 << (PARAM_FFT - 2)];
uint16_t f1[1 << (PARAM_FFT - 2)];
uint16_t gammas[PARAM_M - 2];
uint16_t deltas[PARAM_M - 2];
size_t k = 1 << (m - 1);
uint16_t gammas_sums[1 << (PARAM_M - 2)];
uint16_t f0[1 << (PARAM_FFT - 2)] = {0};
uint16_t f1[1 << (PARAM_FFT - 2)] = {0};
uint16_t gammas[PARAM_M - 2] = {0};
uint16_t deltas[PARAM_M - 2] = {0};
uint16_t gammas_sums[1 << (PARAM_M - 2)] = {0};
uint16_t u[1 << (PARAM_M - 2)] = {0};
uint16_t v[1 << (PARAM_M - 2)] = {0};
uint16_t tmp[PARAM_M - (PARAM_FFT - 1)] = {0};
uint16_t beta_m_pow;
size_t i, j, k;
// Step 1
if (m_f == 1) {
uint16_t tmp[PARAM_M - (PARAM_FFT - 1)];
for (size_t i = 0 ; i < m ; ++i) {
for (i = 0 ; i < m ; ++i) {
tmp[i] = PQCLEAN_HQC128_CLEAN_gf_mul(betas[i], f[1]);
}
w[0] = f[0];
for (size_t j = 0 ; j < m ; ++j) {
for (size_t k = 0 ; k < (1U << j) ; ++k) {
for (j = 0 ; j < m ; ++j) {
for (k = 0 ; k < (1U << j) ; ++k) {
w[(1 << j) + k] = w[k] ^ tmp[j];
}
}
@ -436,8 +454,8 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32
// Step 2: compute g
if (betas[m - 1] != 1) {
uint16_t beta_m_pow = 1;
for (size_t i = 1 ; i < (1U << m_f) ; ++i) {
beta_m_pow = 1;
for (i = 1 ; i < (1U << m_f) ; ++i) {
beta_m_pow = PQCLEAN_HQC128_CLEAN_gf_mul(beta_m_pow, betas[m - 1]);
f[i] = PQCLEAN_HQC128_CLEAN_gf_mul(beta_m_pow, f[i]);
}
@ -447,7 +465,7 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32
radix(f0, f1, f, m_f);
// Step 4: compute gammas and deltas
for (uint8_t i = 0 ; i < m - 1 ; ++i) {
for (i = 0 ; i + 1 < m ; ++i) {
gammas[i] = PQCLEAN_HQC128_CLEAN_gf_mul(betas[i], PQCLEAN_HQC128_CLEAN_gf_inverse(betas[m - 1]));
deltas[i] = PQCLEAN_HQC128_CLEAN_gf_square(gammas[i]) ^ gammas[i];
}
@ -458,10 +476,11 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32
// Step 5
fft_rec(u, f0, (f_coeffs + 1) / 2, m - 1, m_f - 1, deltas);
k = 1 << ((m - 1) & 0xf); // &0xf is to let the compiler know that m-1 is small.
if (f_coeffs <= 3) { // 3-coefficient polynomial f case: f1 is constant
w[0] = u[0];
w[k] = u[0] ^ f1[0];
for (size_t i = 1 ; i < k ; ++i) {
for (i = 1 ; i < k ; ++i) {
w[i] = u[i] ^ PQCLEAN_HQC128_CLEAN_gf_mul(gammas_sums[i], f1[0]);
w[k + i] = w[i] ^ f1[0];
}
@ -472,7 +491,7 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32
memcpy(w + k, v, 2 * k);
w[0] = u[0];
w[k] ^= u[0];
for (size_t i = 1 ; i < k ; ++i) {
for (i = 1 ; i < k ; ++i) {
w[i] = u[i] ^ PQCLEAN_HQC128_CLEAN_gf_mul(gammas_sums[i], v[i]);
w[k + i] ^= w[i];
}
@ -501,14 +520,15 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32
* @param[in] f_coeffs Number coefficients of f (i.e. deg(f)+1)
*/
void PQCLEAN_HQC128_CLEAN_fft(uint16_t *w, const uint16_t *f, size_t f_coeffs) {
uint16_t betas[PARAM_M - 1];
uint16_t betas_sums[1 << (PARAM_M - 1)];
uint16_t f0[1 << (PARAM_FFT - 1)];
uint16_t f1[1 << (PARAM_FFT - 1)];
uint16_t deltas[PARAM_M - 1];
size_t k = 1 << (PARAM_M - 1);
uint16_t u[1 << (PARAM_M - 1)];
uint16_t v[1 << (PARAM_M - 1)];
uint16_t betas[PARAM_M - 1] = {0};
uint16_t betas_sums[1 << (PARAM_M - 1)] = {0};
uint16_t f0[1 << (PARAM_FFT - 1)] = {0};
uint16_t f1[1 << (PARAM_FFT - 1)] = {0};
uint16_t deltas[PARAM_M - 1] = {0};
uint16_t u[1 << (PARAM_M - 1)] = {0};
uint16_t v[1 << (PARAM_M - 1)] = {0};
size_t i, k;
// Follows Gao and Mateer algorithm
compute_fft_betas(betas);
@ -524,7 +544,7 @@ void PQCLEAN_HQC128_CLEAN_fft(uint16_t *w, const uint16_t *f, size_t f_coeffs) {
radix(f0, f1, f, PARAM_FFT);
// Step 4: Compute deltas
for (size_t i = 0 ; i < PARAM_M - 1 ; ++i) {
for (i = 0 ; i < PARAM_M - 1 ; ++i) {
deltas[i] = PQCLEAN_HQC128_CLEAN_gf_square(betas[i]) ^ betas[i];
}
@ -532,6 +552,7 @@ void PQCLEAN_HQC128_CLEAN_fft(uint16_t *w, const uint16_t *f, size_t f_coeffs) {
fft_rec(u, f0, (f_coeffs + 1) / 2, PARAM_M - 1, PARAM_FFT - 1, deltas);
fft_rec(v, f1, f_coeffs / 2, PARAM_M - 1, PARAM_FFT - 1, deltas);
k = 1 << (PARAM_M - 1);
// Step 6, 7 and error polynomial computation
memcpy(w + k, v, 2 * k);
@ -542,7 +563,7 @@ void PQCLEAN_HQC128_CLEAN_fft(uint16_t *w, const uint16_t *f, size_t f_coeffs) {
w[k] ^= u[0];
// Find other roots
for (size_t i = 1 ; i < k ; ++i) {
for (i = 1 ; i < k ; ++i) {
w[i] = u[i] ^ PQCLEAN_HQC128_CLEAN_gf_mul(betas_sums[i], v[i]);
w[k + i] ^= w[i];
}
@ -561,21 +582,20 @@ void PQCLEAN_HQC128_CLEAN_fft(uint16_t *w, const uint16_t *f, size_t f_coeffs) {
* @param[in] vector Array of size VEC_N1_SIZE_BYTES
*/
void PQCLEAN_HQC128_CLEAN_fft_t_preprocess_bch_codeword(uint16_t *w, const uint64_t *vector) {
uint16_t r[1 << PARAM_M];
uint16_t gammas[PARAM_M - 1];
uint16_t gammas_sums[1 << (PARAM_M - 1)];
size_t k = 1 << (PARAM_M - 1);
uint16_t r[1 << PARAM_M] = {0};
uint16_t gammas[PARAM_M - 1] = {0};
uint16_t gammas_sums[1 << (PARAM_M - 1)] = {0};
size_t i, j, k;
// Unpack the received word vector into array r
size_t i;
for (i = 0 ; i < VEC_N1_SIZE_64 - (PARAM_N1 % 64 != 0) ; ++i) {
for (size_t j = 0 ; j < 64 ; ++j) {
for (j = 0 ; j < 64 ; ++j) {
r[64 * i + j] = (uint8_t) ((vector[i] >> j) & 1);
}
}
// Last byte
for (size_t j = 0 ; j < PARAM_N1 % 64 ; ++j) {
for (j = 0 ; j < PARAM_N1 % 64 ; ++j) {
r[64 * i + j] = (uint8_t) ((vector[i] >> j) & 1);
}
@ -586,9 +606,10 @@ void PQCLEAN_HQC128_CLEAN_fft_t_preprocess_bch_codeword(uint16_t *w, const uint6
compute_subset_sums(gammas_sums, gammas, PARAM_M - 1);
// Twist and permute r adequately to obtain w
k = 1 << (PARAM_M - 1);
w[0] = 0;
w[k] = -r[0] & 1;
for (size_t i = 1 ; i < k ; ++i) {
for (i = 1 ; i < k ; ++i) {
w[i] = -r[PQCLEAN_HQC128_CLEAN_gf_log(gammas_sums[i])] & gammas_sums[i];
w[k + i] = -r[PQCLEAN_HQC128_CLEAN_gf_log(gammas_sums[i] ^ 1)] & (gammas_sums[i] ^ 1);
}
@ -603,25 +624,28 @@ void PQCLEAN_HQC128_CLEAN_fft_t_preprocess_bch_codeword(uint16_t *w, const uint6
* @param[in] w Array of size 2^PARAM_M
*/
void PQCLEAN_HQC128_CLEAN_fft_retrieve_bch_error_poly(uint64_t *error, const uint16_t *w) {
uint16_t gammas[PARAM_M - 1];
uint16_t gammas_sums[1 << (PARAM_M - 1)];
size_t k = 1 << (PARAM_M - 1);
size_t index = PARAM_GF_MUL_ORDER;
uint16_t gammas[PARAM_M - 1] = {0};
uint16_t gammas_sums[1 << (PARAM_M - 1)] = {0};
uint64_t bit;
size_t i, k, index;
compute_fft_betas(gammas);
compute_subset_sums(gammas_sums, gammas, PARAM_M - 1);
error[0] ^= ((uint64_t) 1) ^ ((uint16_t) - w[0] >> 15);
uint64_t bit = ((uint64_t) 1) ^ ((uint16_t) - w[k] >> 15);
error[0] ^= 1 ^ ((uint16_t) - w[0] >> 15);
k = 1 << (PARAM_M - 1);
index = PARAM_GF_MUL_ORDER;
bit = 1 ^ ((uint16_t) - w[k] >> 15);
error[index / 8] ^= bit << (index % 64);
for (size_t i = 1 ; i < k ; ++i) {
for (i = 1 ; i < k ; ++i) {
index = PARAM_GF_MUL_ORDER - PQCLEAN_HQC128_CLEAN_gf_log(gammas_sums[i]);
bit = ((uint64_t) 1) ^ ((uint16_t) - w[i] >> 15);
bit = 1 ^ ((uint16_t) - w[i] >> 15);
error[index / 64] ^= bit << (index % 64);
index = PARAM_GF_MUL_ORDER - PQCLEAN_HQC128_CLEAN_gf_log(gammas_sums[i] ^ 1);
bit = ((uint64_t) 1) ^ ((uint16_t) - w[k + i] >> 15);
bit = 1 ^ ((uint16_t) - w[k + i] >> 15);
error[index / 64] ^= bit << (index % 64);
}
}

查看文件

@ -19,8 +19,10 @@
static void compute_fft_betas(uint16_t *betas);
static void compute_subset_sums(uint16_t *subset_sums, const uint16_t *set, size_t set_size);
static void radix_t(uint16_t *f, const uint16_t *f0, const uint16_t *f1, uint32_t m_f);
static void radix_t_big(uint16_t *f, const uint16_t *f0, const uint16_t *f1, uint32_t m_f);
static void fft_t_rec(uint16_t *f, const uint16_t *w, size_t f_coeffs, uint8_t m, uint32_t m_f, const uint16_t *betas);
static void radix(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f);
static void radix_big(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f);
static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32_t m_f, const uint16_t *betas);
@ -30,7 +32,8 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32
* @param[out] betas Array of size PARAM_M-1
*/
static void compute_fft_betas(uint16_t *betas) {
for (size_t i = 0 ; i < PARAM_M - 1 ; ++i) {
size_t i;
for (i = 0 ; i < PARAM_M - 1 ; ++i) {
betas[i] = 1 << (PARAM_M - 1 - i);
}
}
@ -48,10 +51,11 @@ static void compute_fft_betas(uint16_t *betas) {
* @param[in] set_size Size of the array set
*/
static void compute_subset_sums(uint16_t *subset_sums, const uint16_t *set, size_t set_size) {
size_t i, j;
subset_sums[0] = 0;
for (size_t i = 0 ; i < set_size ; ++i) {
for (size_t j = 0 ; j < (1U << i) ; ++j) {
for (i = 0 ; i < set_size ; ++i) {
for (j = 0 ; j < (1U << i) ; ++j) {
subset_sums[(1 << i) + j] = set[i] ^ subset_sums[j];
}
}
@ -90,7 +94,7 @@ static void radix_t(uint16_t *f, const uint16_t *f0, const uint16_t *f1, uint32_
f[13] = f[7] ^ f[9] ^ f[11] ^ f1[6];
f[14] = f[6] ^ f0[6] ^ f0[7] ^ f1[6];
f[15] = f[7] ^ f0[7] ^ f1[7];
return;
break;
case 3:
f[0] = f0[0];
@ -101,49 +105,53 @@ static void radix_t(uint16_t *f, const uint16_t *f0, const uint16_t *f1, uint32_
f[5] = f[3] ^ f1[2];
f[6] = f[4] ^ f0[3] ^ f1[2];
f[7] = f[3] ^ f0[3] ^ f1[3];
return;
break;
case 2:
f[0] = f0[0];
f[1] = f1[0];
f[2] = f0[1] ^ f1[0];
f[3] = f[2] ^ f1[1];
return;
break;
case 1:
f[0] = f0[0];
f[1] = f1[0];
return;
break;
default:
;
radix_t_big(f, f0, f1, m_f);
break;
}
}
size_t n = 1 << (m_f - 2);
static void radix_t_big(uint16_t *f, const uint16_t *f0, const uint16_t *f1, uint32_t m_f) {
uint16_t Q0[1 << (PARAM_FFT_T - 2)] = {0};
uint16_t Q1[1 << (PARAM_FFT_T - 2)] = {0};
uint16_t R0[1 << (PARAM_FFT_T - 2)] = {0};
uint16_t R1[1 << (PARAM_FFT_T - 2)] = {0};
uint16_t Q0[1 << (PARAM_FFT_T - 2)];
uint16_t Q1[1 << (PARAM_FFT_T - 2)];
uint16_t R0[1 << (PARAM_FFT_T - 2)];
uint16_t R1[1 << (PARAM_FFT_T - 2)];
uint16_t Q[1 << 2 * (PARAM_FFT_T - 2)] = {0};
uint16_t R[1 << 2 * (PARAM_FFT_T - 2)] = {0};
uint16_t Q[1 << 2 * (PARAM_FFT_T - 2)];
uint16_t R[1 << 2 * (PARAM_FFT_T - 2)];
size_t i, n;
memcpy(Q0, f0 + n, 2 * n);
memcpy(Q1, f1 + n, 2 * n);
memcpy(R0, f0, 2 * n);
memcpy(R1, f1, 2 * n);
n = 1 << (m_f - 2);
memcpy(Q0, f0 + n, 2 * n);
memcpy(Q1, f1 + n, 2 * n);
memcpy(R0, f0, 2 * n);
memcpy(R1, f1, 2 * n);
radix_t (Q, Q0, Q1, m_f - 1);
radix_t (R, R0, R1, m_f - 1);
radix_t (Q, Q0, Q1, m_f - 1);
radix_t (R, R0, R1, m_f - 1);
memcpy(f, R, 4 * n);
memcpy(f + 2 * n, R + n, 2 * n);
memcpy(f + 3 * n, Q + n, 2 * n);
memcpy(f, R, 4 * n);
memcpy(f + 2 * n, R + n, 2 * n);
memcpy(f + 3 * n, Q + n, 2 * n);
for (size_t i = 0 ; i < n ; ++i) {
f[2 * n + i] ^= Q[i];
f[3 * n + i] ^= f[2 * n + i];
}
for (i = 0 ; i < n ; ++i) {
f[2 * n + i] ^= Q[i];
f[3 * n + i] ^= f[2 * n + i];
}
}
@ -162,29 +170,31 @@ static void radix_t(uint16_t *f, const uint16_t *f0, const uint16_t *f1, uint32_
* @param[in] betas FFT constants
*/
static void fft_t_rec(uint16_t *f, const uint16_t *w, size_t f_coeffs, uint8_t m, uint32_t m_f, const uint16_t *betas) {
size_t k = 1 << (m - 1);
uint16_t gammas[PARAM_M - 2];
uint16_t deltas[PARAM_M - 2];
uint16_t gammas_sums[1 << (PARAM_M - 1)];
uint16_t gammas[PARAM_M - 2] = {0};
uint16_t deltas[PARAM_M - 2] = {0};
uint16_t gammas_sums[1 << (PARAM_M - 1)] = {0};
uint16_t u[1 << (PARAM_M - 2)] = {0};
uint16_t f0[1 << (PARAM_FFT_T - 2)] = {0};
uint16_t f1[1 << (PARAM_FFT_T - 2)] = {0};
uint16_t betas_sums[1 << (PARAM_M - 1)] = {0};
uint16_t v[1 << (PARAM_M - 2)] = {0};
uint16_t beta_m_pow;
size_t i, j, k;
// Step 1
if (m_f == 1) {
f[0] = 0;
for (size_t i = 0 ; i < (1U << m) ; ++i) {
for (i = 0 ; i < (1U << m) ; ++i) {
f[0] ^= w[i];
}
f[1] = 0;
uint16_t betas_sums[1 << (PARAM_M - 1)];
betas_sums[0] = 0;
for (size_t j = 0 ; j < m ; ++j) {
for (size_t k = 0 ; k < (1U << j) ; ++k) {
size_t index = (1 << j) + k;
betas_sums[index] = betas_sums[k] ^ betas[j];
f[1] ^= PQCLEAN_HQC192_CLEAN_gf_mul(betas_sums[index], w[index]);
for (j = 0 ; j < m ; ++j) {
for (k = 0 ; k < (1U << j) ; ++k) {
betas_sums[(1 << j) + k] = betas_sums[k] ^ betas[j];
f[1] ^= PQCLEAN_HQC192_CLEAN_gf_mul(betas_sums[(1 << j) + k], w[(1 << j) + k]);
}
}
@ -192,7 +202,7 @@ static void fft_t_rec(uint16_t *f, const uint16_t *w, size_t f_coeffs, uint8_t m
}
// Compute gammas and deltas
for (uint8_t i = 0 ; i < m - 1 ; ++i) {
for (i = 0 ; i + 1 < m ; ++i) {
gammas[i] = PQCLEAN_HQC192_CLEAN_gf_mul(betas[i], PQCLEAN_HQC192_CLEAN_gf_inverse(betas[m - 1]));
deltas[i] = PQCLEAN_HQC192_CLEAN_gf_square(gammas[i]) ^ gammas[i];
}
@ -206,23 +216,22 @@ static void fft_t_rec(uint16_t *f, const uint16_t *w, size_t f_coeffs, uint8_t m
* Transpose:
* u[i] = w[i] + w[k+i]
* v[i] = G[i].w[i] + (G[i]+1).w[k+i] = G[i].u[i] + w[k+i] */
k = 1 << ((m - 1) & 0xf); // &0xf is to let the compiler know that m-1 is small.
if (f_coeffs <= 3) { // 3-coefficient polynomial f case
// Step 5: Compute f0 from u and f1 from v
f1[1] = 0;
u[0] = w[0] ^ w[k];
f1[0] = w[k];
for (size_t i = 1 ; i < k ; ++i) {
for (i = 1 ; i < k ; ++i) {
u[i] = w[i] ^ w[k + i];
f1[0] ^= PQCLEAN_HQC192_CLEAN_gf_mul(gammas_sums[i], u[i]) ^ w[k + i];
}
fft_t_rec(f0, u, (f_coeffs + 1) / 2, m - 1, m_f - 1, deltas);
} else {
uint16_t v[1 << (PARAM_M - 2)] = {0};
u[0] = w[0] ^ w[k];
v[0] = w[k];
for (size_t i = 1 ; i < k ; ++i) {
for (i = 1 ; i < k ; ++i) {
u[i] = w[i] ^ w[k + i];
v[i] = PQCLEAN_HQC192_CLEAN_gf_mul(gammas_sums[i], u[i]) ^ w[k + i];
}
@ -237,8 +246,8 @@ static void fft_t_rec(uint16_t *f, const uint16_t *w, size_t f_coeffs, uint8_t m
// Step 2: compute f from g
if (betas[m - 1] != 1) {
uint16_t beta_m_pow = 1;
for (size_t i = 1 ; i < (1U << m_f) ; ++i) {
beta_m_pow = 1;
for (i = 1 ; i < (1U << m_f) ; ++i) {
beta_m_pow = PQCLEAN_HQC192_CLEAN_gf_mul(beta_m_pow, betas[m - 1]);
f[i] = PQCLEAN_HQC192_CLEAN_gf_mul(beta_m_pow, f[i]);
}
@ -261,14 +270,15 @@ static void fft_t_rec(uint16_t *f, const uint16_t *w, size_t f_coeffs, uint8_t m
*/
void PQCLEAN_HQC192_CLEAN_fft_t(uint16_t *f, const uint16_t *w, size_t f_coeffs) {
// Transposed from Gao and Mateer algorithm
uint16_t betas[PARAM_M - 1];
uint16_t betas_sums[1 << (PARAM_M - 1)];
size_t k = 1 << (PARAM_M - 1);
uint16_t betas[PARAM_M - 1] = {0};
uint16_t betas_sums[1 << (PARAM_M - 1)] = {0};
uint16_t u[1 << (PARAM_M - 1)] = {0};
uint16_t v[1 << (PARAM_M - 1)] = {0};
uint16_t deltas[PARAM_M - 1];
uint16_t f0[1 << (PARAM_FFT_T - 1)];
uint16_t f1[1 << (PARAM_FFT_T - 1)];
uint16_t deltas[PARAM_M - 1] = {0};
uint16_t f0[1 << (PARAM_FFT_T - 1)] = {0};
uint16_t f1[1 << (PARAM_FFT_T - 1)] = {0};
size_t i, k;
compute_fft_betas(betas);
compute_subset_sums(betas_sums, betas, PARAM_M - 1);
@ -281,15 +291,16 @@ void PQCLEAN_HQC192_CLEAN_fft_t(uint16_t *f, const uint16_t *w, size_t f_coeffs)
* Transpose:
* u[i] = w[i] + w[k+i]
* v[i] = G[i].w[i] + (G[i]+1).w[k+i] = G[i].u[i] + w[k+i] */
k = 1 << (PARAM_M - 1);
u[0] = w[0] ^ w[k];
v[0] = w[k];
for (size_t i = 1 ; i < k ; ++i) {
for (i = 1 ; i < k ; ++i) {
u[i] = w[i] ^ w[k + i];
v[i] = PQCLEAN_HQC192_CLEAN_gf_mul(betas_sums[i], u[i]) ^ w[k + i];
}
// Compute deltas
for (size_t i = 0 ; i < PARAM_M - 1 ; ++i) {
for (i = 0 ; i < PARAM_M - 1 ; ++i) {
deltas[i] = PQCLEAN_HQC192_CLEAN_gf_square(betas[i]) ^ betas[i];
}
@ -337,7 +348,7 @@ static void radix(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f) {
f1[2] = f[3] ^ f1[1] ^ f0[3];
f0[1] = f[2] ^ f0[2] ^ f1[1];
f1[0] = f[1] ^ f0[1];
return;
break;
case 3:
f0[0] = f[0];
@ -348,51 +359,56 @@ static void radix(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f) {
f1[3] = f[7];
f0[1] = f[2] ^ f0[2] ^ f1[1];
f1[0] = f[1] ^ f0[1];
return;
break;
case 2:
f0[0] = f[0];
f0[1] = f[2] ^ f[3];
f1[0] = f[1] ^ f0[1];
f1[1] = f[3];
return;
break;
case 1:
f0[0] = f[0];
f1[0] = f[1];
return;
break;
default:
;
size_t n = 1 << (m_f - 2);
uint16_t Q[2 * (1 << (PARAM_FFT - 2))];
uint16_t R[2 * (1 << (PARAM_FFT - 2))];
uint16_t Q0[1 << (PARAM_FFT - 2)];
uint16_t Q1[1 << (PARAM_FFT - 2)];
uint16_t R0[1 << (PARAM_FFT - 2)];
uint16_t R1[1 << (PARAM_FFT - 2)];
memcpy(Q, f + 3 * n, 2 * n);
memcpy(Q + n, f + 3 * n, 2 * n);
memcpy(R, f, 4 * n);
for (size_t i = 0 ; i < n ; ++i) {
Q[i] ^= f[2 * n + i];
R[n + i] ^= Q[i];
}
radix(Q0, Q1, Q, m_f - 1);
radix(R0, R1, R, m_f - 1);
memcpy(f0, R0, 2 * n);
memcpy(f0 + n, Q0, 2 * n);
memcpy(f1, R1, 2 * n);
memcpy(f1 + n, Q1, 2 * n);
radix_big(f0, f1, f, m_f);
break;
}
}
static void radix_big(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f) {
uint16_t Q[2 * (1 << (PARAM_FFT - 2))] = {0};
uint16_t R[2 * (1 << (PARAM_FFT - 2))] = {0};
uint16_t Q0[1 << (PARAM_FFT - 2)] = {0};
uint16_t Q1[1 << (PARAM_FFT - 2)] = {0};
uint16_t R0[1 << (PARAM_FFT - 2)] = {0};
uint16_t R1[1 << (PARAM_FFT - 2)] = {0};
size_t i, n;
n = 1 << (m_f - 2);
memcpy(Q, f + 3 * n, 2 * n);
memcpy(Q + n, f + 3 * n, 2 * n);
memcpy(R, f, 4 * n);
for (i = 0 ; i < n ; ++i) {
Q[i] ^= f[2 * n + i];
R[n + i] ^= Q[i];
}
radix(Q0, Q1, Q, m_f - 1);
radix(R0, R1, R, m_f - 1);
memcpy(f0, R0, 2 * n);
memcpy(f0 + n, Q0, 2 * n);
memcpy(f1, R1, 2 * n);
memcpy(f1 + n, Q1, 2 * n);
}
/**
@ -408,25 +424,27 @@ static void radix(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f) {
* @param[in] betas FFT constants
*/
static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32_t m_f, const uint16_t *betas) {
uint16_t f0[1 << (PARAM_FFT - 2)];
uint16_t f1[1 << (PARAM_FFT - 2)];
uint16_t gammas[PARAM_M - 2];
uint16_t deltas[PARAM_M - 2];
size_t k = 1 << (m - 1);
uint16_t gammas_sums[1 << (PARAM_M - 2)];
uint16_t f0[1 << (PARAM_FFT - 2)] = {0};
uint16_t f1[1 << (PARAM_FFT - 2)] = {0};
uint16_t gammas[PARAM_M - 2] = {0};
uint16_t deltas[PARAM_M - 2] = {0};
uint16_t gammas_sums[1 << (PARAM_M - 2)] = {0};
uint16_t u[1 << (PARAM_M - 2)] = {0};
uint16_t v[1 << (PARAM_M - 2)] = {0};
uint16_t tmp[PARAM_M - (PARAM_FFT - 1)] = {0};
uint16_t beta_m_pow;
size_t i, j, k;
// Step 1
if (m_f == 1) {
uint16_t tmp[PARAM_M - (PARAM_FFT - 1)];
for (size_t i = 0 ; i < m ; ++i) {
for (i = 0 ; i < m ; ++i) {
tmp[i] = PQCLEAN_HQC192_CLEAN_gf_mul(betas[i], f[1]);
}
w[0] = f[0];
for (size_t j = 0 ; j < m ; ++j) {
for (size_t k = 0 ; k < (1U << j) ; ++k) {
for (j = 0 ; j < m ; ++j) {
for (k = 0 ; k < (1U << j) ; ++k) {
w[(1 << j) + k] = w[k] ^ tmp[j];
}
}
@ -436,8 +454,8 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32
// Step 2: compute g
if (betas[m - 1] != 1) {
uint16_t beta_m_pow = 1;
for (size_t i = 1 ; i < (1U << m_f) ; ++i) {
beta_m_pow = 1;
for (i = 1 ; i < (1U << m_f) ; ++i) {
beta_m_pow = PQCLEAN_HQC192_CLEAN_gf_mul(beta_m_pow, betas[m - 1]);
f[i] = PQCLEAN_HQC192_CLEAN_gf_mul(beta_m_pow, f[i]);
}
@ -447,7 +465,7 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32
radix(f0, f1, f, m_f);
// Step 4: compute gammas and deltas
for (uint8_t i = 0 ; i < m - 1 ; ++i) {
for (i = 0 ; i + 1 < m ; ++i) {
gammas[i] = PQCLEAN_HQC192_CLEAN_gf_mul(betas[i], PQCLEAN_HQC192_CLEAN_gf_inverse(betas[m - 1]));
deltas[i] = PQCLEAN_HQC192_CLEAN_gf_square(gammas[i]) ^ gammas[i];
}
@ -458,10 +476,11 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32
// Step 5
fft_rec(u, f0, (f_coeffs + 1) / 2, m - 1, m_f - 1, deltas);
k = 1 << ((m - 1) & 0xf); // &0xf is to let the compiler know that m-1 is small.
if (f_coeffs <= 3) { // 3-coefficient polynomial f case: f1 is constant
w[0] = u[0];
w[k] = u[0] ^ f1[0];
for (size_t i = 1 ; i < k ; ++i) {
for (i = 1 ; i < k ; ++i) {
w[i] = u[i] ^ PQCLEAN_HQC192_CLEAN_gf_mul(gammas_sums[i], f1[0]);
w[k + i] = w[i] ^ f1[0];
}
@ -472,7 +491,7 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32
memcpy(w + k, v, 2 * k);
w[0] = u[0];
w[k] ^= u[0];
for (size_t i = 1 ; i < k ; ++i) {
for (i = 1 ; i < k ; ++i) {
w[i] = u[i] ^ PQCLEAN_HQC192_CLEAN_gf_mul(gammas_sums[i], v[i]);
w[k + i] ^= w[i];
}
@ -501,14 +520,15 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32
* @param[in] f_coeffs Number coefficients of f (i.e. deg(f)+1)
*/
void PQCLEAN_HQC192_CLEAN_fft(uint16_t *w, const uint16_t *f, size_t f_coeffs) {
uint16_t betas[PARAM_M - 1];
uint16_t betas_sums[1 << (PARAM_M - 1)];
uint16_t f0[1 << (PARAM_FFT - 1)];
uint16_t f1[1 << (PARAM_FFT - 1)];
uint16_t deltas[PARAM_M - 1];
size_t k = 1 << (PARAM_M - 1);
uint16_t u[1 << (PARAM_M - 1)];
uint16_t v[1 << (PARAM_M - 1)];
uint16_t betas[PARAM_M - 1] = {0};
uint16_t betas_sums[1 << (PARAM_M - 1)] = {0};
uint16_t f0[1 << (PARAM_FFT - 1)] = {0};
uint16_t f1[1 << (PARAM_FFT - 1)] = {0};
uint16_t deltas[PARAM_M - 1] = {0};
uint16_t u[1 << (PARAM_M - 1)] = {0};
uint16_t v[1 << (PARAM_M - 1)] = {0};
size_t i, k;
// Follows Gao and Mateer algorithm
compute_fft_betas(betas);
@ -524,7 +544,7 @@ void PQCLEAN_HQC192_CLEAN_fft(uint16_t *w, const uint16_t *f, size_t f_coeffs) {
radix(f0, f1, f, PARAM_FFT);
// Step 4: Compute deltas
for (size_t i = 0 ; i < PARAM_M - 1 ; ++i) {
for (i = 0 ; i < PARAM_M - 1 ; ++i) {
deltas[i] = PQCLEAN_HQC192_CLEAN_gf_square(betas[i]) ^ betas[i];
}
@ -532,6 +552,7 @@ void PQCLEAN_HQC192_CLEAN_fft(uint16_t *w, const uint16_t *f, size_t f_coeffs) {
fft_rec(u, f0, (f_coeffs + 1) / 2, PARAM_M - 1, PARAM_FFT - 1, deltas);
fft_rec(v, f1, f_coeffs / 2, PARAM_M - 1, PARAM_FFT - 1, deltas);
k = 1 << (PARAM_M - 1);
// Step 6, 7 and error polynomial computation
memcpy(w + k, v, 2 * k);
@ -542,7 +563,7 @@ void PQCLEAN_HQC192_CLEAN_fft(uint16_t *w, const uint16_t *f, size_t f_coeffs) {
w[k] ^= u[0];
// Find other roots
for (size_t i = 1 ; i < k ; ++i) {
for (i = 1 ; i < k ; ++i) {
w[i] = u[i] ^ PQCLEAN_HQC192_CLEAN_gf_mul(betas_sums[i], v[i]);
w[k + i] ^= w[i];
}
@ -561,21 +582,20 @@ void PQCLEAN_HQC192_CLEAN_fft(uint16_t *w, const uint16_t *f, size_t f_coeffs) {
* @param[in] vector Array of size VEC_N1_SIZE_BYTES
*/
void PQCLEAN_HQC192_CLEAN_fft_t_preprocess_bch_codeword(uint16_t *w, const uint64_t *vector) {
uint16_t r[1 << PARAM_M];
uint16_t gammas[PARAM_M - 1];
uint16_t gammas_sums[1 << (PARAM_M - 1)];
size_t k = 1 << (PARAM_M - 1);
uint16_t r[1 << PARAM_M] = {0};
uint16_t gammas[PARAM_M - 1] = {0};
uint16_t gammas_sums[1 << (PARAM_M - 1)] = {0};
size_t i, j, k;
// Unpack the received word vector into array r
size_t i;
for (i = 0 ; i < VEC_N1_SIZE_64 - (PARAM_N1 % 64 != 0) ; ++i) {
for (size_t j = 0 ; j < 64 ; ++j) {
for (j = 0 ; j < 64 ; ++j) {
r[64 * i + j] = (uint8_t) ((vector[i] >> j) & 1);
}
}
// Last byte
for (size_t j = 0 ; j < PARAM_N1 % 64 ; ++j) {
for (j = 0 ; j < PARAM_N1 % 64 ; ++j) {
r[64 * i + j] = (uint8_t) ((vector[i] >> j) & 1);
}
@ -586,9 +606,10 @@ void PQCLEAN_HQC192_CLEAN_fft_t_preprocess_bch_codeword(uint16_t *w, const uint6
compute_subset_sums(gammas_sums, gammas, PARAM_M - 1);
// Twist and permute r adequately to obtain w
k = 1 << (PARAM_M - 1);
w[0] = 0;
w[k] = -r[0] & 1;
for (size_t i = 1 ; i < k ; ++i) {
for (i = 1 ; i < k ; ++i) {
w[i] = -r[PQCLEAN_HQC192_CLEAN_gf_log(gammas_sums[i])] & gammas_sums[i];
w[k + i] = -r[PQCLEAN_HQC192_CLEAN_gf_log(gammas_sums[i] ^ 1)] & (gammas_sums[i] ^ 1);
}
@ -603,25 +624,28 @@ void PQCLEAN_HQC192_CLEAN_fft_t_preprocess_bch_codeword(uint16_t *w, const uint6
* @param[in] w Array of size 2^PARAM_M
*/
void PQCLEAN_HQC192_CLEAN_fft_retrieve_bch_error_poly(uint64_t *error, const uint16_t *w) {
uint16_t gammas[PARAM_M - 1];
uint16_t gammas_sums[1 << (PARAM_M - 1)];
size_t k = 1 << (PARAM_M - 1);
size_t index = PARAM_GF_MUL_ORDER;
uint16_t gammas[PARAM_M - 1] = {0};
uint16_t gammas_sums[1 << (PARAM_M - 1)] = {0};
uint64_t bit;
size_t i, k, index;
compute_fft_betas(gammas);
compute_subset_sums(gammas_sums, gammas, PARAM_M - 1);
error[0] ^= ((uint64_t) 1) ^ ((uint16_t) - w[0] >> 15);
uint64_t bit = ((uint64_t) 1) ^ ((uint16_t) - w[k] >> 15);
error[0] ^= 1 ^ ((uint16_t) - w[0] >> 15);
k = 1 << (PARAM_M - 1);
index = PARAM_GF_MUL_ORDER;
bit = 1 ^ ((uint16_t) - w[k] >> 15);
error[index / 8] ^= bit << (index % 64);
for (size_t i = 1 ; i < k ; ++i) {
for (i = 1 ; i < k ; ++i) {
index = PARAM_GF_MUL_ORDER - PQCLEAN_HQC192_CLEAN_gf_log(gammas_sums[i]);
bit = ((uint64_t) 1) ^ ((uint16_t) - w[i] >> 15);
bit = 1 ^ ((uint16_t) - w[i] >> 15);
error[index / 64] ^= bit << (index % 64);
index = PARAM_GF_MUL_ORDER - PQCLEAN_HQC192_CLEAN_gf_log(gammas_sums[i] ^ 1);
bit = ((uint64_t) 1) ^ ((uint16_t) - w[k + i] >> 15);
bit = 1 ^ ((uint16_t) - w[k + i] >> 15);
error[index / 64] ^= bit << (index % 64);
}
}

查看文件

@ -19,8 +19,10 @@
static void compute_fft_betas(uint16_t *betas);
static void compute_subset_sums(uint16_t *subset_sums, const uint16_t *set, size_t set_size);
static void radix_t(uint16_t *f, const uint16_t *f0, const uint16_t *f1, uint32_t m_f);
static void radix_t_big(uint16_t *f, const uint16_t *f0, const uint16_t *f1, uint32_t m_f);
static void fft_t_rec(uint16_t *f, const uint16_t *w, size_t f_coeffs, uint8_t m, uint32_t m_f, const uint16_t *betas);
static void radix(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f);
static void radix_big(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f);
static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32_t m_f, const uint16_t *betas);
@ -30,7 +32,8 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32
* @param[out] betas Array of size PARAM_M-1
*/
static void compute_fft_betas(uint16_t *betas) {
for (size_t i = 0 ; i < PARAM_M - 1 ; ++i) {
size_t i;
for (i = 0 ; i < PARAM_M - 1 ; ++i) {
betas[i] = 1 << (PARAM_M - 1 - i);
}
}
@ -48,10 +51,11 @@ static void compute_fft_betas(uint16_t *betas) {
* @param[in] set_size Size of the array set
*/
static void compute_subset_sums(uint16_t *subset_sums, const uint16_t *set, size_t set_size) {
size_t i, j;
subset_sums[0] = 0;
for (size_t i = 0 ; i < set_size ; ++i) {
for (size_t j = 0 ; j < (1U << i) ; ++j) {
for (i = 0 ; i < set_size ; ++i) {
for (j = 0 ; j < (1U << i) ; ++j) {
subset_sums[(1 << i) + j] = set[i] ^ subset_sums[j];
}
}
@ -90,7 +94,7 @@ static void radix_t(uint16_t *f, const uint16_t *f0, const uint16_t *f1, uint32_
f[13] = f[7] ^ f[9] ^ f[11] ^ f1[6];
f[14] = f[6] ^ f0[6] ^ f0[7] ^ f1[6];
f[15] = f[7] ^ f0[7] ^ f1[7];
return;
break;
case 3:
f[0] = f0[0];
@ -101,49 +105,53 @@ static void radix_t(uint16_t *f, const uint16_t *f0, const uint16_t *f1, uint32_
f[5] = f[3] ^ f1[2];
f[6] = f[4] ^ f0[3] ^ f1[2];
f[7] = f[3] ^ f0[3] ^ f1[3];
return;
break;
case 2:
f[0] = f0[0];
f[1] = f1[0];
f[2] = f0[1] ^ f1[0];
f[3] = f[2] ^ f1[1];
return;
break;
case 1:
f[0] = f0[0];
f[1] = f1[0];
return;
break;
default:
;
radix_t_big(f, f0, f1, m_f);
break;
}
}
size_t n = 1 << (m_f - 2);
static void radix_t_big(uint16_t *f, const uint16_t *f0, const uint16_t *f1, uint32_t m_f) {
uint16_t Q0[1 << (PARAM_FFT_T - 2)] = {0};
uint16_t Q1[1 << (PARAM_FFT_T - 2)] = {0};
uint16_t R0[1 << (PARAM_FFT_T - 2)] = {0};
uint16_t R1[1 << (PARAM_FFT_T - 2)] = {0};
uint16_t Q0[1 << (PARAM_FFT_T - 2)];
uint16_t Q1[1 << (PARAM_FFT_T - 2)];
uint16_t R0[1 << (PARAM_FFT_T - 2)];
uint16_t R1[1 << (PARAM_FFT_T - 2)];
uint16_t Q[1 << 2 * (PARAM_FFT_T - 2)] = {0};
uint16_t R[1 << 2 * (PARAM_FFT_T - 2)] = {0};
uint16_t Q[1 << 2 * (PARAM_FFT_T - 2)];
uint16_t R[1 << 2 * (PARAM_FFT_T - 2)];
size_t i, n;
memcpy(Q0, f0 + n, 2 * n);
memcpy(Q1, f1 + n, 2 * n);
memcpy(R0, f0, 2 * n);
memcpy(R1, f1, 2 * n);
n = 1 << (m_f - 2);
memcpy(Q0, f0 + n, 2 * n);
memcpy(Q1, f1 + n, 2 * n);
memcpy(R0, f0, 2 * n);
memcpy(R1, f1, 2 * n);
radix_t (Q, Q0, Q1, m_f - 1);
radix_t (R, R0, R1, m_f - 1);
radix_t (Q, Q0, Q1, m_f - 1);
radix_t (R, R0, R1, m_f - 1);
memcpy(f, R, 4 * n);
memcpy(f + 2 * n, R + n, 2 * n);
memcpy(f + 3 * n, Q + n, 2 * n);
memcpy(f, R, 4 * n);
memcpy(f + 2 * n, R + n, 2 * n);
memcpy(f + 3 * n, Q + n, 2 * n);
for (size_t i = 0 ; i < n ; ++i) {
f[2 * n + i] ^= Q[i];
f[3 * n + i] ^= f[2 * n + i];
}
for (i = 0 ; i < n ; ++i) {
f[2 * n + i] ^= Q[i];
f[3 * n + i] ^= f[2 * n + i];
}
}
@ -162,29 +170,31 @@ static void radix_t(uint16_t *f, const uint16_t *f0, const uint16_t *f1, uint32_
* @param[in] betas FFT constants
*/
static void fft_t_rec(uint16_t *f, const uint16_t *w, size_t f_coeffs, uint8_t m, uint32_t m_f, const uint16_t *betas) {
size_t k = 1 << (m - 1);
uint16_t gammas[PARAM_M - 2];
uint16_t deltas[PARAM_M - 2];
uint16_t gammas_sums[1 << (PARAM_M - 1)];
uint16_t gammas[PARAM_M - 2] = {0};
uint16_t deltas[PARAM_M - 2] = {0};
uint16_t gammas_sums[1 << (PARAM_M - 1)] = {0};
uint16_t u[1 << (PARAM_M - 2)] = {0};
uint16_t f0[1 << (PARAM_FFT_T - 2)] = {0};
uint16_t f1[1 << (PARAM_FFT_T - 2)] = {0};
uint16_t betas_sums[1 << (PARAM_M - 1)] = {0};
uint16_t v[1 << (PARAM_M - 2)] = {0};
uint16_t beta_m_pow;
size_t i, j, k;
// Step 1
if (m_f == 1) {
f[0] = 0;
for (size_t i = 0 ; i < (1U << m) ; ++i) {
for (i = 0 ; i < (1U << m) ; ++i) {
f[0] ^= w[i];
}
f[1] = 0;
uint16_t betas_sums[1 << (PARAM_M - 1)];
betas_sums[0] = 0;
for (size_t j = 0 ; j < m ; ++j) {
for (size_t k = 0 ; k < (1U << j) ; ++k) {
size_t index = (1 << j) + k;
betas_sums[index] = betas_sums[k] ^ betas[j];
f[1] ^= PQCLEAN_HQC256_CLEAN_gf_mul(betas_sums[index], w[index]);
for (j = 0 ; j < m ; ++j) {
for (k = 0 ; k < (1U << j) ; ++k) {
betas_sums[(1 << j) + k] = betas_sums[k] ^ betas[j];
f[1] ^= PQCLEAN_HQC256_CLEAN_gf_mul(betas_sums[(1 << j) + k], w[(1 << j) + k]);
}
}
@ -192,7 +202,7 @@ static void fft_t_rec(uint16_t *f, const uint16_t *w, size_t f_coeffs, uint8_t m
}
// Compute gammas and deltas
for (uint8_t i = 0 ; i < m - 1 ; ++i) {
for (i = 0 ; i + 1 < m ; ++i) {
gammas[i] = PQCLEAN_HQC256_CLEAN_gf_mul(betas[i], PQCLEAN_HQC256_CLEAN_gf_inverse(betas[m - 1]));
deltas[i] = PQCLEAN_HQC256_CLEAN_gf_square(gammas[i]) ^ gammas[i];
}
@ -206,23 +216,22 @@ static void fft_t_rec(uint16_t *f, const uint16_t *w, size_t f_coeffs, uint8_t m
* Transpose:
* u[i] = w[i] + w[k+i]
* v[i] = G[i].w[i] + (G[i]+1).w[k+i] = G[i].u[i] + w[k+i] */
k = 1 << ((m - 1) & 0xf); // &0xf is to let the compiler know that m-1 is small.
if (f_coeffs <= 3) { // 3-coefficient polynomial f case
// Step 5: Compute f0 from u and f1 from v
f1[1] = 0;
u[0] = w[0] ^ w[k];
f1[0] = w[k];
for (size_t i = 1 ; i < k ; ++i) {
for (i = 1 ; i < k ; ++i) {
u[i] = w[i] ^ w[k + i];
f1[0] ^= PQCLEAN_HQC256_CLEAN_gf_mul(gammas_sums[i], u[i]) ^ w[k + i];
}
fft_t_rec(f0, u, (f_coeffs + 1) / 2, m - 1, m_f - 1, deltas);
} else {
uint16_t v[1 << (PARAM_M - 2)] = {0};
u[0] = w[0] ^ w[k];
v[0] = w[k];
for (size_t i = 1 ; i < k ; ++i) {
for (i = 1 ; i < k ; ++i) {
u[i] = w[i] ^ w[k + i];
v[i] = PQCLEAN_HQC256_CLEAN_gf_mul(gammas_sums[i], u[i]) ^ w[k + i];
}
@ -237,8 +246,8 @@ static void fft_t_rec(uint16_t *f, const uint16_t *w, size_t f_coeffs, uint8_t m
// Step 2: compute f from g
if (betas[m - 1] != 1) {
uint16_t beta_m_pow = 1;
for (size_t i = 1 ; i < (1U << m_f) ; ++i) {
beta_m_pow = 1;
for (i = 1 ; i < (1U << m_f) ; ++i) {
beta_m_pow = PQCLEAN_HQC256_CLEAN_gf_mul(beta_m_pow, betas[m - 1]);
f[i] = PQCLEAN_HQC256_CLEAN_gf_mul(beta_m_pow, f[i]);
}
@ -261,14 +270,15 @@ static void fft_t_rec(uint16_t *f, const uint16_t *w, size_t f_coeffs, uint8_t m
*/
void PQCLEAN_HQC256_CLEAN_fft_t(uint16_t *f, const uint16_t *w, size_t f_coeffs) {
// Transposed from Gao and Mateer algorithm
uint16_t betas[PARAM_M - 1];
uint16_t betas_sums[1 << (PARAM_M - 1)];
size_t k = 1 << (PARAM_M - 1);
uint16_t betas[PARAM_M - 1] = {0};
uint16_t betas_sums[1 << (PARAM_M - 1)] = {0};
uint16_t u[1 << (PARAM_M - 1)] = {0};
uint16_t v[1 << (PARAM_M - 1)] = {0};
uint16_t deltas[PARAM_M - 1];
uint16_t f0[1 << (PARAM_FFT_T - 1)];
uint16_t f1[1 << (PARAM_FFT_T - 1)];
uint16_t deltas[PARAM_M - 1] = {0};
uint16_t f0[1 << (PARAM_FFT_T - 1)] = {0};
uint16_t f1[1 << (PARAM_FFT_T - 1)] = {0};
size_t i, k;
compute_fft_betas(betas);
compute_subset_sums(betas_sums, betas, PARAM_M - 1);
@ -281,15 +291,16 @@ void PQCLEAN_HQC256_CLEAN_fft_t(uint16_t *f, const uint16_t *w, size_t f_coeffs)
* Transpose:
* u[i] = w[i] + w[k+i]
* v[i] = G[i].w[i] + (G[i]+1).w[k+i] = G[i].u[i] + w[k+i] */
k = 1 << (PARAM_M - 1);
u[0] = w[0] ^ w[k];
v[0] = w[k];
for (size_t i = 1 ; i < k ; ++i) {
for (i = 1 ; i < k ; ++i) {
u[i] = w[i] ^ w[k + i];
v[i] = PQCLEAN_HQC256_CLEAN_gf_mul(betas_sums[i], u[i]) ^ w[k + i];
}
// Compute deltas
for (size_t i = 0 ; i < PARAM_M - 1 ; ++i) {
for (i = 0 ; i < PARAM_M - 1 ; ++i) {
deltas[i] = PQCLEAN_HQC256_CLEAN_gf_square(betas[i]) ^ betas[i];
}
@ -337,7 +348,7 @@ static void radix(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f) {
f1[2] = f[3] ^ f1[1] ^ f0[3];
f0[1] = f[2] ^ f0[2] ^ f1[1];
f1[0] = f[1] ^ f0[1];
return;
break;
case 3:
f0[0] = f[0];
@ -348,51 +359,56 @@ static void radix(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f) {
f1[3] = f[7];
f0[1] = f[2] ^ f0[2] ^ f1[1];
f1[0] = f[1] ^ f0[1];
return;
break;
case 2:
f0[0] = f[0];
f0[1] = f[2] ^ f[3];
f1[0] = f[1] ^ f0[1];
f1[1] = f[3];
return;
break;
case 1:
f0[0] = f[0];
f1[0] = f[1];
return;
break;
default:
;
size_t n = 1 << (m_f - 2);
uint16_t Q[2 * (1 << (PARAM_FFT - 2))];
uint16_t R[2 * (1 << (PARAM_FFT - 2))];
uint16_t Q0[1 << (PARAM_FFT - 2)];
uint16_t Q1[1 << (PARAM_FFT - 2)];
uint16_t R0[1 << (PARAM_FFT - 2)];
uint16_t R1[1 << (PARAM_FFT - 2)];
memcpy(Q, f + 3 * n, 2 * n);
memcpy(Q + n, f + 3 * n, 2 * n);
memcpy(R, f, 4 * n);
for (size_t i = 0 ; i < n ; ++i) {
Q[i] ^= f[2 * n + i];
R[n + i] ^= Q[i];
}
radix(Q0, Q1, Q, m_f - 1);
radix(R0, R1, R, m_f - 1);
memcpy(f0, R0, 2 * n);
memcpy(f0 + n, Q0, 2 * n);
memcpy(f1, R1, 2 * n);
memcpy(f1 + n, Q1, 2 * n);
radix_big(f0, f1, f, m_f);
break;
}
}
static void radix_big(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f) {
uint16_t Q[2 * (1 << (PARAM_FFT - 2))] = {0};
uint16_t R[2 * (1 << (PARAM_FFT - 2))] = {0};
uint16_t Q0[1 << (PARAM_FFT - 2)] = {0};
uint16_t Q1[1 << (PARAM_FFT - 2)] = {0};
uint16_t R0[1 << (PARAM_FFT - 2)] = {0};
uint16_t R1[1 << (PARAM_FFT - 2)] = {0};
size_t i, n;
n = 1 << (m_f - 2);
memcpy(Q, f + 3 * n, 2 * n);
memcpy(Q + n, f + 3 * n, 2 * n);
memcpy(R, f, 4 * n);
for (i = 0 ; i < n ; ++i) {
Q[i] ^= f[2 * n + i];
R[n + i] ^= Q[i];
}
radix(Q0, Q1, Q, m_f - 1);
radix(R0, R1, R, m_f - 1);
memcpy(f0, R0, 2 * n);
memcpy(f0 + n, Q0, 2 * n);
memcpy(f1, R1, 2 * n);
memcpy(f1 + n, Q1, 2 * n);
}
/**
@ -408,25 +424,27 @@ static void radix(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f) {
* @param[in] betas FFT constants
*/
static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32_t m_f, const uint16_t *betas) {
uint16_t f0[1 << (PARAM_FFT - 2)];
uint16_t f1[1 << (PARAM_FFT - 2)];
uint16_t gammas[PARAM_M - 2];
uint16_t deltas[PARAM_M - 2];
size_t k = 1 << (m - 1);
uint16_t gammas_sums[1 << (PARAM_M - 2)];
uint16_t f0[1 << (PARAM_FFT - 2)] = {0};
uint16_t f1[1 << (PARAM_FFT - 2)] = {0};
uint16_t gammas[PARAM_M - 2] = {0};
uint16_t deltas[PARAM_M - 2] = {0};
uint16_t gammas_sums[1 << (PARAM_M - 2)] = {0};
uint16_t u[1 << (PARAM_M - 2)] = {0};
uint16_t v[1 << (PARAM_M - 2)] = {0};
uint16_t tmp[PARAM_M - (PARAM_FFT - 1)] = {0};
uint16_t beta_m_pow;
size_t i, j, k;
// Step 1
if (m_f == 1) {
uint16_t tmp[PARAM_M - (PARAM_FFT - 1)];
for (size_t i = 0 ; i < m ; ++i) {
for (i = 0 ; i < m ; ++i) {
tmp[i] = PQCLEAN_HQC256_CLEAN_gf_mul(betas[i], f[1]);
}
w[0] = f[0];
for (size_t j = 0 ; j < m ; ++j) {
for (size_t k = 0 ; k < (1U << j) ; ++k) {
for (j = 0 ; j < m ; ++j) {
for (k = 0 ; k < (1U << j) ; ++k) {
w[(1 << j) + k] = w[k] ^ tmp[j];
}
}
@ -436,8 +454,8 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32
// Step 2: compute g
if (betas[m - 1] != 1) {
uint16_t beta_m_pow = 1;
for (size_t i = 1 ; i < (1U << m_f) ; ++i) {
beta_m_pow = 1;
for (i = 1 ; i < (1U << m_f) ; ++i) {
beta_m_pow = PQCLEAN_HQC256_CLEAN_gf_mul(beta_m_pow, betas[m - 1]);
f[i] = PQCLEAN_HQC256_CLEAN_gf_mul(beta_m_pow, f[i]);
}
@ -447,7 +465,7 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32
radix(f0, f1, f, m_f);
// Step 4: compute gammas and deltas
for (uint8_t i = 0 ; i < m - 1 ; ++i) {
for (i = 0 ; i + 1 < m ; ++i) {
gammas[i] = PQCLEAN_HQC256_CLEAN_gf_mul(betas[i], PQCLEAN_HQC256_CLEAN_gf_inverse(betas[m - 1]));
deltas[i] = PQCLEAN_HQC256_CLEAN_gf_square(gammas[i]) ^ gammas[i];
}
@ -458,10 +476,11 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32
// Step 5
fft_rec(u, f0, (f_coeffs + 1) / 2, m - 1, m_f - 1, deltas);
k = 1 << ((m - 1) & 0xf); // &0xf is to let the compiler know that m-1 is small.
if (f_coeffs <= 3) { // 3-coefficient polynomial f case: f1 is constant
w[0] = u[0];
w[k] = u[0] ^ f1[0];
for (size_t i = 1 ; i < k ; ++i) {
for (i = 1 ; i < k ; ++i) {
w[i] = u[i] ^ PQCLEAN_HQC256_CLEAN_gf_mul(gammas_sums[i], f1[0]);
w[k + i] = w[i] ^ f1[0];
}
@ -472,7 +491,7 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32
memcpy(w + k, v, 2 * k);
w[0] = u[0];
w[k] ^= u[0];
for (size_t i = 1 ; i < k ; ++i) {
for (i = 1 ; i < k ; ++i) {
w[i] = u[i] ^ PQCLEAN_HQC256_CLEAN_gf_mul(gammas_sums[i], v[i]);
w[k + i] ^= w[i];
}
@ -501,14 +520,15 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32
* @param[in] f_coeffs Number coefficients of f (i.e. deg(f)+1)
*/
void PQCLEAN_HQC256_CLEAN_fft(uint16_t *w, const uint16_t *f, size_t f_coeffs) {
uint16_t betas[PARAM_M - 1];
uint16_t betas_sums[1 << (PARAM_M - 1)];
uint16_t f0[1 << (PARAM_FFT - 1)];
uint16_t f1[1 << (PARAM_FFT - 1)];
uint16_t deltas[PARAM_M - 1];
size_t k = 1 << (PARAM_M - 1);
uint16_t u[1 << (PARAM_M - 1)];
uint16_t v[1 << (PARAM_M - 1)];
uint16_t betas[PARAM_M - 1] = {0};
uint16_t betas_sums[1 << (PARAM_M - 1)] = {0};
uint16_t f0[1 << (PARAM_FFT - 1)] = {0};
uint16_t f1[1 << (PARAM_FFT - 1)] = {0};
uint16_t deltas[PARAM_M - 1] = {0};
uint16_t u[1 << (PARAM_M - 1)] = {0};
uint16_t v[1 << (PARAM_M - 1)] = {0};
size_t i, k;
// Follows Gao and Mateer algorithm
compute_fft_betas(betas);
@ -524,7 +544,7 @@ void PQCLEAN_HQC256_CLEAN_fft(uint16_t *w, const uint16_t *f, size_t f_coeffs) {
radix(f0, f1, f, PARAM_FFT);
// Step 4: Compute deltas
for (size_t i = 0 ; i < PARAM_M - 1 ; ++i) {
for (i = 0 ; i < PARAM_M - 1 ; ++i) {
deltas[i] = PQCLEAN_HQC256_CLEAN_gf_square(betas[i]) ^ betas[i];
}
@ -532,6 +552,7 @@ void PQCLEAN_HQC256_CLEAN_fft(uint16_t *w, const uint16_t *f, size_t f_coeffs) {
fft_rec(u, f0, (f_coeffs + 1) / 2, PARAM_M - 1, PARAM_FFT - 1, deltas);
fft_rec(v, f1, f_coeffs / 2, PARAM_M - 1, PARAM_FFT - 1, deltas);
k = 1 << (PARAM_M - 1);
// Step 6, 7 and error polynomial computation
memcpy(w + k, v, 2 * k);
@ -542,7 +563,7 @@ void PQCLEAN_HQC256_CLEAN_fft(uint16_t *w, const uint16_t *f, size_t f_coeffs) {
w[k] ^= u[0];
// Find other roots
for (size_t i = 1 ; i < k ; ++i) {
for (i = 1 ; i < k ; ++i) {
w[i] = u[i] ^ PQCLEAN_HQC256_CLEAN_gf_mul(betas_sums[i], v[i]);
w[k + i] ^= w[i];
}
@ -561,21 +582,20 @@ void PQCLEAN_HQC256_CLEAN_fft(uint16_t *w, const uint16_t *f, size_t f_coeffs) {
* @param[in] vector Array of size VEC_N1_SIZE_BYTES
*/
void PQCLEAN_HQC256_CLEAN_fft_t_preprocess_bch_codeword(uint16_t *w, const uint64_t *vector) {
uint16_t r[1 << PARAM_M];
uint16_t gammas[PARAM_M - 1];
uint16_t gammas_sums[1 << (PARAM_M - 1)];
size_t k = 1 << (PARAM_M - 1);
uint16_t r[1 << PARAM_M] = {0};
uint16_t gammas[PARAM_M - 1] = {0};
uint16_t gammas_sums[1 << (PARAM_M - 1)] = {0};
size_t i, j, k;
// Unpack the received word vector into array r
size_t i;
for (i = 0 ; i < VEC_N1_SIZE_64 - (PARAM_N1 % 64 != 0) ; ++i) {
for (size_t j = 0 ; j < 64 ; ++j) {
for (j = 0 ; j < 64 ; ++j) {
r[64 * i + j] = (uint8_t) ((vector[i] >> j) & 1);
}
}
// Last byte
for (size_t j = 0 ; j < PARAM_N1 % 64 ; ++j) {
for (j = 0 ; j < PARAM_N1 % 64 ; ++j) {
r[64 * i + j] = (uint8_t) ((vector[i] >> j) & 1);
}
@ -586,9 +606,10 @@ void PQCLEAN_HQC256_CLEAN_fft_t_preprocess_bch_codeword(uint16_t *w, const uint6
compute_subset_sums(gammas_sums, gammas, PARAM_M - 1);
// Twist and permute r adequately to obtain w
k = 1 << (PARAM_M - 1);
w[0] = 0;
w[k] = -r[0] & 1;
for (size_t i = 1 ; i < k ; ++i) {
for (i = 1 ; i < k ; ++i) {
w[i] = -r[PQCLEAN_HQC256_CLEAN_gf_log(gammas_sums[i])] & gammas_sums[i];
w[k + i] = -r[PQCLEAN_HQC256_CLEAN_gf_log(gammas_sums[i] ^ 1)] & (gammas_sums[i] ^ 1);
}
@ -603,25 +624,28 @@ void PQCLEAN_HQC256_CLEAN_fft_t_preprocess_bch_codeword(uint16_t *w, const uint6
* @param[in] w Array of size 2^PARAM_M
*/
void PQCLEAN_HQC256_CLEAN_fft_retrieve_bch_error_poly(uint64_t *error, const uint16_t *w) {
uint16_t gammas[PARAM_M - 1];
uint16_t gammas_sums[1 << (PARAM_M - 1)];
size_t k = 1 << (PARAM_M - 1);
size_t index = PARAM_GF_MUL_ORDER;
uint16_t gammas[PARAM_M - 1] = {0};
uint16_t gammas_sums[1 << (PARAM_M - 1)] = {0};
uint64_t bit;
size_t i, k, index;
compute_fft_betas(gammas);
compute_subset_sums(gammas_sums, gammas, PARAM_M - 1);
error[0] ^= ((uint64_t) 1) ^ ((uint16_t) - w[0] >> 15);
uint64_t bit = ((uint64_t) 1) ^ ((uint16_t) - w[k] >> 15);
error[0] ^= 1 ^ ((uint16_t) - w[0] >> 15);
k = 1 << (PARAM_M - 1);
index = PARAM_GF_MUL_ORDER;
bit = 1 ^ ((uint16_t) - w[k] >> 15);
error[index / 8] ^= bit << (index % 64);
for (size_t i = 1 ; i < k ; ++i) {
for (i = 1 ; i < k ; ++i) {
index = PARAM_GF_MUL_ORDER - PQCLEAN_HQC256_CLEAN_gf_log(gammas_sums[i]);
bit = ((uint64_t) 1) ^ ((uint16_t) - w[i] >> 15);
bit = 1 ^ ((uint16_t) - w[i] >> 15);
error[index / 64] ^= bit << (index % 64);
index = PARAM_GF_MUL_ORDER - PQCLEAN_HQC256_CLEAN_gf_log(gammas_sums[i] ^ 1);
bit = ((uint64_t) 1) ^ ((uint16_t) - w[k + i] >> 15);
bit = 1 ^ ((uint16_t) - w[k + i] >> 15);
error[index / 64] ^= bit << (index % 64);
}
}

查看文件

@ -18,6 +18,7 @@
static void compute_fft_betas(uint16_t *betas);
static void compute_subset_sums(uint16_t *subset_sums, const uint16_t *set, size_t set_size);
static void radix(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f);
static void radix_big(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f);
static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32_t m_f, const uint16_t *betas);
@ -27,7 +28,8 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32
* @param[out] betas Array of size PARAM_M-1
*/
static void compute_fft_betas(uint16_t *betas) {
for (size_t i = 0 ; i < PARAM_M - 1 ; ++i) {
size_t i;
for (i = 0 ; i < PARAM_M - 1 ; ++i) {
betas[i] = 1 << (PARAM_M - 1 - i);
}
}
@ -45,10 +47,11 @@ static void compute_fft_betas(uint16_t *betas) {
* @param[in] set_size Size of the array set
*/
static void compute_subset_sums(uint16_t *subset_sums, const uint16_t *set, size_t set_size) {
size_t i, j;
subset_sums[0] = 0;
for (size_t i = 0 ; i < set_size ; ++i) {
for (size_t j = 0 ; j < (1U << i) ; ++j) {
for (i = 0 ; i < set_size ; ++i) {
for (j = 0 ; j < (1U << i) ; ++j) {
subset_sums[(1 << i) + j] = set[i] ^ subset_sums[j];
}
}
@ -88,7 +91,7 @@ static void radix(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f) {
f1[2] = f[3] ^ f1[1] ^ f0[3];
f0[1] = f[2] ^ f0[2] ^ f1[1];
f1[0] = f[1] ^ f0[1];
return;
break;
case 3:
f0[0] = f[0];
@ -99,51 +102,56 @@ static void radix(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f) {
f1[3] = f[7];
f0[1] = f[2] ^ f0[2] ^ f1[1];
f1[0] = f[1] ^ f0[1];
return;
break;
case 2:
f0[0] = f[0];
f0[1] = f[2] ^ f[3];
f1[0] = f[1] ^ f0[1];
f1[1] = f[3];
return;
break;
case 1:
f0[0] = f[0];
f1[0] = f[1];
return;
break;
default:
;
size_t n = 1 << (m_f - 2);
uint16_t Q[2 * (1 << (PARAM_FFT - 2))];
uint16_t R[2 * (1 << (PARAM_FFT - 2))];
uint16_t Q0[1 << (PARAM_FFT - 2)];
uint16_t Q1[1 << (PARAM_FFT - 2)];
uint16_t R0[1 << (PARAM_FFT - 2)];
uint16_t R1[1 << (PARAM_FFT - 2)];
memcpy(Q, f + 3 * n, 2 * n);
memcpy(Q + n, f + 3 * n, 2 * n);
memcpy(R, f, 4 * n);
for (size_t i = 0 ; i < n ; ++i) {
Q[i] ^= f[2 * n + i];
R[n + i] ^= Q[i];
}
radix(Q0, Q1, Q, m_f - 1);
radix(R0, R1, R, m_f - 1);
memcpy(f0, R0, 2 * n);
memcpy(f0 + n, Q0, 2 * n);
memcpy(f1, R1, 2 * n);
memcpy(f1 + n, Q1, 2 * n);
radix_big(f0, f1, f, m_f);
break;
}
}
static void radix_big(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f) {
uint16_t Q[2 * (1 << (PARAM_FFT - 2))] = {0};
uint16_t R[2 * (1 << (PARAM_FFT - 2))] = {0};
uint16_t Q0[1 << (PARAM_FFT - 2)] = {0};
uint16_t Q1[1 << (PARAM_FFT - 2)] = {0};
uint16_t R0[1 << (PARAM_FFT - 2)] = {0};
uint16_t R1[1 << (PARAM_FFT - 2)] = {0};
size_t i, n;
n = 1 << (m_f - 2);
memcpy(Q, f + 3 * n, 2 * n);
memcpy(Q + n, f + 3 * n, 2 * n);
memcpy(R, f, 4 * n);
for (i = 0 ; i < n ; ++i) {
Q[i] ^= f[2 * n + i];
R[n + i] ^= Q[i];
}
radix(Q0, Q1, Q, m_f - 1);
radix(R0, R1, R, m_f - 1);
memcpy(f0, R0, 2 * n);
memcpy(f0 + n, Q0, 2 * n);
memcpy(f1, R1, 2 * n);
memcpy(f1 + n, Q1, 2 * n);
}
/**
@ -159,25 +167,27 @@ static void radix(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f) {
* @param[in] betas FFT constants
*/
static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32_t m_f, const uint16_t *betas) {
uint16_t f0[1 << (PARAM_FFT - 2)];
uint16_t f1[1 << (PARAM_FFT - 2)];
uint16_t gammas[PARAM_M - 2];
uint16_t deltas[PARAM_M - 2];
size_t k = 1 << (m - 1);
uint16_t gammas_sums[1 << (PARAM_M - 2)];
uint16_t f0[1 << (PARAM_FFT - 2)] = {0};
uint16_t f1[1 << (PARAM_FFT - 2)] = {0};
uint16_t gammas[PARAM_M - 2] = {0};
uint16_t deltas[PARAM_M - 2] = {0};
uint16_t gammas_sums[1 << (PARAM_M - 2)] = {0};
uint16_t u[1 << (PARAM_M - 2)] = {0};
uint16_t v[1 << (PARAM_M - 2)] = {0};
uint16_t tmp[PARAM_M - (PARAM_FFT - 1)] = {0};
uint16_t beta_m_pow;
size_t i, j, k;
// Step 1
if (m_f == 1) {
uint16_t tmp[PARAM_M - (PARAM_FFT - 1)];
for (size_t i = 0 ; i < m ; ++i) {
for (i = 0 ; i < m ; ++i) {
tmp[i] = PQCLEAN_HQCRMRS128_CLEAN_gf_mul(betas[i], f[1]);
}
w[0] = f[0];
for (size_t j = 0 ; j < m ; ++j) {
for (size_t k = 0 ; k < (1U << j) ; ++k) {
for (j = 0 ; j < m ; ++j) {
for (k = 0 ; k < (1U << j) ; ++k) {
w[(1 << j) + k] = w[k] ^ tmp[j];
}
}
@ -187,8 +197,8 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32
// Step 2: compute g
if (betas[m - 1] != 1) {
uint16_t beta_m_pow = 1;
for (size_t i = 1 ; i < (1U << m_f) ; ++i) {
beta_m_pow = 1;
for (i = 1 ; i < (1U << m_f) ; ++i) {
beta_m_pow = PQCLEAN_HQCRMRS128_CLEAN_gf_mul(beta_m_pow, betas[m - 1]);
f[i] = PQCLEAN_HQCRMRS128_CLEAN_gf_mul(beta_m_pow, f[i]);
}
@ -198,7 +208,7 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32
radix(f0, f1, f, m_f);
// Step 4: compute gammas and deltas
for (uint8_t i = 0 ; i < m - 1 ; ++i) {
for (i = 0 ; i + 1 < m ; ++i) {
gammas[i] = PQCLEAN_HQCRMRS128_CLEAN_gf_mul(betas[i], PQCLEAN_HQCRMRS128_CLEAN_gf_inverse(betas[m - 1]));
deltas[i] = PQCLEAN_HQCRMRS128_CLEAN_gf_square(gammas[i]) ^ gammas[i];
}
@ -209,10 +219,11 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32
// Step 5
fft_rec(u, f0, (f_coeffs + 1) / 2, m - 1, m_f - 1, deltas);
k = 1 << ((m - 1) & 0xf); // &0xf is to let the compiler know that m-1 is small.
if (f_coeffs <= 3) { // 3-coefficient polynomial f case: f1 is constant
w[0] = u[0];
w[k] = u[0] ^ f1[0];
for (size_t i = 1 ; i < k ; ++i) {
for (i = 1 ; i < k ; ++i) {
w[i] = u[i] ^ PQCLEAN_HQCRMRS128_CLEAN_gf_mul(gammas_sums[i], f1[0]);
w[k + i] = w[i] ^ f1[0];
}
@ -223,7 +234,7 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32
memcpy(w + k, v, 2 * k);
w[0] = u[0];
w[k] ^= u[0];
for (size_t i = 1 ; i < k ; ++i) {
for (i = 1 ; i < k ; ++i) {
w[i] = u[i] ^ PQCLEAN_HQCRMRS128_CLEAN_gf_mul(gammas_sums[i], v[i]);
w[k + i] ^= w[i];
}
@ -252,14 +263,15 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32
* @param[in] f_coeffs Number coefficients of f (i.e. deg(f)+1)
*/
void PQCLEAN_HQCRMRS128_CLEAN_fft(uint16_t *w, const uint16_t *f, size_t f_coeffs) {
uint16_t betas[PARAM_M - 1];
uint16_t betas_sums[1 << (PARAM_M - 1)];
uint16_t f0[1 << (PARAM_FFT - 1)];
uint16_t f1[1 << (PARAM_FFT - 1)];
uint16_t deltas[PARAM_M - 1];
size_t k = 1 << (PARAM_M - 1);
uint16_t u[1 << (PARAM_M - 1)];
uint16_t v[1 << (PARAM_M - 1)];
uint16_t betas[PARAM_M - 1] = {0};
uint16_t betas_sums[1 << (PARAM_M - 1)] = {0};
uint16_t f0[1 << (PARAM_FFT - 1)] = {0};
uint16_t f1[1 << (PARAM_FFT - 1)] = {0};
uint16_t deltas[PARAM_M - 1] = {0};
uint16_t u[1 << (PARAM_M - 1)] = {0};
uint16_t v[1 << (PARAM_M - 1)] = {0};
size_t i, k;
// Follows Gao and Mateer algorithm
compute_fft_betas(betas);
@ -275,7 +287,7 @@ void PQCLEAN_HQCRMRS128_CLEAN_fft(uint16_t *w, const uint16_t *f, size_t f_coeff
radix(f0, f1, f, PARAM_FFT);
// Step 4: Compute deltas
for (size_t i = 0 ; i < PARAM_M - 1 ; ++i) {
for (i = 0 ; i < PARAM_M - 1 ; ++i) {
deltas[i] = PQCLEAN_HQCRMRS128_CLEAN_gf_square(betas[i]) ^ betas[i];
}
@ -283,6 +295,7 @@ void PQCLEAN_HQCRMRS128_CLEAN_fft(uint16_t *w, const uint16_t *f, size_t f_coeff
fft_rec(u, f0, (f_coeffs + 1) / 2, PARAM_M - 1, PARAM_FFT - 1, deltas);
fft_rec(v, f1, f_coeffs / 2, PARAM_M - 1, PARAM_FFT - 1, deltas);
k = 1 << (PARAM_M - 1);
// Step 6, 7 and error polynomial computation
memcpy(w + k, v, 2 * k);
@ -293,7 +306,7 @@ void PQCLEAN_HQCRMRS128_CLEAN_fft(uint16_t *w, const uint16_t *f, size_t f_coeff
w[k] ^= u[0];
// Find other roots
for (size_t i = 1 ; i < k ; ++i) {
for (i = 1 ; i < k ; ++i) {
w[i] = u[i] ^ PQCLEAN_HQCRMRS128_CLEAN_gf_mul(betas_sums[i], v[i]);
w[k + i] ^= w[i];
}
@ -311,17 +324,16 @@ void PQCLEAN_HQCRMRS128_CLEAN_fft(uint16_t *w, const uint16_t *f, size_t f_coeff
void PQCLEAN_HQCRMRS128_CLEAN_fft_retrieve_error_poly(uint8_t *error, const uint16_t *w) {
uint16_t gammas[PARAM_M - 1] = {0};
uint16_t gammas_sums[1 << (PARAM_M - 1)] = {0};
size_t k = 1 << (PARAM_M - 1);
size_t i, k, index;
compute_fft_betas(gammas);
compute_subset_sums(gammas_sums, gammas, PARAM_M - 1);
k = 1 << (PARAM_M - 1);
error[0] ^= 1 ^ ((uint16_t) - w[0] >> 15);
error[0] ^= 1 ^ ((uint16_t) - w[k] >> 15);
size_t index = PARAM_GF_MUL_ORDER;
for (size_t i = 1 ; i < k ; ++i) {
for (i = 1 ; i < k ; ++i) {
index = PARAM_GF_MUL_ORDER - PQCLEAN_HQCRMRS128_CLEAN_gf_log(gammas_sums[i]);
error[index] ^= 1 ^ ((uint16_t) - w[i] >> 15);

查看文件

@ -18,6 +18,7 @@
static void compute_fft_betas(uint16_t *betas);
static void compute_subset_sums(uint16_t *subset_sums, const uint16_t *set, size_t set_size);
static void radix(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f);
static void radix_big(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f);
static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32_t m_f, const uint16_t *betas);
@ -27,7 +28,8 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32
* @param[out] betas Array of size PARAM_M-1
*/
static void compute_fft_betas(uint16_t *betas) {
for (size_t i = 0 ; i < PARAM_M - 1 ; ++i) {
size_t i;
for (i = 0 ; i < PARAM_M - 1 ; ++i) {
betas[i] = 1 << (PARAM_M - 1 - i);
}
}
@ -45,10 +47,11 @@ static void compute_fft_betas(uint16_t *betas) {
* @param[in] set_size Size of the array set
*/
static void compute_subset_sums(uint16_t *subset_sums, const uint16_t *set, size_t set_size) {
size_t i, j;
subset_sums[0] = 0;
for (size_t i = 0 ; i < set_size ; ++i) {
for (size_t j = 0 ; j < (1U << i) ; ++j) {
for (i = 0 ; i < set_size ; ++i) {
for (j = 0 ; j < (1U << i) ; ++j) {
subset_sums[(1 << i) + j] = set[i] ^ subset_sums[j];
}
}
@ -88,7 +91,7 @@ static void radix(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f) {
f1[2] = f[3] ^ f1[1] ^ f0[3];
f0[1] = f[2] ^ f0[2] ^ f1[1];
f1[0] = f[1] ^ f0[1];
return;
break;
case 3:
f0[0] = f[0];
@ -99,51 +102,56 @@ static void radix(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f) {
f1[3] = f[7];
f0[1] = f[2] ^ f0[2] ^ f1[1];
f1[0] = f[1] ^ f0[1];
return;
break;
case 2:
f0[0] = f[0];
f0[1] = f[2] ^ f[3];
f1[0] = f[1] ^ f0[1];
f1[1] = f[3];
return;
break;
case 1:
f0[0] = f[0];
f1[0] = f[1];
return;
break;
default:
;
size_t n = 1 << (m_f - 2);
uint16_t Q[2 * (1 << (PARAM_FFT - 2))];
uint16_t R[2 * (1 << (PARAM_FFT - 2))];
uint16_t Q0[1 << (PARAM_FFT - 2)];
uint16_t Q1[1 << (PARAM_FFT - 2)];
uint16_t R0[1 << (PARAM_FFT - 2)];
uint16_t R1[1 << (PARAM_FFT - 2)];
memcpy(Q, f + 3 * n, 2 * n);
memcpy(Q + n, f + 3 * n, 2 * n);
memcpy(R, f, 4 * n);
for (size_t i = 0 ; i < n ; ++i) {
Q[i] ^= f[2 * n + i];
R[n + i] ^= Q[i];
}
radix(Q0, Q1, Q, m_f - 1);
radix(R0, R1, R, m_f - 1);
memcpy(f0, R0, 2 * n);
memcpy(f0 + n, Q0, 2 * n);
memcpy(f1, R1, 2 * n);
memcpy(f1 + n, Q1, 2 * n);
radix_big(f0, f1, f, m_f);
break;
}
}
static void radix_big(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f) {
uint16_t Q[2 * (1 << (PARAM_FFT - 2))] = {0};
uint16_t R[2 * (1 << (PARAM_FFT - 2))] = {0};
uint16_t Q0[1 << (PARAM_FFT - 2)] = {0};
uint16_t Q1[1 << (PARAM_FFT - 2)] = {0};
uint16_t R0[1 << (PARAM_FFT - 2)] = {0};
uint16_t R1[1 << (PARAM_FFT - 2)] = {0};
size_t i, n;
n = 1 << (m_f - 2);
memcpy(Q, f + 3 * n, 2 * n);
memcpy(Q + n, f + 3 * n, 2 * n);
memcpy(R, f, 4 * n);
for (i = 0 ; i < n ; ++i) {
Q[i] ^= f[2 * n + i];
R[n + i] ^= Q[i];
}
radix(Q0, Q1, Q, m_f - 1);
radix(R0, R1, R, m_f - 1);
memcpy(f0, R0, 2 * n);
memcpy(f0 + n, Q0, 2 * n);
memcpy(f1, R1, 2 * n);
memcpy(f1 + n, Q1, 2 * n);
}
/**
@ -159,25 +167,27 @@ static void radix(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f) {
* @param[in] betas FFT constants
*/
static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32_t m_f, const uint16_t *betas) {
uint16_t f0[1 << (PARAM_FFT - 2)];
uint16_t f1[1 << (PARAM_FFT - 2)];
uint16_t gammas[PARAM_M - 2];
uint16_t deltas[PARAM_M - 2];
size_t k = 1 << (m - 1);
uint16_t gammas_sums[1 << (PARAM_M - 2)];
uint16_t f0[1 << (PARAM_FFT - 2)] = {0};
uint16_t f1[1 << (PARAM_FFT - 2)] = {0};
uint16_t gammas[PARAM_M - 2] = {0};
uint16_t deltas[PARAM_M - 2] = {0};
uint16_t gammas_sums[1 << (PARAM_M - 2)] = {0};
uint16_t u[1 << (PARAM_M - 2)] = {0};
uint16_t v[1 << (PARAM_M - 2)] = {0};
uint16_t tmp[PARAM_M - (PARAM_FFT - 1)] = {0};
uint16_t beta_m_pow;
size_t i, j, k;
// Step 1
if (m_f == 1) {
uint16_t tmp[PARAM_M - (PARAM_FFT - 1)];
for (size_t i = 0 ; i < m ; ++i) {
for (i = 0 ; i < m ; ++i) {
tmp[i] = PQCLEAN_HQCRMRS192_CLEAN_gf_mul(betas[i], f[1]);
}
w[0] = f[0];
for (size_t j = 0 ; j < m ; ++j) {
for (size_t k = 0 ; k < (1U << j) ; ++k) {
for (j = 0 ; j < m ; ++j) {
for (k = 0 ; k < (1U << j) ; ++k) {
w[(1 << j) + k] = w[k] ^ tmp[j];
}
}
@ -187,8 +197,8 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32
// Step 2: compute g
if (betas[m - 1] != 1) {
uint16_t beta_m_pow = 1;
for (size_t i = 1 ; i < (1U << m_f) ; ++i) {
beta_m_pow = 1;
for (i = 1 ; i < (1U << m_f) ; ++i) {
beta_m_pow = PQCLEAN_HQCRMRS192_CLEAN_gf_mul(beta_m_pow, betas[m - 1]);
f[i] = PQCLEAN_HQCRMRS192_CLEAN_gf_mul(beta_m_pow, f[i]);
}
@ -198,7 +208,7 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32
radix(f0, f1, f, m_f);
// Step 4: compute gammas and deltas
for (uint8_t i = 0 ; i < m - 1 ; ++i) {
for (i = 0 ; i + 1 < m ; ++i) {
gammas[i] = PQCLEAN_HQCRMRS192_CLEAN_gf_mul(betas[i], PQCLEAN_HQCRMRS192_CLEAN_gf_inverse(betas[m - 1]));
deltas[i] = PQCLEAN_HQCRMRS192_CLEAN_gf_square(gammas[i]) ^ gammas[i];
}
@ -209,10 +219,11 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32
// Step 5
fft_rec(u, f0, (f_coeffs + 1) / 2, m - 1, m_f - 1, deltas);
k = 1 << ((m - 1) & 0xf); // &0xf is to let the compiler know that m-1 is small.
if (f_coeffs <= 3) { // 3-coefficient polynomial f case: f1 is constant
w[0] = u[0];
w[k] = u[0] ^ f1[0];
for (size_t i = 1 ; i < k ; ++i) {
for (i = 1 ; i < k ; ++i) {
w[i] = u[i] ^ PQCLEAN_HQCRMRS192_CLEAN_gf_mul(gammas_sums[i], f1[0]);
w[k + i] = w[i] ^ f1[0];
}
@ -223,7 +234,7 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32
memcpy(w + k, v, 2 * k);
w[0] = u[0];
w[k] ^= u[0];
for (size_t i = 1 ; i < k ; ++i) {
for (i = 1 ; i < k ; ++i) {
w[i] = u[i] ^ PQCLEAN_HQCRMRS192_CLEAN_gf_mul(gammas_sums[i], v[i]);
w[k + i] ^= w[i];
}
@ -252,14 +263,15 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32
* @param[in] f_coeffs Number coefficients of f (i.e. deg(f)+1)
*/
void PQCLEAN_HQCRMRS192_CLEAN_fft(uint16_t *w, const uint16_t *f, size_t f_coeffs) {
uint16_t betas[PARAM_M - 1];
uint16_t betas_sums[1 << (PARAM_M - 1)];
uint16_t f0[1 << (PARAM_FFT - 1)];
uint16_t f1[1 << (PARAM_FFT - 1)];
uint16_t deltas[PARAM_M - 1];
size_t k = 1 << (PARAM_M - 1);
uint16_t u[1 << (PARAM_M - 1)];
uint16_t v[1 << (PARAM_M - 1)];
uint16_t betas[PARAM_M - 1] = {0};
uint16_t betas_sums[1 << (PARAM_M - 1)] = {0};
uint16_t f0[1 << (PARAM_FFT - 1)] = {0};
uint16_t f1[1 << (PARAM_FFT - 1)] = {0};
uint16_t deltas[PARAM_M - 1] = {0};
uint16_t u[1 << (PARAM_M - 1)] = {0};
uint16_t v[1 << (PARAM_M - 1)] = {0};
size_t i, k;
// Follows Gao and Mateer algorithm
compute_fft_betas(betas);
@ -275,7 +287,7 @@ void PQCLEAN_HQCRMRS192_CLEAN_fft(uint16_t *w, const uint16_t *f, size_t f_coeff
radix(f0, f1, f, PARAM_FFT);
// Step 4: Compute deltas
for (size_t i = 0 ; i < PARAM_M - 1 ; ++i) {
for (i = 0 ; i < PARAM_M - 1 ; ++i) {
deltas[i] = PQCLEAN_HQCRMRS192_CLEAN_gf_square(betas[i]) ^ betas[i];
}
@ -283,6 +295,7 @@ void PQCLEAN_HQCRMRS192_CLEAN_fft(uint16_t *w, const uint16_t *f, size_t f_coeff
fft_rec(u, f0, (f_coeffs + 1) / 2, PARAM_M - 1, PARAM_FFT - 1, deltas);
fft_rec(v, f1, f_coeffs / 2, PARAM_M - 1, PARAM_FFT - 1, deltas);
k = 1 << (PARAM_M - 1);
// Step 6, 7 and error polynomial computation
memcpy(w + k, v, 2 * k);
@ -293,7 +306,7 @@ void PQCLEAN_HQCRMRS192_CLEAN_fft(uint16_t *w, const uint16_t *f, size_t f_coeff
w[k] ^= u[0];
// Find other roots
for (size_t i = 1 ; i < k ; ++i) {
for (i = 1 ; i < k ; ++i) {
w[i] = u[i] ^ PQCLEAN_HQCRMRS192_CLEAN_gf_mul(betas_sums[i], v[i]);
w[k + i] ^= w[i];
}
@ -311,17 +324,16 @@ void PQCLEAN_HQCRMRS192_CLEAN_fft(uint16_t *w, const uint16_t *f, size_t f_coeff
void PQCLEAN_HQCRMRS192_CLEAN_fft_retrieve_error_poly(uint8_t *error, const uint16_t *w) {
uint16_t gammas[PARAM_M - 1] = {0};
uint16_t gammas_sums[1 << (PARAM_M - 1)] = {0};
size_t k = 1 << (PARAM_M - 1);
size_t i, k, index;
compute_fft_betas(gammas);
compute_subset_sums(gammas_sums, gammas, PARAM_M - 1);
k = 1 << (PARAM_M - 1);
error[0] ^= 1 ^ ((uint16_t) - w[0] >> 15);
error[0] ^= 1 ^ ((uint16_t) - w[k] >> 15);
size_t index = PARAM_GF_MUL_ORDER;
for (size_t i = 1 ; i < k ; ++i) {
for (i = 1 ; i < k ; ++i) {
index = PARAM_GF_MUL_ORDER - PQCLEAN_HQCRMRS192_CLEAN_gf_log(gammas_sums[i]);
error[index] ^= 1 ^ ((uint16_t) - w[i] >> 15);

查看文件

@ -18,6 +18,7 @@
static void compute_fft_betas(uint16_t *betas);
static void compute_subset_sums(uint16_t *subset_sums, const uint16_t *set, size_t set_size);
static void radix(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f);
static void radix_big(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f);
static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32_t m_f, const uint16_t *betas);
@ -27,7 +28,8 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32
* @param[out] betas Array of size PARAM_M-1
*/
static void compute_fft_betas(uint16_t *betas) {
for (size_t i = 0 ; i < PARAM_M - 1 ; ++i) {
size_t i;
for (i = 0 ; i < PARAM_M - 1 ; ++i) {
betas[i] = 1 << (PARAM_M - 1 - i);
}
}
@ -45,10 +47,11 @@ static void compute_fft_betas(uint16_t *betas) {
* @param[in] set_size Size of the array set
*/
static void compute_subset_sums(uint16_t *subset_sums, const uint16_t *set, size_t set_size) {
size_t i, j;
subset_sums[0] = 0;
for (size_t i = 0 ; i < set_size ; ++i) {
for (size_t j = 0 ; j < (1U << i) ; ++j) {
for (i = 0 ; i < set_size ; ++i) {
for (j = 0 ; j < (1U << i) ; ++j) {
subset_sums[(1 << i) + j] = set[i] ^ subset_sums[j];
}
}
@ -88,7 +91,7 @@ static void radix(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f) {
f1[2] = f[3] ^ f1[1] ^ f0[3];
f0[1] = f[2] ^ f0[2] ^ f1[1];
f1[0] = f[1] ^ f0[1];
return;
break;
case 3:
f0[0] = f[0];
@ -99,51 +102,56 @@ static void radix(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f) {
f1[3] = f[7];
f0[1] = f[2] ^ f0[2] ^ f1[1];
f1[0] = f[1] ^ f0[1];
return;
break;
case 2:
f0[0] = f[0];
f0[1] = f[2] ^ f[3];
f1[0] = f[1] ^ f0[1];
f1[1] = f[3];
return;
break;
case 1:
f0[0] = f[0];
f1[0] = f[1];
return;
break;
default:
;
size_t n = 1 << (m_f - 2);
uint16_t Q[2 * (1 << (PARAM_FFT - 2))];
uint16_t R[2 * (1 << (PARAM_FFT - 2))];
uint16_t Q0[1 << (PARAM_FFT - 2)];
uint16_t Q1[1 << (PARAM_FFT - 2)];
uint16_t R0[1 << (PARAM_FFT - 2)];
uint16_t R1[1 << (PARAM_FFT - 2)];
memcpy(Q, f + 3 * n, 2 * n);
memcpy(Q + n, f + 3 * n, 2 * n);
memcpy(R, f, 4 * n);
for (size_t i = 0 ; i < n ; ++i) {
Q[i] ^= f[2 * n + i];
R[n + i] ^= Q[i];
}
radix(Q0, Q1, Q, m_f - 1);
radix(R0, R1, R, m_f - 1);
memcpy(f0, R0, 2 * n);
memcpy(f0 + n, Q0, 2 * n);
memcpy(f1, R1, 2 * n);
memcpy(f1 + n, Q1, 2 * n);
radix_big(f0, f1, f, m_f);
break;
}
}
static void radix_big(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f) {
uint16_t Q[2 * (1 << (PARAM_FFT - 2))] = {0};
uint16_t R[2 * (1 << (PARAM_FFT - 2))] = {0};
uint16_t Q0[1 << (PARAM_FFT - 2)] = {0};
uint16_t Q1[1 << (PARAM_FFT - 2)] = {0};
uint16_t R0[1 << (PARAM_FFT - 2)] = {0};
uint16_t R1[1 << (PARAM_FFT - 2)] = {0};
size_t i, n;
n = 1 << (m_f - 2);
memcpy(Q, f + 3 * n, 2 * n);
memcpy(Q + n, f + 3 * n, 2 * n);
memcpy(R, f, 4 * n);
for (i = 0 ; i < n ; ++i) {
Q[i] ^= f[2 * n + i];
R[n + i] ^= Q[i];
}
radix(Q0, Q1, Q, m_f - 1);
radix(R0, R1, R, m_f - 1);
memcpy(f0, R0, 2 * n);
memcpy(f0 + n, Q0, 2 * n);
memcpy(f1, R1, 2 * n);
memcpy(f1 + n, Q1, 2 * n);
}
/**
@ -159,25 +167,27 @@ static void radix(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f) {
* @param[in] betas FFT constants
*/
static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32_t m_f, const uint16_t *betas) {
uint16_t f0[1 << (PARAM_FFT - 2)];
uint16_t f1[1 << (PARAM_FFT - 2)];
uint16_t gammas[PARAM_M - 2];
uint16_t deltas[PARAM_M - 2];
size_t k = 1 << (m - 1);
uint16_t gammas_sums[1 << (PARAM_M - 2)];
uint16_t f0[1 << (PARAM_FFT - 2)] = {0};
uint16_t f1[1 << (PARAM_FFT - 2)] = {0};
uint16_t gammas[PARAM_M - 2] = {0};
uint16_t deltas[PARAM_M - 2] = {0};
uint16_t gammas_sums[1 << (PARAM_M - 2)] = {0};
uint16_t u[1 << (PARAM_M - 2)] = {0};
uint16_t v[1 << (PARAM_M - 2)] = {0};
uint16_t tmp[PARAM_M - (PARAM_FFT - 1)] = {0};
uint16_t beta_m_pow;
size_t i, j, k;
// Step 1
if (m_f == 1) {
uint16_t tmp[PARAM_M - (PARAM_FFT - 1)];
for (size_t i = 0 ; i < m ; ++i) {
for (i = 0 ; i < m ; ++i) {
tmp[i] = PQCLEAN_HQCRMRS256_CLEAN_gf_mul(betas[i], f[1]);
}
w[0] = f[0];
for (size_t j = 0 ; j < m ; ++j) {
for (size_t k = 0 ; k < (1U << j) ; ++k) {
for (j = 0 ; j < m ; ++j) {
for (k = 0 ; k < (1U << j) ; ++k) {
w[(1 << j) + k] = w[k] ^ tmp[j];
}
}
@ -187,8 +197,8 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32
// Step 2: compute g
if (betas[m - 1] != 1) {
uint16_t beta_m_pow = 1;
for (size_t i = 1 ; i < (1U << m_f) ; ++i) {
beta_m_pow = 1;
for (i = 1 ; i < (1U << m_f) ; ++i) {
beta_m_pow = PQCLEAN_HQCRMRS256_CLEAN_gf_mul(beta_m_pow, betas[m - 1]);
f[i] = PQCLEAN_HQCRMRS256_CLEAN_gf_mul(beta_m_pow, f[i]);
}
@ -198,7 +208,7 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32
radix(f0, f1, f, m_f);
// Step 4: compute gammas and deltas
for (uint8_t i = 0 ; i < m - 1 ; ++i) {
for (i = 0 ; i + 1 < m ; ++i) {
gammas[i] = PQCLEAN_HQCRMRS256_CLEAN_gf_mul(betas[i], PQCLEAN_HQCRMRS256_CLEAN_gf_inverse(betas[m - 1]));
deltas[i] = PQCLEAN_HQCRMRS256_CLEAN_gf_square(gammas[i]) ^ gammas[i];
}
@ -209,10 +219,11 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32
// Step 5
fft_rec(u, f0, (f_coeffs + 1) / 2, m - 1, m_f - 1, deltas);
k = 1 << ((m - 1) & 0xf); // &0xf is to let the compiler know that m-1 is small.
if (f_coeffs <= 3) { // 3-coefficient polynomial f case: f1 is constant
w[0] = u[0];
w[k] = u[0] ^ f1[0];
for (size_t i = 1 ; i < k ; ++i) {
for (i = 1 ; i < k ; ++i) {
w[i] = u[i] ^ PQCLEAN_HQCRMRS256_CLEAN_gf_mul(gammas_sums[i], f1[0]);
w[k + i] = w[i] ^ f1[0];
}
@ -223,7 +234,7 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32
memcpy(w + k, v, 2 * k);
w[0] = u[0];
w[k] ^= u[0];
for (size_t i = 1 ; i < k ; ++i) {
for (i = 1 ; i < k ; ++i) {
w[i] = u[i] ^ PQCLEAN_HQCRMRS256_CLEAN_gf_mul(gammas_sums[i], v[i]);
w[k + i] ^= w[i];
}
@ -252,14 +263,15 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32
* @param[in] f_coeffs Number coefficients of f (i.e. deg(f)+1)
*/
void PQCLEAN_HQCRMRS256_CLEAN_fft(uint16_t *w, const uint16_t *f, size_t f_coeffs) {
uint16_t betas[PARAM_M - 1];
uint16_t betas_sums[1 << (PARAM_M - 1)];
uint16_t f0[1 << (PARAM_FFT - 1)];
uint16_t f1[1 << (PARAM_FFT - 1)];
uint16_t deltas[PARAM_M - 1];
size_t k = 1 << (PARAM_M - 1);
uint16_t u[1 << (PARAM_M - 1)];
uint16_t v[1 << (PARAM_M - 1)];
uint16_t betas[PARAM_M - 1] = {0};
uint16_t betas_sums[1 << (PARAM_M - 1)] = {0};
uint16_t f0[1 << (PARAM_FFT - 1)] = {0};
uint16_t f1[1 << (PARAM_FFT - 1)] = {0};
uint16_t deltas[PARAM_M - 1] = {0};
uint16_t u[1 << (PARAM_M - 1)] = {0};
uint16_t v[1 << (PARAM_M - 1)] = {0};
size_t i, k;
// Follows Gao and Mateer algorithm
compute_fft_betas(betas);
@ -275,7 +287,7 @@ void PQCLEAN_HQCRMRS256_CLEAN_fft(uint16_t *w, const uint16_t *f, size_t f_coeff
radix(f0, f1, f, PARAM_FFT);
// Step 4: Compute deltas
for (size_t i = 0 ; i < PARAM_M - 1 ; ++i) {
for (i = 0 ; i < PARAM_M - 1 ; ++i) {
deltas[i] = PQCLEAN_HQCRMRS256_CLEAN_gf_square(betas[i]) ^ betas[i];
}
@ -283,6 +295,7 @@ void PQCLEAN_HQCRMRS256_CLEAN_fft(uint16_t *w, const uint16_t *f, size_t f_coeff
fft_rec(u, f0, (f_coeffs + 1) / 2, PARAM_M - 1, PARAM_FFT - 1, deltas);
fft_rec(v, f1, f_coeffs / 2, PARAM_M - 1, PARAM_FFT - 1, deltas);
k = 1 << (PARAM_M - 1);
// Step 6, 7 and error polynomial computation
memcpy(w + k, v, 2 * k);
@ -293,7 +306,7 @@ void PQCLEAN_HQCRMRS256_CLEAN_fft(uint16_t *w, const uint16_t *f, size_t f_coeff
w[k] ^= u[0];
// Find other roots
for (size_t i = 1 ; i < k ; ++i) {
for (i = 1 ; i < k ; ++i) {
w[i] = u[i] ^ PQCLEAN_HQCRMRS256_CLEAN_gf_mul(betas_sums[i], v[i]);
w[k + i] ^= w[i];
}
@ -311,17 +324,16 @@ void PQCLEAN_HQCRMRS256_CLEAN_fft(uint16_t *w, const uint16_t *f, size_t f_coeff
void PQCLEAN_HQCRMRS256_CLEAN_fft_retrieve_error_poly(uint8_t *error, const uint16_t *w) {
uint16_t gammas[PARAM_M - 1] = {0};
uint16_t gammas_sums[1 << (PARAM_M - 1)] = {0};
size_t k = 1 << (PARAM_M - 1);
size_t i, k, index;
compute_fft_betas(gammas);
compute_subset_sums(gammas_sums, gammas, PARAM_M - 1);
k = 1 << (PARAM_M - 1);
error[0] ^= 1 ^ ((uint16_t) - w[0] >> 15);
error[0] ^= 1 ^ ((uint16_t) - w[k] >> 15);
size_t index = PARAM_GF_MUL_ORDER;
for (size_t i = 1 ; i < k ; ++i) {
for (i = 1 ; i < k ; ++i) {
index = PARAM_GF_MUL_ORDER - PQCLEAN_HQCRMRS256_CLEAN_gf_log(gammas_sums[i]);
error[index] ^= 1 ^ ((uint16_t) - w[i] >> 15);

查看文件

@ -11,7 +11,6 @@ consistency_checks:
- reed_muller.h
- reed_solomon.h
- code.c
- fft.c
- source:
scheme: hqc-rmrs-192
implementation: clean
@ -23,7 +22,6 @@ consistency_checks:
- reed_muller.h
- reed_solomon.h
- code.c
- fft.c
- source:
scheme: hqc-rmrs-192
implementation: avx2
@ -56,7 +54,6 @@ consistency_checks:
- reed_muller.h
- reed_solomon.h
- code.c
- fft.c
- source:
scheme: hqc-rmrs-256
implementation: avx2

查看文件

@ -11,7 +11,6 @@ consistency_checks:
- reed_muller.h
- reed_solomon.h
- code.c
- fft.c
- source:
scheme: hqc-rmrs-192
implementation: clean
@ -45,7 +44,6 @@ consistency_checks:
- reed_muller.h
- reed_solomon.h
- code.c
- fft.c
- source:
scheme: hqc-rmrs-256
implementation: clean
@ -79,4 +77,3 @@ consistency_checks:
- reed_muller.h
- reed_solomon.h
- code.c
- fft.c

查看文件

@ -11,7 +11,6 @@ consistency_checks:
- reed_muller.h
- reed_solomon.h
- code.c
- fft.c
- source:
scheme: hqc-rmrs-256
implementation: clean
@ -23,7 +22,6 @@ consistency_checks:
- reed_muller.h
- reed_solomon.h
- code.c
- fft.c
- source:
scheme: hqc-rmrs-256
implementation: avx2

查看文件

@ -11,7 +11,6 @@ consistency_checks:
- reed_muller.h
- reed_solomon.h
- code.c
- fft.c
- source:
scheme: hqc-rmrs-256
implementation: clean
@ -45,4 +44,3 @@ consistency_checks:
- reed_muller.h
- reed_solomon.h
- code.c
- fft.c

查看文件

@ -11,4 +11,3 @@ consistency_checks:
- reed_muller.h
- reed_solomon.h
- code.c
- fft.c

查看文件

@ -11,4 +11,3 @@ consistency_checks:
- reed_muller.h
- reed_solomon.h
- code.c
- fft.c