@@ -18,13 +18,13 @@ int PQCLEAN_LEDAKEMLT12_CLEAN_bf_decoding(DIGIT err[], | |||
int iteration = 0; | |||
do { | |||
gf2x_copy(currSyndrome, privateSyndrome); | |||
PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_copy(currSyndrome, privateSyndrome); | |||
memset(unsatParityChecks, 0x00, N0 * P * sizeof(uint8_t)); | |||
for (int i = 0; i < N0; i++) { | |||
for (int valueIdx = 0; valueIdx < P; valueIdx++) { | |||
for (int HtrOneIdx = 0; HtrOneIdx < DV; HtrOneIdx++) { | |||
POSITION_T tmp = (HtrPosOnes[i][HtrOneIdx] + valueIdx) >= P ? (HtrPosOnes[i][HtrOneIdx] + valueIdx) - P : (HtrPosOnes[i][HtrOneIdx] + valueIdx); | |||
if (gf2x_get_coeff(currSyndrome, tmp)) { | |||
if (PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_get_coeff(currSyndrome, tmp)) { | |||
unsatParityChecks[i * P + valueIdx]++; | |||
} | |||
} | |||
@@ -54,13 +54,13 @@ int PQCLEAN_LEDAKEMLT12_CLEAN_bf_decoding(DIGIT err[], | |||
} | |||
/* Correlation based flipping */ | |||
if (correlation >= corrt_syndrome_based) { | |||
gf2x_toggle_coeff(err + NUM_DIGITS_GF2X_ELEMENT * i, j); | |||
PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_toggle_coeff(err + NUM_DIGITS_GF2X_ELEMENT * i, j); | |||
for (int v = 0; v < M; v++) { | |||
unsigned syndromePosToFlip; | |||
for (int HtrOneIdx = 0; HtrOneIdx < DV; HtrOneIdx++) { | |||
syndromePosToFlip = (HtrPosOnes[currQBlkPos[v]][HtrOneIdx] + currQBitPos[v] ); | |||
syndromePosToFlip = syndromePosToFlip >= P ? syndromePosToFlip - P : syndromePosToFlip; | |||
gf2x_toggle_coeff(privateSyndrome, syndromePosToFlip); | |||
PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_toggle_coeff(privateSyndrome, syndromePosToFlip); | |||
} | |||
} // end for v | |||
} // end if | |||
@@ -38,7 +38,7 @@ int PQCLEAN_LEDAKEMLT12_CLEAN_DFR_test(POSITION_T LSparse[N0][DV * M]) { | |||
LSparse_loc[i][j] = (P - LSparse[i][j]); | |||
} | |||
} | |||
quicksort_sparse(LSparse_loc[i]); | |||
PQCLEAN_LEDAKEMLT12_CLEAN_quicksort_sparse(LSparse_loc[i]); | |||
} | |||
for (int i = 0; i < N0; i++ ) { | |||
@@ -48,7 +48,7 @@ int PQCLEAN_LEDAKEMLT12_CLEAN_DFR_test(POSITION_T LSparse[N0][DV * M]) { | |||
for (int idxToRotate = 0; idxToRotate < (DV * M); idxToRotate++) { | |||
rotated_column[idxToRotate] = (LSparse_loc[j][idxToRotate] + k) % P; | |||
} | |||
quicksort_sparse(rotated_column); | |||
PQCLEAN_LEDAKEMLT12_CLEAN_quicksort_sparse(rotated_column); | |||
/* compute the intersection amount */ | |||
firstidx = 0, secondidx = 0; | |||
intersectionval = 0; | |||
@@ -3,6 +3,12 @@ | |||
#include <assert.h> | |||
#include <string.h> // memset(...) | |||
void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_add(DIGIT Res[], const DIGIT A[], const DIGIT B[], int nr) { | |||
for (int i = 0; i < nr; i++) { | |||
Res[i] = A[i] ^ B[i]; | |||
} | |||
} | |||
/* PRE: MAX ALLOWED ROTATION AMOUNT : DIGIT_SIZE_b */ | |||
void PQCLEAN_LEDAKEMLT12_CLEAN_right_bit_shift_n(int length, DIGIT in[], unsigned int amount) { | |||
assert(amount < DIGIT_SIZE_b); | |||
@@ -50,12 +50,7 @@ typedef uint64_t DIGIT; | |||
#define GF2X_MUL PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mul_comb | |||
static inline void gf2x_add(DIGIT Res[], const DIGIT A[], const DIGIT B[], int nr) { | |||
for (int i = 0; i < nr; i++) { | |||
Res[i] = A[i] ^ B[i]; | |||
} | |||
} | |||
void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_add(DIGIT Res[], const DIGIT A[], const DIGIT B[], int nr); | |||
void PQCLEAN_LEDAKEMLT12_CLEAN_right_bit_shift_n(int length, DIGIT in[], unsigned int amount); | |||
void PQCLEAN_LEDAKEMLT12_CLEAN_left_bit_shift_n(int length, DIGIT in[], unsigned int amount); | |||
void GF2X_MUL(int nr, DIGIT Res[], int na, const DIGIT A[], int nb, const DIGIT B[]); | |||
@@ -4,6 +4,103 @@ | |||
#include <assert.h> | |||
#include <string.h> // memcpy(...), memset(...) | |||
void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_copy(DIGIT dest[], const DIGIT in[]) { | |||
for (int i = NUM_DIGITS_GF2X_ELEMENT - 1; i >= 0; i--) { | |||
dest[i] = in[i]; | |||
} | |||
} | |||
/* returns the coefficient of the x^exponent term as the LSB of a digit */ | |||
DIGIT PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_get_coeff(const DIGIT poly[], unsigned int exponent) { | |||
unsigned int straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent; | |||
unsigned int digitIdx = straightIdx / DIGIT_SIZE_b; | |||
unsigned int inDigitIdx = straightIdx % DIGIT_SIZE_b; | |||
return (poly[digitIdx] >> (DIGIT_SIZE_b - 1 - inDigitIdx)) & ((DIGIT) 1) ; | |||
} | |||
/* sets the coefficient of the x^exponent term as the LSB of a digit */ | |||
void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_set_coeff(DIGIT poly[], unsigned int exponent, DIGIT value) { | |||
unsigned int straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent; | |||
unsigned int digitIdx = straightIdx / DIGIT_SIZE_b; | |||
unsigned int inDigitIdx = straightIdx % DIGIT_SIZE_b; | |||
/* clear given coefficient */ | |||
DIGIT mask = ~( ((DIGIT) 1) << (DIGIT_SIZE_b - 1 - inDigitIdx)); | |||
poly[digitIdx] = poly[digitIdx] & mask; | |||
poly[digitIdx] = poly[digitIdx] | (( value & ((DIGIT) 1)) << (DIGIT_SIZE_b - 1 - inDigitIdx)); | |||
} | |||
/* toggles (flips) the coefficient of the x^exponent term as the LSB of a digit */ | |||
void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_toggle_coeff(DIGIT poly[], unsigned int exponent) { | |||
unsigned int straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent; | |||
unsigned int digitIdx = straightIdx / DIGIT_SIZE_b; | |||
unsigned int inDigitIdx = straightIdx % DIGIT_SIZE_b; | |||
/* clear given coefficient */ | |||
DIGIT mask = ( ((DIGIT) 1) << (DIGIT_SIZE_b - 1 - inDigitIdx)); | |||
poly[digitIdx] = poly[digitIdx] ^ mask; | |||
} | |||
/* population count for an unsigned 64-bit integer | |||
Source: Hacker's delight, p.66 */ | |||
static int popcount_uint64t(uint64_t x) { | |||
x -= (x >> 1) & 0x5555555555555555; | |||
x = (x & 0x3333333333333333) + ((x >> 2) & 0x3333333333333333); | |||
x = (x + (x >> 4)) & 0x0f0f0f0f0f0f0f0f; | |||
return (int)((x * 0x0101010101010101) >> 56); | |||
} | |||
/* population count for a single polynomial */ | |||
int PQCLEAN_LEDAKEMLT12_CLEAN_population_count(DIGIT *poly) { | |||
int ret = 0; | |||
for (int i = NUM_DIGITS_GF2X_ELEMENT - 1; i >= 0; i--) { | |||
ret += popcount_uint64t(poly[i]); | |||
} | |||
return ret; | |||
} | |||
void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mod_add(DIGIT Res[], const DIGIT A[], const DIGIT B[]) { | |||
PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_add(Res, A, B, NUM_DIGITS_GF2X_ELEMENT); | |||
} | |||
static int partition(POSITION_T arr[], int lo, int hi) { | |||
POSITION_T x = arr[hi]; | |||
POSITION_T tmp; | |||
int i = (lo - 1); | |||
for (int j = lo; j <= hi - 1; j++) { | |||
if (arr[j] <= x) { | |||
i++; | |||
tmp = arr[i]; | |||
arr[i] = arr[j]; | |||
arr[j] = tmp; | |||
} | |||
} | |||
tmp = arr[i + 1]; | |||
arr[i + 1] = arr[hi]; | |||
arr[hi] = tmp; | |||
return i + 1; | |||
} | |||
void PQCLEAN_LEDAKEMLT12_CLEAN_quicksort_sparse(POSITION_T Res[]) { | |||
int stack[DV * M]; | |||
int hi, lo, pivot, tos = -1; | |||
stack[++tos] = 0; | |||
stack[++tos] = (DV * M) - 1; | |||
while (tos >= 0 ) { | |||
hi = stack[tos--]; | |||
lo = stack[tos--]; | |||
pivot = partition(Res, lo, hi); | |||
if ( (pivot - 1) > lo) { | |||
stack[++tos] = lo; | |||
stack[++tos] = pivot - 1; | |||
} | |||
if ( (pivot + 1) < hi) { | |||
stack[++tos] = pivot + 1; | |||
stack[++tos] = hi; | |||
} | |||
} | |||
} | |||
static void gf2x_mod(DIGIT out[], const DIGIT in[]) { | |||
@@ -65,7 +162,7 @@ static void right_bit_shift(unsigned int length, DIGIT in[]) { | |||
/* shifts by whole digits */ | |||
static inline void left_DIGIT_shift_n(unsigned int length, DIGIT in[], unsigned int amount) { | |||
static void left_DIGIT_shift_n(unsigned int length, DIGIT in[], unsigned int amount) { | |||
unsigned int j; | |||
for (j = 0; (j + amount) < length; j++) { | |||
in[j] = in[j + amount]; | |||
@@ -75,7 +172,6 @@ static inline void left_DIGIT_shift_n(unsigned int length, DIGIT in[], unsigned | |||
} | |||
} | |||
/* may shift by an arbitrary amount*/ | |||
static void left_bit_shift_wide_n(const int length, DIGIT in[], unsigned int amount) { | |||
left_DIGIT_shift_n(length, in, amount / DIGIT_SIZE_b); | |||
@@ -115,7 +211,7 @@ void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_transpose_in_place(DIGIT A[]) { | |||
A[NUM_DIGITS_GF2X_ELEMENT - 1 - i] = rev1; | |||
} | |||
A[NUM_DIGITS_GF2X_ELEMENT / 2] = reverse_digit(A[NUM_DIGITS_GF2X_ELEMENT / 2]); // reverse middle digit | |||
A[NUM_DIGITS_GF2X_ELEMENT / 2] = reverse_digit(A[NUM_DIGITS_GF2X_ELEMENT / 2]); | |||
if (slack_bits_amount) { | |||
PQCLEAN_LEDAKEMLT12_CLEAN_right_bit_shift_n(NUM_DIGITS_GF2X_ELEMENT, A, slack_bits_amount); | |||
@@ -143,9 +239,7 @@ static void rotate_bit_right(DIGIT in[]) { /* x^{-1} * in(x) mod x^P+1 */ | |||
in[0] |= rotated_bit; | |||
} | |||
static void gf2x_swap(const int length, | |||
DIGIT f[], | |||
DIGIT s[]) { | |||
static void gf2x_swap(const int length, DIGIT f[], DIGIT s[]) { | |||
DIGIT t; | |||
for (int i = length - 1; i >= 0; i--) { | |||
t = f[i]; | |||
@@ -174,7 +268,7 @@ static void gf2x_swap(const int length, | |||
int PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mod_inverse(DIGIT out[], const DIGIT in[]) { /* in^{-1} mod x^P-1 */ | |||
int i; | |||
long int delta = 0; | |||
int delta = 0; | |||
DIGIT u[NUM_DIGITS_GF2X_ELEMENT] = {0}; | |||
DIGIT v[NUM_DIGITS_GF2X_ELEMENT] = {0}; | |||
DIGIT s[NUM_DIGITS_GF2X_MODULUS] = {0}; | |||
@@ -205,8 +299,8 @@ int PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mod_inverse(DIGIT out[], const DIGIT in[]) { | |||
delta += 1; | |||
} else { | |||
if ( (s[0] & mask) != 0) { | |||
gf2x_add(s, s, f, NUM_DIGITS_GF2X_MODULUS); | |||
gf2x_mod_add(v, v, u); | |||
PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_add(s, s, f, NUM_DIGITS_GF2X_MODULUS); | |||
PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mod_add(v, v, u); | |||
} | |||
left_bit_shift(NUM_DIGITS_GF2X_MODULUS, s); | |||
if ( delta == 0 ) { | |||
@@ -258,7 +352,7 @@ void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mod_mul_dense_to_sparse( | |||
for (unsigned int i = 1; i < nPos; i++) { | |||
if (sparse[i] != INVALID_POS_VALUE) { | |||
left_bit_shift_wide_n(2 * NUM_DIGITS_GF2X_ELEMENT, aux, (sparse[i] - sparse[i - 1]) ); | |||
gf2x_add(resDouble, aux, resDouble, 2 * NUM_DIGITS_GF2X_ELEMENT); | |||
PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_add(resDouble, aux, resDouble, 2 * NUM_DIGITS_GF2X_ELEMENT); | |||
} | |||
} | |||
} | |||
@@ -312,7 +406,7 @@ void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mod_mul_sparse(size_t sizeR, POSITION_T Res[ | |||
Res[lastFilledPos] = INVALID_POS_VALUE; | |||
lastFilledPos++; | |||
} | |||
quicksort_sparse(Res); | |||
PQCLEAN_LEDAKEMLT12_CLEAN_quicksort_sparse(Res); | |||
/* eliminate duplicates */ | |||
POSITION_T lastReadPos = Res[0]; | |||
int duplicateCount; | |||
@@ -438,8 +532,9 @@ void PQCLEAN_LEDAKEMLT12_CLEAN_rand_circulant_sparse_block(POSITION_T *pos_ones, | |||
} | |||
/* Returns random weight-t circulant block */ | |||
void PQCLEAN_LEDAKEMLT12_CLEAN_rand_circulant_blocks_sequence(DIGIT sequence[N0 * NUM_DIGITS_GF2X_ELEMENT], | |||
AES_XOF_struct *seed_expander_ctx) { | |||
void PQCLEAN_LEDAKEMLT12_CLEAN_rand_circulant_blocks_sequence( | |||
DIGIT sequence[N0 * NUM_DIGITS_GF2X_ELEMENT], | |||
AES_XOF_struct *seed_expander_ctx) { | |||
int rndPos[NUM_ERRORS_T], duplicated, counter = 0; | |||
int p, polyIndex, exponent; | |||
@@ -463,8 +558,8 @@ void PQCLEAN_LEDAKEMLT12_CLEAN_rand_circulant_blocks_sequence(DIGIT sequence[N0 | |||
for (int j = 0; j < counter; j++) { | |||
polyIndex = rndPos[j] / P; | |||
exponent = rndPos[j] % P; | |||
gf2x_set_coeff( sequence + NUM_DIGITS_GF2X_ELEMENT * polyIndex, exponent, | |||
( (DIGIT) 1)); | |||
PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_set_coeff( sequence + NUM_DIGITS_GF2X_ELEMENT * polyIndex, exponent, | |||
( (DIGIT) 1)); | |||
} | |||
} | |||
@@ -15,105 +15,13 @@ | |||
#define INVALID_POS_VALUE (P) | |||
#define P_BITS (16) // log_2(p) = 15.6703 | |||
static inline void gf2x_copy(DIGIT dest[], const DIGIT in[]) { | |||
for (int i = NUM_DIGITS_GF2X_ELEMENT - 1; i >= 0; i--) { | |||
dest[i] = in[i]; | |||
} | |||
} | |||
/* returns the coefficient of the x^exponent term as the LSB of a digit */ | |||
static inline DIGIT gf2x_get_coeff(const DIGIT poly[], unsigned int exponent) { | |||
unsigned int straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent; | |||
unsigned int digitIdx = straightIdx / DIGIT_SIZE_b; | |||
unsigned int inDigitIdx = straightIdx % DIGIT_SIZE_b; | |||
return (poly[digitIdx] >> (DIGIT_SIZE_b - 1 - inDigitIdx)) & ((DIGIT) 1) ; | |||
} | |||
/* sets the coefficient of the x^exponent term as the LSB of a digit */ | |||
static inline void gf2x_set_coeff(DIGIT poly[], unsigned int exponent, DIGIT value) { | |||
unsigned int straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent; | |||
unsigned int digitIdx = straightIdx / DIGIT_SIZE_b; | |||
unsigned int inDigitIdx = straightIdx % DIGIT_SIZE_b; | |||
/* clear given coefficient */ | |||
DIGIT mask = ~( ((DIGIT) 1) << (DIGIT_SIZE_b - 1 - inDigitIdx)); | |||
poly[digitIdx] = poly[digitIdx] & mask; | |||
poly[digitIdx] = poly[digitIdx] | (( value & ((DIGIT) 1)) << (DIGIT_SIZE_b - 1 - inDigitIdx)); | |||
} | |||
/* toggles (flips) the coefficient of the x^exponent term as the LSB of a digit */ | |||
static inline void gf2x_toggle_coeff(DIGIT poly[], unsigned int exponent) { | |||
unsigned int straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent; | |||
unsigned int digitIdx = straightIdx / DIGIT_SIZE_b; | |||
unsigned int inDigitIdx = straightIdx % DIGIT_SIZE_b; | |||
/* clear given coefficient */ | |||
DIGIT mask = ( ((DIGIT) 1) << (DIGIT_SIZE_b - 1 - inDigitIdx)); | |||
poly[digitIdx] = poly[digitIdx] ^ mask; | |||
} | |||
/* population count for an unsigned 64-bit integer | |||
Source: Hacker's delight, p.66 */ | |||
static int popcount_uint64t(uint64_t x) { | |||
x -= (x >> 1) & 0x5555555555555555; | |||
x = (x & 0x3333333333333333) + ((x >> 2) & 0x3333333333333333); | |||
x = (x + (x >> 4)) & 0x0f0f0f0f0f0f0f0f; | |||
return (int)((x * 0x0101010101010101) >> 56); | |||
} | |||
/* population count for a single polynomial */ | |||
static inline int population_count(DIGIT *poly) { | |||
int ret = 0; | |||
for (int i = NUM_DIGITS_GF2X_ELEMENT - 1; i >= 0; i--) { | |||
ret += popcount_uint64t(poly[i]); | |||
} | |||
return ret; | |||
} | |||
static inline void gf2x_mod_add(DIGIT Res[], const DIGIT A[], const DIGIT B[]) { | |||
gf2x_add(Res, A, B, NUM_DIGITS_GF2X_ELEMENT); | |||
} | |||
static inline int partition(POSITION_T arr[], int lo, int hi) { | |||
POSITION_T x = arr[hi]; | |||
POSITION_T tmp; | |||
int i = (lo - 1); | |||
for (int j = lo; j <= hi - 1; j++) { | |||
if (arr[j] <= x) { | |||
i++; | |||
tmp = arr[i]; | |||
arr[i] = arr[j]; | |||
arr[j] = tmp; | |||
} | |||
} | |||
tmp = arr[i + 1]; | |||
arr[i + 1] = arr[hi]; | |||
arr[hi] = tmp; | |||
return i + 1; | |||
} | |||
static inline void quicksort_sparse(POSITION_T Res[]) { | |||
int stack[DV * M]; | |||
int hi, lo, pivot, tos = -1; | |||
stack[++tos] = 0; | |||
stack[++tos] = (DV * M) - 1; | |||
while (tos >= 0 ) { | |||
hi = stack[tos--]; | |||
lo = stack[tos--]; | |||
pivot = partition(Res, lo, hi); | |||
if ( (pivot - 1) > lo) { | |||
stack[++tos] = lo; | |||
stack[++tos] = pivot - 1; | |||
} | |||
if ( (pivot + 1) < hi) { | |||
stack[++tos] = pivot + 1; | |||
stack[++tos] = hi; | |||
} | |||
} | |||
} | |||
void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_copy(DIGIT dest[], const DIGIT in[]); | |||
DIGIT PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_get_coeff(const DIGIT poly[], unsigned int exponent); | |||
void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_set_coeff(DIGIT poly[], unsigned int exponent, DIGIT value); | |||
void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_toggle_coeff(DIGIT poly[], unsigned int exponent); | |||
int PQCLEAN_LEDAKEMLT12_CLEAN_population_count(DIGIT *poly); | |||
void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mod_add(DIGIT Res[], const DIGIT A[], const DIGIT B[]); | |||
void PQCLEAN_LEDAKEMLT12_CLEAN_quicksort_sparse(POSITION_T Res[]); | |||
void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mod_mul(DIGIT Res[], const DIGIT A[], const DIGIT B[]); | |||
void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_transpose_in_place(DIGIT A[]); | |||
void PQCLEAN_LEDAKEMLT12_CLEAN_rand_circulant_sparse_block(POSITION_T *pos_ones, int countOnes, AES_XOF_struct *seed_expander_ctx); | |||
@@ -123,7 +31,6 @@ void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_transpose_in_place_sparse(int sizeA, POSITIO | |||
void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mod_mul_sparse(size_t sizeR, POSITION_T Res[], size_t sizeA, const POSITION_T A[], size_t sizeB, const POSITION_T B[]); | |||
void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mod_mul_dense_to_sparse(DIGIT Res[], const DIGIT dense[], POSITION_T sparse[], unsigned int nPos); | |||
void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_tobytes(uint8_t *bytes, const DIGIT *poly); | |||
int PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mod_inverse(DIGIT out[], const DIGIT in[]); | |||
#endif |
@@ -58,7 +58,7 @@ void PQCLEAN_LEDAKEMLT12_CLEAN_niederreiter_keygen(publicKeyNiederreiter_t *pk, | |||
memset(Ln0dense, 0x00, sizeof(Ln0dense)); | |||
for (int j = 0; j < DV * M; j++) { | |||
if (LPosOnes[N0 - 1][j] != INVALID_POS_VALUE) { | |||
gf2x_set_coeff(Ln0dense, LPosOnes[N0 - 1][j], 1); | |||
PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_set_coeff(Ln0dense, LPosOnes[N0 - 1][j], 1); | |||
} | |||
} | |||
@@ -86,9 +86,9 @@ void PQCLEAN_LEDAKEMLT12_CLEAN_niederreiter_encrypt(DIGIT *syndrome, const publi | |||
PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mod_mul(saux, | |||
pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT, | |||
err + i * NUM_DIGITS_GF2X_ELEMENT); | |||
gf2x_mod_add(syndrome, syndrome, saux); | |||
PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mod_add(syndrome, syndrome, saux); | |||
} | |||
gf2x_mod_add(syndrome, syndrome, err + (N0 - 1)*NUM_DIGITS_GF2X_ELEMENT); | |||
PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mod_add(syndrome, syndrome, err + (N0 - 1)*NUM_DIGITS_GF2X_ELEMENT); | |||
} | |||
@@ -180,7 +180,7 @@ int PQCLEAN_LEDAKEMLT12_CLEAN_niederreiter_decrypt(DIGIT *err, const privateKeyN | |||
err_weight = 0; | |||
for (int i = 0 ; i < N0; i++) { | |||
err_weight += population_count(err + (NUM_DIGITS_GF2X_ELEMENT * i)); | |||
err_weight += PQCLEAN_LEDAKEMLT12_CLEAN_population_count(err + (NUM_DIGITS_GF2X_ELEMENT * i)); | |||
} | |||
decryptOk = decryptOk && (err_weight == NUM_ERRORS_T); | |||
@@ -18,13 +18,13 @@ int PQCLEAN_LEDAKEMLT32_CLEAN_bf_decoding(DIGIT err[], | |||
int iteration = 0; | |||
do { | |||
gf2x_copy(currSyndrome, privateSyndrome); | |||
PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_copy(currSyndrome, privateSyndrome); | |||
memset(unsatParityChecks, 0x00, N0 * P * sizeof(uint8_t)); | |||
for (int i = 0; i < N0; i++) { | |||
for (int valueIdx = 0; valueIdx < P; valueIdx++) { | |||
for (int HtrOneIdx = 0; HtrOneIdx < DV; HtrOneIdx++) { | |||
POSITION_T tmp = (HtrPosOnes[i][HtrOneIdx] + valueIdx) >= P ? (HtrPosOnes[i][HtrOneIdx] + valueIdx) - P : (HtrPosOnes[i][HtrOneIdx] + valueIdx); | |||
if (gf2x_get_coeff(currSyndrome, tmp)) { | |||
if (PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_get_coeff(currSyndrome, tmp)) { | |||
unsatParityChecks[i * P + valueIdx]++; | |||
} | |||
} | |||
@@ -54,13 +54,13 @@ int PQCLEAN_LEDAKEMLT32_CLEAN_bf_decoding(DIGIT err[], | |||
} | |||
/* Correlation based flipping */ | |||
if (correlation >= corrt_syndrome_based) { | |||
gf2x_toggle_coeff(err + NUM_DIGITS_GF2X_ELEMENT * i, j); | |||
PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_toggle_coeff(err + NUM_DIGITS_GF2X_ELEMENT * i, j); | |||
for (int v = 0; v < M; v++) { | |||
unsigned syndromePosToFlip; | |||
for (int HtrOneIdx = 0; HtrOneIdx < DV; HtrOneIdx++) { | |||
syndromePosToFlip = (HtrPosOnes[currQBlkPos[v]][HtrOneIdx] + currQBitPos[v] ); | |||
syndromePosToFlip = syndromePosToFlip >= P ? syndromePosToFlip - P : syndromePosToFlip; | |||
gf2x_toggle_coeff(privateSyndrome, syndromePosToFlip); | |||
PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_toggle_coeff(privateSyndrome, syndromePosToFlip); | |||
} | |||
} // end for v | |||
} // end if | |||
@@ -38,7 +38,7 @@ int PQCLEAN_LEDAKEMLT32_CLEAN_DFR_test(POSITION_T LSparse[N0][DV * M]) { | |||
LSparse_loc[i][j] = (P - LSparse[i][j]); | |||
} | |||
} | |||
quicksort_sparse(LSparse_loc[i]); | |||
PQCLEAN_LEDAKEMLT32_CLEAN_quicksort_sparse(LSparse_loc[i]); | |||
} | |||
for (int i = 0; i < N0; i++ ) { | |||
@@ -48,7 +48,7 @@ int PQCLEAN_LEDAKEMLT32_CLEAN_DFR_test(POSITION_T LSparse[N0][DV * M]) { | |||
for (int idxToRotate = 0; idxToRotate < (DV * M); idxToRotate++) { | |||
rotated_column[idxToRotate] = (LSparse_loc[j][idxToRotate] + k) % P; | |||
} | |||
quicksort_sparse(rotated_column); | |||
PQCLEAN_LEDAKEMLT32_CLEAN_quicksort_sparse(rotated_column); | |||
/* compute the intersection amount */ | |||
firstidx = 0, secondidx = 0; | |||
intersectionval = 0; | |||
@@ -3,6 +3,12 @@ | |||
#include <assert.h> | |||
#include <string.h> // memset(...) | |||
void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_add(DIGIT Res[], const DIGIT A[], const DIGIT B[], int nr) { | |||
for (int i = 0; i < nr; i++) { | |||
Res[i] = A[i] ^ B[i]; | |||
} | |||
} | |||
/* PRE: MAX ALLOWED ROTATION AMOUNT : DIGIT_SIZE_b */ | |||
void PQCLEAN_LEDAKEMLT32_CLEAN_right_bit_shift_n(int length, DIGIT in[], unsigned int amount) { | |||
assert(amount < DIGIT_SIZE_b); | |||
@@ -50,12 +50,7 @@ typedef uint64_t DIGIT; | |||
#define GF2X_MUL PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mul_comb | |||
static inline void gf2x_add(DIGIT Res[], const DIGIT A[], const DIGIT B[], int nr) { | |||
for (int i = 0; i < nr; i++) { | |||
Res[i] = A[i] ^ B[i]; | |||
} | |||
} | |||
void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_add(DIGIT Res[], const DIGIT A[], const DIGIT B[], int nr); | |||
void PQCLEAN_LEDAKEMLT32_CLEAN_right_bit_shift_n(int length, DIGIT in[], unsigned int amount); | |||
void PQCLEAN_LEDAKEMLT32_CLEAN_left_bit_shift_n(int length, DIGIT in[], unsigned int amount); | |||
void GF2X_MUL(int nr, DIGIT Res[], int na, const DIGIT A[], int nb, const DIGIT B[]); | |||
@@ -4,6 +4,103 @@ | |||
#include <assert.h> | |||
#include <string.h> // memcpy(...), memset(...) | |||
void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_copy(DIGIT dest[], const DIGIT in[]) { | |||
for (int i = NUM_DIGITS_GF2X_ELEMENT - 1; i >= 0; i--) { | |||
dest[i] = in[i]; | |||
} | |||
} | |||
/* returns the coefficient of the x^exponent term as the LSB of a digit */ | |||
DIGIT PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_get_coeff(const DIGIT poly[], unsigned int exponent) { | |||
unsigned int straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent; | |||
unsigned int digitIdx = straightIdx / DIGIT_SIZE_b; | |||
unsigned int inDigitIdx = straightIdx % DIGIT_SIZE_b; | |||
return (poly[digitIdx] >> (DIGIT_SIZE_b - 1 - inDigitIdx)) & ((DIGIT) 1) ; | |||
} | |||
/* sets the coefficient of the x^exponent term as the LSB of a digit */ | |||
void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_set_coeff(DIGIT poly[], unsigned int exponent, DIGIT value) { | |||
unsigned int straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent; | |||
unsigned int digitIdx = straightIdx / DIGIT_SIZE_b; | |||
unsigned int inDigitIdx = straightIdx % DIGIT_SIZE_b; | |||
/* clear given coefficient */ | |||
DIGIT mask = ~( ((DIGIT) 1) << (DIGIT_SIZE_b - 1 - inDigitIdx)); | |||
poly[digitIdx] = poly[digitIdx] & mask; | |||
poly[digitIdx] = poly[digitIdx] | (( value & ((DIGIT) 1)) << (DIGIT_SIZE_b - 1 - inDigitIdx)); | |||
} | |||
/* toggles (flips) the coefficient of the x^exponent term as the LSB of a digit */ | |||
void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_toggle_coeff(DIGIT poly[], unsigned int exponent) { | |||
unsigned int straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent; | |||
unsigned int digitIdx = straightIdx / DIGIT_SIZE_b; | |||
unsigned int inDigitIdx = straightIdx % DIGIT_SIZE_b; | |||
/* clear given coefficient */ | |||
DIGIT mask = ( ((DIGIT) 1) << (DIGIT_SIZE_b - 1 - inDigitIdx)); | |||
poly[digitIdx] = poly[digitIdx] ^ mask; | |||
} | |||
/* population count for an unsigned 64-bit integer | |||
Source: Hacker's delight, p.66 */ | |||
static int popcount_uint64t(uint64_t x) { | |||
x -= (x >> 1) & 0x5555555555555555; | |||
x = (x & 0x3333333333333333) + ((x >> 2) & 0x3333333333333333); | |||
x = (x + (x >> 4)) & 0x0f0f0f0f0f0f0f0f; | |||
return (int)((x * 0x0101010101010101) >> 56); | |||
} | |||
/* population count for a single polynomial */ | |||
int PQCLEAN_LEDAKEMLT32_CLEAN_population_count(DIGIT *poly) { | |||
int ret = 0; | |||
for (int i = NUM_DIGITS_GF2X_ELEMENT - 1; i >= 0; i--) { | |||
ret += popcount_uint64t(poly[i]); | |||
} | |||
return ret; | |||
} | |||
void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mod_add(DIGIT Res[], const DIGIT A[], const DIGIT B[]) { | |||
PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_add(Res, A, B, NUM_DIGITS_GF2X_ELEMENT); | |||
} | |||
static int partition(POSITION_T arr[], int lo, int hi) { | |||
POSITION_T x = arr[hi]; | |||
POSITION_T tmp; | |||
int i = (lo - 1); | |||
for (int j = lo; j <= hi - 1; j++) { | |||
if (arr[j] <= x) { | |||
i++; | |||
tmp = arr[i]; | |||
arr[i] = arr[j]; | |||
arr[j] = tmp; | |||
} | |||
} | |||
tmp = arr[i + 1]; | |||
arr[i + 1] = arr[hi]; | |||
arr[hi] = tmp; | |||
return i + 1; | |||
} | |||
void PQCLEAN_LEDAKEMLT32_CLEAN_quicksort_sparse(POSITION_T Res[]) { | |||
int stack[DV * M]; | |||
int hi, lo, pivot, tos = -1; | |||
stack[++tos] = 0; | |||
stack[++tos] = (DV * M) - 1; | |||
while (tos >= 0 ) { | |||
hi = stack[tos--]; | |||
lo = stack[tos--]; | |||
pivot = partition(Res, lo, hi); | |||
if ( (pivot - 1) > lo) { | |||
stack[++tos] = lo; | |||
stack[++tos] = pivot - 1; | |||
} | |||
if ( (pivot + 1) < hi) { | |||
stack[++tos] = pivot + 1; | |||
stack[++tos] = hi; | |||
} | |||
} | |||
} | |||
static void gf2x_mod(DIGIT out[], const DIGIT in[]) { | |||
@@ -65,7 +162,7 @@ static void right_bit_shift(unsigned int length, DIGIT in[]) { | |||
/* shifts by whole digits */ | |||
static inline void left_DIGIT_shift_n(unsigned int length, DIGIT in[], unsigned int amount) { | |||
static void left_DIGIT_shift_n(unsigned int length, DIGIT in[], unsigned int amount) { | |||
unsigned int j; | |||
for (j = 0; (j + amount) < length; j++) { | |||
in[j] = in[j + amount]; | |||
@@ -75,7 +172,6 @@ static inline void left_DIGIT_shift_n(unsigned int length, DIGIT in[], unsigned | |||
} | |||
} | |||
/* may shift by an arbitrary amount*/ | |||
static void left_bit_shift_wide_n(const int length, DIGIT in[], unsigned int amount) { | |||
left_DIGIT_shift_n(length, in, amount / DIGIT_SIZE_b); | |||
@@ -115,7 +211,7 @@ void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_transpose_in_place(DIGIT A[]) { | |||
A[NUM_DIGITS_GF2X_ELEMENT - 1 - i] = rev1; | |||
} | |||
// A[NUM_DIGITS_GF2X_ELEMENT / 2] = reverse_digit(A[NUM_DIGITS_GF2X_ELEMENT / 2]); // reverse middle digit | |||
// A[NUM_DIGITS_GF2X_ELEMENT / 2] = reverse_digit(A[NUM_DIGITS_GF2X_ELEMENT / 2]); // no middle digit | |||
if (slack_bits_amount) { | |||
PQCLEAN_LEDAKEMLT32_CLEAN_right_bit_shift_n(NUM_DIGITS_GF2X_ELEMENT, A, slack_bits_amount); | |||
@@ -143,9 +239,7 @@ static void rotate_bit_right(DIGIT in[]) { /* x^{-1} * in(x) mod x^P+1 */ | |||
in[0] |= rotated_bit; | |||
} | |||
static void gf2x_swap(const int length, | |||
DIGIT f[], | |||
DIGIT s[]) { | |||
static void gf2x_swap(const int length, DIGIT f[], DIGIT s[]) { | |||
DIGIT t; | |||
for (int i = length - 1; i >= 0; i--) { | |||
t = f[i]; | |||
@@ -174,7 +268,7 @@ static void gf2x_swap(const int length, | |||
int PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mod_inverse(DIGIT out[], const DIGIT in[]) { /* in^{-1} mod x^P-1 */ | |||
int i; | |||
long int delta = 0; | |||
int delta = 0; | |||
DIGIT u[NUM_DIGITS_GF2X_ELEMENT] = {0}; | |||
DIGIT v[NUM_DIGITS_GF2X_ELEMENT] = {0}; | |||
DIGIT s[NUM_DIGITS_GF2X_MODULUS] = {0}; | |||
@@ -205,8 +299,8 @@ int PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mod_inverse(DIGIT out[], const DIGIT in[]) { | |||
delta += 1; | |||
} else { | |||
if ( (s[0] & mask) != 0) { | |||
gf2x_add(s, s, f, NUM_DIGITS_GF2X_MODULUS); | |||
gf2x_mod_add(v, v, u); | |||
PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_add(s, s, f, NUM_DIGITS_GF2X_MODULUS); | |||
PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mod_add(v, v, u); | |||
} | |||
left_bit_shift(NUM_DIGITS_GF2X_MODULUS, s); | |||
if ( delta == 0 ) { | |||
@@ -258,7 +352,7 @@ void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mod_mul_dense_to_sparse( | |||
for (unsigned int i = 1; i < nPos; i++) { | |||
if (sparse[i] != INVALID_POS_VALUE) { | |||
left_bit_shift_wide_n(2 * NUM_DIGITS_GF2X_ELEMENT, aux, (sparse[i] - sparse[i - 1]) ); | |||
gf2x_add(resDouble, aux, resDouble, 2 * NUM_DIGITS_GF2X_ELEMENT); | |||
PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_add(resDouble, aux, resDouble, 2 * NUM_DIGITS_GF2X_ELEMENT); | |||
} | |||
} | |||
} | |||
@@ -312,7 +406,7 @@ void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mod_mul_sparse(size_t sizeR, POSITION_T Res[ | |||
Res[lastFilledPos] = INVALID_POS_VALUE; | |||
lastFilledPos++; | |||
} | |||
quicksort_sparse(Res); | |||
PQCLEAN_LEDAKEMLT32_CLEAN_quicksort_sparse(Res); | |||
/* eliminate duplicates */ | |||
POSITION_T lastReadPos = Res[0]; | |||
int duplicateCount; | |||
@@ -464,8 +558,8 @@ void PQCLEAN_LEDAKEMLT32_CLEAN_rand_circulant_blocks_sequence( | |||
for (int j = 0; j < counter; j++) { | |||
polyIndex = rndPos[j] / P; | |||
exponent = rndPos[j] % P; | |||
gf2x_set_coeff( sequence + NUM_DIGITS_GF2X_ELEMENT * polyIndex, exponent, | |||
( (DIGIT) 1)); | |||
PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_set_coeff( sequence + NUM_DIGITS_GF2X_ELEMENT * polyIndex, exponent, | |||
( (DIGIT) 1)); | |||
} | |||
} | |||
@@ -15,105 +15,13 @@ | |||
#define INVALID_POS_VALUE (P) | |||
#define P_BITS (17) // log_2(p) = 16.55406417 | |||
static inline void gf2x_copy(DIGIT dest[], const DIGIT in[]) { | |||
for (int i = NUM_DIGITS_GF2X_ELEMENT - 1; i >= 0; i--) { | |||
dest[i] = in[i]; | |||
} | |||
} | |||
/* returns the coefficient of the x^exponent term as the LSB of a digit */ | |||
static inline DIGIT gf2x_get_coeff(const DIGIT poly[], unsigned int exponent) { | |||
unsigned int straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent; | |||
unsigned int digitIdx = straightIdx / DIGIT_SIZE_b; | |||
unsigned int inDigitIdx = straightIdx % DIGIT_SIZE_b; | |||
return (poly[digitIdx] >> (DIGIT_SIZE_b - 1 - inDigitIdx)) & ((DIGIT) 1) ; | |||
} | |||
/* sets the coefficient of the x^exponent term as the LSB of a digit */ | |||
static inline void gf2x_set_coeff(DIGIT poly[], unsigned int exponent, DIGIT value) { | |||
unsigned int straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent; | |||
unsigned int digitIdx = straightIdx / DIGIT_SIZE_b; | |||
unsigned int inDigitIdx = straightIdx % DIGIT_SIZE_b; | |||
/* clear given coefficient */ | |||
DIGIT mask = ~( ((DIGIT) 1) << (DIGIT_SIZE_b - 1 - inDigitIdx)); | |||
poly[digitIdx] = poly[digitIdx] & mask; | |||
poly[digitIdx] = poly[digitIdx] | (( value & ((DIGIT) 1)) << (DIGIT_SIZE_b - 1 - inDigitIdx)); | |||
} | |||
/* toggles (flips) the coefficient of the x^exponent term as the LSB of a digit */ | |||
static inline void gf2x_toggle_coeff(DIGIT poly[], unsigned int exponent) { | |||
unsigned int straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent; | |||
unsigned int digitIdx = straightIdx / DIGIT_SIZE_b; | |||
unsigned int inDigitIdx = straightIdx % DIGIT_SIZE_b; | |||
/* clear given coefficient */ | |||
DIGIT mask = ( ((DIGIT) 1) << (DIGIT_SIZE_b - 1 - inDigitIdx)); | |||
poly[digitIdx] = poly[digitIdx] ^ mask; | |||
} | |||
/* population count for an unsigned 64-bit integer | |||
Source: Hacker's delight, p.66 */ | |||
static int popcount_uint64t(uint64_t x) { | |||
x -= (x >> 1) & 0x5555555555555555; | |||
x = (x & 0x3333333333333333) + ((x >> 2) & 0x3333333333333333); | |||
x = (x + (x >> 4)) & 0x0f0f0f0f0f0f0f0f; | |||
return (int)((x * 0x0101010101010101) >> 56); | |||
} | |||
/* population count for a single polynomial */ | |||
static inline int population_count(DIGIT *poly) { | |||
int ret = 0; | |||
for (int i = NUM_DIGITS_GF2X_ELEMENT - 1; i >= 0; i--) { | |||
ret += popcount_uint64t(poly[i]); | |||
} | |||
return ret; | |||
} | |||
static inline void gf2x_mod_add(DIGIT Res[], const DIGIT A[], const DIGIT B[]) { | |||
gf2x_add(Res, A, B, NUM_DIGITS_GF2X_ELEMENT); | |||
} | |||
static inline int partition(POSITION_T arr[], int lo, int hi) { | |||
POSITION_T x = arr[hi]; | |||
POSITION_T tmp; | |||
int i = (lo - 1); | |||
for (int j = lo; j <= hi - 1; j++) { | |||
if (arr[j] <= x) { | |||
i++; | |||
tmp = arr[i]; | |||
arr[i] = arr[j]; | |||
arr[j] = tmp; | |||
} | |||
} | |||
tmp = arr[i + 1]; | |||
arr[i + 1] = arr[hi]; | |||
arr[hi] = tmp; | |||
return i + 1; | |||
} | |||
static inline void quicksort_sparse(POSITION_T Res[]) { | |||
int stack[DV * M]; | |||
int hi, lo, pivot, tos = -1; | |||
stack[++tos] = 0; | |||
stack[++tos] = (DV * M) - 1; | |||
while (tos >= 0 ) { | |||
hi = stack[tos--]; | |||
lo = stack[tos--]; | |||
pivot = partition(Res, lo, hi); | |||
if ( (pivot - 1) > lo) { | |||
stack[++tos] = lo; | |||
stack[++tos] = pivot - 1; | |||
} | |||
if ( (pivot + 1) < hi) { | |||
stack[++tos] = pivot + 1; | |||
stack[++tos] = hi; | |||
} | |||
} | |||
} | |||
void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_copy(DIGIT dest[], const DIGIT in[]); | |||
DIGIT PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_get_coeff(const DIGIT poly[], unsigned int exponent); | |||
void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_set_coeff(DIGIT poly[], unsigned int exponent, DIGIT value); | |||
void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_toggle_coeff(DIGIT poly[], unsigned int exponent); | |||
int PQCLEAN_LEDAKEMLT32_CLEAN_population_count(DIGIT *poly); | |||
void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mod_add(DIGIT Res[], const DIGIT A[], const DIGIT B[]); | |||
void PQCLEAN_LEDAKEMLT32_CLEAN_quicksort_sparse(POSITION_T Res[]); | |||
void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mod_mul(DIGIT Res[], const DIGIT A[], const DIGIT B[]); | |||
void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_transpose_in_place(DIGIT A[]); | |||
void PQCLEAN_LEDAKEMLT32_CLEAN_rand_circulant_sparse_block(POSITION_T *pos_ones, int countOnes, AES_XOF_struct *seed_expander_ctx); | |||
@@ -123,7 +31,6 @@ void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_transpose_in_place_sparse(int sizeA, POSITIO | |||
void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mod_mul_sparse(size_t sizeR, POSITION_T Res[], size_t sizeA, const POSITION_T A[], size_t sizeB, const POSITION_T B[]); | |||
void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mod_mul_dense_to_sparse(DIGIT Res[], const DIGIT dense[], POSITION_T sparse[], unsigned int nPos); | |||
void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_tobytes(uint8_t *bytes, const DIGIT *poly); | |||
int PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mod_inverse(DIGIT out[], const DIGIT in[]); | |||
#endif |
@@ -58,7 +58,7 @@ void PQCLEAN_LEDAKEMLT32_CLEAN_niederreiter_keygen(publicKeyNiederreiter_t *pk, | |||
memset(Ln0dense, 0x00, sizeof(Ln0dense)); | |||
for (int j = 0; j < DV * M; j++) { | |||
if (LPosOnes[N0 - 1][j] != INVALID_POS_VALUE) { | |||
gf2x_set_coeff(Ln0dense, LPosOnes[N0 - 1][j], 1); | |||
PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_set_coeff(Ln0dense, LPosOnes[N0 - 1][j], 1); | |||
} | |||
} | |||
@@ -86,9 +86,9 @@ void PQCLEAN_LEDAKEMLT32_CLEAN_niederreiter_encrypt(DIGIT *syndrome, const publi | |||
PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mod_mul(saux, | |||
pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT, | |||
err + i * NUM_DIGITS_GF2X_ELEMENT); | |||
gf2x_mod_add(syndrome, syndrome, saux); | |||
PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mod_add(syndrome, syndrome, saux); | |||
} | |||
gf2x_mod_add(syndrome, syndrome, err + (N0 - 1)*NUM_DIGITS_GF2X_ELEMENT); | |||
PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mod_add(syndrome, syndrome, err + (N0 - 1)*NUM_DIGITS_GF2X_ELEMENT); | |||
} | |||
@@ -180,7 +180,7 @@ int PQCLEAN_LEDAKEMLT32_CLEAN_niederreiter_decrypt(DIGIT *err, const privateKeyN | |||
err_weight = 0; | |||
for (int i = 0 ; i < N0; i++) { | |||
err_weight += population_count(err + (NUM_DIGITS_GF2X_ELEMENT * i)); | |||
err_weight += PQCLEAN_LEDAKEMLT32_CLEAN_population_count(err + (NUM_DIGITS_GF2X_ELEMENT * i)); | |||
} | |||
decryptOk = decryptOk && (err_weight == NUM_ERRORS_T); | |||
@@ -18,13 +18,13 @@ int PQCLEAN_LEDAKEMLT52_CLEAN_bf_decoding(DIGIT err[], | |||
int iteration = 0; | |||
do { | |||
gf2x_copy(currSyndrome, privateSyndrome); | |||
PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_copy(currSyndrome, privateSyndrome); | |||
memset(unsatParityChecks, 0x00, N0 * P * sizeof(uint8_t)); | |||
for (int i = 0; i < N0; i++) { | |||
for (int valueIdx = 0; valueIdx < P; valueIdx++) { | |||
for (int HtrOneIdx = 0; HtrOneIdx < DV; HtrOneIdx++) { | |||
POSITION_T tmp = (HtrPosOnes[i][HtrOneIdx] + valueIdx) >= P ? (HtrPosOnes[i][HtrOneIdx] + valueIdx) - P : (HtrPosOnes[i][HtrOneIdx] + valueIdx); | |||
if (gf2x_get_coeff(currSyndrome, tmp)) { | |||
if (PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_get_coeff(currSyndrome, tmp)) { | |||
unsatParityChecks[i * P + valueIdx]++; | |||
} | |||
} | |||
@@ -54,13 +54,13 @@ int PQCLEAN_LEDAKEMLT52_CLEAN_bf_decoding(DIGIT err[], | |||
} | |||
/* Correlation based flipping */ | |||
if (correlation >= corrt_syndrome_based) { | |||
gf2x_toggle_coeff(err + NUM_DIGITS_GF2X_ELEMENT * i, j); | |||
PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_toggle_coeff(err + NUM_DIGITS_GF2X_ELEMENT * i, j); | |||
for (int v = 0; v < M; v++) { | |||
unsigned syndromePosToFlip; | |||
for (int HtrOneIdx = 0; HtrOneIdx < DV; HtrOneIdx++) { | |||
syndromePosToFlip = (HtrPosOnes[currQBlkPos[v]][HtrOneIdx] + currQBitPos[v] ); | |||
syndromePosToFlip = syndromePosToFlip >= P ? syndromePosToFlip - P : syndromePosToFlip; | |||
gf2x_toggle_coeff(privateSyndrome, syndromePosToFlip); | |||
PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_toggle_coeff(privateSyndrome, syndromePosToFlip); | |||
} | |||
} // end for v | |||
} // end if | |||
@@ -38,7 +38,7 @@ int PQCLEAN_LEDAKEMLT52_CLEAN_DFR_test(POSITION_T LSparse[N0][DV * M]) { | |||
LSparse_loc[i][j] = (P - LSparse[i][j]); | |||
} | |||
} | |||
quicksort_sparse(LSparse_loc[i]); | |||
PQCLEAN_LEDAKEMLT52_CLEAN_quicksort_sparse(LSparse_loc[i]); | |||
} | |||
for (int i = 0; i < N0; i++ ) { | |||
@@ -48,7 +48,7 @@ int PQCLEAN_LEDAKEMLT52_CLEAN_DFR_test(POSITION_T LSparse[N0][DV * M]) { | |||
for (int idxToRotate = 0; idxToRotate < (DV * M); idxToRotate++) { | |||
rotated_column[idxToRotate] = (LSparse_loc[j][idxToRotate] + k) % P; | |||
} | |||
quicksort_sparse(rotated_column); | |||
PQCLEAN_LEDAKEMLT52_CLEAN_quicksort_sparse(rotated_column); | |||
/* compute the intersection amount */ | |||
firstidx = 0, secondidx = 0; | |||
intersectionval = 0; | |||
@@ -3,6 +3,12 @@ | |||
#include <assert.h> | |||
#include <string.h> // memset(...) | |||
void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_add(DIGIT Res[], const DIGIT A[], const DIGIT B[], int nr) { | |||
for (int i = 0; i < nr; i++) { | |||
Res[i] = A[i] ^ B[i]; | |||
} | |||
} | |||
/* PRE: MAX ALLOWED ROTATION AMOUNT : DIGIT_SIZE_b */ | |||
void PQCLEAN_LEDAKEMLT52_CLEAN_right_bit_shift_n(int length, DIGIT in[], unsigned int amount) { | |||
assert(amount < DIGIT_SIZE_b); | |||
@@ -50,12 +50,7 @@ typedef uint64_t DIGIT; | |||
#define GF2X_MUL PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mul_comb | |||
static inline void gf2x_add(DIGIT Res[], const DIGIT A[], const DIGIT B[], int nr) { | |||
for (int i = 0; i < nr; i++) { | |||
Res[i] = A[i] ^ B[i]; | |||
} | |||
} | |||
void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_add(DIGIT Res[], const DIGIT A[], const DIGIT B[], int nr); | |||
void PQCLEAN_LEDAKEMLT52_CLEAN_right_bit_shift_n(int length, DIGIT in[], unsigned int amount); | |||
void PQCLEAN_LEDAKEMLT52_CLEAN_left_bit_shift_n(int length, DIGIT in[], unsigned int amount); | |||
void GF2X_MUL(int nr, DIGIT Res[], int na, const DIGIT A[], int nb, const DIGIT B[]); | |||
@@ -5,6 +5,104 @@ | |||
#include <string.h> // memcpy(...), memset(...) | |||
void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_copy(DIGIT dest[], const DIGIT in[]) { | |||
for (int i = NUM_DIGITS_GF2X_ELEMENT - 1; i >= 0; i--) { | |||
dest[i] = in[i]; | |||
} | |||
} | |||
/* returns the coefficient of the x^exponent term as the LSB of a digit */ | |||
DIGIT PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_get_coeff(const DIGIT poly[], unsigned int exponent) { | |||
unsigned int straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent; | |||
unsigned int digitIdx = straightIdx / DIGIT_SIZE_b; | |||
unsigned int inDigitIdx = straightIdx % DIGIT_SIZE_b; | |||
return (poly[digitIdx] >> (DIGIT_SIZE_b - 1 - inDigitIdx)) & ((DIGIT) 1) ; | |||
} | |||
/* sets the coefficient of the x^exponent term as the LSB of a digit */ | |||
void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_set_coeff(DIGIT poly[], unsigned int exponent, DIGIT value) { | |||
unsigned int straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent; | |||
unsigned int digitIdx = straightIdx / DIGIT_SIZE_b; | |||
unsigned int inDigitIdx = straightIdx % DIGIT_SIZE_b; | |||
/* clear given coefficient */ | |||
DIGIT mask = ~( ((DIGIT) 1) << (DIGIT_SIZE_b - 1 - inDigitIdx)); | |||
poly[digitIdx] = poly[digitIdx] & mask; | |||
poly[digitIdx] = poly[digitIdx] | (( value & ((DIGIT) 1)) << (DIGIT_SIZE_b - 1 - inDigitIdx)); | |||
} | |||
/* toggles (flips) the coefficient of the x^exponent term as the LSB of a digit */ | |||
void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_toggle_coeff(DIGIT poly[], unsigned int exponent) { | |||
unsigned int straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent; | |||
unsigned int digitIdx = straightIdx / DIGIT_SIZE_b; | |||
unsigned int inDigitIdx = straightIdx % DIGIT_SIZE_b; | |||
/* clear given coefficient */ | |||
DIGIT mask = ( ((DIGIT) 1) << (DIGIT_SIZE_b - 1 - inDigitIdx)); | |||
poly[digitIdx] = poly[digitIdx] ^ mask; | |||
} | |||
/* population count for an unsigned 64-bit integer | |||
Source: Hacker's delight, p.66 */ | |||
static int popcount_uint64t(uint64_t x) { | |||
x -= (x >> 1) & 0x5555555555555555; | |||
x = (x & 0x3333333333333333) + ((x >> 2) & 0x3333333333333333); | |||
x = (x + (x >> 4)) & 0x0f0f0f0f0f0f0f0f; | |||
return (int)((x * 0x0101010101010101) >> 56); | |||
} | |||
/* population count for a single polynomial */ | |||
int PQCLEAN_LEDAKEMLT52_CLEAN_population_count(DIGIT *poly) { | |||
int ret = 0; | |||
for (int i = NUM_DIGITS_GF2X_ELEMENT - 1; i >= 0; i--) { | |||
ret += popcount_uint64t(poly[i]); | |||
} | |||
return ret; | |||
} | |||
void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_add(DIGIT Res[], const DIGIT A[], const DIGIT B[]) { | |||
PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_add(Res, A, B, NUM_DIGITS_GF2X_ELEMENT); | |||
} | |||
static int partition(POSITION_T arr[], int lo, int hi) { | |||
POSITION_T x = arr[hi]; | |||
POSITION_T tmp; | |||
int i = (lo - 1); | |||
for (int j = lo; j <= hi - 1; j++) { | |||
if (arr[j] <= x) { | |||
i++; | |||
tmp = arr[i]; | |||
arr[i] = arr[j]; | |||
arr[j] = tmp; | |||
} | |||
} | |||
tmp = arr[i + 1]; | |||
arr[i + 1] = arr[hi]; | |||
arr[hi] = tmp; | |||
return i + 1; | |||
} | |||
void PQCLEAN_LEDAKEMLT52_CLEAN_quicksort_sparse(POSITION_T Res[]) { | |||
int stack[DV * M]; | |||
int hi, lo, pivot, tos = -1; | |||
stack[++tos] = 0; | |||
stack[++tos] = (DV * M) - 1; | |||
while (tos >= 0 ) { | |||
hi = stack[tos--]; | |||
lo = stack[tos--]; | |||
pivot = partition(Res, lo, hi); | |||
if ( (pivot - 1) > lo) { | |||
stack[++tos] = lo; | |||
stack[++tos] = pivot - 1; | |||
} | |||
if ( (pivot + 1) < hi) { | |||
stack[++tos] = pivot + 1; | |||
stack[++tos] = hi; | |||
} | |||
} | |||
} | |||
static void gf2x_mod(DIGIT out[], const DIGIT in[]) { | |||
int i, j, posTrailingBit, maskOffset; | |||
@@ -65,7 +163,7 @@ static void right_bit_shift(unsigned int length, DIGIT in[]) { | |||
/* shifts by whole digits */ | |||
static inline void left_DIGIT_shift_n(unsigned int length, DIGIT in[], unsigned int amount) { | |||
static void left_DIGIT_shift_n(unsigned int length, DIGIT in[], unsigned int amount) { | |||
unsigned int j; | |||
for (j = 0; (j + amount) < length; j++) { | |||
in[j] = in[j + amount]; | |||
@@ -75,7 +173,6 @@ static inline void left_DIGIT_shift_n(unsigned int length, DIGIT in[], unsigned | |||
} | |||
} | |||
/* may shift by an arbitrary amount*/ | |||
static void left_bit_shift_wide_n(const int length, DIGIT in[], unsigned int amount) { | |||
left_DIGIT_shift_n(length, in, amount / DIGIT_SIZE_b); | |||
@@ -143,9 +240,7 @@ static void rotate_bit_right(DIGIT in[]) { /* x^{-1} * in(x) mod x^P+1 */ | |||
in[0] |= rotated_bit; | |||
} | |||
static void gf2x_swap(const int length, | |||
DIGIT f[], | |||
DIGIT s[]) { | |||
static void gf2x_swap(const int length, DIGIT f[], DIGIT s[]) { | |||
DIGIT t; | |||
for (int i = length - 1; i >= 0; i--) { | |||
t = f[i]; | |||
@@ -174,7 +269,7 @@ static void gf2x_swap(const int length, | |||
int PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_inverse(DIGIT out[], const DIGIT in[]) { /* in^{-1} mod x^P-1 */ | |||
int i; | |||
long int delta = 0; | |||
int delta = 0; | |||
DIGIT u[NUM_DIGITS_GF2X_ELEMENT] = {0}; | |||
DIGIT v[NUM_DIGITS_GF2X_ELEMENT] = {0}; | |||
DIGIT s[NUM_DIGITS_GF2X_MODULUS] = {0}; | |||
@@ -205,8 +300,8 @@ int PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_inverse(DIGIT out[], const DIGIT in[]) { | |||
delta += 1; | |||
} else { | |||
if ( (s[0] & mask) != 0) { | |||
gf2x_add(s, s, f, NUM_DIGITS_GF2X_MODULUS); | |||
gf2x_mod_add(v, v, u); | |||
PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_add(s, s, f, NUM_DIGITS_GF2X_MODULUS); | |||
PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_add(v, v, u); | |||
} | |||
left_bit_shift(NUM_DIGITS_GF2X_MODULUS, s); | |||
if ( delta == 0 ) { | |||
@@ -258,7 +353,7 @@ void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_mul_dense_to_sparse( | |||
for (unsigned int i = 1; i < nPos; i++) { | |||
if (sparse[i] != INVALID_POS_VALUE) { | |||
left_bit_shift_wide_n(2 * NUM_DIGITS_GF2X_ELEMENT, aux, (sparse[i] - sparse[i - 1]) ); | |||
gf2x_add(resDouble, aux, resDouble, 2 * NUM_DIGITS_GF2X_ELEMENT); | |||
PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_add(resDouble, aux, resDouble, 2 * NUM_DIGITS_GF2X_ELEMENT); | |||
} | |||
} | |||
} | |||
@@ -312,7 +407,7 @@ void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_mul_sparse(size_t sizeR, POSITION_T Res[ | |||
Res[lastFilledPos] = INVALID_POS_VALUE; | |||
lastFilledPos++; | |||
} | |||
quicksort_sparse(Res); | |||
PQCLEAN_LEDAKEMLT52_CLEAN_quicksort_sparse(Res); | |||
/* eliminate duplicates */ | |||
POSITION_T lastReadPos = Res[0]; | |||
int duplicateCount; | |||
@@ -464,8 +559,8 @@ void PQCLEAN_LEDAKEMLT52_CLEAN_rand_circulant_blocks_sequence( | |||
for (int j = 0; j < counter; j++) { | |||
polyIndex = rndPos[j] / P; | |||
exponent = rndPos[j] % P; | |||
gf2x_set_coeff( sequence + NUM_DIGITS_GF2X_ELEMENT * polyIndex, exponent, | |||
( (DIGIT) 1)); | |||
PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_set_coeff( sequence + NUM_DIGITS_GF2X_ELEMENT * polyIndex, exponent, | |||
( (DIGIT) 1)); | |||
} | |||
} | |||
@@ -15,105 +15,13 @@ | |||
#define INVALID_POS_VALUE (P) | |||
#define P_BITS (18) // log_2(p) = 17.216243783 | |||
static inline void gf2x_copy(DIGIT dest[], const DIGIT in[]) { | |||
for (int i = NUM_DIGITS_GF2X_ELEMENT - 1; i >= 0; i--) { | |||
dest[i] = in[i]; | |||
} | |||
} | |||
/* returns the coefficient of the x^exponent term as the LSB of a digit */ | |||
static inline DIGIT gf2x_get_coeff(const DIGIT poly[], unsigned int exponent) { | |||
unsigned int straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent; | |||
unsigned int digitIdx = straightIdx / DIGIT_SIZE_b; | |||
unsigned int inDigitIdx = straightIdx % DIGIT_SIZE_b; | |||
return (poly[digitIdx] >> (DIGIT_SIZE_b - 1 - inDigitIdx)) & ((DIGIT) 1) ; | |||
} | |||
/* sets the coefficient of the x^exponent term as the LSB of a digit */ | |||
static inline void gf2x_set_coeff(DIGIT poly[], unsigned int exponent, DIGIT value) { | |||
unsigned int straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent; | |||
unsigned int digitIdx = straightIdx / DIGIT_SIZE_b; | |||
unsigned int inDigitIdx = straightIdx % DIGIT_SIZE_b; | |||
/* clear given coefficient */ | |||
DIGIT mask = ~( ((DIGIT) 1) << (DIGIT_SIZE_b - 1 - inDigitIdx)); | |||
poly[digitIdx] = poly[digitIdx] & mask; | |||
poly[digitIdx] = poly[digitIdx] | (( value & ((DIGIT) 1)) << (DIGIT_SIZE_b - 1 - inDigitIdx)); | |||
} | |||
/* toggles (flips) the coefficient of the x^exponent term as the LSB of a digit */ | |||
static inline void gf2x_toggle_coeff(DIGIT poly[], unsigned int exponent) { | |||
unsigned int straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent; | |||
unsigned int digitIdx = straightIdx / DIGIT_SIZE_b; | |||
unsigned int inDigitIdx = straightIdx % DIGIT_SIZE_b; | |||
/* clear given coefficient */ | |||
DIGIT mask = ( ((DIGIT) 1) << (DIGIT_SIZE_b - 1 - inDigitIdx)); | |||
poly[digitIdx] = poly[digitIdx] ^ mask; | |||
} | |||
/* population count for an unsigned 64-bit integer | |||
Source: Hacker's delight, p.66 */ | |||
static int popcount_uint64t(uint64_t x) { | |||
x -= (x >> 1) & 0x5555555555555555; | |||
x = (x & 0x3333333333333333) + ((x >> 2) & 0x3333333333333333); | |||
x = (x + (x >> 4)) & 0x0f0f0f0f0f0f0f0f; | |||
return (int)((x * 0x0101010101010101) >> 56); | |||
} | |||
/* population count for a single polynomial */ | |||
static inline int population_count(DIGIT *poly) { | |||
int ret = 0; | |||
for (int i = NUM_DIGITS_GF2X_ELEMENT - 1; i >= 0; i--) { | |||
ret += popcount_uint64t(poly[i]); | |||
} | |||
return ret; | |||
} | |||
static inline void gf2x_mod_add(DIGIT Res[], const DIGIT A[], const DIGIT B[]) { | |||
gf2x_add(Res, A, B, NUM_DIGITS_GF2X_ELEMENT); | |||
} | |||
static inline int partition(POSITION_T arr[], int lo, int hi) { | |||
POSITION_T x = arr[hi]; | |||
POSITION_T tmp; | |||
int i = (lo - 1); | |||
for (int j = lo; j <= hi - 1; j++) { | |||
if (arr[j] <= x) { | |||
i++; | |||
tmp = arr[i]; | |||
arr[i] = arr[j]; | |||
arr[j] = tmp; | |||
} | |||
} | |||
tmp = arr[i + 1]; | |||
arr[i + 1] = arr[hi]; | |||
arr[hi] = tmp; | |||
return i + 1; | |||
} | |||
static inline void quicksort_sparse(POSITION_T Res[]) { | |||
int stack[DV * M]; | |||
int hi, lo, pivot, tos = -1; | |||
stack[++tos] = 0; | |||
stack[++tos] = (DV * M) - 1; | |||
while (tos >= 0 ) { | |||
hi = stack[tos--]; | |||
lo = stack[tos--]; | |||
pivot = partition(Res, lo, hi); | |||
if ( (pivot - 1) > lo) { | |||
stack[++tos] = lo; | |||
stack[++tos] = pivot - 1; | |||
} | |||
if ( (pivot + 1) < hi) { | |||
stack[++tos] = pivot + 1; | |||
stack[++tos] = hi; | |||
} | |||
} | |||
} | |||
void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_copy(DIGIT dest[], const DIGIT in[]); | |||
DIGIT PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_get_coeff(const DIGIT poly[], unsigned int exponent); | |||
void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_set_coeff(DIGIT poly[], unsigned int exponent, DIGIT value); | |||
void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_toggle_coeff(DIGIT poly[], unsigned int exponent); | |||
int PQCLEAN_LEDAKEMLT52_CLEAN_population_count(DIGIT *poly); | |||
void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_add(DIGIT Res[], const DIGIT A[], const DIGIT B[]); | |||
void PQCLEAN_LEDAKEMLT52_CLEAN_quicksort_sparse(POSITION_T Res[]); | |||
void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_mul(DIGIT Res[], const DIGIT A[], const DIGIT B[]); | |||
void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_transpose_in_place(DIGIT A[]); | |||
void PQCLEAN_LEDAKEMLT52_CLEAN_rand_circulant_sparse_block(POSITION_T *pos_ones, int countOnes, AES_XOF_struct *seed_expander_ctx); | |||
@@ -123,7 +31,6 @@ void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_transpose_in_place_sparse(int sizeA, POSITIO | |||
void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_mul_sparse(size_t sizeR, POSITION_T Res[], size_t sizeA, const POSITION_T A[], size_t sizeB, const POSITION_T B[]); | |||
void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_mul_dense_to_sparse(DIGIT Res[], const DIGIT dense[], POSITION_T sparse[], unsigned int nPos); | |||
void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_tobytes(uint8_t *bytes, const DIGIT *poly); | |||
int PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_inverse(DIGIT out[], const DIGIT in[]); | |||
#endif |
@@ -58,7 +58,7 @@ void PQCLEAN_LEDAKEMLT52_CLEAN_niederreiter_keygen(publicKeyNiederreiter_t *pk, | |||
memset(Ln0dense, 0x00, sizeof(Ln0dense)); | |||
for (int j = 0; j < DV * M; j++) { | |||
if (LPosOnes[N0 - 1][j] != INVALID_POS_VALUE) { | |||
gf2x_set_coeff(Ln0dense, LPosOnes[N0 - 1][j], 1); | |||
PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_set_coeff(Ln0dense, LPosOnes[N0 - 1][j], 1); | |||
} | |||
} | |||
@@ -86,9 +86,9 @@ void PQCLEAN_LEDAKEMLT52_CLEAN_niederreiter_encrypt(DIGIT *syndrome, const publi | |||
PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_mul(saux, | |||
pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT, | |||
err + i * NUM_DIGITS_GF2X_ELEMENT); | |||
gf2x_mod_add(syndrome, syndrome, saux); | |||
PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_add(syndrome, syndrome, saux); | |||
} | |||
gf2x_mod_add(syndrome, syndrome, err + (N0 - 1)*NUM_DIGITS_GF2X_ELEMENT); | |||
PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_add(syndrome, syndrome, err + (N0 - 1)*NUM_DIGITS_GF2X_ELEMENT); | |||
} | |||
@@ -180,7 +180,7 @@ int PQCLEAN_LEDAKEMLT52_CLEAN_niederreiter_decrypt(DIGIT *err, const privateKeyN | |||
err_weight = 0; | |||
for (int i = 0 ; i < N0; i++) { | |||
err_weight += population_count(err + (NUM_DIGITS_GF2X_ELEMENT * i)); | |||
err_weight += PQCLEAN_LEDAKEMLT52_CLEAN_population_count(err + (NUM_DIGITS_GF2X_ELEMENT * i)); | |||
} | |||
decryptOk = decryptOk && (err_weight == NUM_ERRORS_T); | |||