@@ -0,0 +1,13 @@ | |||
name: FireSaber | |||
type: kem | |||
claimed-nist-level: 5 | |||
claimed-security: IND-CCA2 | |||
length-public-key: 1312 | |||
length-ciphertext: 1472 | |||
length-secret-key: 3040 | |||
length-shared-secret: 32 | |||
nistkat-sha256: 937d9b2e139112e13d4093a6afe715deff476e4d578208b9e8e1809de43835cd | |||
principal-submitter: Jan-Pieter D'Anvers, Angshuman Karmakar, Sujoy Sinha Roy, Frederik Vercauteren | |||
implementations: | |||
- name: clean | |||
version: https://github.com/KULeuven-COSIC/SABER/commit/14ede83f1ff3bcc41f0464543542366c68b55871 |
@@ -0,0 +1 @@ | |||
TODO |
@@ -0,0 +1,19 @@ | |||
# This Makefile can be used with GNU Make or BSD Make | |||
LIB=libfiresaber_clean.a | |||
HEADERS=api.h cbd.h poly.h poly_mul.h SABER_indcpa.h SABER_params.h verify.h pack_unpack.h | |||
OBJECTS=cbd.o kem.o pack_unpack.o poly.o poly_mul.o SABER_indcpa.o verify.o | |||
CFLAGS=-O3 -Wall -Wextra -Wpedantic -Werror -Wmissing-prototypes -Wredundant-decls -std=c99 -I../../../common $(EXTRAFLAGS) | |||
all: $(LIB) | |||
%.o: %.c $(HEADERS) | |||
$(CC) $(CFLAGS) -c -o $@ $< | |||
$(LIB): $(OBJECTS) | |||
$(AR) -r $@ $(OBJECTS) | |||
clean: | |||
$(RM) $(OBJECTS) | |||
$(RM) $(LIB) |
@@ -0,0 +1,19 @@ | |||
# This Makefile can be used with Microsoft Visual Studio's nmake using the command: | |||
# nmake /f Makefile.Microsoft_nmake | |||
LIBRARY=libfiresaber_clean.lib | |||
OBJECTS=cbd.obj kem.obj pack_unpack.obj poly.obj poly_mul.obj SABER_indcpa.obj verify.obj | |||
CFLAGS=/nologo /I ..\..\..\common /W4 /WX | |||
all: $(LIBRARY) | |||
# Make sure objects are recompiled if headers change. | |||
$(OBJECTS): *.h | |||
$(LIBRARY): $(OBJECTS) | |||
LIB.EXE /NOLOGO /WX /OUT:$@ $** | |||
clean: | |||
-DEL $(OBJECTS) | |||
-DEL $(LIBRARY) |
@@ -0,0 +1,335 @@ | |||
#include "SABER_indcpa.h" | |||
#include "SABER_params.h" | |||
#include "fips202.h" | |||
#include "pack_unpack.h" | |||
#include "poly.h" | |||
#include "poly_mul.h" | |||
#include "randombytes.h" | |||
#include <stdint.h> | |||
#include <string.h> | |||
/*----------------------------------------------------------------------------------- | |||
This routine generates a=[Matrix K x K] of 256-coefficient polynomials | |||
-------------------------------------------------------------------------------------*/ | |||
#define h1 4 //2^(EQ-EP-1) | |||
#define h2 ( (1<<(SABER_EP-2)) - (1<<(SABER_EP-SABER_ET-1)) + (1<<(SABER_EQ-SABER_EP-1)) ) | |||
static void InnerProd(uint16_t pkcl[SABER_K][SABER_N], uint16_t skpv[SABER_K][SABER_N], uint16_t mod, uint16_t res[SABER_N]); | |||
static void MatrixVectorMul(polyvec *a, uint16_t skpv[SABER_K][SABER_N], uint16_t res[SABER_K][SABER_N], uint16_t mod, int16_t transpose); | |||
static void POL2MSG(const uint16_t *message_dec_unpacked, unsigned char *message_dec); | |||
static void GenMatrix(polyvec *a, const unsigned char *seed) { | |||
unsigned char buf[SABER_K * SABER_K * (13 * SABER_N / 8)]; | |||
uint16_t temp_ar[SABER_N]; | |||
int i, j, k; | |||
uint16_t mod = (SABER_Q - 1); | |||
shake128(buf, sizeof(buf), seed, SABER_SEEDBYTES); | |||
for (i = 0; i < SABER_K; i++) { | |||
for (j = 0; j < SABER_K; j++) { | |||
PQCLEAN_FIRESABER_CLEAN_BS2POL(buf + (i * SABER_K + j) * (13 * SABER_N / 8), temp_ar); | |||
for (k = 0; k < SABER_N; k++) { | |||
a[i].vec[j].coeffs[k] = (temp_ar[k])& mod ; | |||
} | |||
} | |||
} | |||
} | |||
void PQCLEAN_FIRESABER_CLEAN_indcpa_kem_keypair(unsigned char *pk, unsigned char *sk) { | |||
polyvec a[SABER_K];// skpv; | |||
uint16_t skpv[SABER_K][SABER_N]; | |||
unsigned char seed[SABER_SEEDBYTES]; | |||
unsigned char noiseseed[SABER_COINBYTES]; | |||
int32_t i, j; | |||
uint16_t mod_q = SABER_Q - 1; | |||
uint16_t res[SABER_K][SABER_N]; | |||
randombytes(seed, SABER_SEEDBYTES); | |||
shake128(seed, SABER_SEEDBYTES, seed, SABER_SEEDBYTES); // for not revealing system RNG state | |||
randombytes(noiseseed, SABER_COINBYTES); | |||
GenMatrix(a, seed); //sample matrix A | |||
PQCLEAN_FIRESABER_CLEAN_GenSecret(skpv, noiseseed); //generate secret from constant-time binomial distribution | |||
//------------------------do the matrix vector multiplication and rounding------------ | |||
for (i = 0; i < SABER_K; i++) { | |||
for (j = 0; j < SABER_N; j++) { | |||
res[i][j] = 0; | |||
} | |||
} | |||
MatrixVectorMul(a, skpv, res, SABER_Q - 1, 1); | |||
//-----now rounding | |||
for (i = 0; i < SABER_K; i++) { //shift right 3 bits | |||
for (j = 0; j < SABER_N; j++) { | |||
res[i][j] = (res[i][j] + h1) & (mod_q); | |||
res[i][j] = (res[i][j] >> (SABER_EQ - SABER_EP)); | |||
} | |||
} | |||
//------------------unload and pack sk=3 x (256 coefficients of 14 bits)------- | |||
PQCLEAN_FIRESABER_CLEAN_POLVEC2BS(sk, skpv, SABER_Q); | |||
//------------------unload and pack pk=256 bits seed and 3 x (256 coefficients of 11 bits)------- | |||
PQCLEAN_FIRESABER_CLEAN_POLVEC2BS(pk, res, SABER_P); // load the public-key coefficients | |||
for (i = 0; i < SABER_SEEDBYTES; i++) { // now load the seedbytes in PK. Easy since seed bytes are kept in byte format. | |||
pk[SABER_POLYVECCOMPRESSEDBYTES + i] = seed[i]; | |||
} | |||
} | |||
void PQCLEAN_FIRESABER_CLEAN_indcpa_kem_enc(const unsigned char *message_received, unsigned char *noiseseed, const unsigned char *pk, unsigned char *ciphertext) { | |||
uint32_t i, j, k; | |||
polyvec a[SABER_K]; // skpv; | |||
unsigned char seed[SABER_SEEDBYTES]; | |||
uint16_t pkcl[SABER_K][SABER_N]; //public key of received by the client | |||
uint16_t skpv1[SABER_K][SABER_N]; | |||
uint16_t message[SABER_KEYBYTES * 8]; | |||
uint16_t res[SABER_K][SABER_N]; | |||
uint16_t mod_p = SABER_P - 1; | |||
uint16_t mod_q = SABER_Q - 1; | |||
uint16_t vprime[SABER_N]; | |||
unsigned char msk_c[SABER_SCALEBYTES_KEM]; | |||
for (i = 0; i < SABER_SEEDBYTES; i++) { // extract the seedbytes from Public Key. | |||
seed[i] = pk[ SABER_POLYVECCOMPRESSEDBYTES + i]; | |||
} | |||
GenMatrix(a, seed); | |||
PQCLEAN_FIRESABER_CLEAN_GenSecret(skpv1, noiseseed); //generate secret from constant-time binomial distribution | |||
//-----------------matrix-vector multiplication and rounding | |||
for (i = 0; i < SABER_K; i++) { | |||
for (j = 0; j < SABER_N; j++) { | |||
res[i][j] = 0; | |||
} | |||
} | |||
MatrixVectorMul(a, skpv1, res, SABER_Q - 1, 0); | |||
//-----now rounding | |||
for (i = 0; i < SABER_K; i++) { //shift right 3 bits | |||
for (j = 0; j < SABER_N; j++) { | |||
res[i][j] = ( res[i][j] + h1 ) & mod_q; | |||
res[i][j] = (res[i][j] >> (SABER_EQ - SABER_EP) ); | |||
} | |||
} | |||
PQCLEAN_FIRESABER_CLEAN_POLVEC2BS(ciphertext, res, SABER_P); | |||
//*******************client matrix-vector multiplication ends************************************ | |||
//------now calculate the v' | |||
//-------unpack the public_key | |||
//pkcl is the b in the protocol | |||
PQCLEAN_FIRESABER_CLEAN_BS2POLVEC(pk, pkcl, SABER_P); | |||
for (i = 0; i < SABER_N; i++) { | |||
vprime[i] = 0; | |||
} | |||
for (i = 0; i < SABER_K; i++) { | |||
for (j = 0; j < SABER_N; j++) { | |||
skpv1[i][j] = skpv1[i][j] & (mod_p); | |||
} | |||
} | |||
// vector-vector scalar multiplication with mod p | |||
InnerProd(pkcl, skpv1, mod_p, vprime); | |||
//addition of h1 to vprime | |||
for (i = 0; i < SABER_N; i++) { | |||
vprime[i] = vprime[i] + h1; | |||
} | |||
// unpack message_received; | |||
for (j = 0; j < SABER_KEYBYTES; j++) { | |||
for (i = 0; i < 8; i++) { | |||
message[8 * j + i] = ((message_received[j] >> i) & 0x01); | |||
} | |||
} | |||
// message encoding | |||
for (i = 0; i < SABER_N; i++) { | |||
message[i] = (message[i] << (SABER_EP - 1)); | |||
} | |||
for (k = 0; k < SABER_N; k++) { | |||
vprime[k] = ( (vprime[k] - message[k]) & (mod_p) ) >> (SABER_EP - SABER_ET); | |||
} | |||
PQCLEAN_FIRESABER_CLEAN_pack_6bit(msk_c, vprime); | |||
for (j = 0; j < SABER_SCALEBYTES_KEM; j++) { | |||
ciphertext[SABER_POLYVECCOMPRESSEDBYTES + j] = msk_c[j]; | |||
} | |||
} | |||
void PQCLEAN_FIRESABER_CLEAN_indcpa_kem_dec(const unsigned char *sk, const unsigned char *ciphertext, unsigned char message_dec[]) { | |||
uint32_t i, j; | |||
uint16_t sksv[SABER_K][SABER_N]; //secret key of the server | |||
uint16_t pksv[SABER_K][SABER_N]; | |||
uint8_t scale_ar[SABER_SCALEBYTES_KEM]; | |||
uint16_t mod_p = SABER_P - 1; | |||
uint16_t v[SABER_N]; | |||
uint16_t op[SABER_N]; | |||
PQCLEAN_FIRESABER_CLEAN_BS2POLVEC(sk, sksv, SABER_Q); //sksv is the secret-key | |||
PQCLEAN_FIRESABER_CLEAN_BS2POLVEC(ciphertext, pksv, SABER_P); //pksv is the ciphertext | |||
// vector-vector scalar multiplication with mod p | |||
for (i = 0; i < SABER_N; i++) { | |||
v[i] = 0; | |||
} | |||
for (i = 0; i < SABER_K; i++) { | |||
for (j = 0; j < SABER_N; j++) { | |||
sksv[i][j] = sksv[i][j] & (mod_p); | |||
} | |||
} | |||
InnerProd(pksv, sksv, mod_p, v); | |||
//Extraction | |||
for (i = 0; i < SABER_SCALEBYTES_KEM; i++) { | |||
scale_ar[i] = ciphertext[SABER_POLYVECCOMPRESSEDBYTES + i]; | |||
} | |||
PQCLEAN_FIRESABER_CLEAN_un_pack6bit(scale_ar, op); | |||
//addition of h1 | |||
for (i = 0; i < SABER_N; i++) { | |||
v[i] = ( ( v[i] + h2 - (op[i] << (SABER_EP - SABER_ET)) ) & (mod_p) ) >> (SABER_EP - 1); | |||
} | |||
// pack decrypted message | |||
POL2MSG(v, message_dec); | |||
} | |||
static void MatrixVectorMul(polyvec *a, uint16_t skpv[SABER_K][SABER_N], uint16_t res[SABER_K][SABER_N], uint16_t mod, int16_t transpose) { | |||
uint16_t acc[SABER_N]; | |||
int32_t i, j, k; | |||
if (transpose == 1) { | |||
for (i = 0; i < SABER_K; i++) { | |||
for (j = 0; j < SABER_K; j++) { | |||
PQCLEAN_FIRESABER_CLEAN_pol_mul((uint16_t *)&a[j].vec[i], skpv[j], acc, SABER_Q, SABER_N); | |||
for (k = 0; k < SABER_N; k++) { | |||
res[i][k] = res[i][k] + acc[k]; | |||
res[i][k] = (res[i][k] & mod); //reduction mod p | |||
acc[k] = 0; //clear the accumulator | |||
} | |||
} | |||
} | |||
} else { | |||
for (i = 0; i < SABER_K; i++) { | |||
for (j = 0; j < SABER_K; j++) { | |||
PQCLEAN_FIRESABER_CLEAN_pol_mul((uint16_t *)&a[i].vec[j], skpv[j], acc, SABER_Q, SABER_N); | |||
for (k = 0; k < SABER_N; k++) { | |||
res[i][k] = res[i][k] + acc[k]; | |||
res[i][k] = res[i][k] & mod; //reduction | |||
acc[k] = 0; //clear the accumulator | |||
} | |||
} | |||
} | |||
} | |||
} | |||
static void POL2MSG(const uint16_t *message_dec_unpacked, unsigned char *message_dec) { | |||
int32_t i, j; | |||
for (j = 0; j < SABER_KEYBYTES; j++) { | |||
message_dec[j] = 0; | |||
for (i = 0; i < 8; i++) { | |||
message_dec[j] = message_dec[j] | (uint8_t) (message_dec_unpacked[j * 8 + i] << i); | |||
} | |||
} | |||
} | |||
static void InnerProd(uint16_t pkcl[SABER_K][SABER_N], uint16_t skpv[SABER_K][SABER_N], uint16_t mod, uint16_t res[SABER_N]) { | |||
uint32_t j, k; | |||
uint16_t acc[SABER_N]; | |||
// vector-vector scalar multiplication with mod p | |||
for (j = 0; j < SABER_K; j++) { | |||
PQCLEAN_FIRESABER_CLEAN_pol_mul(pkcl[j], skpv[j], acc, SABER_P, SABER_N); | |||
for (k = 0; k < SABER_N; k++) { | |||
res[k] = res[k] + acc[k]; | |||
res[k] = res[k] & mod; //reduction | |||
acc[k] = 0; //clear the accumulator | |||
} | |||
} | |||
} |
@@ -0,0 +1,9 @@ | |||
#ifndef INDCPA_H | |||
#define INDCPA_H | |||
void PQCLEAN_FIRESABER_CLEAN_indcpa_kem_keypair(unsigned char *pk, unsigned char *sk); | |||
void PQCLEAN_FIRESABER_CLEAN_indcpa_kem_enc(const unsigned char *message, unsigned char *noiseseed, const unsigned char *pk, unsigned char *ciphertext); | |||
void PQCLEAN_FIRESABER_CLEAN_indcpa_kem_dec(const unsigned char *sk, const unsigned char *ciphertext, unsigned char *message_dec); | |||
#endif | |||
@@ -0,0 +1,49 @@ | |||
#ifndef PARAMS_H | |||
#define PARAMS_H | |||
#include "api.h" | |||
#define SABER_K 4 | |||
#define SABER_MU 6 | |||
#define SABER_ET 6 | |||
#define SABER_EQ 13 | |||
#define SABER_EP 10 | |||
#define SABER_N 256 | |||
#define SABER_Q 8192 | |||
#define SABER_P 1024 | |||
#define SABER_SEEDBYTES 32 | |||
#define SABER_NOISESEEDBYTES 32 | |||
#define SABER_COINBYTES 32 | |||
#define SABER_KEYBYTES 32 | |||
#define SABER_HASHBYTES 32 | |||
#define SABER_POLYBYTES 416 //13*256/8 | |||
#define SABER_POLYVECBYTES (SABER_K * SABER_POLYBYTES) | |||
#define SABER_POLYVECCOMPRESSEDBYTES (SABER_K * 320) //10*256/8 NOTE : changed till here due to parameter adaptation | |||
#define SABER_CIPHERTEXTBYTES (SABER_POLYVECCOMPRESSEDBYTES) | |||
#define SABER_SCALEBYTES (SABER_DELTA*SABER_N/8) | |||
#define SABER_SCALEBYTES_KEM ((SABER_ET)*SABER_N/8) | |||
#define SABER_INDCPA_PUBLICKEYBYTES (SABER_POLYVECCOMPRESSEDBYTES + SABER_SEEDBYTES) | |||
#define SABER_INDCPA_SECRETKEYBYTES (SABER_POLYVECBYTES) | |||
#define SABER_PUBLICKEYBYTES (SABER_INDCPA_PUBLICKEYBYTES) | |||
#define SABER_SECRETKEYBYTES (SABER_INDCPA_SECRETKEYBYTES + SABER_INDCPA_PUBLICKEYBYTES + SABER_HASHBYTES + SABER_KEYBYTES) | |||
#define SABER_BYTES_CCA_DEC (SABER_POLYVECCOMPRESSEDBYTES + SABER_SCALEBYTES_KEM) /* Second part is for Targhi-Unruh */ | |||
#endif | |||
@@ -0,0 +1,14 @@ | |||
#ifndef PQCLEAN_FIRESABER_CLEAN_API_H | |||
#define PQCLEAN_FIRESABER_CLEAN_API_H | |||
#define PQCLEAN_FIRESABER_CLEAN_CRYPTO_ALGNAME "FireSaber" | |||
#define PQCLEAN_FIRESABER_CLEAN_CRYPTO_SECRETKEYBYTES 3040 | |||
#define PQCLEAN_FIRESABER_CLEAN_CRYPTO_PUBLICKEYBYTES (4*320+32) | |||
#define PQCLEAN_FIRESABER_CLEAN_CRYPTO_BYTES 32 | |||
#define PQCLEAN_FIRESABER_CLEAN_CRYPTO_CIPHERTEXTBYTES 1472 | |||
int PQCLEAN_FIRESABER_CLEAN_crypto_kem_keypair(unsigned char *pk, unsigned char *sk); | |||
int PQCLEAN_FIRESABER_CLEAN_crypto_kem_enc(unsigned char *ct, unsigned char *ss, const unsigned char *pk); | |||
int PQCLEAN_FIRESABER_CLEAN_crypto_kem_dec(unsigned char *ss, const unsigned char *ct, const unsigned char *sk); | |||
#endif /* api_h */ |
@@ -0,0 +1,52 @@ | |||
/*--------------------------------------------------------------------- | |||
This file has been adapted from the implementation | |||
(available at, Public Domain https://github.com/pq-crystals/kyber) | |||
of "CRYSTALS – Kyber: a CCA-secure module-lattice-based KEM" | |||
by : Joppe Bos, Leo Ducas, Eike Kiltz, Tancrede Lepoint, | |||
Vadim Lyubashevsky, John M. Schanck, Peter Schwabe & Damien stehle | |||
----------------------------------------------------------------------*/ | |||
#include "SABER_params.h" | |||
#include "api.h" | |||
#include "cbd.h" | |||
#include <stdint.h> | |||
static uint64_t load_littleendian(const unsigned char *x, int bytes) { | |||
int i; | |||
uint64_t r = x[0]; | |||
for (i = 1; i < bytes; i++) { | |||
r |= (uint64_t)x[i] << (8 * i); | |||
} | |||
return r; | |||
} | |||
void PQCLEAN_FIRESABER_CLEAN_cbd(uint16_t *r, const unsigned char *buf) { | |||
uint16_t Qmod_minus1 = SABER_Q - 1; | |||
uint32_t t, d, a[4], b[4]; | |||
int i, j; | |||
for (i = 0; i < SABER_N / 4; i++) { | |||
t = load_littleendian(buf + 3 * i, 3); | |||
d = 0; | |||
for (j = 0; j < 3; j++) { | |||
d += (t >> j) & 0x249249; | |||
} | |||
a[0] = d & 0x7; | |||
b[0] = (d >> 3) & 0x7; | |||
a[1] = (d >> 6) & 0x7; | |||
b[1] = (d >> 9) & 0x7; | |||
a[2] = (d >> 12) & 0x7; | |||
b[2] = (d >> 15) & 0x7; | |||
a[3] = (d >> 18) & 0x7; | |||
b[3] = (d >> 21); | |||
r[4 * i + 0] = (uint16_t)(a[0] - b[0]) & Qmod_minus1; | |||
r[4 * i + 1] = (uint16_t)(a[1] - b[1]) & Qmod_minus1; | |||
r[4 * i + 2] = (uint16_t)(a[2] - b[2]) & Qmod_minus1; | |||
r[4 * i + 3] = (uint16_t)(a[3] - b[3]) & Qmod_minus1; | |||
} | |||
} |
@@ -0,0 +1,17 @@ | |||
#ifndef CBD_H | |||
#define CBD_H | |||
/*--------------------------------------------------------------------- | |||
This file has been adapted from the implementation | |||
(available at, Public Domain https://github.com/pq-crystals/kyber) | |||
of "CRYSTALS – Kyber: a CCA-secure module-lattice-based KEM" | |||
by : Joppe Bos, Leo Ducas, Eike Kiltz, Tancrede Lepoint, | |||
Vadim Lyubashevsky, John M. Schanck, Peter Schwabe & Damien stehle | |||
----------------------------------------------------------------------*/ | |||
#include "poly.h" | |||
#include <stdint.h> | |||
void PQCLEAN_FIRESABER_CLEAN_cbd(uint16_t *r, const unsigned char *buf); | |||
#endif |
@@ -0,0 +1,79 @@ | |||
#include "SABER_indcpa.h" | |||
#include "SABER_params.h" | |||
#include "fips202.h" | |||
#include "randombytes.h" | |||
#include "verify.h" | |||
#include <stdint.h> | |||
#include <stdio.h> | |||
#include <string.h> | |||
int PQCLEAN_FIRESABER_CLEAN_crypto_kem_keypair(unsigned char *pk, unsigned char *sk) { | |||
int i; | |||
PQCLEAN_FIRESABER_CLEAN_indcpa_kem_keypair(pk, sk); // sk[0:SABER_INDCPA_SECRETKEYBYTES-1] <-- sk | |||
for (i = 0; i < SABER_INDCPA_PUBLICKEYBYTES; i++) { | |||
sk[i + SABER_INDCPA_SECRETKEYBYTES] = pk[i]; // sk[SABER_INDCPA_SECRETKEYBYTES:SABER_INDCPA_SECRETKEYBYTES+SABER_INDCPA_SECRETKEYBYTES-1] <-- pk | |||
} | |||
sha3_256(sk + SABER_SECRETKEYBYTES - 64, pk, SABER_INDCPA_PUBLICKEYBYTES); // Then hash(pk) is appended. | |||
randombytes(sk + SABER_SECRETKEYBYTES - SABER_KEYBYTES, SABER_KEYBYTES ); // Remaining part of sk contains a pseudo-random number. | |||
// This is output when check in crypto_kem_dec() fails. | |||
return (0); | |||
} | |||
int PQCLEAN_FIRESABER_CLEAN_crypto_kem_enc(unsigned char *ct, unsigned char *ss, const unsigned char *pk) { | |||
unsigned char kr[64]; // Will contain key, coins | |||
unsigned char buf[64]; | |||
randombytes(buf, 32); | |||
sha3_256(buf, buf, 32); // BUF[0:31] <-- random message (will be used as the key for client) Note: hash doesnot release system RNG output | |||
sha3_256(buf + 32, pk, SABER_INDCPA_PUBLICKEYBYTES); // BUF[32:63] <-- Hash(public key); Multitarget countermeasure for coins + contributory KEM | |||
sha3_512(kr, buf, 64); // kr[0:63] <-- Hash(buf[0:63]); | |||
// K^ <-- kr[0:31] | |||
// noiseseed (r) <-- kr[32:63]; | |||
PQCLEAN_FIRESABER_CLEAN_indcpa_kem_enc(buf, kr + 32, pk, ct); // buf[0:31] contains message; kr[32:63] contains randomness r; | |||
sha3_256(kr + 32, ct, SABER_BYTES_CCA_DEC); | |||
sha3_256(ss, kr, 64); // hash concatenation of pre-k and h(c) to k | |||
return (0); | |||
} | |||
int PQCLEAN_FIRESABER_CLEAN_crypto_kem_dec(unsigned char *ss, const unsigned char *ct, const unsigned char *sk) { | |||
int i; | |||
unsigned char fail; | |||
unsigned char cmp[SABER_BYTES_CCA_DEC]; | |||
unsigned char buf[64]; | |||
unsigned char kr[64]; // Will contain key, coins | |||
const unsigned char *pk = sk + SABER_INDCPA_SECRETKEYBYTES; | |||
PQCLEAN_FIRESABER_CLEAN_indcpa_kem_dec(sk, ct, buf); // buf[0:31] <-- message | |||
// Multitarget countermeasure for coins + contributory KEM | |||
for (i = 0; i < 32; i++) { // Save hash by storing h(pk) in sk | |||
buf[32 + i] = sk[SABER_SECRETKEYBYTES - 64 + i]; | |||
} | |||
sha3_512(kr, buf, 64); | |||
PQCLEAN_FIRESABER_CLEAN_indcpa_kem_enc(buf, kr + 32, pk, cmp); | |||
fail = PQCLEAN_FIRESABER_CLEAN_verify(ct, cmp, SABER_BYTES_CCA_DEC); | |||
sha3_256(kr + 32, ct, SABER_BYTES_CCA_DEC); // overwrite coins in kr with h(c) | |||
PQCLEAN_FIRESABER_CLEAN_cmov(kr, sk + SABER_SECRETKEYBYTES - SABER_KEYBYTES, SABER_KEYBYTES, fail); | |||
sha3_256(ss, kr, 64); // hash concatenation of pre-k and h(c) to k | |||
return (0); | |||
} |
@@ -0,0 +1,242 @@ | |||
#include "pack_unpack.h" | |||
void PQCLEAN_FIRESABER_CLEAN_pack_3bit(uint8_t *bytes, const uint16_t *data) { | |||
uint32_t j; | |||
uint32_t offset_data, offset_byte; | |||
for (j = 0; j < SABER_N / 8; j++) { | |||
offset_byte = 3 * j; | |||
offset_data = 8 * j; | |||
bytes[offset_byte + 0] = (data[offset_data + 0] & 0x7) | ( (data[offset_data + 1] & 0x7) << 3 ) | ((data[offset_data + 2] & 0x3) << 6); | |||
bytes[offset_byte + 1] = ((data[offset_data + 2] >> 2 ) & 0x01) | ( (data[offset_data + 3] & 0x7) << 1 ) | ( (data[offset_data + 4] & 0x7) << 4 ) | (((data[offset_data + 5]) & 0x01) << 7); | |||
bytes[offset_byte + 2] = ((data[offset_data + 5] >> 1 ) & 0x03) | ( (data[offset_data + 6] & 0x7) << 2 ) | ( (data[offset_data + 7] & 0x7) << 5 ); | |||
} | |||
} | |||
void PQCLEAN_FIRESABER_CLEAN_un_pack3bit(const uint8_t *bytes, uint16_t *data) { | |||
uint32_t j; | |||
uint32_t offset_data, offset_byte; | |||
for (j = 0; j < SABER_N / 8; j++) { | |||
offset_byte = 3 * j; | |||
offset_data = 8 * j; | |||
data[offset_data + 0] = (bytes[offset_byte + 0]) & 0x07; | |||
data[offset_data + 1] = ( (bytes[offset_byte + 0]) >> 3 ) & 0x07; | |||
data[offset_data + 2] = ( ( (bytes[offset_byte + 0]) >> 6 ) & 0x03) | ( ( (bytes[offset_byte + 1]) & 0x01) << 2 ); | |||
data[offset_data + 3] = ( (bytes[offset_byte + 1]) >> 1 ) & 0x07; | |||
data[offset_data + 4] = ( (bytes[offset_byte + 1]) >> 4 ) & 0x07; | |||
data[offset_data + 5] = ( ( (bytes[offset_byte + 1]) >> 7 ) & 0x01) | ( ( (bytes[offset_byte + 2]) & 0x03) << 1 ); | |||
data[offset_data + 6] = ( (bytes[offset_byte + 2] >> 2) & 0x07 ); | |||
data[offset_data + 7] = ( (bytes[offset_byte + 2] >> 5) & 0x07 ); | |||
} | |||
} | |||
void PQCLEAN_FIRESABER_CLEAN_pack_4bit(uint8_t *bytes, const uint16_t *data) { | |||
uint32_t j; | |||
uint32_t offset_data; | |||
for (j = 0; j < SABER_N / 2; j++) { | |||
offset_data = 2 * j; | |||
bytes[j] = (data[offset_data] & 0x0f) | ( (data[offset_data + 1] & 0x0f) << 4 ); | |||
} | |||
} | |||
void PQCLEAN_FIRESABER_CLEAN_un_pack4bit(const unsigned char *bytes, uint16_t *ar) { | |||
uint32_t j; | |||
uint32_t offset_data; | |||
for (j = 0; j < SABER_N / 2; j++) { | |||
offset_data = 2 * j; | |||
ar[offset_data] = bytes[j] & 0x0f; | |||
ar[offset_data + 1] = (bytes[j] >> 4) & 0x0f; | |||
} | |||
} | |||
void PQCLEAN_FIRESABER_CLEAN_pack_6bit(uint8_t *bytes, const uint16_t *data) { | |||
uint32_t j; | |||
uint32_t offset_data, offset_byte; | |||
for (j = 0; j < SABER_N / 4; j++) { | |||
offset_byte = 3 * j; | |||
offset_data = 4 * j; | |||
bytes[offset_byte + 0] = (data[offset_data + 0] & 0x3f) | ((data[offset_data + 1] & 0x03) << 6); | |||
bytes[offset_byte + 1] = ((data[offset_data + 1] >> 2) & 0x0f) | ((data[offset_data + 2] & 0x0f) << 4); | |||
bytes[offset_byte + 2] = ((data[offset_data + 2] >> 4) & 0x03) | ((data[offset_data + 3] & 0x3f) << 2); | |||
} | |||
} | |||
void PQCLEAN_FIRESABER_CLEAN_un_pack6bit(const unsigned char *bytes, uint16_t *data) { | |||
uint32_t j; | |||
uint32_t offset_data, offset_byte; | |||
for (j = 0; j < SABER_N / 4; j++) { | |||
offset_byte = 3 * j; | |||
offset_data = 4 * j; | |||
data[offset_data + 0] = bytes[offset_byte + 0] & 0x3f; | |||
data[offset_data + 1] = ((bytes[offset_byte + 0] >> 6) & 0x03) | ((bytes[offset_byte + 1] & 0x0f) << 2) ; | |||
data[offset_data + 2] = ((bytes[offset_byte + 1] & 0xff) >> 4) | ((bytes[offset_byte + 2] & 0x03) << 4) ; | |||
data[offset_data + 3] = ((bytes[offset_byte + 2] & 0xff) >> 2); | |||
} | |||
} | |||
static void POLVECp2BS(uint8_t *bytes, uint16_t data[SABER_K][SABER_N]) { | |||
uint32_t i, j; | |||
uint32_t offset_data, offset_byte, offset_byte1; | |||
for (i = 0; i < SABER_K; i++) { | |||
offset_byte1 = i * (SABER_N * 10) / 8; | |||
for (j = 0; j < SABER_N / 4; j++) { | |||
offset_byte = offset_byte1 + 5 * j; | |||
offset_data = 4 * j; | |||
bytes[offset_byte + 0] = ( data[i][ offset_data + 0 ] & (0xff)); | |||
bytes[offset_byte + 1] = ( (data[i][ offset_data + 0 ] >> 8) & 0x03 ) | ((data[i][ offset_data + 1 ] & 0x3f) << 2); | |||
bytes[offset_byte + 2] = ( (data[i][ offset_data + 1 ] >> 6) & 0x0f ) | ( (data[i][ offset_data + 2 ] & 0x0f) << 4); | |||
bytes[offset_byte + 3] = ( (data[i][ offset_data + 2 ] >> 4) & 0x3f ) | ((data[i][ offset_data + 3 ] & 0x03) << 6); | |||
bytes[offset_byte + 4] = ( (data[i][ offset_data + 3 ] >> 2) & 0xff ); | |||
} | |||
} | |||
} | |||
static void BS2POLVECp(const unsigned char *bytes, uint16_t data[SABER_K][SABER_N]) { | |||
uint32_t i, j; | |||
uint32_t offset_data, offset_byte, offset_byte1; | |||
for (i = 0; i < SABER_K; i++) { | |||
offset_byte1 = i * (SABER_N * 10) / 8; | |||
for (j = 0; j < SABER_N / 4; j++) { | |||
offset_byte = offset_byte1 + 5 * j; | |||
offset_data = 4 * j; | |||
data[i][offset_data + 0] = ( bytes[ offset_byte + 0 ] & (0xff)) | ((bytes[ offset_byte + 1 ] & 0x03) << 8); | |||
data[i][offset_data + 1] = ( (bytes[ offset_byte + 1 ] >> 2) & (0x3f)) | ((bytes[ offset_byte + 2 ] & 0x0f) << 6); | |||
data[i][offset_data + 2] = ( (bytes[ offset_byte + 2 ] >> 4) & (0x0f)) | ((bytes[ offset_byte + 3 ] & 0x3f) << 4); | |||
data[i][offset_data + 3] = ( (bytes[ offset_byte + 3 ] >> 6) & (0x03)) | ((bytes[ offset_byte + 4 ] & 0xff) << 2); | |||
} | |||
} | |||
} | |||
static void POLVECq2BS(uint8_t *bytes, uint16_t data[SABER_K][SABER_N]) { | |||
uint32_t i, j; | |||
uint32_t offset_data, offset_byte, offset_byte1; | |||
for (i = 0; i < SABER_K; i++) { | |||
offset_byte1 = i * (SABER_N * 13) / 8; | |||
for (j = 0; j < SABER_N / 8; j++) { | |||
offset_byte = offset_byte1 + 13 * j; | |||
offset_data = 8 * j; | |||
bytes[offset_byte + 0] = ( data[i][ offset_data + 0 ] & (0xff)); | |||
bytes[offset_byte + 1] = ( (data[i][ offset_data + 0 ] >> 8) & 0x1f ) | ((data[i][ offset_data + 1 ] & 0x07) << 5); | |||
bytes[offset_byte + 2] = ( (data[i][ offset_data + 1 ] >> 3) & 0xff ); | |||
bytes[offset_byte + 3] = ( (data[i][ offset_data + 1 ] >> 11) & 0x03 ) | ((data[i][ offset_data + 2 ] & 0x3f) << 2); | |||
bytes[offset_byte + 4] = ( (data[i][ offset_data + 2 ] >> 6) & 0x7f ) | ( (data[i][ offset_data + 3 ] & 0x01) << 7 ); | |||
bytes[offset_byte + 5] = ( (data[i][ offset_data + 3 ] >> 1) & 0xff ); | |||
bytes[offset_byte + 6] = ( (data[i][ offset_data + 3 ] >> 9) & 0x0f ) | ( (data[i][ offset_data + 4 ] & 0x0f) << 4 ); | |||
bytes[offset_byte + 7] = ( (data[i][ offset_data + 4] >> 4) & 0xff ); | |||
bytes[offset_byte + 8] = ( (data[i][ offset_data + 4 ] >> 12) & 0x01 ) | ( (data[i][ offset_data + 5 ] & 0x7f) << 1 ); | |||
bytes[offset_byte + 9] = ( (data[i][ offset_data + 5 ] >> 7) & 0x3f ) | ( (data[i][ offset_data + 6 ] & 0x03) << 6 ); | |||
bytes[offset_byte + 10] = ( (data[i][ offset_data + 6 ] >> 2) & 0xff ); | |||
bytes[offset_byte + 11] = ( (data[i][ offset_data + 6 ] >> 10) & 0x07 ) | ( (data[i][ offset_data + 7 ] & 0x1f) << 3 ); | |||
bytes[offset_byte + 12] = ( (data[i][ offset_data + 7 ] >> 5) & 0xff ); | |||
} | |||
} | |||
} | |||
static void BS2POLVECq(const unsigned char *bytes, uint16_t data[SABER_K][SABER_N]) { | |||
uint32_t i, j; | |||
uint32_t offset_data, offset_byte, offset_byte1; | |||
for (i = 0; i < SABER_K; i++) { | |||
offset_byte1 = i * (SABER_N * 13) / 8; | |||
for (j = 0; j < SABER_N / 8; j++) { | |||
offset_byte = offset_byte1 + 13 * j; | |||
offset_data = 8 * j; | |||
data[i][offset_data + 0] = ( bytes[ offset_byte + 0 ] & (0xff)) | ((bytes[offset_byte + 1] & 0x1f) << 8); | |||
data[i][offset_data + 1] = ( bytes[ offset_byte + 1 ] >> 5 & (0x07)) | ((bytes[offset_byte + 2] & 0xff) << 3) | ((bytes[offset_byte + 3] & 0x03) << 11); | |||
data[i][offset_data + 2] = ( bytes[ offset_byte + 3 ] >> 2 & (0x3f)) | ((bytes[offset_byte + 4] & 0x7f) << 6); | |||
data[i][offset_data + 3] = ( bytes[ offset_byte + 4 ] >> 7 & (0x01)) | ((bytes[offset_byte + 5] & 0xff) << 1) | ((bytes[offset_byte + 6] & 0x0f) << 9); | |||
data[i][offset_data + 4] = ( bytes[ offset_byte + 6 ] >> 4 & (0x0f)) | ((bytes[offset_byte + 7] & 0xff) << 4) | ((bytes[offset_byte + 8] & 0x01) << 12); | |||
data[i][offset_data + 5] = ( bytes[ offset_byte + 8] >> 1 & (0x7f)) | ((bytes[offset_byte + 9] & 0x3f) << 7); | |||
data[i][offset_data + 6] = ( bytes[ offset_byte + 9] >> 6 & (0x03)) | ((bytes[offset_byte + 10] & 0xff) << 2) | ((bytes[offset_byte + 11] & 0x07) << 10); | |||
data[i][offset_data + 7] = ( bytes[ offset_byte + 11] >> 3 & (0x1f)) | ((bytes[offset_byte + 12] & 0xff) << 5); | |||
} | |||
} | |||
} | |||
void PQCLEAN_FIRESABER_CLEAN_BS2POL(const unsigned char *bytes, uint16_t data[SABER_N]) { //only BS2POLq no BS2POLp | |||
uint32_t j; | |||
uint32_t offset_data, offset_byte; | |||
for (j = 0; j < SABER_N / 8; j++) { | |||
offset_byte = 13 * j; | |||
offset_data = 8 * j; | |||
data[offset_data + 0] = ( bytes[ offset_byte + 0 ] & (0xff)) | ((bytes[offset_byte + 1] & 0x1f) << 8); | |||
data[offset_data + 1] = ( bytes[ offset_byte + 1 ] >> 5 & (0x07)) | ((bytes[offset_byte + 2] & 0xff) << 3) | ((bytes[offset_byte + 3] & 0x03) << 11); | |||
data[offset_data + 2] = ( bytes[ offset_byte + 3 ] >> 2 & (0x3f)) | ((bytes[offset_byte + 4] & 0x7f) << 6); | |||
data[offset_data + 3] = ( bytes[ offset_byte + 4 ] >> 7 & (0x01)) | ((bytes[offset_byte + 5] & 0xff) << 1) | ((bytes[offset_byte + 6] & 0x0f) << 9); | |||
data[offset_data + 4] = ( bytes[ offset_byte + 6 ] >> 4 & (0x0f)) | ((bytes[offset_byte + 7] & 0xff) << 4) | ((bytes[offset_byte + 8] & 0x01) << 12); | |||
data[offset_data + 5] = ( bytes[ offset_byte + 8] >> 1 & (0x7f)) | ((bytes[offset_byte + 9] & 0x3f) << 7); | |||
data[offset_data + 6] = ( bytes[ offset_byte + 9] >> 6 & (0x03)) | ((bytes[offset_byte + 10] & 0xff) << 2) | ((bytes[offset_byte + 11] & 0x07) << 10); | |||
data[offset_data + 7] = ( bytes[ offset_byte + 11] >> 3 & (0x1f)) | ((bytes[offset_byte + 12] & 0xff) << 5); | |||
} | |||
} | |||
void PQCLEAN_FIRESABER_CLEAN_POLVEC2BS(uint8_t *bytes, uint16_t data[SABER_K][SABER_N], uint16_t modulus) { | |||
if (modulus == 1024) { | |||
POLVECp2BS(bytes, data); | |||
} else if (modulus == 8192) { | |||
POLVECq2BS(bytes, data); | |||
} | |||
} | |||
void PQCLEAN_FIRESABER_CLEAN_BS2POLVEC(const unsigned char *bytes, uint16_t data[SABER_K][SABER_N], uint16_t modulus) { | |||
if (modulus == 1024) { | |||
BS2POLVECp(bytes, data); | |||
} else if (modulus == 8192) { | |||
BS2POLVECq(bytes, data); | |||
} | |||
} |
@@ -0,0 +1,28 @@ | |||
#ifndef PACK_UNPACK_H | |||
#define PACK_UNPACK_H | |||
#include "SABER_params.h" | |||
#include <stdint.h> | |||
#include <stdio.h> | |||
void PQCLEAN_FIRESABER_CLEAN_pack_3bit(uint8_t *bytes, const uint16_t *data); | |||
void PQCLEAN_FIRESABER_CLEAN_un_pack3bit(const uint8_t *bytes, uint16_t *data); | |||
void PQCLEAN_FIRESABER_CLEAN_pack_4bit(uint8_t *bytes, const uint16_t *data); | |||
void PQCLEAN_FIRESABER_CLEAN_un_pack4bit(const unsigned char *bytes, uint16_t *ar); | |||
void PQCLEAN_FIRESABER_CLEAN_pack_6bit(uint8_t *bytes, const uint16_t *data); | |||
void PQCLEAN_FIRESABER_CLEAN_un_pack6bit(const unsigned char *bytes, uint16_t *data); | |||
void PQCLEAN_FIRESABER_CLEAN_BS2POL(const unsigned char *bytes, uint16_t data[SABER_N]); | |||
void PQCLEAN_FIRESABER_CLEAN_POLVEC2BS(uint8_t *bytes, uint16_t data[SABER_K][SABER_N], uint16_t modulus); | |||
void PQCLEAN_FIRESABER_CLEAN_BS2POLVEC(const unsigned char *bytes, uint16_t data[SABER_K][SABER_N], uint16_t modulus); | |||
#endif |
@@ -0,0 +1,21 @@ | |||
/*--------------------------------------------------------------------- | |||
This file has been adapted from the implementation | |||
(available at, Public Domain https://github.com/pq-crystals/kyber) | |||
of "CRYSTALS – Kyber: a CCA-secure module-lattice-based KEM" | |||
by : Joppe Bos, Leo Ducas, Eike Kiltz, Tancrede Lepoint, | |||
Vadim Lyubashevsky, John M. Schanck, Peter Schwabe & Damien stehle | |||
----------------------------------------------------------------------*/ | |||
#include "SABER_params.h" | |||
#include "cbd.h" | |||
#include "fips202.h" | |||
#include "poly.h" | |||
void PQCLEAN_FIRESABER_CLEAN_GenSecret(uint16_t r[SABER_K][SABER_N], const unsigned char *seed) { | |||
uint8_t buf[SABER_MU * SABER_N * SABER_K / 8]; | |||
shake128(buf, sizeof(buf), seed, SABER_NOISESEEDBYTES); | |||
for (size_t i = 0; i < SABER_K; i++) { | |||
PQCLEAN_FIRESABER_CLEAN_cbd(r[i], buf + i * SABER_MU * SABER_N / 8); | |||
} | |||
} |
@@ -0,0 +1,26 @@ | |||
#ifndef POLY_H | |||
#define POLY_H | |||
/*--------------------------------------------------------------------- | |||
This file has been adapted from the implementation | |||
(available at, Public Domain https://github.com/pq-crystals/kyber) | |||
of "CRYSTALS – Kyber: a CCA-secure module-lattice-based KEM" | |||
by : Joppe Bos, Leo Ducas, Eike Kiltz, Tancrede Lepoint, | |||
Vadim Lyubashevsky, John M. Schanck, Peter Schwabe & Damien stehle | |||
----------------------------------------------------------------------*/ | |||
#include "SABER_params.h" | |||
#include <stdint.h> | |||
typedef struct { | |||
uint16_t coeffs[SABER_N]; | |||
} poly; | |||
typedef struct { | |||
poly vec[SABER_K]; | |||
} polyvec; | |||
void PQCLEAN_FIRESABER_CLEAN_GenSecret(uint16_t r[SABER_K][SABER_N], const unsigned char *seed); | |||
#endif |
@@ -0,0 +1,22 @@ | |||
#include "poly_mul.h" | |||
#include "SABER_params.h" | |||
#include <stdint.h> | |||
#include <string.h> | |||
void PQCLEAN_FIRESABER_CLEAN_pol_mul(const uint16_t *a, const uint16_t *b, uint16_t *res, uint16_t p, uint32_t n) { | |||
// Polynomial multiplication using the schoolbook method, c[x] = a[x]*b[x] | |||
// normal multiplication | |||
uint16_t c[2 * SABER_N] = {0}; | |||
for (size_t i = 0; i < SABER_N; i++) { | |||
for (size_t j = 0; j < SABER_N; j++) { | |||
c[i + j] += a[i] * b[j]; | |||
} | |||
} | |||
// reduction | |||
for (size_t i = n; i < 2 * n; i++) { | |||
res[i - n] = (c[i - n] - c[i]) & (p - 1); | |||
} | |||
} |
@@ -0,0 +1,9 @@ | |||
#ifndef POLYMUL_H | |||
#define POLYMUL_H | |||
#include "SABER_params.h" | |||
#include <stdint.h> | |||
void PQCLEAN_FIRESABER_CLEAN_pol_mul(const uint16_t *a, const uint16_t *b, uint16_t *res, uint16_t p, uint32_t n); | |||
#endif |
@@ -0,0 +1,34 @@ | |||
/*------------------------------------------------- | |||
This file has been adapted from the implementation | |||
(available at https://github.com/pq-crystals/kyber) of | |||
"CRYSTALS – Kyber: a CCA-secure module-lattice-based KEM" | |||
by : Joppe Bos, Leo Ducas, Eike Kiltz, Tancrede Lepoint, | |||
Vadim Lyubashevsky, John M. Schanck, Peter Schwabe & Damien stehle | |||
----------------------------------------------------*/ | |||
#include "verify.h" | |||
#include <stdint.h> | |||
/* returns 0 for equal strings, 1 for non-equal strings */ | |||
unsigned char PQCLEAN_FIRESABER_CLEAN_verify(const unsigned char *a, const unsigned char *b, size_t len) { | |||
uint64_t r; | |||
size_t i; | |||
r = 0; | |||
for (i = 0; i < len; i++) { | |||
r |= a[i] ^ b[i]; | |||
} | |||
r = (~r + 1); // Two's complement | |||
r >>= 63; | |||
return (unsigned char)r; | |||
} | |||
/* b = 1 means mov, b = 0 means don't mov*/ | |||
void PQCLEAN_FIRESABER_CLEAN_cmov(unsigned char *r, const unsigned char *x, size_t len, unsigned char b) { | |||
size_t i; | |||
b = -b; | |||
for (i = 0; i < len; i++) { | |||
r[i] ^= b & (x[i] ^ r[i]); | |||
} | |||
} |
@@ -0,0 +1,21 @@ | |||
#ifndef VERIFY_H | |||
#define VERIFY_H | |||
/*------------------------------------------------- | |||
This file has been adapted from the implementation | |||
(available at https://github.com/pq-crystals/kyber) of | |||
"CRYSTALS – Kyber: a CCA-secure module-lattice-based KEM" | |||
by : Joppe Bos, Leo Ducas, Eike Kiltz, Tancrede Lepoint, | |||
Vadim Lyubashevsky, John M. Schanck, Peter Schwabe & Damien stehle | |||
----------------------------------------------------*/ | |||
#include <stddef.h> | |||
#include <stdint.h> | |||
/* returns 0 for equal strings, 1 for non-equal strings */ | |||
unsigned char PQCLEAN_FIRESABER_CLEAN_verify(const unsigned char *a, const unsigned char *b, size_t len); | |||
/* b = 1 means mov, b = 0 means don't mov*/ | |||
void PQCLEAN_FIRESABER_CLEAN_cmov(unsigned char *r, const unsigned char *x, size_t len, unsigned char b); | |||
#endif |