@@ -45,7 +45,7 @@ static void GenMatrix(polyvec *a, const unsigned char *seed) { | |||
void PQCLEAN_FIRESABER_CLEAN_indcpa_kem_keypair(unsigned char *pk, unsigned char *sk) { | |||
polyvec a[SABER_K];// skpv; | |||
polyvec a[SABER_K]; | |||
uint16_t skpv[SABER_K][SABER_N]; | |||
@@ -58,43 +58,43 @@ void PQCLEAN_FIRESABER_CLEAN_indcpa_kem_keypair(unsigned char *pk, unsigned char | |||
uint16_t res[SABER_K][SABER_N]; | |||
randombytes(seed, SABER_SEEDBYTES); | |||
shake128(seed, SABER_SEEDBYTES, seed, SABER_SEEDBYTES); // for not revealing system RNG state | |||
// for not revealing system RNG state | |||
shake128(seed, SABER_SEEDBYTES, seed, SABER_SEEDBYTES); | |||
randombytes(noiseseed, SABER_COINBYTES); | |||
GenMatrix(a, seed); //sample matrix A | |||
PQCLEAN_FIRESABER_CLEAN_GenSecret(skpv, noiseseed); //generate secret from constant-time binomial distribution | |||
//------------------------do the matrix vector multiplication and rounding------------ | |||
// generate secret from constant-time binomial distribution | |||
PQCLEAN_FIRESABER_CLEAN_GenSecret(skpv, noiseseed); | |||
// do the matrix vector multiplication and rounding | |||
for (i = 0; i < SABER_K; i++) { | |||
for (j = 0; j < SABER_N; j++) { | |||
res[i][j] = 0; | |||
} | |||
} | |||
MatrixVectorMul(a, skpv, res, SABER_Q - 1, 1); | |||
//-----now rounding | |||
for (i = 0; i < SABER_K; i++) { //shift right 3 bits | |||
// now rounding | |||
for (i = 0; i < SABER_K; i++) { | |||
for (j = 0; j < SABER_N; j++) { | |||
// shift right 3 bits | |||
res[i][j] = (res[i][j] + h1) & (mod_q); | |||
res[i][j] = (res[i][j] >> (SABER_EQ - SABER_EP)); | |||
} | |||
} | |||
//------------------unload and pack sk=3 x (256 coefficients of 14 bits)------- | |||
// unload and pack sk=3 x (256 coefficients of 14 bits) | |||
PQCLEAN_FIRESABER_CLEAN_POLVEC2BS(sk, skpv, SABER_Q); | |||
//------------------unload and pack pk=256 bits seed and 3 x (256 coefficients of 11 bits)------- | |||
PQCLEAN_FIRESABER_CLEAN_POLVEC2BS(pk, res, SABER_P); // load the public-key coefficients | |||
// unload and pack pk=256 bits seed and 3 x (256 coefficients of 11 bits) | |||
// load the public-key coefficients | |||
PQCLEAN_FIRESABER_CLEAN_POLVEC2BS(pk, res, SABER_P); | |||
for (i = 0; i < SABER_SEEDBYTES; i++) { // now load the seedbytes in PK. Easy since seed bytes are kept in byte format. | |||
// now load the seedbytes in PK. Easy since seed bytes are kept in byte format. | |||
for (i = 0; i < SABER_SEEDBYTES; i++) { | |||
pk[SABER_POLYVECCOMPRESSEDBYTES + i] = seed[i]; | |||
} | |||
@@ -103,47 +103,39 @@ void PQCLEAN_FIRESABER_CLEAN_indcpa_kem_keypair(unsigned char *pk, unsigned char | |||
void PQCLEAN_FIRESABER_CLEAN_indcpa_kem_enc(const unsigned char *message_received, unsigned char *noiseseed, const unsigned char *pk, unsigned char *ciphertext) { | |||
uint32_t i, j, k; | |||
polyvec a[SABER_K]; // skpv; | |||
polyvec a[SABER_K]; | |||
unsigned char seed[SABER_SEEDBYTES]; | |||
uint16_t pkcl[SABER_K][SABER_N]; //public key of received by the client | |||
// public key of received by the client | |||
uint16_t pkcl[SABER_K][SABER_N]; | |||
uint16_t skpv1[SABER_K][SABER_N]; | |||
uint16_t message[SABER_KEYBYTES * 8]; | |||
uint16_t res[SABER_K][SABER_N]; | |||
uint16_t mod_p = SABER_P - 1; | |||
uint16_t mod_q = SABER_Q - 1; | |||
uint16_t vprime[SABER_N]; | |||
unsigned char msk_c[SABER_SCALEBYTES_KEM]; | |||
for (i = 0; i < SABER_SEEDBYTES; i++) { // extract the seedbytes from Public Key. | |||
// extract the seedbytes from Public Key. | |||
for (i = 0; i < SABER_SEEDBYTES; i++) { | |||
seed[i] = pk[ SABER_POLYVECCOMPRESSEDBYTES + i]; | |||
} | |||
GenMatrix(a, seed); | |||
PQCLEAN_FIRESABER_CLEAN_GenSecret(skpv1, noiseseed); //generate secret from constant-time binomial distribution | |||
//-----------------matrix-vector multiplication and rounding | |||
// generate secret from constant-time binomial distribution | |||
PQCLEAN_FIRESABER_CLEAN_GenSecret(skpv1, noiseseed); | |||
// matrix-vector multiplication and rounding | |||
for (i = 0; i < SABER_K; i++) { | |||
for (j = 0; j < SABER_N; j++) { | |||
res[i][j] = 0; | |||
} | |||
} | |||
MatrixVectorMul(a, skpv1, res, SABER_Q - 1, 0); | |||
//-----now rounding | |||
for (i = 0; i < SABER_K; i++) { //shift right 3 bits | |||
// now rounding | |||
//shift right 3 bits | |||
for (i = 0; i < SABER_K; i++) { | |||
for (j = 0; j < SABER_N; j++) { | |||
res[i][j] = ( res[i][j] + h1 ) & mod_q; | |||
res[i][j] = (res[i][j] >> (SABER_EQ - SABER_EP) ); | |||
@@ -152,21 +144,15 @@ void PQCLEAN_FIRESABER_CLEAN_indcpa_kem_enc(const unsigned char *message_receive | |||
PQCLEAN_FIRESABER_CLEAN_POLVEC2BS(ciphertext, res, SABER_P); | |||
//*******************client matrix-vector multiplication ends************************************ | |||
//------now calculate the v' | |||
//-------unpack the public_key | |||
// ************client matrix-vector multiplication ends************ | |||
//pkcl is the b in the protocol | |||
// now calculate the v' | |||
// unpack the public_key | |||
// pkcl is the b in the protocol | |||
PQCLEAN_FIRESABER_CLEAN_BS2POLVEC(pk, pkcl, SABER_P); | |||
for (i = 0; i < SABER_N; i++) { | |||
vprime[i] = 0; | |||
} | |||
for (i = 0; i < SABER_K; i++) { | |||
for (j = 0; j < SABER_N; j++) { | |||
skpv1[i][j] = skpv1[i][j] & (mod_p); | |||
@@ -176,12 +162,11 @@ void PQCLEAN_FIRESABER_CLEAN_indcpa_kem_enc(const unsigned char *message_receive | |||
// vector-vector scalar multiplication with mod p | |||
InnerProd(pkcl, skpv1, mod_p, vprime); | |||
//addition of h1 to vprime | |||
// addition of h1 to vprime | |||
for (i = 0; i < SABER_N; i++) { | |||
vprime[i] = vprime[i] + h1; | |||
} | |||
// unpack message_received; | |||
for (j = 0; j < SABER_KEYBYTES; j++) { | |||
for (i = 0; i < 8; i++) { | |||
@@ -194,9 +179,6 @@ void PQCLEAN_FIRESABER_CLEAN_indcpa_kem_enc(const unsigned char *message_receive | |||
message[i] = (message[i] << (SABER_EP - 1)); | |||
} | |||
for (k = 0; k < SABER_N; k++) { | |||
vprime[k] = ( (vprime[k] - message[k]) & (mod_p) ) >> (SABER_EP - SABER_ET); | |||
} | |||
@@ -204,7 +186,6 @@ void PQCLEAN_FIRESABER_CLEAN_indcpa_kem_enc(const unsigned char *message_receive | |||
PQCLEAN_FIRESABER_CLEAN_pack_6bit(msk_c, vprime); | |||
for (j = 0; j < SABER_SCALEBYTES_KEM; j++) { | |||
ciphertext[SABER_POLYVECCOMPRESSEDBYTES + j] = msk_c[j]; | |||
} | |||
@@ -212,41 +193,31 @@ void PQCLEAN_FIRESABER_CLEAN_indcpa_kem_enc(const unsigned char *message_receive | |||
void PQCLEAN_FIRESABER_CLEAN_indcpa_kem_dec(const unsigned char *sk, const unsigned char *ciphertext, unsigned char message_dec[]) { | |||
uint32_t i, j; | |||
uint16_t sksv[SABER_K][SABER_N]; //secret key of the server | |||
// secret key of the server | |||
uint16_t sksv[SABER_K][SABER_N]; | |||
uint16_t pksv[SABER_K][SABER_N]; | |||
uint8_t scale_ar[SABER_SCALEBYTES_KEM]; | |||
uint16_t mod_p = SABER_P - 1; | |||
uint16_t v[SABER_N]; | |||
uint16_t op[SABER_N]; | |||
PQCLEAN_FIRESABER_CLEAN_BS2POLVEC(sk, sksv, SABER_Q); //sksv is the secret-key | |||
PQCLEAN_FIRESABER_CLEAN_BS2POLVEC(ciphertext, pksv, SABER_P); //pksv is the ciphertext | |||
// sksv is the secret-key | |||
PQCLEAN_FIRESABER_CLEAN_BS2POLVEC(sk, sksv, SABER_Q); | |||
// pksv is the ciphertext | |||
PQCLEAN_FIRESABER_CLEAN_BS2POLVEC(ciphertext, pksv, SABER_P); | |||
// vector-vector scalar multiplication with mod p | |||
for (i = 0; i < SABER_N; i++) { | |||
v[i] = 0; | |||
} | |||
for (i = 0; i < SABER_K; i++) { | |||
for (j = 0; j < SABER_N; j++) { | |||
sksv[i][j] = sksv[i][j] & (mod_p); | |||
} | |||
} | |||
InnerProd(pksv, sksv, mod_p, v); | |||
//Extraction | |||
for (i = 0; i < SABER_SCALEBYTES_KEM; i++) { | |||
scale_ar[i] = ciphertext[SABER_POLYVECCOMPRESSEDBYTES + i]; | |||
@@ -254,20 +225,15 @@ void PQCLEAN_FIRESABER_CLEAN_indcpa_kem_dec(const unsigned char *sk, const unsig | |||
PQCLEAN_FIRESABER_CLEAN_un_pack6bit(scale_ar, op); | |||
//addition of h1 | |||
for (i = 0; i < SABER_N; i++) { | |||
v[i] = ( ( v[i] + h2 - (op[i] << (SABER_EP - SABER_ET)) ) & (mod_p) ) >> (SABER_EP - 1); | |||
} | |||
// pack decrypted message | |||
POL2MSG(v, message_dec); | |||
} | |||
static void MatrixVectorMul(polyvec *a, uint16_t skpv[SABER_K][SABER_N], uint16_t res[SABER_K][SABER_N], uint16_t mod, int16_t transpose) { | |||
uint16_t acc[SABER_N]; | |||
int32_t i, j, k; | |||
@@ -278,32 +244,30 @@ static void MatrixVectorMul(polyvec *a, uint16_t skpv[SABER_K][SABER_N], uint16_ | |||
for (k = 0; k < SABER_N; k++) { | |||
res[i][k] = res[i][k] + acc[k]; | |||
res[i][k] = (res[i][k] & mod); //reduction mod p | |||
acc[k] = 0; //clear the accumulator | |||
//reduction mod p | |||
res[i][k] = (res[i][k] & mod); | |||
//clear the accumulator | |||
acc[k] = 0; | |||
} | |||
} | |||
} | |||
} else { | |||
for (i = 0; i < SABER_K; i++) { | |||
for (j = 0; j < SABER_K; j++) { | |||
PQCLEAN_FIRESABER_CLEAN_pol_mul((uint16_t *)&a[i].vec[j], skpv[j], acc, SABER_Q, SABER_N); | |||
for (k = 0; k < SABER_N; k++) { | |||
res[i][k] = res[i][k] + acc[k]; | |||
res[i][k] = res[i][k] & mod; //reduction | |||
acc[k] = 0; //clear the accumulator | |||
// reduction | |||
res[i][k] = res[i][k] & mod; | |||
// clear the accumulator | |||
acc[k] = 0; | |||
} | |||
} | |||
} | |||
} | |||
} | |||
static void POL2MSG(const uint16_t *message_dec_unpacked, unsigned char *message_dec) { | |||
int32_t i, j; | |||
for (j = 0; j < SABER_KEYBYTES; j++) { | |||
@@ -312,13 +276,10 @@ static void POL2MSG(const uint16_t *message_dec_unpacked, unsigned char *message | |||
message_dec[j] = message_dec[j] | (uint8_t) (message_dec_unpacked[j * 8 + i] << i); | |||
} | |||
} | |||
} | |||
static void InnerProd(uint16_t pkcl[SABER_K][SABER_N], uint16_t skpv[SABER_K][SABER_N], uint16_t mod, uint16_t res[SABER_N]) { | |||
uint32_t j, k; | |||
uint16_t acc[SABER_N]; | |||
@@ -328,8 +289,10 @@ static void InnerProd(uint16_t pkcl[SABER_K][SABER_N], uint16_t skpv[SABER_K][SA | |||
for (k = 0; k < SABER_N; k++) { | |||
res[k] = res[k] + acc[k]; | |||
res[k] = res[k] & mod; //reduction | |||
acc[k] = 0; //clear the accumulator | |||
// reduction | |||
res[k] = res[k] & mod; | |||
// clear the accumulator | |||
acc[k] = 0; | |||
} | |||
} | |||
} |
@@ -10,37 +10,48 @@ | |||
int PQCLEAN_FIRESABER_CLEAN_crypto_kem_keypair(unsigned char *pk, unsigned char *sk) { | |||
int i; | |||
PQCLEAN_FIRESABER_CLEAN_indcpa_kem_keypair(pk, sk); // sk[0:SABER_INDCPA_SECRETKEYBYTES-1] <-- sk | |||
// sk[0:SABER_INDCPA_SECRETKEYBYTES-1] <-- sk | |||
PQCLEAN_FIRESABER_CLEAN_indcpa_kem_keypair(pk, sk); | |||
// sk[SABER_INDCPA_SECRETKEYBYTES:SABER_INDCPA_SECRETKEYBYTES+SABER_INDCPA_SECRETKEYBYTES-1] <-- pk | |||
for (i = 0; i < SABER_INDCPA_PUBLICKEYBYTES; i++) { | |||
sk[i + SABER_INDCPA_SECRETKEYBYTES] = pk[i]; // sk[SABER_INDCPA_SECRETKEYBYTES:SABER_INDCPA_SECRETKEYBYTES+SABER_INDCPA_SECRETKEYBYTES-1] <-- pk | |||
sk[i + SABER_INDCPA_SECRETKEYBYTES] = pk[i]; | |||
} | |||
sha3_256(sk + SABER_SECRETKEYBYTES - 64, pk, SABER_INDCPA_PUBLICKEYBYTES); // Then hash(pk) is appended. | |||
// Then hash(pk) is appended. | |||
sha3_256(sk + SABER_SECRETKEYBYTES - 64, pk, SABER_INDCPA_PUBLICKEYBYTES); | |||
randombytes(sk + SABER_SECRETKEYBYTES - SABER_KEYBYTES, SABER_KEYBYTES ); // Remaining part of sk contains a pseudo-random number. | |||
// Remaining part of sk contains a pseudo-random number. | |||
// This is output when check in crypto_kem_dec() fails. | |||
randombytes(sk + SABER_SECRETKEYBYTES - SABER_KEYBYTES, SABER_KEYBYTES ); | |||
return (0); | |||
} | |||
int PQCLEAN_FIRESABER_CLEAN_crypto_kem_enc(unsigned char *ct, unsigned char *ss, const unsigned char *pk) { | |||
unsigned char kr[64]; // Will contain key, coins | |||
// Will contain key, coins | |||
unsigned char kr[64]; | |||
unsigned char buf[64]; | |||
randombytes(buf, 32); | |||
sha3_256(buf, buf, 32); // BUF[0:31] <-- random message (will be used as the key for client) Note: hash doesnot release system RNG output | |||
// BUF[0:31] <-- random message (will be used as the key for client) Note: hash doesnot release system RNG output | |||
sha3_256(buf, buf, 32); | |||
// BUF[32:63] <-- Hash(public key); Multitarget countermeasure for coins + contributory KEM | |||
sha3_256(buf + 32, pk, SABER_INDCPA_PUBLICKEYBYTES); | |||
sha3_256(buf + 32, pk, SABER_INDCPA_PUBLICKEYBYTES); // BUF[32:63] <-- Hash(public key); Multitarget countermeasure for coins + contributory KEM | |||
// kr[0:63] <-- Hash(buf[0:63]); | |||
sha3_512(kr, buf, 64); | |||
sha3_512(kr, buf, 64); // kr[0:63] <-- Hash(buf[0:63]); | |||
// K^ <-- kr[0:31] | |||
// noiseseed (r) <-- kr[32:63]; | |||
PQCLEAN_FIRESABER_CLEAN_indcpa_kem_enc(buf, kr + 32, pk, ct); // buf[0:31] contains message; kr[32:63] contains randomness r; | |||
// buf[0:31] contains message; kr[32:63] contains randomness r; | |||
PQCLEAN_FIRESABER_CLEAN_indcpa_kem_enc(buf, kr + 32, pk, ct); | |||
sha3_256(kr + 32, ct, SABER_BYTES_CCA_DEC); | |||
sha3_256(ss, kr, 64); // hash concatenation of pre-k and h(c) to k | |||
// hash concatenation of pre-k and h(c) to k | |||
sha3_256(ss, kr, 64); | |||
return (0); | |||
} | |||
@@ -51,14 +62,18 @@ int PQCLEAN_FIRESABER_CLEAN_crypto_kem_dec(unsigned char *ss, const unsigned cha | |||
unsigned char fail; | |||
unsigned char cmp[SABER_BYTES_CCA_DEC]; | |||
unsigned char buf[64]; | |||
unsigned char kr[64]; // Will contain key, coins | |||
// Will contain key, coins | |||
unsigned char kr[64]; | |||
const unsigned char *pk = sk + SABER_INDCPA_SECRETKEYBYTES; | |||
PQCLEAN_FIRESABER_CLEAN_indcpa_kem_dec(sk, ct, buf); // buf[0:31] <-- message | |||
// buf[0:31] <-- message | |||
PQCLEAN_FIRESABER_CLEAN_indcpa_kem_dec(sk, ct, buf); | |||
// Multitarget countermeasure for coins + contributory KEM | |||
for (i = 0; i < 32; i++) { // Save hash by storing h(pk) in sk | |||
// Save hash by storing h(pk) in sk | |||
for (i = 0; i < 32; i++) { | |||
buf[32 + i] = sk[SABER_SECRETKEYBYTES - 64 + i]; | |||
} | |||
@@ -69,11 +84,13 @@ int PQCLEAN_FIRESABER_CLEAN_crypto_kem_dec(unsigned char *ss, const unsigned cha | |||
fail = PQCLEAN_FIRESABER_CLEAN_verify(ct, cmp, SABER_BYTES_CCA_DEC); | |||
sha3_256(kr + 32, ct, SABER_BYTES_CCA_DEC); // overwrite coins in kr with h(c) | |||
// overwrite coins in kr with h(c) | |||
sha3_256(kr + 32, ct, SABER_BYTES_CCA_DEC); | |||
PQCLEAN_FIRESABER_CLEAN_cmov(kr, sk + SABER_SECRETKEYBYTES - SABER_KEYBYTES, SABER_KEYBYTES, fail); | |||
sha3_256(ss, kr, 64); // hash concatenation of pre-k and h(c) to k | |||
// hash concatenation of pre-k and h(c) to k | |||
sha3_256(ss, kr, 64); | |||
return (0); | |||
} |
@@ -1,21 +1,26 @@ | |||
#include "pack_unpack.h" | |||
void PQCLEAN_FIRESABER_CLEAN_pack_3bit(uint8_t *bytes, const uint16_t *data) { | |||
uint32_t j; | |||
uint32_t offset_data, offset_byte; | |||
for (j = 0; j < SABER_N / 8; j++) { | |||
offset_byte = 3 * j; | |||
offset_data = 8 * j; | |||
bytes[offset_byte + 0] = (data[offset_data + 0] & 0x7) | ( (data[offset_data + 1] & 0x7) << 3 ) | ((data[offset_data + 2] & 0x3) << 6); | |||
bytes[offset_byte + 1] = ((data[offset_data + 2] >> 2 ) & 0x01) | ( (data[offset_data + 3] & 0x7) << 1 ) | ( (data[offset_data + 4] & 0x7) << 4 ) | (((data[offset_data + 5]) & 0x01) << 7); | |||
bytes[offset_byte + 2] = ((data[offset_data + 5] >> 1 ) & 0x03) | ( (data[offset_data + 6] & 0x7) << 2 ) | ( (data[offset_data + 7] & 0x7) << 5 ); | |||
bytes[offset_byte + 0] = (data[offset_data + 0] & 0x7) | | |||
((data[offset_data + 1] & 0x7) << 3) | | |||
((data[offset_data + 2] & 0x3) << 6); | |||
bytes[offset_byte + 1] = ((data[offset_data + 2] >> 2 ) & 0x01) | | |||
((data[offset_data + 3] & 0x7) << 1) | | |||
((data[offset_data + 4] & 0x7) << 4) | | |||
(((data[offset_data + 5]) & 0x01) << 7); | |||
bytes[offset_byte + 2] = ((data[offset_data + 5] >> 1 ) & 0x03) | | |||
((data[offset_data + 6] & 0x7) << 2) | | |||
((data[offset_data + 7] & 0x7) << 5); | |||
} | |||
} | |||
void PQCLEAN_FIRESABER_CLEAN_un_pack3bit(const uint8_t *bytes, uint16_t *data) { | |||
uint32_t j; | |||
uint32_t offset_data, offset_byte; | |||
@@ -23,30 +28,30 @@ void PQCLEAN_FIRESABER_CLEAN_un_pack3bit(const uint8_t *bytes, uint16_t *data) { | |||
offset_byte = 3 * j; | |||
offset_data = 8 * j; | |||
data[offset_data + 0] = (bytes[offset_byte + 0]) & 0x07; | |||
data[offset_data + 1] = ( (bytes[offset_byte + 0]) >> 3 ) & 0x07; | |||
data[offset_data + 2] = ( ( (bytes[offset_byte + 0]) >> 6 ) & 0x03) | ( ( (bytes[offset_byte + 1]) & 0x01) << 2 ); | |||
data[offset_data + 3] = ( (bytes[offset_byte + 1]) >> 1 ) & 0x07; | |||
data[offset_data + 4] = ( (bytes[offset_byte + 1]) >> 4 ) & 0x07; | |||
data[offset_data + 5] = ( ( (bytes[offset_byte + 1]) >> 7 ) & 0x01) | ( ( (bytes[offset_byte + 2]) & 0x03) << 1 ); | |||
data[offset_data + 6] = ( (bytes[offset_byte + 2] >> 2) & 0x07 ); | |||
data[offset_data + 7] = ( (bytes[offset_byte + 2] >> 5) & 0x07 ); | |||
data[offset_data + 1] = ((bytes[offset_byte + 0]) >> 3 ) & 0x07; | |||
data[offset_data + 2] = (((bytes[offset_byte + 0]) >> 6 ) & 0x03) | | |||
(((bytes[offset_byte + 1]) & 0x01) << 2); | |||
data[offset_data + 3] = ((bytes[offset_byte + 1]) >> 1 ) & 0x07; | |||
data[offset_data + 4] = ((bytes[offset_byte + 1]) >> 4 ) & 0x07; | |||
data[offset_data + 5] = (((bytes[offset_byte + 1]) >> 7 ) & 0x01) | | |||
(((bytes[offset_byte + 2]) & 0x03) << 1); | |||
data[offset_data + 6] = ((bytes[offset_byte + 2] >> 2) & 0x07); | |||
data[offset_data + 7] = ((bytes[offset_byte + 2] >> 5) & 0x07); | |||
} | |||
} | |||
void PQCLEAN_FIRESABER_CLEAN_pack_4bit(uint8_t *bytes, const uint16_t *data) { | |||
uint32_t j; | |||
uint32_t offset_data; | |||
for (j = 0; j < SABER_N / 2; j++) { | |||
offset_data = 2 * j; | |||
bytes[j] = (data[offset_data] & 0x0f) | ( (data[offset_data + 1] & 0x0f) << 4 ); | |||
bytes[j] = (data[offset_data] & 0x0f) | | |||
((data[offset_data + 1] & 0x0f) << 4); | |||
} | |||
} | |||
void PQCLEAN_FIRESABER_CLEAN_un_pack4bit(const unsigned char *bytes, uint16_t *ar) { | |||
uint32_t j; | |||
uint32_t offset_data; | |||
@@ -64,9 +69,12 @@ void PQCLEAN_FIRESABER_CLEAN_pack_6bit(uint8_t *bytes, const uint16_t *data) { | |||
for (j = 0; j < SABER_N / 4; j++) { | |||
offset_byte = 3 * j; | |||
offset_data = 4 * j; | |||
bytes[offset_byte + 0] = (data[offset_data + 0] & 0x3f) | ((data[offset_data + 1] & 0x03) << 6); | |||
bytes[offset_byte + 1] = ((data[offset_data + 1] >> 2) & 0x0f) | ((data[offset_data + 2] & 0x0f) << 4); | |||
bytes[offset_byte + 2] = ((data[offset_data + 2] >> 4) & 0x03) | ((data[offset_data + 3] & 0x3f) << 2); | |||
bytes[offset_byte + 0] = (data[offset_data + 0] & 0x3f) | | |||
((data[offset_data + 1] & 0x03) << 6); | |||
bytes[offset_byte + 1] = ((data[offset_data + 1] >> 2) & 0x0f) | | |||
((data[offset_data + 2] & 0x0f) << 4); | |||
bytes[offset_byte + 2] = ((data[offset_data + 2] >> 4) & 0x03) | | |||
((data[offset_data + 3] & 0x3f) << 2); | |||
} | |||
} | |||
@@ -79,11 +87,12 @@ void PQCLEAN_FIRESABER_CLEAN_un_pack6bit(const unsigned char *bytes, uint16_t *d | |||
offset_byte = 3 * j; | |||
offset_data = 4 * j; | |||
data[offset_data + 0] = bytes[offset_byte + 0] & 0x3f; | |||
data[offset_data + 1] = ((bytes[offset_byte + 0] >> 6) & 0x03) | ((bytes[offset_byte + 1] & 0x0f) << 2) ; | |||
data[offset_data + 2] = ((bytes[offset_byte + 1] & 0xff) >> 4) | ((bytes[offset_byte + 2] & 0x03) << 4) ; | |||
data[offset_data + 1] = ((bytes[offset_byte + 0] >> 6) & 0x03) | | |||
((bytes[offset_byte + 1] & 0x0f) << 2); | |||
data[offset_data + 2] = ((bytes[offset_byte + 1] & 0xff) >> 4) | | |||
((bytes[offset_byte + 2] & 0x03) << 4); | |||
data[offset_data + 3] = ((bytes[offset_byte + 2] & 0xff) >> 2); | |||
} | |||
} | |||
@@ -96,23 +105,19 @@ static void POLVECp2BS(uint8_t *bytes, uint16_t data[SABER_K][SABER_N]) { | |||
for (j = 0; j < SABER_N / 4; j++) { | |||
offset_byte = offset_byte1 + 5 * j; | |||
offset_data = 4 * j; | |||
bytes[offset_byte + 0] = ( data[i][ offset_data + 0 ] & (0xff)); | |||
bytes[offset_byte + 1] = ( (data[i][ offset_data + 0 ] >> 8) & 0x03 ) | ((data[i][ offset_data + 1 ] & 0x3f) << 2); | |||
bytes[offset_byte + 2] = ( (data[i][ offset_data + 1 ] >> 6) & 0x0f ) | ( (data[i][ offset_data + 2 ] & 0x0f) << 4); | |||
bytes[offset_byte + 3] = ( (data[i][ offset_data + 2 ] >> 4) & 0x3f ) | ((data[i][ offset_data + 3 ] & 0x03) << 6); | |||
bytes[offset_byte + 4] = ( (data[i][ offset_data + 3 ] >> 2) & 0xff ); | |||
bytes[offset_byte + 0] = (data[i][offset_data + 0] & (0xff)); | |||
bytes[offset_byte + 1] = ((data[i][offset_data + 0] >> 8) & 0x03) | | |||
((data[i][offset_data + 1] & 0x3f) << 2); | |||
bytes[offset_byte + 2] = ((data[i][offset_data + 1] >> 6) & 0x0f) | | |||
((data[i][offset_data + 2] & 0x0f) << 4); | |||
bytes[offset_byte + 3] = ((data[i][offset_data + 2] >> 4) & 0x3f) | | |||
((data[i][offset_data + 3] & 0x03) << 6); | |||
bytes[offset_byte + 4] = ((data[i][offset_data + 3] >> 2) & 0xff); | |||
} | |||
} | |||
} | |||
static void BS2POLVECp(const unsigned char *bytes, uint16_t data[SABER_K][SABER_N]) { | |||
uint32_t i, j; | |||
uint32_t offset_data, offset_byte, offset_byte1; | |||
@@ -121,21 +126,21 @@ static void BS2POLVECp(const unsigned char *bytes, uint16_t data[SABER_K][SABER_ | |||
for (j = 0; j < SABER_N / 4; j++) { | |||
offset_byte = offset_byte1 + 5 * j; | |||
offset_data = 4 * j; | |||
data[i][offset_data + 0] = ( bytes[ offset_byte + 0 ] & (0xff)) | ((bytes[ offset_byte + 1 ] & 0x03) << 8); | |||
data[i][offset_data + 1] = ( (bytes[ offset_byte + 1 ] >> 2) & (0x3f)) | ((bytes[ offset_byte + 2 ] & 0x0f) << 6); | |||
data[i][offset_data + 2] = ( (bytes[ offset_byte + 2 ] >> 4) & (0x0f)) | ((bytes[ offset_byte + 3 ] & 0x3f) << 4); | |||
data[i][offset_data + 3] = ( (bytes[ offset_byte + 3 ] >> 6) & (0x03)) | ((bytes[ offset_byte + 4 ] & 0xff) << 2); | |||
data[i][offset_data + 0] = (bytes[offset_byte + 0] & (0xff)) | | |||
((bytes[offset_byte + 1] & 0x03) << 8); | |||
data[i][offset_data + 1] = ((bytes[offset_byte + 1] >> 2) & (0x3f)) | | |||
((bytes[offset_byte + 2] & 0x0f) << 6); | |||
data[i][offset_data + 2] = ((bytes[offset_byte + 2] >> 4) & (0x0f)) | | |||
((bytes[offset_byte + 3] & 0x3f) << 4); | |||
data[i][offset_data + 3] = ((bytes[offset_byte + 3] >> 6) & (0x03)) | | |||
((bytes[offset_byte + 4] & 0xff) << 2); | |||
} | |||
} | |||
} | |||
static void POLVECq2BS(uint8_t *bytes, uint16_t data[SABER_K][SABER_N]) { | |||
uint32_t i, j; | |||
uint32_t offset_data, offset_byte, offset_byte1; | |||
@@ -144,40 +149,31 @@ static void POLVECq2BS(uint8_t *bytes, uint16_t data[SABER_K][SABER_N]) { | |||
for (j = 0; j < SABER_N / 8; j++) { | |||
offset_byte = offset_byte1 + 13 * j; | |||
offset_data = 8 * j; | |||
bytes[offset_byte + 0] = ( data[i][ offset_data + 0 ] & (0xff)); | |||
bytes[offset_byte + 1] = ( (data[i][ offset_data + 0 ] >> 8) & 0x1f ) | ((data[i][ offset_data + 1 ] & 0x07) << 5); | |||
bytes[offset_byte + 2] = ( (data[i][ offset_data + 1 ] >> 3) & 0xff ); | |||
bytes[offset_byte + 3] = ( (data[i][ offset_data + 1 ] >> 11) & 0x03 ) | ((data[i][ offset_data + 2 ] & 0x3f) << 2); | |||
bytes[offset_byte + 4] = ( (data[i][ offset_data + 2 ] >> 6) & 0x7f ) | ( (data[i][ offset_data + 3 ] & 0x01) << 7 ); | |||
bytes[offset_byte + 5] = ( (data[i][ offset_data + 3 ] >> 1) & 0xff ); | |||
bytes[offset_byte + 6] = ( (data[i][ offset_data + 3 ] >> 9) & 0x0f ) | ( (data[i][ offset_data + 4 ] & 0x0f) << 4 ); | |||
bytes[offset_byte + 7] = ( (data[i][ offset_data + 4] >> 4) & 0xff ); | |||
bytes[offset_byte + 8] = ( (data[i][ offset_data + 4 ] >> 12) & 0x01 ) | ( (data[i][ offset_data + 5 ] & 0x7f) << 1 ); | |||
bytes[offset_byte + 9] = ( (data[i][ offset_data + 5 ] >> 7) & 0x3f ) | ( (data[i][ offset_data + 6 ] & 0x03) << 6 ); | |||
bytes[offset_byte + 10] = ( (data[i][ offset_data + 6 ] >> 2) & 0xff ); | |||
bytes[offset_byte + 11] = ( (data[i][ offset_data + 6 ] >> 10) & 0x07 ) | ( (data[i][ offset_data + 7 ] & 0x1f) << 3 ); | |||
bytes[offset_byte + 12] = ( (data[i][ offset_data + 7 ] >> 5) & 0xff ); | |||
bytes[offset_byte + 0] = (data[i][offset_data + 0] & (0xff)); | |||
bytes[offset_byte + 1] = ((data[i][offset_data + 0] >> 8) & 0x1f) | | |||
((data[i][offset_data + 1] & 0x07) << 5); | |||
bytes[offset_byte + 2] = ((data[i][offset_data + 1] >> 3) & 0xff); | |||
bytes[offset_byte + 3] = ((data[i][offset_data + 1] >> 11) & 0x03) | | |||
((data[i][offset_data + 2] & 0x3f) << 2); | |||
bytes[offset_byte + 4] = ((data[i][offset_data + 2] >> 6) & 0x7f) | | |||
((data[i][offset_data + 3] & 0x01) << 7); | |||
bytes[offset_byte + 5] = ((data[i][offset_data + 3] >> 1) & 0xff); | |||
bytes[offset_byte + 6] = ((data[i][offset_data + 3] >> 9) & 0x0f) | | |||
((data[i][offset_data + 4] & 0x0f) << 4); | |||
bytes[offset_byte + 7] = ((data[i][offset_data + 4] >> 4) & 0xff); | |||
bytes[offset_byte + 8] = ((data[i][offset_data + 4] >> 12) & 0x01) | | |||
((data[i][offset_data + 5] & 0x7f) << 1); | |||
bytes[offset_byte + 9] = ((data[i][offset_data + 5] >> 7) & 0x3f) | | |||
((data[i][offset_data + 6] & 0x03) << 6); | |||
bytes[offset_byte + 10] = ((data[i][offset_data + 6] >> 2) & 0xff); | |||
bytes[offset_byte + 11] = ((data[i][offset_data + 6] >> 10) & 0x07) | | |||
((data[i][offset_data + 7] & 0x1f) << 3); | |||
bytes[offset_byte + 12] = ((data[i][offset_data + 7] >> 5) & 0xff); | |||
} | |||
} | |||
} | |||
static void BS2POLVECq(const unsigned char *bytes, uint16_t data[SABER_K][SABER_N]) { | |||
uint32_t i, j; | |||
uint32_t offset_data, offset_byte, offset_byte1; | |||
@@ -186,44 +182,62 @@ static void BS2POLVECq(const unsigned char *bytes, uint16_t data[SABER_K][SABER_ | |||
for (j = 0; j < SABER_N / 8; j++) { | |||
offset_byte = offset_byte1 + 13 * j; | |||
offset_data = 8 * j; | |||
data[i][offset_data + 0] = ( bytes[ offset_byte + 0 ] & (0xff)) | ((bytes[offset_byte + 1] & 0x1f) << 8); | |||
data[i][offset_data + 1] = ( bytes[ offset_byte + 1 ] >> 5 & (0x07)) | ((bytes[offset_byte + 2] & 0xff) << 3) | ((bytes[offset_byte + 3] & 0x03) << 11); | |||
data[i][offset_data + 2] = ( bytes[ offset_byte + 3 ] >> 2 & (0x3f)) | ((bytes[offset_byte + 4] & 0x7f) << 6); | |||
data[i][offset_data + 3] = ( bytes[ offset_byte + 4 ] >> 7 & (0x01)) | ((bytes[offset_byte + 5] & 0xff) << 1) | ((bytes[offset_byte + 6] & 0x0f) << 9); | |||
data[i][offset_data + 4] = ( bytes[ offset_byte + 6 ] >> 4 & (0x0f)) | ((bytes[offset_byte + 7] & 0xff) << 4) | ((bytes[offset_byte + 8] & 0x01) << 12); | |||
data[i][offset_data + 5] = ( bytes[ offset_byte + 8] >> 1 & (0x7f)) | ((bytes[offset_byte + 9] & 0x3f) << 7); | |||
data[i][offset_data + 6] = ( bytes[ offset_byte + 9] >> 6 & (0x03)) | ((bytes[offset_byte + 10] & 0xff) << 2) | ((bytes[offset_byte + 11] & 0x07) << 10); | |||
data[i][offset_data + 7] = ( bytes[ offset_byte + 11] >> 3 & (0x1f)) | ((bytes[offset_byte + 12] & 0xff) << 5); | |||
data[i][offset_data + 0] = (bytes[offset_byte + 0] & (0xff)) | | |||
((bytes[offset_byte + 1] & 0x1f) << 8); | |||
data[i][offset_data + 1] = (bytes[offset_byte + 1] >> 5 & (0x07)) | | |||
((bytes[offset_byte + 2] & 0xff) << 3) | | |||
((bytes[offset_byte + 3] & 0x03) << 11); | |||
data[i][offset_data + 2] = (bytes[offset_byte + 3] >> 2 & (0x3f)) | | |||
((bytes[offset_byte + 4] & 0x7f) << 6); | |||
data[i][offset_data + 3] = (bytes[offset_byte + 4] >> 7 & (0x01)) | | |||
((bytes[offset_byte + 5] & 0xff) << 1) | | |||
((bytes[offset_byte + 6] & 0x0f) << 9); | |||
data[i][offset_data + 4] = (bytes[offset_byte + 6] >> 4 & (0x0f)) | | |||
((bytes[offset_byte + 7] & 0xff) << 4) | | |||
((bytes[offset_byte + 8] & 0x01) << 12); | |||
data[i][offset_data + 5] = (bytes[offset_byte + 8] >> 1 & (0x7f)) | | |||
((bytes[offset_byte + 9] & 0x3f) << 7); | |||
data[i][offset_data + 6] = (bytes[offset_byte + 9] >> 6 & (0x03)) | | |||
((bytes[offset_byte + 10] & 0xff) << 2) | | |||
((bytes[offset_byte + 11] & 0x07) << 10); | |||
data[i][offset_data + 7] = (bytes[offset_byte + 11] >> 3 & (0x1f)) | | |||
((bytes[offset_byte + 12] & 0xff) << 5); | |||
} | |||
} | |||
} | |||
void PQCLEAN_FIRESABER_CLEAN_BS2POL(const unsigned char *bytes, uint16_t data[SABER_N]) { //only BS2POLq no BS2POLp | |||
//only BS2POLq no BS2POLp | |||
void PQCLEAN_FIRESABER_CLEAN_BS2POL(const unsigned char *bytes, uint16_t data[SABER_N]) { | |||
uint32_t j; | |||
uint32_t offset_data, offset_byte; | |||
for (j = 0; j < SABER_N / 8; j++) { | |||
offset_byte = 13 * j; | |||
offset_data = 8 * j; | |||
data[offset_data + 0] = ( bytes[ offset_byte + 0 ] & (0xff)) | ((bytes[offset_byte + 1] & 0x1f) << 8); | |||
data[offset_data + 1] = ( bytes[ offset_byte + 1 ] >> 5 & (0x07)) | ((bytes[offset_byte + 2] & 0xff) << 3) | ((bytes[offset_byte + 3] & 0x03) << 11); | |||
data[offset_data + 2] = ( bytes[ offset_byte + 3 ] >> 2 & (0x3f)) | ((bytes[offset_byte + 4] & 0x7f) << 6); | |||
data[offset_data + 3] = ( bytes[ offset_byte + 4 ] >> 7 & (0x01)) | ((bytes[offset_byte + 5] & 0xff) << 1) | ((bytes[offset_byte + 6] & 0x0f) << 9); | |||
data[offset_data + 4] = ( bytes[ offset_byte + 6 ] >> 4 & (0x0f)) | ((bytes[offset_byte + 7] & 0xff) << 4) | ((bytes[offset_byte + 8] & 0x01) << 12); | |||
data[offset_data + 5] = ( bytes[ offset_byte + 8] >> 1 & (0x7f)) | ((bytes[offset_byte + 9] & 0x3f) << 7); | |||
data[offset_data + 6] = ( bytes[ offset_byte + 9] >> 6 & (0x03)) | ((bytes[offset_byte + 10] & 0xff) << 2) | ((bytes[offset_byte + 11] & 0x07) << 10); | |||
data[offset_data + 7] = ( bytes[ offset_byte + 11] >> 3 & (0x1f)) | ((bytes[offset_byte + 12] & 0xff) << 5); | |||
data[offset_data + 0] = (bytes[offset_byte + 0] & (0xff)) | | |||
((bytes[offset_byte + 1] & 0x1f) << 8); | |||
data[offset_data + 1] = (bytes[offset_byte + 1] >> 5 & (0x07)) | | |||
((bytes[offset_byte + 2] & 0xff) << 3) | | |||
((bytes[offset_byte + 3] & 0x03) << 11); | |||
data[offset_data + 2] = (bytes[offset_byte + 3] >> 2 & (0x3f)) | | |||
((bytes[offset_byte + 4] & 0x7f) << 6); | |||
data[offset_data + 3] = (bytes[offset_byte + 4] >> 7 & (0x01)) | | |||
((bytes[offset_byte + 5] & 0xff) << 1) | | |||
((bytes[offset_byte + 6] & 0x0f) << 9); | |||
data[offset_data + 4] = (bytes[offset_byte + 6] >> 4 & (0x0f)) | | |||
((bytes[offset_byte + 7] & 0xff) << 4) | | |||
((bytes[offset_byte + 8] & 0x01) << 12); | |||
data[offset_data + 5] = (bytes[offset_byte + 8] >> 1 & (0x7f)) | | |||
((bytes[offset_byte + 9] & 0x3f) << 7); | |||
data[offset_data + 6] = (bytes[offset_byte + 9] >> 6 & (0x03)) | | |||
((bytes[offset_byte + 10] & 0xff) << 2) | | |||
((bytes[offset_byte + 11] & 0x07) << 10); | |||
data[offset_data + 7] = (bytes[offset_byte + 11] >> 3 & (0x1f)) | | |||
((bytes[offset_byte + 12] & 0xff) << 5); | |||
} | |||
} | |||
void PQCLEAN_FIRESABER_CLEAN_POLVEC2BS(uint8_t *bytes, uint16_t data[SABER_K][SABER_N], uint16_t modulus) { | |||
if (modulus == 1024) { | |||
POLVECp2BS(bytes, data); | |||
} else if (modulus == 8192) { | |||
@@ -232,11 +246,9 @@ void PQCLEAN_FIRESABER_CLEAN_POLVEC2BS(uint8_t *bytes, uint16_t data[SABER_K][SA | |||
} | |||
void PQCLEAN_FIRESABER_CLEAN_BS2POLVEC(const unsigned char *bytes, uint16_t data[SABER_K][SABER_N], uint16_t modulus) { | |||
if (modulus == 1024) { | |||
BS2POLVECp(bytes, data); | |||
} else if (modulus == 8192) { | |||
BS2POLVECq(bytes, data); | |||
} | |||
} |
@@ -45,7 +45,7 @@ static void GenMatrix(polyvec *a, const unsigned char *seed) { | |||
void PQCLEAN_LIGHTSABER_CLEAN_indcpa_kem_keypair(unsigned char *pk, unsigned char *sk) { | |||
polyvec a[SABER_K];// skpv; | |||
polyvec a[SABER_K]; | |||
uint16_t skpv[SABER_K][SABER_N]; | |||
@@ -58,43 +58,43 @@ void PQCLEAN_LIGHTSABER_CLEAN_indcpa_kem_keypair(unsigned char *pk, unsigned cha | |||
uint16_t res[SABER_K][SABER_N]; | |||
randombytes(seed, SABER_SEEDBYTES); | |||
shake128(seed, SABER_SEEDBYTES, seed, SABER_SEEDBYTES); // for not revealing system RNG state | |||
// for not revealing system RNG state | |||
shake128(seed, SABER_SEEDBYTES, seed, SABER_SEEDBYTES); | |||
randombytes(noiseseed, SABER_COINBYTES); | |||
GenMatrix(a, seed); //sample matrix A | |||
PQCLEAN_LIGHTSABER_CLEAN_GenSecret(skpv, noiseseed); //generate secret from constant-time binomial distribution | |||
//------------------------do the matrix vector multiplication and rounding------------ | |||
// generate secret from constant-time binomial distribution | |||
PQCLEAN_LIGHTSABER_CLEAN_GenSecret(skpv, noiseseed); | |||
// do the matrix vector multiplication and rounding | |||
for (i = 0; i < SABER_K; i++) { | |||
for (j = 0; j < SABER_N; j++) { | |||
res[i][j] = 0; | |||
} | |||
} | |||
MatrixVectorMul(a, skpv, res, SABER_Q - 1, 1); | |||
//-----now rounding | |||
for (i = 0; i < SABER_K; i++) { //shift right 3 bits | |||
// now rounding | |||
for (i = 0; i < SABER_K; i++) { | |||
for (j = 0; j < SABER_N; j++) { | |||
// shift right 3 bits | |||
res[i][j] = (res[i][j] + h1) & (mod_q); | |||
res[i][j] = (res[i][j] >> (SABER_EQ - SABER_EP)); | |||
} | |||
} | |||
//------------------unload and pack sk=3 x (256 coefficients of 14 bits)------- | |||
// unload and pack sk=3 x (256 coefficients of 14 bits) | |||
PQCLEAN_LIGHTSABER_CLEAN_POLVEC2BS(sk, skpv, SABER_Q); | |||
//------------------unload and pack pk=256 bits seed and 3 x (256 coefficients of 11 bits)------- | |||
PQCLEAN_LIGHTSABER_CLEAN_POLVEC2BS(pk, res, SABER_P); // load the public-key coefficients | |||
// unload and pack pk=256 bits seed and 3 x (256 coefficients of 11 bits) | |||
// load the public-key coefficients | |||
PQCLEAN_LIGHTSABER_CLEAN_POLVEC2BS(pk, res, SABER_P); | |||
for (i = 0; i < SABER_SEEDBYTES; i++) { // now load the seedbytes in PK. Easy since seed bytes are kept in byte format. | |||
// now load the seedbytes in PK. Easy since seed bytes are kept in byte format. | |||
for (i = 0; i < SABER_SEEDBYTES; i++) { | |||
pk[SABER_POLYVECCOMPRESSEDBYTES + i] = seed[i]; | |||
} | |||
@@ -103,47 +103,39 @@ void PQCLEAN_LIGHTSABER_CLEAN_indcpa_kem_keypair(unsigned char *pk, unsigned cha | |||
void PQCLEAN_LIGHTSABER_CLEAN_indcpa_kem_enc(const unsigned char *message_received, unsigned char *noiseseed, const unsigned char *pk, unsigned char *ciphertext) { | |||
uint32_t i, j, k; | |||
polyvec a[SABER_K]; // skpv; | |||
polyvec a[SABER_K]; | |||
unsigned char seed[SABER_SEEDBYTES]; | |||
uint16_t pkcl[SABER_K][SABER_N]; //public key of received by the client | |||
// public key of received by the client | |||
uint16_t pkcl[SABER_K][SABER_N]; | |||
uint16_t skpv1[SABER_K][SABER_N]; | |||
uint16_t message[SABER_KEYBYTES * 8]; | |||
uint16_t res[SABER_K][SABER_N]; | |||
uint16_t mod_p = SABER_P - 1; | |||
uint16_t mod_q = SABER_Q - 1; | |||
uint16_t vprime[SABER_N]; | |||
unsigned char msk_c[SABER_SCALEBYTES_KEM]; | |||
for (i = 0; i < SABER_SEEDBYTES; i++) { // extract the seedbytes from Public Key. | |||
// extract the seedbytes from Public Key. | |||
for (i = 0; i < SABER_SEEDBYTES; i++) { | |||
seed[i] = pk[ SABER_POLYVECCOMPRESSEDBYTES + i]; | |||
} | |||
GenMatrix(a, seed); | |||
PQCLEAN_LIGHTSABER_CLEAN_GenSecret(skpv1, noiseseed); //generate secret from constant-time binomial distribution | |||
//-----------------matrix-vector multiplication and rounding | |||
// generate secret from constant-time binomial distribution | |||
PQCLEAN_LIGHTSABER_CLEAN_GenSecret(skpv1, noiseseed); | |||
// matrix-vector multiplication and rounding | |||
for (i = 0; i < SABER_K; i++) { | |||
for (j = 0; j < SABER_N; j++) { | |||
res[i][j] = 0; | |||
} | |||
} | |||
MatrixVectorMul(a, skpv1, res, SABER_Q - 1, 0); | |||
//-----now rounding | |||
for (i = 0; i < SABER_K; i++) { //shift right 3 bits | |||
// now rounding | |||
//shift right 3 bits | |||
for (i = 0; i < SABER_K; i++) { | |||
for (j = 0; j < SABER_N; j++) { | |||
res[i][j] = ( res[i][j] + h1 ) & mod_q; | |||
res[i][j] = (res[i][j] >> (SABER_EQ - SABER_EP) ); | |||
@@ -152,21 +144,15 @@ void PQCLEAN_LIGHTSABER_CLEAN_indcpa_kem_enc(const unsigned char *message_receiv | |||
PQCLEAN_LIGHTSABER_CLEAN_POLVEC2BS(ciphertext, res, SABER_P); | |||
//*******************client matrix-vector multiplication ends************************************ | |||
//------now calculate the v' | |||
//-------unpack the public_key | |||
// ************client matrix-vector multiplication ends************ | |||
//pkcl is the b in the protocol | |||
// now calculate the v' | |||
// unpack the public_key | |||
// pkcl is the b in the protocol | |||
PQCLEAN_LIGHTSABER_CLEAN_BS2POLVEC(pk, pkcl, SABER_P); | |||
for (i = 0; i < SABER_N; i++) { | |||
vprime[i] = 0; | |||
} | |||
for (i = 0; i < SABER_K; i++) { | |||
for (j = 0; j < SABER_N; j++) { | |||
skpv1[i][j] = skpv1[i][j] & (mod_p); | |||
@@ -176,12 +162,11 @@ void PQCLEAN_LIGHTSABER_CLEAN_indcpa_kem_enc(const unsigned char *message_receiv | |||
// vector-vector scalar multiplication with mod p | |||
InnerProd(pkcl, skpv1, mod_p, vprime); | |||
//addition of h1 to vprime | |||
// addition of h1 to vprime | |||
for (i = 0; i < SABER_N; i++) { | |||
vprime[i] = vprime[i] + h1; | |||
} | |||
// unpack message_received; | |||
for (j = 0; j < SABER_KEYBYTES; j++) { | |||
for (i = 0; i < 8; i++) { | |||
@@ -194,9 +179,6 @@ void PQCLEAN_LIGHTSABER_CLEAN_indcpa_kem_enc(const unsigned char *message_receiv | |||
message[i] = (message[i] << (SABER_EP - 1)); | |||
} | |||
for (k = 0; k < SABER_N; k++) { | |||
vprime[k] = ( (vprime[k] - message[k]) & (mod_p) ) >> (SABER_EP - SABER_ET); | |||
} | |||
@@ -204,7 +186,6 @@ void PQCLEAN_LIGHTSABER_CLEAN_indcpa_kem_enc(const unsigned char *message_receiv | |||
PQCLEAN_LIGHTSABER_CLEAN_pack_3bit(msk_c, vprime); | |||
for (j = 0; j < SABER_SCALEBYTES_KEM; j++) { | |||
ciphertext[SABER_POLYVECCOMPRESSEDBYTES + j] = msk_c[j]; | |||
} | |||
@@ -212,41 +193,31 @@ void PQCLEAN_LIGHTSABER_CLEAN_indcpa_kem_enc(const unsigned char *message_receiv | |||
void PQCLEAN_LIGHTSABER_CLEAN_indcpa_kem_dec(const unsigned char *sk, const unsigned char *ciphertext, unsigned char message_dec[]) { | |||
uint32_t i, j; | |||
uint16_t sksv[SABER_K][SABER_N]; //secret key of the server | |||
// secret key of the server | |||
uint16_t sksv[SABER_K][SABER_N]; | |||
uint16_t pksv[SABER_K][SABER_N]; | |||
uint8_t scale_ar[SABER_SCALEBYTES_KEM]; | |||
uint16_t mod_p = SABER_P - 1; | |||
uint16_t v[SABER_N]; | |||
uint16_t op[SABER_N]; | |||
PQCLEAN_LIGHTSABER_CLEAN_BS2POLVEC(sk, sksv, SABER_Q); //sksv is the secret-key | |||
PQCLEAN_LIGHTSABER_CLEAN_BS2POLVEC(ciphertext, pksv, SABER_P); //pksv is the ciphertext | |||
// sksv is the secret-key | |||
PQCLEAN_LIGHTSABER_CLEAN_BS2POLVEC(sk, sksv, SABER_Q); | |||
// pksv is the ciphertext | |||
PQCLEAN_LIGHTSABER_CLEAN_BS2POLVEC(ciphertext, pksv, SABER_P); | |||
// vector-vector scalar multiplication with mod p | |||
for (i = 0; i < SABER_N; i++) { | |||
v[i] = 0; | |||
} | |||
for (i = 0; i < SABER_K; i++) { | |||
for (j = 0; j < SABER_N; j++) { | |||
sksv[i][j] = sksv[i][j] & (mod_p); | |||
} | |||
} | |||
InnerProd(pksv, sksv, mod_p, v); | |||
//Extraction | |||
for (i = 0; i < SABER_SCALEBYTES_KEM; i++) { | |||
scale_ar[i] = ciphertext[SABER_POLYVECCOMPRESSEDBYTES + i]; | |||
@@ -254,20 +225,15 @@ void PQCLEAN_LIGHTSABER_CLEAN_indcpa_kem_dec(const unsigned char *sk, const unsi | |||
PQCLEAN_LIGHTSABER_CLEAN_un_pack3bit(scale_ar, op); | |||
//addition of h1 | |||
for (i = 0; i < SABER_N; i++) { | |||
v[i] = ( ( v[i] + h2 - (op[i] << (SABER_EP - SABER_ET)) ) & (mod_p) ) >> (SABER_EP - 1); | |||
} | |||
// pack decrypted message | |||
POL2MSG(v, message_dec); | |||
} | |||
static void MatrixVectorMul(polyvec *a, uint16_t skpv[SABER_K][SABER_N], uint16_t res[SABER_K][SABER_N], uint16_t mod, int16_t transpose) { | |||
uint16_t acc[SABER_N]; | |||
int32_t i, j, k; | |||
@@ -278,32 +244,30 @@ static void MatrixVectorMul(polyvec *a, uint16_t skpv[SABER_K][SABER_N], uint16_ | |||
for (k = 0; k < SABER_N; k++) { | |||
res[i][k] = res[i][k] + acc[k]; | |||
res[i][k] = (res[i][k] & mod); //reduction mod p | |||
acc[k] = 0; //clear the accumulator | |||
//reduction mod p | |||
res[i][k] = (res[i][k] & mod); | |||
//clear the accumulator | |||
acc[k] = 0; | |||
} | |||
} | |||
} | |||
} else { | |||
for (i = 0; i < SABER_K; i++) { | |||
for (j = 0; j < SABER_K; j++) { | |||
PQCLEAN_LIGHTSABER_CLEAN_pol_mul((uint16_t *)&a[i].vec[j], skpv[j], acc, SABER_Q, SABER_N); | |||
for (k = 0; k < SABER_N; k++) { | |||
res[i][k] = res[i][k] + acc[k]; | |||
res[i][k] = res[i][k] & mod; //reduction | |||
acc[k] = 0; //clear the accumulator | |||
// reduction | |||
res[i][k] = res[i][k] & mod; | |||
// clear the accumulator | |||
acc[k] = 0; | |||
} | |||
} | |||
} | |||
} | |||
} | |||
static void POL2MSG(const uint16_t *message_dec_unpacked, unsigned char *message_dec) { | |||
int32_t i, j; | |||
for (j = 0; j < SABER_KEYBYTES; j++) { | |||
@@ -312,13 +276,10 @@ static void POL2MSG(const uint16_t *message_dec_unpacked, unsigned char *message | |||
message_dec[j] = message_dec[j] | (uint8_t) (message_dec_unpacked[j * 8 + i] << i); | |||
} | |||
} | |||
} | |||
static void InnerProd(uint16_t pkcl[SABER_K][SABER_N], uint16_t skpv[SABER_K][SABER_N], uint16_t mod, uint16_t res[SABER_N]) { | |||
uint32_t j, k; | |||
uint16_t acc[SABER_N]; | |||
@@ -328,8 +289,10 @@ static void InnerProd(uint16_t pkcl[SABER_K][SABER_N], uint16_t skpv[SABER_K][SA | |||
for (k = 0; k < SABER_N; k++) { | |||
res[k] = res[k] + acc[k]; | |||
res[k] = res[k] & mod; //reduction | |||
acc[k] = 0; //clear the accumulator | |||
// reduction | |||
res[k] = res[k] & mod; | |||
// clear the accumulator | |||
acc[k] = 0; | |||
} | |||
} | |||
} |
@@ -10,37 +10,48 @@ | |||
int PQCLEAN_LIGHTSABER_CLEAN_crypto_kem_keypair(unsigned char *pk, unsigned char *sk) { | |||
int i; | |||
PQCLEAN_LIGHTSABER_CLEAN_indcpa_kem_keypair(pk, sk); // sk[0:SABER_INDCPA_SECRETKEYBYTES-1] <-- sk | |||
// sk[0:SABER_INDCPA_SECRETKEYBYTES-1] <-- sk | |||
PQCLEAN_LIGHTSABER_CLEAN_indcpa_kem_keypair(pk, sk); | |||
// sk[SABER_INDCPA_SECRETKEYBYTES:SABER_INDCPA_SECRETKEYBYTES+SABER_INDCPA_SECRETKEYBYTES-1] <-- pk | |||
for (i = 0; i < SABER_INDCPA_PUBLICKEYBYTES; i++) { | |||
sk[i + SABER_INDCPA_SECRETKEYBYTES] = pk[i]; // sk[SABER_INDCPA_SECRETKEYBYTES:SABER_INDCPA_SECRETKEYBYTES+SABER_INDCPA_SECRETKEYBYTES-1] <-- pk | |||
sk[i + SABER_INDCPA_SECRETKEYBYTES] = pk[i]; | |||
} | |||
sha3_256(sk + SABER_SECRETKEYBYTES - 64, pk, SABER_INDCPA_PUBLICKEYBYTES); // Then hash(pk) is appended. | |||
// Then hash(pk) is appended. | |||
sha3_256(sk + SABER_SECRETKEYBYTES - 64, pk, SABER_INDCPA_PUBLICKEYBYTES); | |||
randombytes(sk + SABER_SECRETKEYBYTES - SABER_KEYBYTES, SABER_KEYBYTES ); // Remaining part of sk contains a pseudo-random number. | |||
// Remaining part of sk contains a pseudo-random number. | |||
// This is output when check in crypto_kem_dec() fails. | |||
randombytes(sk + SABER_SECRETKEYBYTES - SABER_KEYBYTES, SABER_KEYBYTES ); | |||
return (0); | |||
} | |||
int PQCLEAN_LIGHTSABER_CLEAN_crypto_kem_enc(unsigned char *ct, unsigned char *ss, const unsigned char *pk) { | |||
unsigned char kr[64]; // Will contain key, coins | |||
// Will contain key, coins | |||
unsigned char kr[64]; | |||
unsigned char buf[64]; | |||
randombytes(buf, 32); | |||
sha3_256(buf, buf, 32); // BUF[0:31] <-- random message (will be used as the key for client) Note: hash doesnot release system RNG output | |||
// BUF[0:31] <-- random message (will be used as the key for client) Note: hash doesnot release system RNG output | |||
sha3_256(buf, buf, 32); | |||
// BUF[32:63] <-- Hash(public key); Multitarget countermeasure for coins + contributory KEM | |||
sha3_256(buf + 32, pk, SABER_INDCPA_PUBLICKEYBYTES); | |||
sha3_256(buf + 32, pk, SABER_INDCPA_PUBLICKEYBYTES); // BUF[32:63] <-- Hash(public key); Multitarget countermeasure for coins + contributory KEM | |||
// kr[0:63] <-- Hash(buf[0:63]); | |||
sha3_512(kr, buf, 64); | |||
sha3_512(kr, buf, 64); // kr[0:63] <-- Hash(buf[0:63]); | |||
// K^ <-- kr[0:31] | |||
// noiseseed (r) <-- kr[32:63]; | |||
PQCLEAN_LIGHTSABER_CLEAN_indcpa_kem_enc(buf, kr + 32, pk, ct); // buf[0:31] contains message; kr[32:63] contains randomness r; | |||
// buf[0:31] contains message; kr[32:63] contains randomness r; | |||
PQCLEAN_LIGHTSABER_CLEAN_indcpa_kem_enc(buf, kr + 32, pk, ct); | |||
sha3_256(kr + 32, ct, SABER_BYTES_CCA_DEC); | |||
sha3_256(ss, kr, 64); // hash concatenation of pre-k and h(c) to k | |||
// hash concatenation of pre-k and h(c) to k | |||
sha3_256(ss, kr, 64); | |||
return (0); | |||
} | |||
@@ -51,14 +62,18 @@ int PQCLEAN_LIGHTSABER_CLEAN_crypto_kem_dec(unsigned char *ss, const unsigned ch | |||
unsigned char fail; | |||
unsigned char cmp[SABER_BYTES_CCA_DEC]; | |||
unsigned char buf[64]; | |||
unsigned char kr[64]; // Will contain key, coins | |||
// Will contain key, coins | |||
unsigned char kr[64]; | |||
const unsigned char *pk = sk + SABER_INDCPA_SECRETKEYBYTES; | |||
PQCLEAN_LIGHTSABER_CLEAN_indcpa_kem_dec(sk, ct, buf); // buf[0:31] <-- message | |||
// buf[0:31] <-- message | |||
PQCLEAN_LIGHTSABER_CLEAN_indcpa_kem_dec(sk, ct, buf); | |||
// Multitarget countermeasure for coins + contributory KEM | |||
for (i = 0; i < 32; i++) { // Save hash by storing h(pk) in sk | |||
// Save hash by storing h(pk) in sk | |||
for (i = 0; i < 32; i++) { | |||
buf[32 + i] = sk[SABER_SECRETKEYBYTES - 64 + i]; | |||
} | |||
@@ -69,11 +84,13 @@ int PQCLEAN_LIGHTSABER_CLEAN_crypto_kem_dec(unsigned char *ss, const unsigned ch | |||
fail = PQCLEAN_LIGHTSABER_CLEAN_verify(ct, cmp, SABER_BYTES_CCA_DEC); | |||
sha3_256(kr + 32, ct, SABER_BYTES_CCA_DEC); // overwrite coins in kr with h(c) | |||
// overwrite coins in kr with h(c) | |||
sha3_256(kr + 32, ct, SABER_BYTES_CCA_DEC); | |||
PQCLEAN_LIGHTSABER_CLEAN_cmov(kr, sk + SABER_SECRETKEYBYTES - SABER_KEYBYTES, SABER_KEYBYTES, fail); | |||
sha3_256(ss, kr, 64); // hash concatenation of pre-k and h(c) to k | |||
// hash concatenation of pre-k and h(c) to k | |||
sha3_256(ss, kr, 64); | |||
return (0); | |||
} |
@@ -1,21 +1,26 @@ | |||
#include "pack_unpack.h" | |||
void PQCLEAN_LIGHTSABER_CLEAN_pack_3bit(uint8_t *bytes, const uint16_t *data) { | |||
uint32_t j; | |||
uint32_t offset_data, offset_byte; | |||
for (j = 0; j < SABER_N / 8; j++) { | |||
offset_byte = 3 * j; | |||
offset_data = 8 * j; | |||
bytes[offset_byte + 0] = (data[offset_data + 0] & 0x7) | ( (data[offset_data + 1] & 0x7) << 3 ) | ((data[offset_data + 2] & 0x3) << 6); | |||
bytes[offset_byte + 1] = ((data[offset_data + 2] >> 2 ) & 0x01) | ( (data[offset_data + 3] & 0x7) << 1 ) | ( (data[offset_data + 4] & 0x7) << 4 ) | (((data[offset_data + 5]) & 0x01) << 7); | |||
bytes[offset_byte + 2] = ((data[offset_data + 5] >> 1 ) & 0x03) | ( (data[offset_data + 6] & 0x7) << 2 ) | ( (data[offset_data + 7] & 0x7) << 5 ); | |||
bytes[offset_byte + 0] = (data[offset_data + 0] & 0x7) | | |||
((data[offset_data + 1] & 0x7) << 3) | | |||
((data[offset_data + 2] & 0x3) << 6); | |||
bytes[offset_byte + 1] = ((data[offset_data + 2] >> 2 ) & 0x01) | | |||
((data[offset_data + 3] & 0x7) << 1) | | |||
((data[offset_data + 4] & 0x7) << 4) | | |||
(((data[offset_data + 5]) & 0x01) << 7); | |||
bytes[offset_byte + 2] = ((data[offset_data + 5] >> 1 ) & 0x03) | | |||
((data[offset_data + 6] & 0x7) << 2) | | |||
((data[offset_data + 7] & 0x7) << 5); | |||
} | |||
} | |||
void PQCLEAN_LIGHTSABER_CLEAN_un_pack3bit(const uint8_t *bytes, uint16_t *data) { | |||
uint32_t j; | |||
uint32_t offset_data, offset_byte; | |||
@@ -23,30 +28,30 @@ void PQCLEAN_LIGHTSABER_CLEAN_un_pack3bit(const uint8_t *bytes, uint16_t *data) | |||
offset_byte = 3 * j; | |||
offset_data = 8 * j; | |||
data[offset_data + 0] = (bytes[offset_byte + 0]) & 0x07; | |||
data[offset_data + 1] = ( (bytes[offset_byte + 0]) >> 3 ) & 0x07; | |||
data[offset_data + 2] = ( ( (bytes[offset_byte + 0]) >> 6 ) & 0x03) | ( ( (bytes[offset_byte + 1]) & 0x01) << 2 ); | |||
data[offset_data + 3] = ( (bytes[offset_byte + 1]) >> 1 ) & 0x07; | |||
data[offset_data + 4] = ( (bytes[offset_byte + 1]) >> 4 ) & 0x07; | |||
data[offset_data + 5] = ( ( (bytes[offset_byte + 1]) >> 7 ) & 0x01) | ( ( (bytes[offset_byte + 2]) & 0x03) << 1 ); | |||
data[offset_data + 6] = ( (bytes[offset_byte + 2] >> 2) & 0x07 ); | |||
data[offset_data + 7] = ( (bytes[offset_byte + 2] >> 5) & 0x07 ); | |||
data[offset_data + 1] = ((bytes[offset_byte + 0]) >> 3 ) & 0x07; | |||
data[offset_data + 2] = (((bytes[offset_byte + 0]) >> 6 ) & 0x03) | | |||
(((bytes[offset_byte + 1]) & 0x01) << 2); | |||
data[offset_data + 3] = ((bytes[offset_byte + 1]) >> 1 ) & 0x07; | |||
data[offset_data + 4] = ((bytes[offset_byte + 1]) >> 4 ) & 0x07; | |||
data[offset_data + 5] = (((bytes[offset_byte + 1]) >> 7 ) & 0x01) | | |||
(((bytes[offset_byte + 2]) & 0x03) << 1); | |||
data[offset_data + 6] = ((bytes[offset_byte + 2] >> 2) & 0x07); | |||
data[offset_data + 7] = ((bytes[offset_byte + 2] >> 5) & 0x07); | |||
} | |||
} | |||
void PQCLEAN_LIGHTSABER_CLEAN_pack_4bit(uint8_t *bytes, const uint16_t *data) { | |||
uint32_t j; | |||
uint32_t offset_data; | |||
for (j = 0; j < SABER_N / 2; j++) { | |||
offset_data = 2 * j; | |||
bytes[j] = (data[offset_data] & 0x0f) | ( (data[offset_data + 1] & 0x0f) << 4 ); | |||
bytes[j] = (data[offset_data] & 0x0f) | | |||
((data[offset_data + 1] & 0x0f) << 4); | |||
} | |||
} | |||
void PQCLEAN_LIGHTSABER_CLEAN_un_pack4bit(const unsigned char *bytes, uint16_t *ar) { | |||
uint32_t j; | |||
uint32_t offset_data; | |||
@@ -64,9 +69,12 @@ void PQCLEAN_LIGHTSABER_CLEAN_pack_6bit(uint8_t *bytes, const uint16_t *data) { | |||
for (j = 0; j < SABER_N / 4; j++) { | |||
offset_byte = 3 * j; | |||
offset_data = 4 * j; | |||
bytes[offset_byte + 0] = (data[offset_data + 0] & 0x3f) | ((data[offset_data + 1] & 0x03) << 6); | |||
bytes[offset_byte + 1] = ((data[offset_data + 1] >> 2) & 0x0f) | ((data[offset_data + 2] & 0x0f) << 4); | |||
bytes[offset_byte + 2] = ((data[offset_data + 2] >> 4) & 0x03) | ((data[offset_data + 3] & 0x3f) << 2); | |||
bytes[offset_byte + 0] = (data[offset_data + 0] & 0x3f) | | |||
((data[offset_data + 1] & 0x03) << 6); | |||
bytes[offset_byte + 1] = ((data[offset_data + 1] >> 2) & 0x0f) | | |||
((data[offset_data + 2] & 0x0f) << 4); | |||
bytes[offset_byte + 2] = ((data[offset_data + 2] >> 4) & 0x03) | | |||
((data[offset_data + 3] & 0x3f) << 2); | |||
} | |||
} | |||
@@ -79,11 +87,12 @@ void PQCLEAN_LIGHTSABER_CLEAN_un_pack6bit(const unsigned char *bytes, uint16_t * | |||
offset_byte = 3 * j; | |||
offset_data = 4 * j; | |||
data[offset_data + 0] = bytes[offset_byte + 0] & 0x3f; | |||
data[offset_data + 1] = ((bytes[offset_byte + 0] >> 6) & 0x03) | ((bytes[offset_byte + 1] & 0x0f) << 2) ; | |||
data[offset_data + 2] = ((bytes[offset_byte + 1] & 0xff) >> 4) | ((bytes[offset_byte + 2] & 0x03) << 4) ; | |||
data[offset_data + 1] = ((bytes[offset_byte + 0] >> 6) & 0x03) | | |||
((bytes[offset_byte + 1] & 0x0f) << 2); | |||
data[offset_data + 2] = ((bytes[offset_byte + 1] & 0xff) >> 4) | | |||
((bytes[offset_byte + 2] & 0x03) << 4); | |||
data[offset_data + 3] = ((bytes[offset_byte + 2] & 0xff) >> 2); | |||
} | |||
} | |||
@@ -96,23 +105,19 @@ static void POLVECp2BS(uint8_t *bytes, uint16_t data[SABER_K][SABER_N]) { | |||
for (j = 0; j < SABER_N / 4; j++) { | |||
offset_byte = offset_byte1 + 5 * j; | |||
offset_data = 4 * j; | |||
bytes[offset_byte + 0] = ( data[i][ offset_data + 0 ] & (0xff)); | |||
bytes[offset_byte + 1] = ( (data[i][ offset_data + 0 ] >> 8) & 0x03 ) | ((data[i][ offset_data + 1 ] & 0x3f) << 2); | |||
bytes[offset_byte + 2] = ( (data[i][ offset_data + 1 ] >> 6) & 0x0f ) | ( (data[i][ offset_data + 2 ] & 0x0f) << 4); | |||
bytes[offset_byte + 3] = ( (data[i][ offset_data + 2 ] >> 4) & 0x3f ) | ((data[i][ offset_data + 3 ] & 0x03) << 6); | |||
bytes[offset_byte + 4] = ( (data[i][ offset_data + 3 ] >> 2) & 0xff ); | |||
bytes[offset_byte + 0] = (data[i][offset_data + 0] & (0xff)); | |||
bytes[offset_byte + 1] = ((data[i][offset_data + 0] >> 8) & 0x03) | | |||
((data[i][offset_data + 1] & 0x3f) << 2); | |||
bytes[offset_byte + 2] = ((data[i][offset_data + 1] >> 6) & 0x0f) | | |||
((data[i][offset_data + 2] & 0x0f) << 4); | |||
bytes[offset_byte + 3] = ((data[i][offset_data + 2] >> 4) & 0x3f) | | |||
((data[i][offset_data + 3] & 0x03) << 6); | |||
bytes[offset_byte + 4] = ((data[i][offset_data + 3] >> 2) & 0xff); | |||
} | |||
} | |||
} | |||
static void BS2POLVECp(const unsigned char *bytes, uint16_t data[SABER_K][SABER_N]) { | |||
uint32_t i, j; | |||
uint32_t offset_data, offset_byte, offset_byte1; | |||
@@ -121,21 +126,21 @@ static void BS2POLVECp(const unsigned char *bytes, uint16_t data[SABER_K][SABER_ | |||
for (j = 0; j < SABER_N / 4; j++) { | |||
offset_byte = offset_byte1 + 5 * j; | |||
offset_data = 4 * j; | |||
data[i][offset_data + 0] = ( bytes[ offset_byte + 0 ] & (0xff)) | ((bytes[ offset_byte + 1 ] & 0x03) << 8); | |||
data[i][offset_data + 1] = ( (bytes[ offset_byte + 1 ] >> 2) & (0x3f)) | ((bytes[ offset_byte + 2 ] & 0x0f) << 6); | |||
data[i][offset_data + 2] = ( (bytes[ offset_byte + 2 ] >> 4) & (0x0f)) | ((bytes[ offset_byte + 3 ] & 0x3f) << 4); | |||
data[i][offset_data + 3] = ( (bytes[ offset_byte + 3 ] >> 6) & (0x03)) | ((bytes[ offset_byte + 4 ] & 0xff) << 2); | |||
data[i][offset_data + 0] = (bytes[offset_byte + 0] & (0xff)) | | |||
((bytes[offset_byte + 1] & 0x03) << 8); | |||
data[i][offset_data + 1] = ((bytes[offset_byte + 1] >> 2) & (0x3f)) | | |||
((bytes[offset_byte + 2] & 0x0f) << 6); | |||
data[i][offset_data + 2] = ((bytes[offset_byte + 2] >> 4) & (0x0f)) | | |||
((bytes[offset_byte + 3] & 0x3f) << 4); | |||
data[i][offset_data + 3] = ((bytes[offset_byte + 3] >> 6) & (0x03)) | | |||
((bytes[offset_byte + 4] & 0xff) << 2); | |||
} | |||
} | |||
} | |||
static void POLVECq2BS(uint8_t *bytes, uint16_t data[SABER_K][SABER_N]) { | |||
uint32_t i, j; | |||
uint32_t offset_data, offset_byte, offset_byte1; | |||
@@ -144,40 +149,31 @@ static void POLVECq2BS(uint8_t *bytes, uint16_t data[SABER_K][SABER_N]) { | |||
for (j = 0; j < SABER_N / 8; j++) { | |||
offset_byte = offset_byte1 + 13 * j; | |||
offset_data = 8 * j; | |||
bytes[offset_byte + 0] = ( data[i][ offset_data + 0 ] & (0xff)); | |||
bytes[offset_byte + 1] = ( (data[i][ offset_data + 0 ] >> 8) & 0x1f ) | ((data[i][ offset_data + 1 ] & 0x07) << 5); | |||
bytes[offset_byte + 2] = ( (data[i][ offset_data + 1 ] >> 3) & 0xff ); | |||
bytes[offset_byte + 3] = ( (data[i][ offset_data + 1 ] >> 11) & 0x03 ) | ((data[i][ offset_data + 2 ] & 0x3f) << 2); | |||
bytes[offset_byte + 4] = ( (data[i][ offset_data + 2 ] >> 6) & 0x7f ) | ( (data[i][ offset_data + 3 ] & 0x01) << 7 ); | |||
bytes[offset_byte + 5] = ( (data[i][ offset_data + 3 ] >> 1) & 0xff ); | |||
bytes[offset_byte + 6] = ( (data[i][ offset_data + 3 ] >> 9) & 0x0f ) | ( (data[i][ offset_data + 4 ] & 0x0f) << 4 ); | |||
bytes[offset_byte + 7] = ( (data[i][ offset_data + 4] >> 4) & 0xff ); | |||
bytes[offset_byte + 8] = ( (data[i][ offset_data + 4 ] >> 12) & 0x01 ) | ( (data[i][ offset_data + 5 ] & 0x7f) << 1 ); | |||
bytes[offset_byte + 9] = ( (data[i][ offset_data + 5 ] >> 7) & 0x3f ) | ( (data[i][ offset_data + 6 ] & 0x03) << 6 ); | |||
bytes[offset_byte + 10] = ( (data[i][ offset_data + 6 ] >> 2) & 0xff ); | |||
bytes[offset_byte + 11] = ( (data[i][ offset_data + 6 ] >> 10) & 0x07 ) | ( (data[i][ offset_data + 7 ] & 0x1f) << 3 ); | |||
bytes[offset_byte + 12] = ( (data[i][ offset_data + 7 ] >> 5) & 0xff ); | |||
bytes[offset_byte + 0] = (data[i][offset_data + 0] & (0xff)); | |||
bytes[offset_byte + 1] = ((data[i][offset_data + 0] >> 8) & 0x1f) | | |||
((data[i][offset_data + 1] & 0x07) << 5); | |||
bytes[offset_byte + 2] = ((data[i][offset_data + 1] >> 3) & 0xff); | |||
bytes[offset_byte + 3] = ((data[i][offset_data + 1] >> 11) & 0x03) | | |||
((data[i][offset_data + 2] & 0x3f) << 2); | |||
bytes[offset_byte + 4] = ((data[i][offset_data + 2] >> 6) & 0x7f) | | |||
((data[i][offset_data + 3] & 0x01) << 7); | |||
bytes[offset_byte + 5] = ((data[i][offset_data + 3] >> 1) & 0xff); | |||
bytes[offset_byte + 6] = ((data[i][offset_data + 3] >> 9) & 0x0f) | | |||
((data[i][offset_data + 4] & 0x0f) << 4); | |||
bytes[offset_byte + 7] = ((data[i][offset_data + 4] >> 4) & 0xff); | |||
bytes[offset_byte + 8] = ((data[i][offset_data + 4] >> 12) & 0x01) | | |||
((data[i][offset_data + 5] & 0x7f) << 1); | |||
bytes[offset_byte + 9] = ((data[i][offset_data + 5] >> 7) & 0x3f) | | |||
((data[i][offset_data + 6] & 0x03) << 6); | |||
bytes[offset_byte + 10] = ((data[i][offset_data + 6] >> 2) & 0xff); | |||
bytes[offset_byte + 11] = ((data[i][offset_data + 6] >> 10) & 0x07) | | |||
((data[i][offset_data + 7] & 0x1f) << 3); | |||
bytes[offset_byte + 12] = ((data[i][offset_data + 7] >> 5) & 0xff); | |||
} | |||
} | |||
} | |||
static void BS2POLVECq(const unsigned char *bytes, uint16_t data[SABER_K][SABER_N]) { | |||
uint32_t i, j; | |||
uint32_t offset_data, offset_byte, offset_byte1; | |||
@@ -186,44 +182,62 @@ static void BS2POLVECq(const unsigned char *bytes, uint16_t data[SABER_K][SABER_ | |||
for (j = 0; j < SABER_N / 8; j++) { | |||
offset_byte = offset_byte1 + 13 * j; | |||
offset_data = 8 * j; | |||
data[i][offset_data + 0] = ( bytes[ offset_byte + 0 ] & (0xff)) | ((bytes[offset_byte + 1] & 0x1f) << 8); | |||
data[i][offset_data + 1] = ( bytes[ offset_byte + 1 ] >> 5 & (0x07)) | ((bytes[offset_byte + 2] & 0xff) << 3) | ((bytes[offset_byte + 3] & 0x03) << 11); | |||
data[i][offset_data + 2] = ( bytes[ offset_byte + 3 ] >> 2 & (0x3f)) | ((bytes[offset_byte + 4] & 0x7f) << 6); | |||
data[i][offset_data + 3] = ( bytes[ offset_byte + 4 ] >> 7 & (0x01)) | ((bytes[offset_byte + 5] & 0xff) << 1) | ((bytes[offset_byte + 6] & 0x0f) << 9); | |||
data[i][offset_data + 4] = ( bytes[ offset_byte + 6 ] >> 4 & (0x0f)) | ((bytes[offset_byte + 7] & 0xff) << 4) | ((bytes[offset_byte + 8] & 0x01) << 12); | |||
data[i][offset_data + 5] = ( bytes[ offset_byte + 8] >> 1 & (0x7f)) | ((bytes[offset_byte + 9] & 0x3f) << 7); | |||
data[i][offset_data + 6] = ( bytes[ offset_byte + 9] >> 6 & (0x03)) | ((bytes[offset_byte + 10] & 0xff) << 2) | ((bytes[offset_byte + 11] & 0x07) << 10); | |||
data[i][offset_data + 7] = ( bytes[ offset_byte + 11] >> 3 & (0x1f)) | ((bytes[offset_byte + 12] & 0xff) << 5); | |||
data[i][offset_data + 0] = (bytes[offset_byte + 0] & (0xff)) | | |||
((bytes[offset_byte + 1] & 0x1f) << 8); | |||
data[i][offset_data + 1] = (bytes[offset_byte + 1] >> 5 & (0x07)) | | |||
((bytes[offset_byte + 2] & 0xff) << 3) | | |||
((bytes[offset_byte + 3] & 0x03) << 11); | |||
data[i][offset_data + 2] = (bytes[offset_byte + 3] >> 2 & (0x3f)) | | |||
((bytes[offset_byte + 4] & 0x7f) << 6); | |||
data[i][offset_data + 3] = (bytes[offset_byte + 4] >> 7 & (0x01)) | | |||
((bytes[offset_byte + 5] & 0xff) << 1) | | |||
((bytes[offset_byte + 6] & 0x0f) << 9); | |||
data[i][offset_data + 4] = (bytes[offset_byte + 6] >> 4 & (0x0f)) | | |||
((bytes[offset_byte + 7] & 0xff) << 4) | | |||
((bytes[offset_byte + 8] & 0x01) << 12); | |||
data[i][offset_data + 5] = (bytes[offset_byte + 8] >> 1 & (0x7f)) | | |||
((bytes[offset_byte + 9] & 0x3f) << 7); | |||
data[i][offset_data + 6] = (bytes[offset_byte + 9] >> 6 & (0x03)) | | |||
((bytes[offset_byte + 10] & 0xff) << 2) | | |||
((bytes[offset_byte + 11] & 0x07) << 10); | |||
data[i][offset_data + 7] = (bytes[offset_byte + 11] >> 3 & (0x1f)) | | |||
((bytes[offset_byte + 12] & 0xff) << 5); | |||
} | |||
} | |||
} | |||
void PQCLEAN_LIGHTSABER_CLEAN_BS2POL(const unsigned char *bytes, uint16_t data[SABER_N]) { //only BS2POLq no BS2POLp | |||
//only BS2POLq no BS2POLp | |||
void PQCLEAN_LIGHTSABER_CLEAN_BS2POL(const unsigned char *bytes, uint16_t data[SABER_N]) { | |||
uint32_t j; | |||
uint32_t offset_data, offset_byte; | |||
for (j = 0; j < SABER_N / 8; j++) { | |||
offset_byte = 13 * j; | |||
offset_data = 8 * j; | |||
data[offset_data + 0] = ( bytes[ offset_byte + 0 ] & (0xff)) | ((bytes[offset_byte + 1] & 0x1f) << 8); | |||
data[offset_data + 1] = ( bytes[ offset_byte + 1 ] >> 5 & (0x07)) | ((bytes[offset_byte + 2] & 0xff) << 3) | ((bytes[offset_byte + 3] & 0x03) << 11); | |||
data[offset_data + 2] = ( bytes[ offset_byte + 3 ] >> 2 & (0x3f)) | ((bytes[offset_byte + 4] & 0x7f) << 6); | |||
data[offset_data + 3] = ( bytes[ offset_byte + 4 ] >> 7 & (0x01)) | ((bytes[offset_byte + 5] & 0xff) << 1) | ((bytes[offset_byte + 6] & 0x0f) << 9); | |||
data[offset_data + 4] = ( bytes[ offset_byte + 6 ] >> 4 & (0x0f)) | ((bytes[offset_byte + 7] & 0xff) << 4) | ((bytes[offset_byte + 8] & 0x01) << 12); | |||
data[offset_data + 5] = ( bytes[ offset_byte + 8] >> 1 & (0x7f)) | ((bytes[offset_byte + 9] & 0x3f) << 7); | |||
data[offset_data + 6] = ( bytes[ offset_byte + 9] >> 6 & (0x03)) | ((bytes[offset_byte + 10] & 0xff) << 2) | ((bytes[offset_byte + 11] & 0x07) << 10); | |||
data[offset_data + 7] = ( bytes[ offset_byte + 11] >> 3 & (0x1f)) | ((bytes[offset_byte + 12] & 0xff) << 5); | |||
data[offset_data + 0] = (bytes[offset_byte + 0] & (0xff)) | | |||
((bytes[offset_byte + 1] & 0x1f) << 8); | |||
data[offset_data + 1] = (bytes[offset_byte + 1] >> 5 & (0x07)) | | |||
((bytes[offset_byte + 2] & 0xff) << 3) | | |||
((bytes[offset_byte + 3] & 0x03) << 11); | |||
data[offset_data + 2] = (bytes[offset_byte + 3] >> 2 & (0x3f)) | | |||
((bytes[offset_byte + 4] & 0x7f) << 6); | |||
data[offset_data + 3] = (bytes[offset_byte + 4] >> 7 & (0x01)) | | |||
((bytes[offset_byte + 5] & 0xff) << 1) | | |||
((bytes[offset_byte + 6] & 0x0f) << 9); | |||
data[offset_data + 4] = (bytes[offset_byte + 6] >> 4 & (0x0f)) | | |||
((bytes[offset_byte + 7] & 0xff) << 4) | | |||
((bytes[offset_byte + 8] & 0x01) << 12); | |||
data[offset_data + 5] = (bytes[offset_byte + 8] >> 1 & (0x7f)) | | |||
((bytes[offset_byte + 9] & 0x3f) << 7); | |||
data[offset_data + 6] = (bytes[offset_byte + 9] >> 6 & (0x03)) | | |||
((bytes[offset_byte + 10] & 0xff) << 2) | | |||
((bytes[offset_byte + 11] & 0x07) << 10); | |||
data[offset_data + 7] = (bytes[offset_byte + 11] >> 3 & (0x1f)) | | |||
((bytes[offset_byte + 12] & 0xff) << 5); | |||
} | |||
} | |||
void PQCLEAN_LIGHTSABER_CLEAN_POLVEC2BS(uint8_t *bytes, uint16_t data[SABER_K][SABER_N], uint16_t modulus) { | |||
if (modulus == 1024) { | |||
POLVECp2BS(bytes, data); | |||
} else if (modulus == 8192) { | |||
@@ -232,11 +246,9 @@ void PQCLEAN_LIGHTSABER_CLEAN_POLVEC2BS(uint8_t *bytes, uint16_t data[SABER_K][S | |||
} | |||
void PQCLEAN_LIGHTSABER_CLEAN_BS2POLVEC(const unsigned char *bytes, uint16_t data[SABER_K][SABER_N], uint16_t modulus) { | |||
if (modulus == 1024) { | |||
BS2POLVECp(bytes, data); | |||
} else if (modulus == 8192) { | |||
BS2POLVECq(bytes, data); | |||
} | |||
} |
@@ -45,7 +45,7 @@ static void GenMatrix(polyvec *a, const unsigned char *seed) { | |||
void PQCLEAN_SABER_CLEAN_indcpa_kem_keypair(unsigned char *pk, unsigned char *sk) { | |||
polyvec a[SABER_K];// skpv; | |||
polyvec a[SABER_K]; | |||
uint16_t skpv[SABER_K][SABER_N]; | |||
@@ -58,43 +58,43 @@ void PQCLEAN_SABER_CLEAN_indcpa_kem_keypair(unsigned char *pk, unsigned char *sk | |||
uint16_t res[SABER_K][SABER_N]; | |||
randombytes(seed, SABER_SEEDBYTES); | |||
shake128(seed, SABER_SEEDBYTES, seed, SABER_SEEDBYTES); // for not revealing system RNG state | |||
// for not revealing system RNG state | |||
shake128(seed, SABER_SEEDBYTES, seed, SABER_SEEDBYTES); | |||
randombytes(noiseseed, SABER_COINBYTES); | |||
GenMatrix(a, seed); //sample matrix A | |||
PQCLEAN_SABER_CLEAN_GenSecret(skpv, noiseseed); //generate secret from constant-time binomial distribution | |||
//------------------------do the matrix vector multiplication and rounding------------ | |||
// generate secret from constant-time binomial distribution | |||
PQCLEAN_SABER_CLEAN_GenSecret(skpv, noiseseed); | |||
// do the matrix vector multiplication and rounding | |||
for (i = 0; i < SABER_K; i++) { | |||
for (j = 0; j < SABER_N; j++) { | |||
res[i][j] = 0; | |||
} | |||
} | |||
MatrixVectorMul(a, skpv, res, SABER_Q - 1, 1); | |||
//-----now rounding | |||
for (i = 0; i < SABER_K; i++) { //shift right 3 bits | |||
// now rounding | |||
for (i = 0; i < SABER_K; i++) { | |||
for (j = 0; j < SABER_N; j++) { | |||
// shift right 3 bits | |||
res[i][j] = (res[i][j] + h1) & (mod_q); | |||
res[i][j] = (res[i][j] >> (SABER_EQ - SABER_EP)); | |||
} | |||
} | |||
//------------------unload and pack sk=3 x (256 coefficients of 14 bits)------- | |||
// unload and pack sk=3 x (256 coefficients of 14 bits) | |||
PQCLEAN_SABER_CLEAN_POLVEC2BS(sk, skpv, SABER_Q); | |||
//------------------unload and pack pk=256 bits seed and 3 x (256 coefficients of 11 bits)------- | |||
PQCLEAN_SABER_CLEAN_POLVEC2BS(pk, res, SABER_P); // load the public-key coefficients | |||
// unload and pack pk=256 bits seed and 3 x (256 coefficients of 11 bits) | |||
// load the public-key coefficients | |||
PQCLEAN_SABER_CLEAN_POLVEC2BS(pk, res, SABER_P); | |||
for (i = 0; i < SABER_SEEDBYTES; i++) { // now load the seedbytes in PK. Easy since seed bytes are kept in byte format. | |||
// now load the seedbytes in PK. Easy since seed bytes are kept in byte format. | |||
for (i = 0; i < SABER_SEEDBYTES; i++) { | |||
pk[SABER_POLYVECCOMPRESSEDBYTES + i] = seed[i]; | |||
} | |||
@@ -103,47 +103,39 @@ void PQCLEAN_SABER_CLEAN_indcpa_kem_keypair(unsigned char *pk, unsigned char *sk | |||
void PQCLEAN_SABER_CLEAN_indcpa_kem_enc(const unsigned char *message_received, unsigned char *noiseseed, const unsigned char *pk, unsigned char *ciphertext) { | |||
uint32_t i, j, k; | |||
polyvec a[SABER_K]; // skpv; | |||
polyvec a[SABER_K]; | |||
unsigned char seed[SABER_SEEDBYTES]; | |||
uint16_t pkcl[SABER_K][SABER_N]; //public key of received by the client | |||
// public key of received by the client | |||
uint16_t pkcl[SABER_K][SABER_N]; | |||
uint16_t skpv1[SABER_K][SABER_N]; | |||
uint16_t message[SABER_KEYBYTES * 8]; | |||
uint16_t res[SABER_K][SABER_N]; | |||
uint16_t mod_p = SABER_P - 1; | |||
uint16_t mod_q = SABER_Q - 1; | |||
uint16_t vprime[SABER_N]; | |||
unsigned char msk_c[SABER_SCALEBYTES_KEM]; | |||
for (i = 0; i < SABER_SEEDBYTES; i++) { // extract the seedbytes from Public Key. | |||
// extract the seedbytes from Public Key. | |||
for (i = 0; i < SABER_SEEDBYTES; i++) { | |||
seed[i] = pk[ SABER_POLYVECCOMPRESSEDBYTES + i]; | |||
} | |||
GenMatrix(a, seed); | |||
PQCLEAN_SABER_CLEAN_GenSecret(skpv1, noiseseed); //generate secret from constant-time binomial distribution | |||
//-----------------matrix-vector multiplication and rounding | |||
// generate secret from constant-time binomial distribution | |||
PQCLEAN_SABER_CLEAN_GenSecret(skpv1, noiseseed); | |||
// matrix-vector multiplication and rounding | |||
for (i = 0; i < SABER_K; i++) { | |||
for (j = 0; j < SABER_N; j++) { | |||
res[i][j] = 0; | |||
} | |||
} | |||
MatrixVectorMul(a, skpv1, res, SABER_Q - 1, 0); | |||
//-----now rounding | |||
for (i = 0; i < SABER_K; i++) { //shift right 3 bits | |||
// now rounding | |||
//shift right 3 bits | |||
for (i = 0; i < SABER_K; i++) { | |||
for (j = 0; j < SABER_N; j++) { | |||
res[i][j] = ( res[i][j] + h1 ) & mod_q; | |||
res[i][j] = (res[i][j] >> (SABER_EQ - SABER_EP) ); | |||
@@ -152,21 +144,15 @@ void PQCLEAN_SABER_CLEAN_indcpa_kem_enc(const unsigned char *message_received, u | |||
PQCLEAN_SABER_CLEAN_POLVEC2BS(ciphertext, res, SABER_P); | |||
//*******************client matrix-vector multiplication ends************************************ | |||
//------now calculate the v' | |||
//-------unpack the public_key | |||
// ************client matrix-vector multiplication ends************ | |||
//pkcl is the b in the protocol | |||
// now calculate the v' | |||
// unpack the public_key | |||
// pkcl is the b in the protocol | |||
PQCLEAN_SABER_CLEAN_BS2POLVEC(pk, pkcl, SABER_P); | |||
for (i = 0; i < SABER_N; i++) { | |||
vprime[i] = 0; | |||
} | |||
for (i = 0; i < SABER_K; i++) { | |||
for (j = 0; j < SABER_N; j++) { | |||
skpv1[i][j] = skpv1[i][j] & (mod_p); | |||
@@ -176,12 +162,11 @@ void PQCLEAN_SABER_CLEAN_indcpa_kem_enc(const unsigned char *message_received, u | |||
// vector-vector scalar multiplication with mod p | |||
InnerProd(pkcl, skpv1, mod_p, vprime); | |||
//addition of h1 to vprime | |||
// addition of h1 to vprime | |||
for (i = 0; i < SABER_N; i++) { | |||
vprime[i] = vprime[i] + h1; | |||
} | |||
// unpack message_received; | |||
for (j = 0; j < SABER_KEYBYTES; j++) { | |||
for (i = 0; i < 8; i++) { | |||
@@ -194,9 +179,6 @@ void PQCLEAN_SABER_CLEAN_indcpa_kem_enc(const unsigned char *message_received, u | |||
message[i] = (message[i] << (SABER_EP - 1)); | |||
} | |||
for (k = 0; k < SABER_N; k++) { | |||
vprime[k] = ( (vprime[k] - message[k]) & (mod_p) ) >> (SABER_EP - SABER_ET); | |||
} | |||
@@ -204,7 +186,6 @@ void PQCLEAN_SABER_CLEAN_indcpa_kem_enc(const unsigned char *message_received, u | |||
PQCLEAN_SABER_CLEAN_pack_4bit(msk_c, vprime); | |||
for (j = 0; j < SABER_SCALEBYTES_KEM; j++) { | |||
ciphertext[SABER_POLYVECCOMPRESSEDBYTES + j] = msk_c[j]; | |||
} | |||
@@ -212,41 +193,31 @@ void PQCLEAN_SABER_CLEAN_indcpa_kem_enc(const unsigned char *message_received, u | |||
void PQCLEAN_SABER_CLEAN_indcpa_kem_dec(const unsigned char *sk, const unsigned char *ciphertext, unsigned char message_dec[]) { | |||
uint32_t i, j; | |||
uint16_t sksv[SABER_K][SABER_N]; //secret key of the server | |||
// secret key of the server | |||
uint16_t sksv[SABER_K][SABER_N]; | |||
uint16_t pksv[SABER_K][SABER_N]; | |||
uint8_t scale_ar[SABER_SCALEBYTES_KEM]; | |||
uint16_t mod_p = SABER_P - 1; | |||
uint16_t v[SABER_N]; | |||
uint16_t op[SABER_N]; | |||
PQCLEAN_SABER_CLEAN_BS2POLVEC(sk, sksv, SABER_Q); //sksv is the secret-key | |||
PQCLEAN_SABER_CLEAN_BS2POLVEC(ciphertext, pksv, SABER_P); //pksv is the ciphertext | |||
// sksv is the secret-key | |||
PQCLEAN_SABER_CLEAN_BS2POLVEC(sk, sksv, SABER_Q); | |||
// pksv is the ciphertext | |||
PQCLEAN_SABER_CLEAN_BS2POLVEC(ciphertext, pksv, SABER_P); | |||
// vector-vector scalar multiplication with mod p | |||
for (i = 0; i < SABER_N; i++) { | |||
v[i] = 0; | |||
} | |||
for (i = 0; i < SABER_K; i++) { | |||
for (j = 0; j < SABER_N; j++) { | |||
sksv[i][j] = sksv[i][j] & (mod_p); | |||
} | |||
} | |||
InnerProd(pksv, sksv, mod_p, v); | |||
//Extraction | |||
for (i = 0; i < SABER_SCALEBYTES_KEM; i++) { | |||
scale_ar[i] = ciphertext[SABER_POLYVECCOMPRESSEDBYTES + i]; | |||
@@ -254,20 +225,15 @@ void PQCLEAN_SABER_CLEAN_indcpa_kem_dec(const unsigned char *sk, const unsigned | |||
PQCLEAN_SABER_CLEAN_un_pack4bit(scale_ar, op); | |||
//addition of h1 | |||
for (i = 0; i < SABER_N; i++) { | |||
v[i] = ( ( v[i] + h2 - (op[i] << (SABER_EP - SABER_ET)) ) & (mod_p) ) >> (SABER_EP - 1); | |||
} | |||
// pack decrypted message | |||
POL2MSG(v, message_dec); | |||
} | |||
static void MatrixVectorMul(polyvec *a, uint16_t skpv[SABER_K][SABER_N], uint16_t res[SABER_K][SABER_N], uint16_t mod, int16_t transpose) { | |||
uint16_t acc[SABER_N]; | |||
int32_t i, j, k; | |||
@@ -278,32 +244,30 @@ static void MatrixVectorMul(polyvec *a, uint16_t skpv[SABER_K][SABER_N], uint16_ | |||
for (k = 0; k < SABER_N; k++) { | |||
res[i][k] = res[i][k] + acc[k]; | |||
res[i][k] = (res[i][k] & mod); //reduction mod p | |||
acc[k] = 0; //clear the accumulator | |||
//reduction mod p | |||
res[i][k] = (res[i][k] & mod); | |||
//clear the accumulator | |||
acc[k] = 0; | |||
} | |||
} | |||
} | |||
} else { | |||
for (i = 0; i < SABER_K; i++) { | |||
for (j = 0; j < SABER_K; j++) { | |||
PQCLEAN_SABER_CLEAN_pol_mul((uint16_t *)&a[i].vec[j], skpv[j], acc, SABER_Q, SABER_N); | |||
for (k = 0; k < SABER_N; k++) { | |||
res[i][k] = res[i][k] + acc[k]; | |||
res[i][k] = res[i][k] & mod; //reduction | |||
acc[k] = 0; //clear the accumulator | |||
// reduction | |||
res[i][k] = res[i][k] & mod; | |||
// clear the accumulator | |||
acc[k] = 0; | |||
} | |||
} | |||
} | |||
} | |||
} | |||
static void POL2MSG(const uint16_t *message_dec_unpacked, unsigned char *message_dec) { | |||
int32_t i, j; | |||
for (j = 0; j < SABER_KEYBYTES; j++) { | |||
@@ -312,13 +276,10 @@ static void POL2MSG(const uint16_t *message_dec_unpacked, unsigned char *message | |||
message_dec[j] = message_dec[j] | (uint8_t) (message_dec_unpacked[j * 8 + i] << i); | |||
} | |||
} | |||
} | |||
static void InnerProd(uint16_t pkcl[SABER_K][SABER_N], uint16_t skpv[SABER_K][SABER_N], uint16_t mod, uint16_t res[SABER_N]) { | |||
uint32_t j, k; | |||
uint16_t acc[SABER_N]; | |||
@@ -328,8 +289,10 @@ static void InnerProd(uint16_t pkcl[SABER_K][SABER_N], uint16_t skpv[SABER_K][SA | |||
for (k = 0; k < SABER_N; k++) { | |||
res[k] = res[k] + acc[k]; | |||
res[k] = res[k] & mod; //reduction | |||
acc[k] = 0; //clear the accumulator | |||
// reduction | |||
res[k] = res[k] & mod; | |||
// clear the accumulator | |||
acc[k] = 0; | |||
} | |||
} | |||
} |
@@ -10,37 +10,48 @@ | |||
int PQCLEAN_SABER_CLEAN_crypto_kem_keypair(unsigned char *pk, unsigned char *sk) { | |||
int i; | |||
PQCLEAN_SABER_CLEAN_indcpa_kem_keypair(pk, sk); // sk[0:SABER_INDCPA_SECRETKEYBYTES-1] <-- sk | |||
// sk[0:SABER_INDCPA_SECRETKEYBYTES-1] <-- sk | |||
PQCLEAN_SABER_CLEAN_indcpa_kem_keypair(pk, sk); | |||
// sk[SABER_INDCPA_SECRETKEYBYTES:SABER_INDCPA_SECRETKEYBYTES+SABER_INDCPA_SECRETKEYBYTES-1] <-- pk | |||
for (i = 0; i < SABER_INDCPA_PUBLICKEYBYTES; i++) { | |||
sk[i + SABER_INDCPA_SECRETKEYBYTES] = pk[i]; // sk[SABER_INDCPA_SECRETKEYBYTES:SABER_INDCPA_SECRETKEYBYTES+SABER_INDCPA_SECRETKEYBYTES-1] <-- pk | |||
sk[i + SABER_INDCPA_SECRETKEYBYTES] = pk[i]; | |||
} | |||
sha3_256(sk + SABER_SECRETKEYBYTES - 64, pk, SABER_INDCPA_PUBLICKEYBYTES); // Then hash(pk) is appended. | |||
// Then hash(pk) is appended. | |||
sha3_256(sk + SABER_SECRETKEYBYTES - 64, pk, SABER_INDCPA_PUBLICKEYBYTES); | |||
randombytes(sk + SABER_SECRETKEYBYTES - SABER_KEYBYTES, SABER_KEYBYTES ); // Remaining part of sk contains a pseudo-random number. | |||
// Remaining part of sk contains a pseudo-random number. | |||
// This is output when check in crypto_kem_dec() fails. | |||
randombytes(sk + SABER_SECRETKEYBYTES - SABER_KEYBYTES, SABER_KEYBYTES ); | |||
return (0); | |||
} | |||
int PQCLEAN_SABER_CLEAN_crypto_kem_enc(unsigned char *ct, unsigned char *ss, const unsigned char *pk) { | |||
unsigned char kr[64]; // Will contain key, coins | |||
// Will contain key, coins | |||
unsigned char kr[64]; | |||
unsigned char buf[64]; | |||
randombytes(buf, 32); | |||
sha3_256(buf, buf, 32); // BUF[0:31] <-- random message (will be used as the key for client) Note: hash doesnot release system RNG output | |||
// BUF[0:31] <-- random message (will be used as the key for client) Note: hash doesnot release system RNG output | |||
sha3_256(buf, buf, 32); | |||
// BUF[32:63] <-- Hash(public key); Multitarget countermeasure for coins + contributory KEM | |||
sha3_256(buf + 32, pk, SABER_INDCPA_PUBLICKEYBYTES); | |||
sha3_256(buf + 32, pk, SABER_INDCPA_PUBLICKEYBYTES); // BUF[32:63] <-- Hash(public key); Multitarget countermeasure for coins + contributory KEM | |||
// kr[0:63] <-- Hash(buf[0:63]); | |||
sha3_512(kr, buf, 64); | |||
sha3_512(kr, buf, 64); // kr[0:63] <-- Hash(buf[0:63]); | |||
// K^ <-- kr[0:31] | |||
// noiseseed (r) <-- kr[32:63]; | |||
PQCLEAN_SABER_CLEAN_indcpa_kem_enc(buf, kr + 32, pk, ct); // buf[0:31] contains message; kr[32:63] contains randomness r; | |||
// buf[0:31] contains message; kr[32:63] contains randomness r; | |||
PQCLEAN_SABER_CLEAN_indcpa_kem_enc(buf, kr + 32, pk, ct); | |||
sha3_256(kr + 32, ct, SABER_BYTES_CCA_DEC); | |||
sha3_256(ss, kr, 64); // hash concatenation of pre-k and h(c) to k | |||
// hash concatenation of pre-k and h(c) to k | |||
sha3_256(ss, kr, 64); | |||
return (0); | |||
} | |||
@@ -51,14 +62,18 @@ int PQCLEAN_SABER_CLEAN_crypto_kem_dec(unsigned char *ss, const unsigned char *c | |||
unsigned char fail; | |||
unsigned char cmp[SABER_BYTES_CCA_DEC]; | |||
unsigned char buf[64]; | |||
unsigned char kr[64]; // Will contain key, coins | |||
// Will contain key, coins | |||
unsigned char kr[64]; | |||
const unsigned char *pk = sk + SABER_INDCPA_SECRETKEYBYTES; | |||
PQCLEAN_SABER_CLEAN_indcpa_kem_dec(sk, ct, buf); // buf[0:31] <-- message | |||
// buf[0:31] <-- message | |||
PQCLEAN_SABER_CLEAN_indcpa_kem_dec(sk, ct, buf); | |||
// Multitarget countermeasure for coins + contributory KEM | |||
for (i = 0; i < 32; i++) { // Save hash by storing h(pk) in sk | |||
// Save hash by storing h(pk) in sk | |||
for (i = 0; i < 32; i++) { | |||
buf[32 + i] = sk[SABER_SECRETKEYBYTES - 64 + i]; | |||
} | |||
@@ -69,11 +84,13 @@ int PQCLEAN_SABER_CLEAN_crypto_kem_dec(unsigned char *ss, const unsigned char *c | |||
fail = PQCLEAN_SABER_CLEAN_verify(ct, cmp, SABER_BYTES_CCA_DEC); | |||
sha3_256(kr + 32, ct, SABER_BYTES_CCA_DEC); // overwrite coins in kr with h(c) | |||
// overwrite coins in kr with h(c) | |||
sha3_256(kr + 32, ct, SABER_BYTES_CCA_DEC); | |||
PQCLEAN_SABER_CLEAN_cmov(kr, sk + SABER_SECRETKEYBYTES - SABER_KEYBYTES, SABER_KEYBYTES, fail); | |||
sha3_256(ss, kr, 64); // hash concatenation of pre-k and h(c) to k | |||
// hash concatenation of pre-k and h(c) to k | |||
sha3_256(ss, kr, 64); | |||
return (0); | |||
} |
@@ -1,21 +1,26 @@ | |||
#include "pack_unpack.h" | |||
void PQCLEAN_SABER_CLEAN_pack_3bit(uint8_t *bytes, const uint16_t *data) { | |||
uint32_t j; | |||
uint32_t offset_data, offset_byte; | |||
for (j = 0; j < SABER_N / 8; j++) { | |||
offset_byte = 3 * j; | |||
offset_data = 8 * j; | |||
bytes[offset_byte + 0] = (data[offset_data + 0] & 0x7) | ( (data[offset_data + 1] & 0x7) << 3 ) | ((data[offset_data + 2] & 0x3) << 6); | |||
bytes[offset_byte + 1] = ((data[offset_data + 2] >> 2 ) & 0x01) | ( (data[offset_data + 3] & 0x7) << 1 ) | ( (data[offset_data + 4] & 0x7) << 4 ) | (((data[offset_data + 5]) & 0x01) << 7); | |||
bytes[offset_byte + 2] = ((data[offset_data + 5] >> 1 ) & 0x03) | ( (data[offset_data + 6] & 0x7) << 2 ) | ( (data[offset_data + 7] & 0x7) << 5 ); | |||
bytes[offset_byte + 0] = (data[offset_data + 0] & 0x7) | | |||
((data[offset_data + 1] & 0x7) << 3) | | |||
((data[offset_data + 2] & 0x3) << 6); | |||
bytes[offset_byte + 1] = ((data[offset_data + 2] >> 2 ) & 0x01) | | |||
((data[offset_data + 3] & 0x7) << 1) | | |||
((data[offset_data + 4] & 0x7) << 4) | | |||
(((data[offset_data + 5]) & 0x01) << 7); | |||
bytes[offset_byte + 2] = ((data[offset_data + 5] >> 1 ) & 0x03) | | |||
((data[offset_data + 6] & 0x7) << 2) | | |||
((data[offset_data + 7] & 0x7) << 5); | |||
} | |||
} | |||
void PQCLEAN_SABER_CLEAN_un_pack3bit(const uint8_t *bytes, uint16_t *data) { | |||
uint32_t j; | |||
uint32_t offset_data, offset_byte; | |||
@@ -23,30 +28,30 @@ void PQCLEAN_SABER_CLEAN_un_pack3bit(const uint8_t *bytes, uint16_t *data) { | |||
offset_byte = 3 * j; | |||
offset_data = 8 * j; | |||
data[offset_data + 0] = (bytes[offset_byte + 0]) & 0x07; | |||
data[offset_data + 1] = ( (bytes[offset_byte + 0]) >> 3 ) & 0x07; | |||
data[offset_data + 2] = ( ( (bytes[offset_byte + 0]) >> 6 ) & 0x03) | ( ( (bytes[offset_byte + 1]) & 0x01) << 2 ); | |||
data[offset_data + 3] = ( (bytes[offset_byte + 1]) >> 1 ) & 0x07; | |||
data[offset_data + 4] = ( (bytes[offset_byte + 1]) >> 4 ) & 0x07; | |||
data[offset_data + 5] = ( ( (bytes[offset_byte + 1]) >> 7 ) & 0x01) | ( ( (bytes[offset_byte + 2]) & 0x03) << 1 ); | |||
data[offset_data + 6] = ( (bytes[offset_byte + 2] >> 2) & 0x07 ); | |||
data[offset_data + 7] = ( (bytes[offset_byte + 2] >> 5) & 0x07 ); | |||
data[offset_data + 1] = ((bytes[offset_byte + 0]) >> 3 ) & 0x07; | |||
data[offset_data + 2] = (((bytes[offset_byte + 0]) >> 6 ) & 0x03) | | |||
(((bytes[offset_byte + 1]) & 0x01) << 2); | |||
data[offset_data + 3] = ((bytes[offset_byte + 1]) >> 1 ) & 0x07; | |||
data[offset_data + 4] = ((bytes[offset_byte + 1]) >> 4 ) & 0x07; | |||
data[offset_data + 5] = (((bytes[offset_byte + 1]) >> 7 ) & 0x01) | | |||
(((bytes[offset_byte + 2]) & 0x03) << 1); | |||
data[offset_data + 6] = ((bytes[offset_byte + 2] >> 2) & 0x07); | |||
data[offset_data + 7] = ((bytes[offset_byte + 2] >> 5) & 0x07); | |||
} | |||
} | |||
void PQCLEAN_SABER_CLEAN_pack_4bit(uint8_t *bytes, const uint16_t *data) { | |||
uint32_t j; | |||
uint32_t offset_data; | |||
for (j = 0; j < SABER_N / 2; j++) { | |||
offset_data = 2 * j; | |||
bytes[j] = (data[offset_data] & 0x0f) | ( (data[offset_data + 1] & 0x0f) << 4 ); | |||
bytes[j] = (data[offset_data] & 0x0f) | | |||
((data[offset_data + 1] & 0x0f) << 4); | |||
} | |||
} | |||
void PQCLEAN_SABER_CLEAN_un_pack4bit(const unsigned char *bytes, uint16_t *ar) { | |||
uint32_t j; | |||
uint32_t offset_data; | |||
@@ -64,9 +69,12 @@ void PQCLEAN_SABER_CLEAN_pack_6bit(uint8_t *bytes, const uint16_t *data) { | |||
for (j = 0; j < SABER_N / 4; j++) { | |||
offset_byte = 3 * j; | |||
offset_data = 4 * j; | |||
bytes[offset_byte + 0] = (data[offset_data + 0] & 0x3f) | ((data[offset_data + 1] & 0x03) << 6); | |||
bytes[offset_byte + 1] = ((data[offset_data + 1] >> 2) & 0x0f) | ((data[offset_data + 2] & 0x0f) << 4); | |||
bytes[offset_byte + 2] = ((data[offset_data + 2] >> 4) & 0x03) | ((data[offset_data + 3] & 0x3f) << 2); | |||
bytes[offset_byte + 0] = (data[offset_data + 0] & 0x3f) | | |||
((data[offset_data + 1] & 0x03) << 6); | |||
bytes[offset_byte + 1] = ((data[offset_data + 1] >> 2) & 0x0f) | | |||
((data[offset_data + 2] & 0x0f) << 4); | |||
bytes[offset_byte + 2] = ((data[offset_data + 2] >> 4) & 0x03) | | |||
((data[offset_data + 3] & 0x3f) << 2); | |||
} | |||
} | |||
@@ -79,11 +87,12 @@ void PQCLEAN_SABER_CLEAN_un_pack6bit(const unsigned char *bytes, uint16_t *data) | |||
offset_byte = 3 * j; | |||
offset_data = 4 * j; | |||
data[offset_data + 0] = bytes[offset_byte + 0] & 0x3f; | |||
data[offset_data + 1] = ((bytes[offset_byte + 0] >> 6) & 0x03) | ((bytes[offset_byte + 1] & 0x0f) << 2) ; | |||
data[offset_data + 2] = ((bytes[offset_byte + 1] & 0xff) >> 4) | ((bytes[offset_byte + 2] & 0x03) << 4) ; | |||
data[offset_data + 1] = ((bytes[offset_byte + 0] >> 6) & 0x03) | | |||
((bytes[offset_byte + 1] & 0x0f) << 2); | |||
data[offset_data + 2] = ((bytes[offset_byte + 1] & 0xff) >> 4) | | |||
((bytes[offset_byte + 2] & 0x03) << 4); | |||
data[offset_data + 3] = ((bytes[offset_byte + 2] & 0xff) >> 2); | |||
} | |||
} | |||
@@ -96,23 +105,19 @@ static void POLVECp2BS(uint8_t *bytes, uint16_t data[SABER_K][SABER_N]) { | |||
for (j = 0; j < SABER_N / 4; j++) { | |||
offset_byte = offset_byte1 + 5 * j; | |||
offset_data = 4 * j; | |||
bytes[offset_byte + 0] = ( data[i][ offset_data + 0 ] & (0xff)); | |||
bytes[offset_byte + 1] = ( (data[i][ offset_data + 0 ] >> 8) & 0x03 ) | ((data[i][ offset_data + 1 ] & 0x3f) << 2); | |||
bytes[offset_byte + 2] = ( (data[i][ offset_data + 1 ] >> 6) & 0x0f ) | ( (data[i][ offset_data + 2 ] & 0x0f) << 4); | |||
bytes[offset_byte + 3] = ( (data[i][ offset_data + 2 ] >> 4) & 0x3f ) | ((data[i][ offset_data + 3 ] & 0x03) << 6); | |||
bytes[offset_byte + 4] = ( (data[i][ offset_data + 3 ] >> 2) & 0xff ); | |||
bytes[offset_byte + 0] = (data[i][offset_data + 0] & (0xff)); | |||
bytes[offset_byte + 1] = ((data[i][offset_data + 0] >> 8) & 0x03) | | |||
((data[i][offset_data + 1] & 0x3f) << 2); | |||
bytes[offset_byte + 2] = ((data[i][offset_data + 1] >> 6) & 0x0f) | | |||
((data[i][offset_data + 2] & 0x0f) << 4); | |||
bytes[offset_byte + 3] = ((data[i][offset_data + 2] >> 4) & 0x3f) | | |||
((data[i][offset_data + 3] & 0x03) << 6); | |||
bytes[offset_byte + 4] = ((data[i][offset_data + 3] >> 2) & 0xff); | |||
} | |||
} | |||
} | |||
static void BS2POLVECp(const unsigned char *bytes, uint16_t data[SABER_K][SABER_N]) { | |||
uint32_t i, j; | |||
uint32_t offset_data, offset_byte, offset_byte1; | |||
@@ -121,21 +126,21 @@ static void BS2POLVECp(const unsigned char *bytes, uint16_t data[SABER_K][SABER_ | |||
for (j = 0; j < SABER_N / 4; j++) { | |||
offset_byte = offset_byte1 + 5 * j; | |||
offset_data = 4 * j; | |||
data[i][offset_data + 0] = ( bytes[ offset_byte + 0 ] & (0xff)) | ((bytes[ offset_byte + 1 ] & 0x03) << 8); | |||
data[i][offset_data + 1] = ( (bytes[ offset_byte + 1 ] >> 2) & (0x3f)) | ((bytes[ offset_byte + 2 ] & 0x0f) << 6); | |||
data[i][offset_data + 2] = ( (bytes[ offset_byte + 2 ] >> 4) & (0x0f)) | ((bytes[ offset_byte + 3 ] & 0x3f) << 4); | |||
data[i][offset_data + 3] = ( (bytes[ offset_byte + 3 ] >> 6) & (0x03)) | ((bytes[ offset_byte + 4 ] & 0xff) << 2); | |||
data[i][offset_data + 0] = (bytes[offset_byte + 0] & (0xff)) | | |||
((bytes[offset_byte + 1] & 0x03) << 8); | |||
data[i][offset_data + 1] = ((bytes[offset_byte + 1] >> 2) & (0x3f)) | | |||
((bytes[offset_byte + 2] & 0x0f) << 6); | |||
data[i][offset_data + 2] = ((bytes[offset_byte + 2] >> 4) & (0x0f)) | | |||
((bytes[offset_byte + 3] & 0x3f) << 4); | |||
data[i][offset_data + 3] = ((bytes[offset_byte + 3] >> 6) & (0x03)) | | |||
((bytes[offset_byte + 4] & 0xff) << 2); | |||
} | |||
} | |||
} | |||
static void POLVECq2BS(uint8_t *bytes, uint16_t data[SABER_K][SABER_N]) { | |||
uint32_t i, j; | |||
uint32_t offset_data, offset_byte, offset_byte1; | |||
@@ -144,40 +149,31 @@ static void POLVECq2BS(uint8_t *bytes, uint16_t data[SABER_K][SABER_N]) { | |||
for (j = 0; j < SABER_N / 8; j++) { | |||
offset_byte = offset_byte1 + 13 * j; | |||
offset_data = 8 * j; | |||
bytes[offset_byte + 0] = ( data[i][ offset_data + 0 ] & (0xff)); | |||
bytes[offset_byte + 1] = ( (data[i][ offset_data + 0 ] >> 8) & 0x1f ) | ((data[i][ offset_data + 1 ] & 0x07) << 5); | |||
bytes[offset_byte + 2] = ( (data[i][ offset_data + 1 ] >> 3) & 0xff ); | |||
bytes[offset_byte + 3] = ( (data[i][ offset_data + 1 ] >> 11) & 0x03 ) | ((data[i][ offset_data + 2 ] & 0x3f) << 2); | |||
bytes[offset_byte + 4] = ( (data[i][ offset_data + 2 ] >> 6) & 0x7f ) | ( (data[i][ offset_data + 3 ] & 0x01) << 7 ); | |||
bytes[offset_byte + 5] = ( (data[i][ offset_data + 3 ] >> 1) & 0xff ); | |||
bytes[offset_byte + 6] = ( (data[i][ offset_data + 3 ] >> 9) & 0x0f ) | ( (data[i][ offset_data + 4 ] & 0x0f) << 4 ); | |||
bytes[offset_byte + 7] = ( (data[i][ offset_data + 4] >> 4) & 0xff ); | |||
bytes[offset_byte + 8] = ( (data[i][ offset_data + 4 ] >> 12) & 0x01 ) | ( (data[i][ offset_data + 5 ] & 0x7f) << 1 ); | |||
bytes[offset_byte + 9] = ( (data[i][ offset_data + 5 ] >> 7) & 0x3f ) | ( (data[i][ offset_data + 6 ] & 0x03) << 6 ); | |||
bytes[offset_byte + 10] = ( (data[i][ offset_data + 6 ] >> 2) & 0xff ); | |||
bytes[offset_byte + 11] = ( (data[i][ offset_data + 6 ] >> 10) & 0x07 ) | ( (data[i][ offset_data + 7 ] & 0x1f) << 3 ); | |||
bytes[offset_byte + 12] = ( (data[i][ offset_data + 7 ] >> 5) & 0xff ); | |||
bytes[offset_byte + 0] = (data[i][offset_data + 0] & (0xff)); | |||
bytes[offset_byte + 1] = ((data[i][offset_data + 0] >> 8) & 0x1f) | | |||
((data[i][offset_data + 1] & 0x07) << 5); | |||
bytes[offset_byte + 2] = ((data[i][offset_data + 1] >> 3) & 0xff); | |||
bytes[offset_byte + 3] = ((data[i][offset_data + 1] >> 11) & 0x03) | | |||
((data[i][offset_data + 2] & 0x3f) << 2); | |||
bytes[offset_byte + 4] = ((data[i][offset_data + 2] >> 6) & 0x7f) | | |||
((data[i][offset_data + 3] & 0x01) << 7); | |||
bytes[offset_byte + 5] = ((data[i][offset_data + 3] >> 1) & 0xff); | |||
bytes[offset_byte + 6] = ((data[i][offset_data + 3] >> 9) & 0x0f) | | |||
((data[i][offset_data + 4] & 0x0f) << 4); | |||
bytes[offset_byte + 7] = ((data[i][offset_data + 4] >> 4) & 0xff); | |||
bytes[offset_byte + 8] = ((data[i][offset_data + 4] >> 12) & 0x01) | | |||
((data[i][offset_data + 5] & 0x7f) << 1); | |||
bytes[offset_byte + 9] = ((data[i][offset_data + 5] >> 7) & 0x3f) | | |||
((data[i][offset_data + 6] & 0x03) << 6); | |||
bytes[offset_byte + 10] = ((data[i][offset_data + 6] >> 2) & 0xff); | |||
bytes[offset_byte + 11] = ((data[i][offset_data + 6] >> 10) & 0x07) | | |||
((data[i][offset_data + 7] & 0x1f) << 3); | |||
bytes[offset_byte + 12] = ((data[i][offset_data + 7] >> 5) & 0xff); | |||
} | |||
} | |||
} | |||
static void BS2POLVECq(const unsigned char *bytes, uint16_t data[SABER_K][SABER_N]) { | |||
uint32_t i, j; | |||
uint32_t offset_data, offset_byte, offset_byte1; | |||
@@ -186,44 +182,62 @@ static void BS2POLVECq(const unsigned char *bytes, uint16_t data[SABER_K][SABER_ | |||
for (j = 0; j < SABER_N / 8; j++) { | |||
offset_byte = offset_byte1 + 13 * j; | |||
offset_data = 8 * j; | |||
data[i][offset_data + 0] = ( bytes[ offset_byte + 0 ] & (0xff)) | ((bytes[offset_byte + 1] & 0x1f) << 8); | |||
data[i][offset_data + 1] = ( bytes[ offset_byte + 1 ] >> 5 & (0x07)) | ((bytes[offset_byte + 2] & 0xff) << 3) | ((bytes[offset_byte + 3] & 0x03) << 11); | |||
data[i][offset_data + 2] = ( bytes[ offset_byte + 3 ] >> 2 & (0x3f)) | ((bytes[offset_byte + 4] & 0x7f) << 6); | |||
data[i][offset_data + 3] = ( bytes[ offset_byte + 4 ] >> 7 & (0x01)) | ((bytes[offset_byte + 5] & 0xff) << 1) | ((bytes[offset_byte + 6] & 0x0f) << 9); | |||
data[i][offset_data + 4] = ( bytes[ offset_byte + 6 ] >> 4 & (0x0f)) | ((bytes[offset_byte + 7] & 0xff) << 4) | ((bytes[offset_byte + 8] & 0x01) << 12); | |||
data[i][offset_data + 5] = ( bytes[ offset_byte + 8] >> 1 & (0x7f)) | ((bytes[offset_byte + 9] & 0x3f) << 7); | |||
data[i][offset_data + 6] = ( bytes[ offset_byte + 9] >> 6 & (0x03)) | ((bytes[offset_byte + 10] & 0xff) << 2) | ((bytes[offset_byte + 11] & 0x07) << 10); | |||
data[i][offset_data + 7] = ( bytes[ offset_byte + 11] >> 3 & (0x1f)) | ((bytes[offset_byte + 12] & 0xff) << 5); | |||
data[i][offset_data + 0] = (bytes[offset_byte + 0] & (0xff)) | | |||
((bytes[offset_byte + 1] & 0x1f) << 8); | |||
data[i][offset_data + 1] = (bytes[offset_byte + 1] >> 5 & (0x07)) | | |||
((bytes[offset_byte + 2] & 0xff) << 3) | | |||
((bytes[offset_byte + 3] & 0x03) << 11); | |||
data[i][offset_data + 2] = (bytes[offset_byte + 3] >> 2 & (0x3f)) | | |||
((bytes[offset_byte + 4] & 0x7f) << 6); | |||
data[i][offset_data + 3] = (bytes[offset_byte + 4] >> 7 & (0x01)) | | |||
((bytes[offset_byte + 5] & 0xff) << 1) | | |||
((bytes[offset_byte + 6] & 0x0f) << 9); | |||
data[i][offset_data + 4] = (bytes[offset_byte + 6] >> 4 & (0x0f)) | | |||
((bytes[offset_byte + 7] & 0xff) << 4) | | |||
((bytes[offset_byte + 8] & 0x01) << 12); | |||
data[i][offset_data + 5] = (bytes[offset_byte + 8] >> 1 & (0x7f)) | | |||
((bytes[offset_byte + 9] & 0x3f) << 7); | |||
data[i][offset_data + 6] = (bytes[offset_byte + 9] >> 6 & (0x03)) | | |||
((bytes[offset_byte + 10] & 0xff) << 2) | | |||
((bytes[offset_byte + 11] & 0x07) << 10); | |||
data[i][offset_data + 7] = (bytes[offset_byte + 11] >> 3 & (0x1f)) | | |||
((bytes[offset_byte + 12] & 0xff) << 5); | |||
} | |||
} | |||
} | |||
void PQCLEAN_SABER_CLEAN_BS2POL(const unsigned char *bytes, uint16_t data[SABER_N]) { //only BS2POLq no BS2POLp | |||
//only BS2POLq no BS2POLp | |||
void PQCLEAN_SABER_CLEAN_BS2POL(const unsigned char *bytes, uint16_t data[SABER_N]) { | |||
uint32_t j; | |||
uint32_t offset_data, offset_byte; | |||
for (j = 0; j < SABER_N / 8; j++) { | |||
offset_byte = 13 * j; | |||
offset_data = 8 * j; | |||
data[offset_data + 0] = ( bytes[ offset_byte + 0 ] & (0xff)) | ((bytes[offset_byte + 1] & 0x1f) << 8); | |||
data[offset_data + 1] = ( bytes[ offset_byte + 1 ] >> 5 & (0x07)) | ((bytes[offset_byte + 2] & 0xff) << 3) | ((bytes[offset_byte + 3] & 0x03) << 11); | |||
data[offset_data + 2] = ( bytes[ offset_byte + 3 ] >> 2 & (0x3f)) | ((bytes[offset_byte + 4] & 0x7f) << 6); | |||
data[offset_data + 3] = ( bytes[ offset_byte + 4 ] >> 7 & (0x01)) | ((bytes[offset_byte + 5] & 0xff) << 1) | ((bytes[offset_byte + 6] & 0x0f) << 9); | |||
data[offset_data + 4] = ( bytes[ offset_byte + 6 ] >> 4 & (0x0f)) | ((bytes[offset_byte + 7] & 0xff) << 4) | ((bytes[offset_byte + 8] & 0x01) << 12); | |||
data[offset_data + 5] = ( bytes[ offset_byte + 8] >> 1 & (0x7f)) | ((bytes[offset_byte + 9] & 0x3f) << 7); | |||
data[offset_data + 6] = ( bytes[ offset_byte + 9] >> 6 & (0x03)) | ((bytes[offset_byte + 10] & 0xff) << 2) | ((bytes[offset_byte + 11] & 0x07) << 10); | |||
data[offset_data + 7] = ( bytes[ offset_byte + 11] >> 3 & (0x1f)) | ((bytes[offset_byte + 12] & 0xff) << 5); | |||
data[offset_data + 0] = (bytes[offset_byte + 0] & (0xff)) | | |||
((bytes[offset_byte + 1] & 0x1f) << 8); | |||
data[offset_data + 1] = (bytes[offset_byte + 1] >> 5 & (0x07)) | | |||
((bytes[offset_byte + 2] & 0xff) << 3) | | |||
((bytes[offset_byte + 3] & 0x03) << 11); | |||
data[offset_data + 2] = (bytes[offset_byte + 3] >> 2 & (0x3f)) | | |||
((bytes[offset_byte + 4] & 0x7f) << 6); | |||
data[offset_data + 3] = (bytes[offset_byte + 4] >> 7 & (0x01)) | | |||
((bytes[offset_byte + 5] & 0xff) << 1) | | |||
((bytes[offset_byte + 6] & 0x0f) << 9); | |||
data[offset_data + 4] = (bytes[offset_byte + 6] >> 4 & (0x0f)) | | |||
((bytes[offset_byte + 7] & 0xff) << 4) | | |||
((bytes[offset_byte + 8] & 0x01) << 12); | |||
data[offset_data + 5] = (bytes[offset_byte + 8] >> 1 & (0x7f)) | | |||
((bytes[offset_byte + 9] & 0x3f) << 7); | |||
data[offset_data + 6] = (bytes[offset_byte + 9] >> 6 & (0x03)) | | |||
((bytes[offset_byte + 10] & 0xff) << 2) | | |||
((bytes[offset_byte + 11] & 0x07) << 10); | |||
data[offset_data + 7] = (bytes[offset_byte + 11] >> 3 & (0x1f)) | | |||
((bytes[offset_byte + 12] & 0xff) << 5); | |||
} | |||
} | |||
void PQCLEAN_SABER_CLEAN_POLVEC2BS(uint8_t *bytes, uint16_t data[SABER_K][SABER_N], uint16_t modulus) { | |||
if (modulus == 1024) { | |||
POLVECp2BS(bytes, data); | |||
} else if (modulus == 8192) { | |||
@@ -232,11 +246,9 @@ void PQCLEAN_SABER_CLEAN_POLVEC2BS(uint8_t *bytes, uint16_t data[SABER_K][SABER_ | |||
} | |||
void PQCLEAN_SABER_CLEAN_BS2POLVEC(const unsigned char *bytes, uint16_t data[SABER_K][SABER_N], uint16_t modulus) { | |||
if (modulus == 1024) { | |||
BS2POLVECp(bytes, data); | |||
} else if (modulus == 8192) { | |||
BS2POLVECq(bytes, data); | |||
} | |||
} |