@@ -0,0 +1,18 @@ | |||
name: Rainbow-IIIc-classic | |||
type: signature | |||
claimed-nist-level: 3 | |||
length-public-key: 710640 | |||
length-secret-key: 511448 | |||
length-signature: 156 | |||
nistkat-sha256: 199cf313d96a4fbb481c50e568ac0222ec955b3e20551d0fadbb6c5e97bd1ada | |||
testvectors-sha256: e738081bcc34228184645dd79237daabc89b7ed22172637b6c10f51dd1e417d9 | |||
principal-submitters: | |||
- Jintai Ding | |||
auxiliary-submitters: | |||
- Ming-Shing Chen | |||
- Albrecht Petzoldt | |||
- Dieter Schmidt | |||
- Bo-Yin Yang | |||
implementations: | |||
- name: clean | |||
version: https://github.com/fast-crypto-lab/rainbow-submission-round2/commit/af826fcb78f6af51a02d0352cff28a9690467bfd |
@@ -0,0 +1,8 @@ | |||
`Software implementation of Rainbow for NIST R2 submission' by Ming-Shing Chen | |||
To the extent possible under law, the person who associated CC0 with | |||
`Software implementation of Rainbow for NIST R2 submission' has waived all copyright and related or neighboring rights | |||
to `Software implementation of Rainbow for NIST R2 submission'. | |||
You should have received a copy of the CC0 legalcode along with this | |||
work. If not, see <http://creativecommons.org/publicdomain/zero/1.0/>. |
@@ -0,0 +1,20 @@ | |||
# This Makefile can be used with GNU Make or BSD Make | |||
LIB=librainbowIIIc-classic_clean.a | |||
HEADERS = api.h blas_comm.h blas.h blas_u32.h gf.h parallel_matrix_op.h rainbow_blas.h rainbow_config.h rainbow.h rainbow_keypair_computation.h rainbow_keypair.h utils_hash.h utils_prng.h | |||
OBJECTS = blas_comm.o parallel_matrix_op.o rainbow.o rainbow_keypair.o rainbow_keypair_computation.o sign.o utils_hash.o utils_prng.o blas_u32.o gf.o | |||
CFLAGS=-O3 -Wall -Wconversion -Wextra -Wpedantic -Wvla -Werror -Wmissing-prototypes -Wredundant-decls -std=c99 -I../../../common $(EXTRAFLAGS) | |||
all: $(LIB) | |||
%.o: %.c $(HEADERS) | |||
$(CC) $(CFLAGS) -c -o $@ $< | |||
$(LIB): $(OBJECTS) | |||
$(AR) -r $@ $(OBJECTS) | |||
clean: | |||
$(RM) $(OBJECTS) | |||
$(RM) $(LIB) |
@@ -0,0 +1,19 @@ | |||
# This Makefile can be used with Microsoft Visual Studio's nmake using the command: | |||
# nmake /f Makefile.Microsoft_nmake | |||
LIBRARY=librainbowIIIc-classic_clean.lib | |||
OBJECTS = blas_comm.obj parallel_matrix_op.obj rainbow.obj rainbow_keypair.obj rainbow_keypair_computation.obj sign.obj utils_hash.obj utils_prng.obj blas_u32.obj gf.obj | |||
CFLAGS=/nologo /I ..\..\..\common /W4 /WX | |||
all: $(LIBRARY) | |||
# Make sure objects are recompiled if headers change. | |||
$(OBJECTS): *.h | |||
$(LIBRARY): $(OBJECTS) | |||
LIB.EXE /NOLOGO /WX /OUT:$@ $** | |||
clean: | |||
-DEL $(OBJECTS) | |||
-DEL $(LIBRARY) |
@@ -0,0 +1,32 @@ | |||
#ifndef PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_API_H | |||
#define PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_API_H | |||
#include <stddef.h> | |||
#include <stdint.h> | |||
#define PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_CRYPTO_SECRETKEYBYTES 511448 | |||
#define PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_CRYPTO_PUBLICKEYBYTES 710640 | |||
#define PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_CRYPTO_BYTES 156 | |||
#define PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_CRYPTO_ALGNAME "RAINBOW(256,68,36,36) - classic" | |||
int PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_crypto_sign_keypair(uint8_t *pk, uint8_t *sk); | |||
int PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_crypto_sign_signature( | |||
uint8_t *sig, size_t *siglen, | |||
const uint8_t *m, size_t mlen, const uint8_t *sk); | |||
int PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_crypto_sign_verify( | |||
const uint8_t *sig, size_t siglen, | |||
const uint8_t *m, size_t mlen, const uint8_t *pk); | |||
int PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_crypto_sign(uint8_t *sm, size_t *smlen, | |||
const uint8_t *m, size_t mlen, | |||
const uint8_t *sk); | |||
int PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_crypto_sign_open(uint8_t *m, size_t *mlen, | |||
const uint8_t *sm, size_t smlen, | |||
const uint8_t *pk); | |||
#endif |
@@ -0,0 +1,19 @@ | |||
#ifndef _BLAS_H_ | |||
#define _BLAS_H_ | |||
/// @file blas.h | |||
/// @brief Defining the implementations for linear algebra functions depending on the machine architecture. | |||
/// | |||
#include "blas_comm.h" | |||
#include "blas_u32.h" | |||
#include "rainbow_config.h" | |||
#define gf256v_predicated_add PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256v_predicated_add_u32 | |||
#define gf256v_add PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256v_add_u32 | |||
#define gf256v_mul_scalar PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256v_mul_scalar_u32 | |||
#define gf256v_madd PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256v_madd_u32 | |||
#endif // _BLAS_H_ |
@@ -0,0 +1,142 @@ | |||
/// @file blas_comm.c | |||
/// @brief The standard implementations for blas_comm.h | |||
/// | |||
#include "blas_comm.h" | |||
#include "blas.h" | |||
#include "gf.h" | |||
#include "rainbow_config.h" | |||
#include <stdint.h> | |||
#include <string.h> | |||
void PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256v_set_zero(uint8_t *b, unsigned int _num_byte) { | |||
gf256v_add(b, b, _num_byte); | |||
} | |||
/// @brief get an element from GF(256) vector . | |||
/// | |||
/// @param[in] a - the input vector a. | |||
/// @param[in] i - the index in the vector a. | |||
/// @return the value of the element. | |||
/// | |||
uint8_t PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256v_get_ele(const uint8_t *a, unsigned int i) { | |||
return a[i]; | |||
} | |||
unsigned int PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256v_is_zero(const uint8_t *a, unsigned int _num_byte) { | |||
uint8_t r = 0; | |||
while (_num_byte--) { | |||
r |= a[0]; | |||
a++; | |||
} | |||
return (0 == r); | |||
} | |||
/// polynomial multplication | |||
/// School boook | |||
void PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256v_polymul(uint8_t *c, const uint8_t *a, const uint8_t *b, unsigned int _num) { | |||
PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256v_set_zero(c, _num * 2 - 1); | |||
for (unsigned int i = 0; i < _num; i++) { | |||
gf256v_madd(c + i, a, b[i], _num); | |||
} | |||
} | |||
static void gf256mat_prod_ref(uint8_t *c, const uint8_t *matA, unsigned int n_A_vec_byte, unsigned int n_A_width, const uint8_t *b) { | |||
PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256v_set_zero(c, n_A_vec_byte); | |||
for (unsigned int i = 0; i < n_A_width; i++) { | |||
gf256v_madd(c, matA, b[i], n_A_vec_byte); | |||
matA += n_A_vec_byte; | |||
} | |||
} | |||
void PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256mat_mul(uint8_t *c, const uint8_t *a, const uint8_t *b, unsigned int len_vec) { | |||
unsigned int n_vec_byte = len_vec; | |||
for (unsigned int k = 0; k < len_vec; k++) { | |||
PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256v_set_zero(c, n_vec_byte); | |||
const uint8_t *bk = b + n_vec_byte * k; | |||
for (unsigned int i = 0; i < len_vec; i++) { | |||
gf256v_madd(c, a + n_vec_byte * i, bk[i], n_vec_byte); | |||
} | |||
c += n_vec_byte; | |||
} | |||
} | |||
static unsigned int gf256mat_gauss_elim_ref(uint8_t *mat, unsigned int h, unsigned int w) { | |||
unsigned int r8 = 1; | |||
for (unsigned int i = 0; i < h; i++) { | |||
uint8_t *ai = mat + w * i; | |||
unsigned int skip_len_align4 = i & ((unsigned int)~0x3); | |||
for (unsigned int j = i + 1; j < h; j++) { | |||
uint8_t *aj = mat + w * j; | |||
gf256v_predicated_add(ai + skip_len_align4, !PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256_is_nonzero(ai[i]), aj + skip_len_align4, w - skip_len_align4); | |||
} | |||
r8 &= PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256_is_nonzero(ai[i]); | |||
uint8_t pivot = ai[i]; | |||
pivot = PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256_inv(pivot); | |||
gf256v_mul_scalar(ai + skip_len_align4, pivot, w - skip_len_align4); | |||
for (unsigned int j = 0; j < h; j++) { | |||
if (i == j) { | |||
continue; | |||
} | |||
uint8_t *aj = mat + w * j; | |||
gf256v_madd(aj + skip_len_align4, ai + skip_len_align4, aj[i], w - skip_len_align4); | |||
} | |||
} | |||
return r8; | |||
} | |||
static unsigned int gf256mat_solve_linear_eq_ref(uint8_t *sol, const uint8_t *inp_mat, const uint8_t *c_terms, unsigned int n) { | |||
uint8_t mat[64 * 64]; | |||
for (unsigned int i = 0; i < n; i++) { | |||
memcpy(mat + i * (n + 1), inp_mat + i * n, n); | |||
mat[i * (n + 1) + n] = c_terms[i]; | |||
} | |||
unsigned int r8 = PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256mat_gauss_elim(mat, n, n + 1); | |||
for (unsigned int i = 0; i < n; i++) { | |||
sol[i] = mat[i * (n + 1) + n]; | |||
} | |||
return r8; | |||
} | |||
static inline void gf256mat_submat(uint8_t *mat2, unsigned int w2, unsigned int st, const uint8_t *mat, unsigned int w, unsigned int h) { | |||
for (unsigned int i = 0; i < h; i++) { | |||
for (unsigned int j = 0; j < w2; j++) { | |||
mat2[i * w2 + j] = mat[i * w + st + j]; | |||
} | |||
} | |||
} | |||
unsigned int PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256mat_inv(uint8_t *inv_a, const uint8_t *a, unsigned int H, uint8_t *buffer) { | |||
uint8_t *aa = buffer; | |||
for (unsigned int i = 0; i < H; i++) { | |||
uint8_t *ai = aa + i * 2 * H; | |||
PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256v_set_zero(ai, 2 * H); | |||
gf256v_add(ai, a + i * H, H); | |||
ai[H + i] = 1; | |||
} | |||
unsigned int r8 = PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256mat_gauss_elim(aa, H, 2 * H); | |||
gf256mat_submat(inv_a, H, H, aa, 2 * H, H); | |||
return r8; | |||
} | |||
// choosing the implementations depends on the macros _BLAS_AVX2_ and _BLAS_SSE | |||
#define gf256mat_prod_impl gf256mat_prod_ref | |||
#define gf256mat_gauss_elim_impl gf256mat_gauss_elim_ref | |||
#define gf256mat_solve_linear_eq_impl gf256mat_solve_linear_eq_ref | |||
void PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256mat_prod(uint8_t *c, const uint8_t *matA, unsigned int n_A_vec_byte, unsigned int n_A_width, const uint8_t *b) { | |||
gf256mat_prod_impl(c, matA, n_A_vec_byte, n_A_width, b); | |||
} | |||
unsigned int PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256mat_gauss_elim(uint8_t *mat, unsigned int h, unsigned int w) { | |||
return gf256mat_gauss_elim_impl(mat, h, w); | |||
} | |||
unsigned int PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256mat_solve_linear_eq(uint8_t *sol, const uint8_t *inp_mat, const uint8_t *c_terms, unsigned int n) { | |||
return gf256mat_solve_linear_eq_impl(sol, inp_mat, c_terms, n); | |||
} | |||
@@ -0,0 +1,90 @@ | |||
#ifndef _BLAS_COMM_H_ | |||
#define _BLAS_COMM_H_ | |||
/// @file blas_comm.h | |||
/// @brief Common functions for linear algebra. | |||
/// | |||
#include "rainbow_config.h" | |||
#include <stdint.h> | |||
/// @brief set a vector to 0. | |||
/// | |||
/// @param[in,out] b - the vector b. | |||
/// @param[in] _num_byte - number of bytes for the vector b. | |||
/// | |||
void PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256v_set_zero(uint8_t *b, unsigned int _num_byte); | |||
/// @brief get an element from GF(256) vector . | |||
/// | |||
/// @param[in] a - the input vector a. | |||
/// @param[in] i - the index in the vector a. | |||
/// @return the value of the element. | |||
/// | |||
uint8_t PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256v_get_ele(const uint8_t *a, unsigned int i); | |||
/// @brief check if a vector is 0. | |||
/// | |||
/// @param[in] a - the vector a. | |||
/// @param[in] _num_byte - number of bytes for the vector a. | |||
/// @return 1(true) if a is 0. 0(false) else. | |||
/// | |||
unsigned int PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256v_is_zero(const uint8_t *a, unsigned int _num_byte); | |||
/// @brief polynomial multiplication: c = a*b | |||
/// | |||
/// @param[out] c - the output polynomial c | |||
/// @param[in] a - the vector a. | |||
/// @param[in] b - the vector b. | |||
/// @param[in] _num - number of elements for the polynomials a and b. | |||
/// | |||
void PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256v_polymul(uint8_t *c, const uint8_t *a, const uint8_t *b, unsigned int _num); | |||
/// @brief matrix-vector multiplication: c = matA * b , in GF(256) | |||
/// | |||
/// @param[out] c - the output vector c | |||
/// @param[in] matA - a column-major matrix A. | |||
/// @param[in] n_A_vec_byte - the size of column vectors in bytes. | |||
/// @param[in] n_A_width - the width of matrix A. | |||
/// @param[in] b - the vector b. | |||
/// | |||
void PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256mat_prod(uint8_t *c, const uint8_t *matA, unsigned int n_A_vec_byte, unsigned int n_A_width, const uint8_t *b); | |||
/// @brief matrix-matrix multiplication: c = a * b , in GF(256) | |||
/// | |||
/// @param[out] c - the output matrix c | |||
/// @param[in] c - a matrix a. | |||
/// @param[in] b - a matrix b. | |||
/// @param[in] len_vec - the length of column vectors. | |||
/// | |||
void PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256mat_mul(uint8_t *c, const uint8_t *a, const uint8_t *b, unsigned int len_vec); | |||
/// @brief Gauss elimination for a matrix, in GF(256) | |||
/// | |||
/// @param[in,out] mat - the matrix. | |||
/// @param[in] h - the height of the matrix. | |||
/// @param[in] w - the width of the matrix. | |||
/// @return 1(true) if success. 0(false) if the matrix is singular. | |||
/// | |||
unsigned int PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256mat_gauss_elim(uint8_t *mat, unsigned int h, unsigned int w); | |||
/// @brief Solving linear equations, in GF(256) | |||
/// | |||
/// @param[out] sol - the solutions. | |||
/// @param[in] inp_mat - the matrix parts of input equations. | |||
/// @param[in] c_terms - the constant terms of the input equations. | |||
/// @param[in] n - the number of equations. | |||
/// @return 1(true) if success. 0(false) if the matrix is singular. | |||
/// | |||
unsigned int PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256mat_solve_linear_eq(uint8_t *sol, const uint8_t *inp_mat, const uint8_t *c_terms, unsigned int n); | |||
/// @brief Computing the inverse matrix, in GF(256) | |||
/// | |||
/// @param[out] inv_a - the output of matrix a. | |||
/// @param[in] a - a matrix a. | |||
/// @param[in] H - height of matrix a, i.e., matrix a is an HxH matrix. | |||
/// @param[in] buffer - The buffer for computations. it has to be as large as 2 input matrixes. | |||
/// @return 1(true) if success. 0(false) if the matrix is singular. | |||
/// | |||
unsigned int PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256mat_inv(uint8_t *inv_a, const uint8_t *a, unsigned int H, uint8_t *buffer); | |||
#endif // _BLAS_COMM_H_ |
@@ -0,0 +1,87 @@ | |||
#include "blas_u32.h" | |||
#include "gf.h" | |||
void PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256v_predicated_add_u32(uint8_t *accu_b, uint8_t predicate, const uint8_t *a, unsigned int _num_byte) { | |||
uint32_t pr_u32 = ((uint32_t)0) - ((uint32_t)predicate); | |||
uint8_t pr_u8 = pr_u32 & 0xff; | |||
unsigned int n_u32 = _num_byte >> 2; | |||
uint32_t *b_u32 = (uint32_t *)accu_b; | |||
const uint32_t *a_u32 = (const uint32_t *)a; | |||
for (unsigned int i = 0; i < n_u32; i++) { | |||
b_u32[i] ^= (a_u32[i] & pr_u32); | |||
} | |||
a += (n_u32 << 2); | |||
accu_b += (n_u32 << 2); | |||
unsigned int rem = _num_byte & 3; | |||
for (unsigned int i = 0; i < rem; i++) { | |||
accu_b[i] ^= (a[i] & pr_u8); | |||
} | |||
} | |||
void PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256v_add_u32(uint8_t *accu_b, const uint8_t *a, unsigned int _num_byte) { | |||
unsigned int n_u32 = _num_byte >> 2; | |||
uint32_t *b_u32 = (uint32_t *)accu_b; | |||
const uint32_t *a_u32 = (const uint32_t *)a; | |||
for (unsigned int i = 0; i < n_u32; i++) { | |||
b_u32[i] ^= a_u32[i]; | |||
} | |||
a += (n_u32 << 2); | |||
accu_b += (n_u32 << 2); | |||
unsigned int rem = _num_byte & 3; | |||
for (unsigned int i = 0; i < rem; i++) { | |||
accu_b[i] ^= a[i]; | |||
} | |||
} | |||
void PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256v_mul_scalar_u32(uint8_t *a, uint8_t b, unsigned int _num_byte) { | |||
unsigned int n_u32 = _num_byte >> 2; | |||
uint32_t *a_u32 = (uint32_t *)a; | |||
for (unsigned int i = 0; i < n_u32; i++) { | |||
a_u32[i] = PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256v_mul_u32(a_u32[i], b); | |||
} | |||
union tmp_32 { | |||
uint8_t u8[4]; | |||
uint32_t u32; | |||
} t; | |||
t.u32 = 0; | |||
a += (n_u32 << 2); | |||
unsigned int rem = _num_byte & 3; | |||
for (unsigned int i = 0; i < rem; i++) { | |||
t.u8[i] = a[i]; | |||
} | |||
t.u32 = PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256v_mul_u32(t.u32, b); | |||
for (unsigned int i = 0; i < rem; i++) { | |||
a[i] = t.u8[i]; | |||
} | |||
} | |||
void PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256v_madd_u32(uint8_t *accu_c, const uint8_t *a, uint8_t gf256_b, unsigned int _num_byte) { | |||
unsigned int n_u32 = _num_byte >> 2; | |||
uint32_t *c_u32 = (uint32_t *)accu_c; | |||
const uint32_t *a_u32 = (const uint32_t *)a; | |||
for (unsigned int i = 0; i < n_u32; i++) { | |||
c_u32[i] ^= PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256v_mul_u32(a_u32[i], gf256_b); | |||
} | |||
union tmp_32 { | |||
uint8_t u8[4]; | |||
uint32_t u32; | |||
} t; | |||
t.u32 = 0; | |||
accu_c += (n_u32 << 2); | |||
a += (n_u32 << 2); | |||
unsigned int rem = _num_byte & 3; | |||
for (unsigned int i = 0; i < rem; i++) { | |||
t.u8[i] = a[i]; | |||
} | |||
t.u32 = PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256v_mul_u32(t.u32, gf256_b); | |||
for (unsigned int i = 0; i < rem; i++) { | |||
accu_c[i] ^= t.u8[i]; | |||
} | |||
} | |||
@@ -0,0 +1,18 @@ | |||
#ifndef _BLAS_U32_H_ | |||
#define _BLAS_U32_H_ | |||
/// @file blas_u32.h | |||
/// @brief Inlined functions for implementing basic linear algebra functions for uint32 arch. | |||
/// | |||
#include "rainbow_config.h" | |||
#include <stdint.h> | |||
void PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256v_predicated_add_u32(uint8_t *accu_b, uint8_t predicate, const uint8_t *a, unsigned int _num_byte); | |||
void PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256v_add_u32(uint8_t *accu_b, const uint8_t *a, unsigned int _num_byte); | |||
void PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256v_mul_scalar_u32(uint8_t *a, uint8_t b, unsigned int _num_byte); | |||
void PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256v_madd_u32(uint8_t *accu_c, const uint8_t *a, uint8_t gf256_b, unsigned int _num_byte); | |||
#endif // _BLAS_U32_H_ |
@@ -0,0 +1,134 @@ | |||
#include "gf.h" | |||
//// gf4 := gf2[x]/x^2+x+1 | |||
static inline uint8_t gf4_mul_2(uint8_t a) { | |||
uint8_t r = (uint8_t)(a << 1); | |||
r ^= (uint8_t)((a >> 1) * 7); | |||
return r; | |||
} | |||
static inline uint8_t gf4_mul(uint8_t a, uint8_t b) { | |||
uint8_t r = (uint8_t)(a * (b & 1)); | |||
return r ^ (uint8_t)(gf4_mul_2(a) * (b >> 1)); | |||
} | |||
static inline uint8_t gf4_squ(uint8_t a) { | |||
return a ^ (a >> 1); | |||
} | |||
static inline uint32_t gf4v_mul_2_u32(uint32_t a) { | |||
uint32_t bit0 = a & 0x55555555; | |||
uint32_t bit1 = a & 0xaaaaaaaa; | |||
return (bit0 << 1) ^ bit1 ^ (bit1 >> 1); | |||
} | |||
static inline uint32_t gf4v_mul_u32(uint32_t a, uint8_t b) { | |||
uint32_t bit0_b = ((uint32_t)0) - ((uint32_t)(b & 1)); | |||
uint32_t bit1_b = ((uint32_t)0) - ((uint32_t)((b >> 1) & 1)); | |||
return (a & bit0_b) ^ (bit1_b & gf4v_mul_2_u32(a)); | |||
} | |||
//// gf16 := gf4[y]/y^2+y+x | |||
static inline uint8_t gf16_mul(uint8_t a, uint8_t b) { | |||
uint8_t a0 = a & 3; | |||
uint8_t a1 = (a >> 2); | |||
uint8_t b0 = b & 3; | |||
uint8_t b1 = (b >> 2); | |||
uint8_t a0b0 = gf4_mul(a0, b0); | |||
uint8_t a1b1 = gf4_mul(a1, b1); | |||
uint8_t a0b1_a1b0 = gf4_mul(a0 ^ a1, b0 ^ b1) ^ a0b0 ^ a1b1; | |||
uint8_t a1b1_x2 = gf4_mul_2(a1b1); | |||
return (uint8_t)((a0b1_a1b0 ^ a1b1) << 2 ^ a0b0 ^ a1b1_x2); | |||
} | |||
static inline uint8_t gf16_squ(uint8_t a) { | |||
uint8_t a0 = a & 3; | |||
uint8_t a1 = (a >> 2); | |||
a1 = gf4_squ(a1); | |||
uint8_t a1squ_x2 = gf4_mul_2(a1); | |||
return (uint8_t)((a1 << 2) ^ a1squ_x2 ^ gf4_squ(a0)); | |||
} | |||
// gf16 := gf4[y]/y^2+y+x | |||
uint32_t PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf16v_mul_u32(uint32_t a, uint8_t b) { | |||
uint32_t axb0 = gf4v_mul_u32(a, b); | |||
uint32_t axb1 = gf4v_mul_u32(a, b >> 2); | |||
uint32_t a0b1 = (axb1 << 2) & 0xcccccccc; | |||
uint32_t a1b1 = axb1 & 0xcccccccc; | |||
uint32_t a1b1_2 = a1b1 >> 2; | |||
return axb0 ^ a0b1 ^ a1b1 ^ gf4v_mul_2_u32(a1b1_2); | |||
} | |||
uint8_t PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256_is_nonzero(uint8_t a) { | |||
unsigned int a8 = a; | |||
unsigned int r = ((unsigned int)0) - a8; | |||
r >>= 8; | |||
return r & 1; | |||
} | |||
static inline uint8_t gf4_mul_3(uint8_t a) { | |||
uint8_t msk = (uint8_t)((a - 2) >> 1); | |||
return (uint8_t)((msk & ((int)a * 3)) | ((~msk) & ((int)a - 1))); | |||
} | |||
static inline uint8_t gf16_mul_8(uint8_t a) { | |||
uint8_t a0 = a & 3; | |||
uint8_t a1 = a >> 2; | |||
return (uint8_t)((gf4_mul_2(a0 ^ a1) << 2) | gf4_mul_3(a1)); | |||
} | |||
// gf256 := gf16[X]/X^2+X+xy | |||
static inline uint8_t gf256_mul(uint8_t a, uint8_t b) { | |||
uint8_t a0 = a & 15; | |||
uint8_t a1 = (a >> 4); | |||
uint8_t b0 = b & 15; | |||
uint8_t b1 = (b >> 4); | |||
uint8_t a0b0 = gf16_mul(a0, b0); | |||
uint8_t a1b1 = gf16_mul(a1, b1); | |||
uint8_t a0b1_a1b0 = gf16_mul(a0 ^ a1, b0 ^ b1) ^ a0b0 ^ a1b1; | |||
uint8_t a1b1_x8 = gf16_mul_8(a1b1); | |||
return (uint8_t)((a0b1_a1b0 ^ a1b1) << 4 ^ a0b0 ^ a1b1_x8); | |||
} | |||
static inline uint8_t gf256_squ(uint8_t a) { | |||
uint8_t a0 = a & 15; | |||
uint8_t a1 = (a >> 4); | |||
a1 = gf16_squ(a1); | |||
uint8_t a1squ_x8 = gf16_mul_8(a1); | |||
return (uint8_t)((a1 << 4) ^ a1squ_x8 ^ gf16_squ(a0)); | |||
} | |||
uint8_t PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256_inv(uint8_t a) { | |||
// 128+64+32+16+8+4+2 = 254 | |||
uint8_t a2 = gf256_squ(a); | |||
uint8_t a4 = gf256_squ(a2); | |||
uint8_t a8 = gf256_squ(a4); | |||
uint8_t a4_2 = gf256_mul(a4, a2); | |||
uint8_t a8_4_2 = gf256_mul(a4_2, a8); | |||
uint8_t a64_ = gf256_squ(a8_4_2); | |||
a64_ = gf256_squ(a64_); | |||
a64_ = gf256_squ(a64_); | |||
uint8_t a64_2 = gf256_mul(a64_, a8_4_2); | |||
uint8_t a128_ = gf256_squ(a64_2); | |||
return gf256_mul(a2, a128_); | |||
} | |||
static inline uint32_t gf4v_mul_3_u32(uint32_t a) { | |||
uint32_t bit0 = a & 0x55555555; | |||
uint32_t bit1 = a & 0xaaaaaaaa; | |||
return (bit0 << 1) ^ bit0 ^ (bit1 >> 1); | |||
} | |||
static inline uint32_t gf16v_mul_8_u32(uint32_t a) { | |||
uint32_t a1 = a & 0xcccccccc; | |||
uint32_t a0 = (a << 2) & 0xcccccccc; | |||
return gf4v_mul_2_u32(a0 ^ a1) | gf4v_mul_3_u32(a1 >> 2); | |||
} | |||
uint32_t PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256v_mul_u32(uint32_t a, uint8_t b) { | |||
uint32_t axb0 = PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf16v_mul_u32(a, b); | |||
uint32_t axb1 = PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf16v_mul_u32(a, b >> 4); | |||
uint32_t a0b1 = (axb1 << 4) & 0xf0f0f0f0; | |||
uint32_t a1b1 = axb1 & 0xf0f0f0f0; | |||
uint32_t a1b1_4 = a1b1 >> 4; | |||
return axb0 ^ a0b1 ^ a1b1 ^ gf16v_mul_8_u32(a1b1_4); | |||
} |
@@ -0,0 +1,19 @@ | |||
#ifndef _GF16_H_ | |||
#define _GF16_H_ | |||
#include "rainbow_config.h" | |||
#include <stdint.h> | |||
/// @file gf16.h | |||
/// @brief Library for arithmetics in GF(16) and GF(256) | |||
/// | |||
uint32_t PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf16v_mul_u32(uint32_t a, uint8_t b); | |||
uint8_t PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256_is_nonzero(uint8_t a); | |||
uint8_t PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256_inv(uint8_t a); | |||
uint32_t PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256v_mul_u32(uint32_t a, uint8_t b); | |||
#endif // _GF16_H_ |
@@ -0,0 +1,183 @@ | |||
/// @file parallel_matrix_op.c | |||
/// @brief the standard implementations for functions in parallel_matrix_op.h | |||
/// | |||
/// the standard implementations for functions in parallel_matrix_op.h | |||
/// | |||
#include "parallel_matrix_op.h" | |||
#include "blas.h" | |||
#include "blas_comm.h" | |||
/// | |||
/// @brief Calculate the corresponding index in an array for an upper-triangle(UT) matrix. | |||
/// | |||
/// @param[in] i_row - the i-th row in an upper-triangle matrix. | |||
/// @param[in] j_col - the j-th column in an upper-triangle matrix. | |||
/// @param[in] dim - the dimension of the upper-triangle matrix, i.e., an dim x dim matrix. | |||
/// @return the corresponding index in an array storage. | |||
/// | |||
unsigned int PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_idx_of_trimat(unsigned int i_row, unsigned int j_col, unsigned int dim) { | |||
return (dim + dim - i_row + 1) * i_row / 2 + j_col - i_row; | |||
} | |||
/// | |||
/// @brief Calculate the corresponding index in an array for an upper-triangle or lower-triangle matrix. | |||
/// | |||
/// @param[in] i_row - the i-th row in a triangle matrix. | |||
/// @param[in] j_col - the j-th column in a triangle matrix. | |||
/// @param[in] dim - the dimension of the triangle matrix, i.e., an dim x dim matrix. | |||
/// @return the corresponding index in an array storage. | |||
/// | |||
static inline unsigned int idx_of_2trimat(unsigned int i_row, unsigned int j_col, unsigned int n_var) { | |||
if (i_row > j_col) { | |||
return PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_idx_of_trimat(j_col, i_row, n_var); | |||
} | |||
return PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_idx_of_trimat(i_row, j_col, n_var); | |||
} | |||
void PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_UpperTrianglize(unsigned char *btriC, const unsigned char *bA, unsigned int Awidth, unsigned int size_batch) { | |||
unsigned char *runningC = btriC; | |||
unsigned int Aheight = Awidth; | |||
for (unsigned int i = 0; i < Aheight; i++) { | |||
for (unsigned int j = 0; j < i; j++) { | |||
unsigned int idx = PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_idx_of_trimat(j, i, Aheight); | |||
gf256v_add(btriC + idx * size_batch, bA + size_batch * (i * Awidth + j), size_batch); | |||
} | |||
gf256v_add(runningC, bA + size_batch * (i * Awidth + i), size_batch * (Aheight - i)); | |||
runningC += size_batch * (Aheight - i); | |||
} | |||
} | |||
void PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_batch_trimat_madd_gf256(unsigned char *bC, const unsigned char *btriA, | |||
const unsigned char *B, unsigned int Bheight, unsigned int size_Bcolvec, unsigned int Bwidth, unsigned int size_batch) { | |||
unsigned int Awidth = Bheight; | |||
unsigned int Aheight = Awidth; | |||
for (unsigned int i = 0; i < Aheight; i++) { | |||
for (unsigned int j = 0; j < Bwidth; j++) { | |||
for (unsigned int k = 0; k < Bheight; k++) { | |||
if (k < i) { | |||
continue; | |||
} | |||
gf256v_madd(bC, &btriA[(k - i) * size_batch], PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256v_get_ele(&B[j * size_Bcolvec], k), size_batch); | |||
} | |||
bC += size_batch; | |||
} | |||
btriA += (Aheight - i) * size_batch; | |||
} | |||
} | |||
void PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_batch_trimatTr_madd_gf256(unsigned char *bC, const unsigned char *btriA, | |||
const unsigned char *B, unsigned int Bheight, unsigned int size_Bcolvec, unsigned int Bwidth, unsigned int size_batch) { | |||
unsigned int Aheight = Bheight; | |||
for (unsigned int i = 0; i < Aheight; i++) { | |||
for (unsigned int j = 0; j < Bwidth; j++) { | |||
for (unsigned int k = 0; k < Bheight; k++) { | |||
if (i < k) { | |||
continue; | |||
} | |||
gf256v_madd(bC, &btriA[size_batch * (PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_idx_of_trimat(k, i, Aheight))], PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256v_get_ele(&B[j * size_Bcolvec], k), size_batch); | |||
} | |||
bC += size_batch; | |||
} | |||
} | |||
} | |||
void PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_batch_2trimat_madd_gf256(unsigned char *bC, const unsigned char *btriA, | |||
const unsigned char *B, unsigned int Bheight, unsigned int size_Bcolvec, unsigned int Bwidth, unsigned int size_batch) { | |||
unsigned int Aheight = Bheight; | |||
for (unsigned int i = 0; i < Aheight; i++) { | |||
for (unsigned int j = 0; j < Bwidth; j++) { | |||
for (unsigned int k = 0; k < Bheight; k++) { | |||
if (i == k) { | |||
continue; | |||
} | |||
gf256v_madd(bC, &btriA[size_batch * (idx_of_2trimat(i, k, Aheight))], PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256v_get_ele(&B[j * size_Bcolvec], k), size_batch); | |||
} | |||
bC += size_batch; | |||
} | |||
} | |||
} | |||
void PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_batch_matTr_madd_gf256(unsigned char *bC, const unsigned char *A_to_tr, unsigned int Aheight, unsigned int size_Acolvec, unsigned int Awidth, | |||
const unsigned char *bB, unsigned int Bwidth, unsigned int size_batch) { | |||
unsigned int Atr_height = Awidth; | |||
unsigned int Atr_width = Aheight; | |||
for (unsigned int i = 0; i < Atr_height; i++) { | |||
for (unsigned int j = 0; j < Atr_width; j++) { | |||
gf256v_madd(bC, &bB[j * Bwidth * size_batch], PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256v_get_ele(&A_to_tr[size_Acolvec * i], j), size_batch * Bwidth); | |||
} | |||
bC += size_batch * Bwidth; | |||
} | |||
} | |||
void PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_batch_bmatTr_madd_gf256(unsigned char *bC, const unsigned char *bA_to_tr, unsigned int Awidth_before_tr, | |||
const unsigned char *B, unsigned int Bheight, unsigned int size_Bcolvec, unsigned int Bwidth, unsigned int size_batch) { | |||
const unsigned char *bA = bA_to_tr; | |||
unsigned int Aheight = Awidth_before_tr; | |||
for (unsigned int i = 0; i < Aheight; i++) { | |||
for (unsigned int j = 0; j < Bwidth; j++) { | |||
for (unsigned int k = 0; k < Bheight; k++) { | |||
gf256v_madd(bC, &bA[size_batch * (i + k * Aheight)], PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256v_get_ele(&B[j * size_Bcolvec], k), size_batch); | |||
} | |||
bC += size_batch; | |||
} | |||
} | |||
} | |||
void PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_batch_mat_madd_gf256(unsigned char *bC, const unsigned char *bA, unsigned int Aheight, | |||
const unsigned char *B, unsigned int Bheight, unsigned int size_Bcolvec, unsigned int Bwidth, unsigned int size_batch) { | |||
unsigned int Awidth = Bheight; | |||
for (unsigned int i = 0; i < Aheight; i++) { | |||
for (unsigned int j = 0; j < Bwidth; j++) { | |||
for (unsigned int k = 0; k < Bheight; k++) { | |||
gf256v_madd(bC, &bA[k * size_batch], PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256v_get_ele(&B[j * size_Bcolvec], k), size_batch); | |||
} | |||
bC += size_batch; | |||
} | |||
bA += (Awidth) * size_batch; | |||
} | |||
} | |||
void PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_batch_quad_trimat_eval_gf256(unsigned char *y, const unsigned char *trimat, const unsigned char *x, unsigned int dim, unsigned int size_batch) { | |||
unsigned char tmp[256]; | |||
unsigned char _x[256]; | |||
for (unsigned int i = 0; i < dim; i++) { | |||
_x[i] = PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256v_get_ele(x, i); | |||
} | |||
PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256v_set_zero(y, size_batch); | |||
for (unsigned int i = 0; i < dim; i++) { | |||
PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256v_set_zero(tmp, size_batch); | |||
for (unsigned int j = i; j < dim; j++) { | |||
gf256v_madd(tmp, trimat, _x[j], size_batch); | |||
trimat += size_batch; | |||
} | |||
gf256v_madd(y, tmp, _x[i], size_batch); | |||
} | |||
} | |||
void PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_batch_quad_recmat_eval_gf256(unsigned char *z, const unsigned char *y, unsigned int dim_y, const unsigned char *mat, | |||
const unsigned char *x, unsigned dim_x, unsigned size_batch) { | |||
unsigned char tmp[128]; | |||
unsigned char _x[128]; | |||
for (unsigned int i = 0; i < dim_x; i++) { | |||
_x[i] = PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256v_get_ele(x, i); | |||
} | |||
unsigned char _y[128]; | |||
for (unsigned int i = 0; i < dim_y; i++) { | |||
_y[i] = PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256v_get_ele(y, i); | |||
} | |||
PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256v_set_zero(z, size_batch); | |||
for (unsigned int i = 0; i < dim_y; i++) { | |||
PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256v_set_zero(tmp, size_batch); | |||
for (unsigned int j = 0; j < dim_x; j++) { | |||
gf256v_madd(tmp, mat, _x[j], size_batch); | |||
mat += size_batch; | |||
} | |||
gf256v_madd(z, tmp, _y[i], size_batch); | |||
} | |||
} | |||
@@ -0,0 +1,260 @@ | |||
#ifndef _P_MATRIX_OP_H_ | |||
#define _P_MATRIX_OP_H_ | |||
/// @file parallel_matrix_op.h | |||
/// @brief Librarys for operations of batched matrixes. | |||
/// | |||
/// | |||
//////////////// Section: triangle matrix <-> rectangle matrix /////////////////////////////////// | |||
/// | |||
/// @brief Calculate the corresponding index in an array for an upper-triangle(UT) matrix. | |||
/// | |||
/// @param[in] i_row - the i-th row in an upper-triangle matrix. | |||
/// @param[in] j_col - the j-th column in an upper-triangle matrix. | |||
/// @param[in] dim - the dimension of the upper-triangle matrix, i.e., an dim x dim matrix. | |||
/// @return the corresponding index in an array storage. | |||
/// | |||
unsigned int PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_idx_of_trimat(unsigned int i_row, unsigned int j_col, unsigned int dim); | |||
/// | |||
/// @brief Upper trianglize a rectangle matrix to the corresponding upper-trangle matrix. | |||
/// | |||
/// @param[out] btriC - the batched upper-trianglized matrix C. | |||
/// @param[in] bA - a batched retangle matrix A. | |||
/// @param[in] bwidth - the width of the batched matrix A, i.e., A is a Awidth x Awidth matrix. | |||
/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix. | |||
/// | |||
void PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_UpperTrianglize(unsigned char *btriC, const unsigned char *bA, unsigned int Awidth, unsigned int size_batch); | |||
//////////////////// Section: matrix multiplications /////////////////////////////// | |||
/// | |||
/// @brief bC += btriA * B , in GF(16) | |||
/// | |||
/// @param[out] bC - the batched matrix C. | |||
/// @param[in] btriA - a batched UT matrix A. | |||
/// @param[in] B - a column-major matrix B. | |||
/// @param[in] Bheight - the height of B. | |||
/// @param[in] size_Bcolvec - the size of the column vector in B. | |||
/// @param[in] Bwidth - the width of B. | |||
/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix. | |||
/// | |||
void PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_batch_trimat_madd_gf16(unsigned char *bC, const unsigned char *btriA, | |||
const unsigned char *B, unsigned int Bheight, unsigned int size_Bcolvec, unsigned int Bwidth, unsigned int size_batch); | |||
/// | |||
/// @brief bC += btriA * B , in GF(256) | |||
/// | |||
/// @param[out] bC - the batched matrix C. | |||
/// @param[in] btriA - a batched UT matrix A. | |||
/// @param[in] B - a column-major matrix B. | |||
/// @param[in] Bheight - the height of B. | |||
/// @param[in] size_Bcolvec - the size of the column vector in B. | |||
/// @param[in] Bwidth - the width of B. | |||
/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix. | |||
/// | |||
void PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_batch_trimat_madd_gf256(unsigned char *bC, const unsigned char *btriA, | |||
const unsigned char *B, unsigned int Bheight, unsigned int size_Bcolvec, unsigned int Bwidth, unsigned int size_batch); | |||
/// | |||
/// @brief bC += btriA^Tr * B , in GF(16) | |||
/// | |||
/// @param[out] bC - the batched matrix C. | |||
/// @param[in] btriA - a batched UT matrix A. A will be transposed while multiplying. | |||
/// @param[in] B - a column-major matrix B. | |||
/// @param[in] Bheight - the height of B. | |||
/// @param[in] size_Bcolvec - the size of the column vector in B. | |||
/// @param[in] Bwidth - the width of B. | |||
/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix. | |||
/// | |||
void PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_batch_trimatTr_madd_gf16(unsigned char *bC, const unsigned char *btriA, | |||
const unsigned char *B, unsigned int Bheight, unsigned int size_Bcolvec, unsigned int Bwidth, unsigned int size_batch); | |||
/// | |||
/// @brief bC += btriA^Tr * B , in GF(256) | |||
/// | |||
/// @param[out] bC - the batched matrix C. | |||
/// @param[in] btriA - a batched UT matrix A, which will be transposed while multiplying. | |||
/// @param[in] B - a column-major matrix B. | |||
/// @param[in] Bheight - the height of B. | |||
/// @param[in] size_Bcolvec - the size of the column vector in B. | |||
/// @param[in] Bwidth - the width of B. | |||
/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix. | |||
/// | |||
void PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_batch_trimatTr_madd_gf256(unsigned char *bC, const unsigned char *btriA, | |||
const unsigned char *B, unsigned int Bheight, unsigned int size_Bcolvec, unsigned int Bwidth, unsigned int size_batch); | |||
/// | |||
/// @brief bC += (btriA + btriA^Tr) *B , in GF(16) | |||
/// | |||
/// @param[out] bC - the batched matrix C. | |||
/// @param[in] btriA - a batched UT matrix A. The operand for multiplication is (btriA + btriA^Tr). | |||
/// @param[in] B - a column-major matrix B. | |||
/// @param[in] Bheight - the height of B. | |||
/// @param[in] size_Bcolvec - the size of the column vector in B. | |||
/// @param[in] Bwidth - the width of B. | |||
/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix. | |||
/// | |||
void PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_batch_2trimat_madd_gf16(unsigned char *bC, const unsigned char *btriA, | |||
const unsigned char *B, unsigned int Bheight, unsigned int size_Bcolvec, unsigned int Bwidth, unsigned int size_batch); | |||
/// | |||
/// @brief bC += (btriA + btriA^Tr) *B , in GF(256) | |||
/// | |||
/// @param[out] bC - the batched matrix C. | |||
/// @param[in] btriA - a batched UT matrix A. The operand for multiplication is (btriA + btriA^Tr). | |||
/// @param[in] B - a column-major matrix B. | |||
/// @param[in] Bheight - the height of B. | |||
/// @param[in] size_Bcolvec - the size of the column vector in B. | |||
/// @param[in] Bwidth - the width of B. | |||
/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix. | |||
/// | |||
void PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_batch_2trimat_madd_gf256(unsigned char *bC, const unsigned char *btriA, | |||
const unsigned char *B, unsigned int Bheight, unsigned int size_Bcolvec, unsigned int Bwidth, unsigned int size_batch); | |||
/// | |||
/// @brief bC += A^Tr * bB , in GF(16) | |||
/// | |||
/// @param[out] bC - the batched matrix C. | |||
/// @param[in] A_to_tr - a column-major matrix A. The operand for multiplication is A^Tr. | |||
/// @param[in] Aheight - the height of A. | |||
/// @param[in] size_Acolvec - the size of a column vector in A. | |||
/// @param[in] Awidth - the width of A. | |||
/// @param[in] bB - a batched matrix B. | |||
/// @param[in] Bwidth - the width of B. | |||
/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix. | |||
/// | |||
void PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_batch_matTr_madd_gf16(unsigned char *bC, | |||
const unsigned char *A_to_tr, unsigned int Aheight, unsigned int size_Acolvec, unsigned int Awidth, | |||
const unsigned char *bB, unsigned int Bwidth, unsigned int size_batch); | |||
/// | |||
/// @brief bC += A^Tr * bB , in GF(256) | |||
/// | |||
/// @param[out] bC - the batched matrix C. | |||
/// @param[in] A_to_tr - a column-major matrix A. The operand for multiplication is A^Tr. | |||
/// @param[in] Aheight - the height of A. | |||
/// @param[in] size_Acolvec - the size of a column vector in A. | |||
/// @param[in] Awidth - the width of A. | |||
/// @param[in] bB - a batched matrix B. | |||
/// @param[in] Bwidth - the width of B. | |||
/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix. | |||
/// | |||
void PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_batch_matTr_madd_gf256(unsigned char *bC, | |||
const unsigned char *A_to_tr, unsigned int Aheight, unsigned int size_Acolvec, unsigned int Awidth, | |||
const unsigned char *bB, unsigned int Bwidth, unsigned int size_batch); | |||
/// | |||
/// @brief bC += bA^Tr * B , in GF(16) | |||
/// | |||
/// @param[out] bC - the batched matrix C. | |||
/// @param[in] bA_to_tr - a batched matrix A. The operand for multiplication is (bA^Tr). | |||
/// @param[in] Awidth_befor_tr - the width of A. | |||
/// @param[in] B - a column-major matrix B. | |||
/// @param[in] Bheight - the height of B. | |||
/// @param[in] size_Bcolvec - the size of the column vector in B. | |||
/// @param[in] Bwidth - the width of B. | |||
/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix. | |||
/// | |||
void PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_batch_bmatTr_madd_gf16(unsigned char *bC, const unsigned char *bA_to_tr, unsigned int Awidth_before_tr, | |||
const unsigned char *B, unsigned int Bheight, unsigned int size_Bcolvec, unsigned int Bwidth, unsigned int size_batch); | |||
/// | |||
/// @brief bC += bA^Tr * B , in GF(256) | |||
/// | |||
/// @param[out] bC - the batched matrix C. | |||
/// @param[in] bA_to_tr - a batched matrix A. The operand for multiplication is (bA^Tr). | |||
/// @param[in] Awidth_befor_tr - the width of A. | |||
/// @param[in] B - a column-major matrix B. | |||
/// @param[in] Bheight - the height of B. | |||
/// @param[in] size_Bcolvec - the size of the column vector in B. | |||
/// @param[in] Bwidth - the width of B. | |||
/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix. | |||
/// | |||
void PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_batch_bmatTr_madd_gf256(unsigned char *bC, const unsigned char *bA_to_tr, unsigned int Awidth_before_tr, | |||
const unsigned char *B, unsigned int Bheight, unsigned int size_Bcolvec, unsigned int Bwidth, unsigned int size_batch); | |||
/// | |||
/// @brief bC += bA * B , in GF(16) | |||
/// | |||
/// @param[out] bC - the batched matrix C. | |||
/// @param[in] bA - a batched matrix A. | |||
/// @param[in] Aheigh - the height of A. | |||
/// @param[in] B - a column-major matrix B. | |||
/// @param[in] Bheight - the height of B. | |||
/// @param[in] size_Bcolvec - the size of the column vector in B. | |||
/// @param[in] Bwidth - the width of B. | |||
/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix. | |||
/// | |||
void PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_batch_mat_madd_gf16(unsigned char *bC, const unsigned char *bA, unsigned int Aheight, | |||
const unsigned char *B, unsigned int Bheight, unsigned int size_Bcolvec, unsigned int Bwidth, unsigned int size_batch); | |||
/// | |||
/// @brief bC += bA * B , in GF(256) | |||
/// | |||
/// @param[out] bC - the batched matrix C. | |||
/// @param[in] bA - a batched matrix A. | |||
/// @param[in] Aheigh - the height of A. | |||
/// @param[in] B - a column-major matrix B. | |||
/// @param[in] Bheight - the height of B. | |||
/// @param[in] size_Bcolvec - the size of the column vector in B. | |||
/// @param[in] Bwidth - the width of B. | |||
/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix. | |||
/// | |||
void PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_batch_mat_madd_gf256(unsigned char *bC, const unsigned char *bA, unsigned int Aheight, | |||
const unsigned char *B, unsigned int Bheight, unsigned int size_Bcolvec, unsigned int Bwidth, unsigned int size_batch); | |||
//////////////////// Section: "quadratric" matrix evaluation /////////////////////////////// | |||
/// | |||
/// @brief y = x^Tr * trimat * x , in GF(16) | |||
/// | |||
/// @param[out] y - the returned batched element y. | |||
/// @param[in] trimat - a batched matrix. | |||
/// @param[in] x - an input vector x. | |||
/// @param[in] dim - the dimension of matrix trimat (and x). | |||
/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix. | |||
/// | |||
void PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_batch_quad_trimat_eval_gf16(unsigned char *y, const unsigned char *trimat, const unsigned char *x, unsigned int dim, unsigned int size_batch); | |||
/// | |||
/// @brief y = x^Tr * trimat * x , in GF(256) | |||
/// | |||
/// @param[out] y - the returned batched element y. | |||
/// @param[in] trimat - a batched matrix. | |||
/// @param[in] x - an input vector x. | |||
/// @param[in] dim - the dimension of matrix trimat (and x). | |||
/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix. | |||
/// | |||
void PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_batch_quad_trimat_eval_gf256(unsigned char *y, const unsigned char *trimat, const unsigned char *x, unsigned int dim, unsigned int size_batch); | |||
/// | |||
/// @brief z = y^Tr * mat * x , in GF(16) | |||
/// | |||
/// @param[out] z - the returned batched element z. | |||
/// @param[in] y - an input vector y. | |||
/// @param[in] dim_y - the length of y. | |||
/// @param[in] mat - a batched matrix. | |||
/// @param[in] x - an input vector x. | |||
/// @param[in] dim_x - the length of x. | |||
/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix. | |||
/// | |||
void PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_batch_quad_recmat_eval_gf16(unsigned char *z, const unsigned char *y, unsigned int dim_y, | |||
const unsigned char *mat, const unsigned char *x, unsigned int dim_x, unsigned int size_batch); | |||
/// | |||
/// @brief z = y^Tr * mat * x , in GF(256) | |||
/// | |||
/// @param[out] z - the returned batched element z. | |||
/// @param[in] y - an input vector y. | |||
/// @param[in] dim_y - the length of y. | |||
/// @param[in] mat - a batched matrix. | |||
/// @param[in] x - an input vector x. | |||
/// @param[in] dim_x - the length of x. | |||
/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix. | |||
/// | |||
void PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_batch_quad_recmat_eval_gf256(unsigned char *z, const unsigned char *y, unsigned int dim_y, | |||
const unsigned char *mat, const unsigned char *x, unsigned int dim_x, unsigned int size_batch); | |||
#endif // _P_MATRIX_OP_H_ |
@@ -0,0 +1,169 @@ | |||
/// @file rainbow.c | |||
/// @brief The standard implementations for functions in rainbow.h | |||
/// | |||
#include "rainbow.h" | |||
#include "blas.h" | |||
#include "rainbow_blas.h" | |||
#include "rainbow_config.h" | |||
#include "rainbow_keypair.h" | |||
#include "utils_hash.h" | |||
#include "utils_prng.h" | |||
#include <stdint.h> | |||
#include <stdlib.h> | |||
#include <string.h> | |||
#define MAX_ATTEMPT_FRMAT 128 | |||
#define _MAX_O ((_O1 > _O2) ? _O1 : _O2) | |||
#define _MAX_O_BYTE ((_O1_BYTE > _O2_BYTE) ? _O1_BYTE : _O2_BYTE) | |||
int PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_rainbow_sign(uint8_t *signature, const sk_t *sk, const uint8_t *_digest) { | |||
uint8_t mat_l1[_O1 * _O1_BYTE]; | |||
uint8_t mat_l2[_O2 * _O2_BYTE]; | |||
uint8_t mat_buffer[2 * _MAX_O * _MAX_O_BYTE]; | |||
// setup PRNG | |||
prng_t prng_sign; | |||
uint8_t prng_preseed[LEN_SKSEED + _HASH_LEN]; | |||
memcpy(prng_preseed, sk->sk_seed, LEN_SKSEED); | |||
memcpy(prng_preseed + LEN_SKSEED, _digest, _HASH_LEN); // prng_preseed = sk_seed || digest | |||
uint8_t prng_seed[_HASH_LEN]; | |||
PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_hash_msg(prng_seed, _HASH_LEN, prng_preseed, _HASH_LEN + LEN_SKSEED); | |||
PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_prng_set(&prng_sign, prng_seed, _HASH_LEN); // seed = H( sk_seed || digest ) | |||
for (unsigned int i = 0; i < LEN_SKSEED + _HASH_LEN; i++) { | |||
prng_preseed[i] ^= prng_preseed[i]; // clean | |||
} | |||
for (unsigned int i = 0; i < _HASH_LEN; i++) { | |||
prng_seed[i] ^= prng_seed[i]; // clean | |||
} | |||
// roll vinegars. | |||
uint8_t vinegar[_V1_BYTE]; | |||
unsigned int n_attempt = 0; | |||
unsigned int l1_succ = 0; | |||
while (!l1_succ) { | |||
if (MAX_ATTEMPT_FRMAT <= n_attempt) { | |||
break; | |||
} | |||
PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_prng_gen(&prng_sign, vinegar, _V1_BYTE); // generating vinegars | |||
gfmat_prod(mat_l1, sk->l1_F2, _O1 * _O1_BYTE, _V1, vinegar); // generating the linear equations for layer 1 | |||
l1_succ = gfmat_inv(mat_l1, mat_l1, _O1, mat_buffer); // check if the linear equation solvable | |||
n_attempt++; | |||
} | |||
// Given the vinegars, pre-compute variables needed for layer 2 | |||
uint8_t r_l1_F1[_O1_BYTE] = {0}; | |||
uint8_t r_l2_F1[_O2_BYTE] = {0}; | |||
batch_quad_trimat_eval(r_l1_F1, sk->l1_F1, vinegar, _V1, _O1_BYTE); | |||
batch_quad_trimat_eval(r_l2_F1, sk->l2_F1, vinegar, _V1, _O2_BYTE); | |||
uint8_t mat_l2_F3[_O2 * _O2_BYTE]; | |||
uint8_t mat_l2_F2[_O1 * _O2_BYTE]; | |||
gfmat_prod(mat_l2_F3, sk->l2_F3, _O2 * _O2_BYTE, _V1, vinegar); | |||
gfmat_prod(mat_l2_F2, sk->l2_F2, _O1 * _O2_BYTE, _V1, vinegar); | |||
// Some local variables. | |||
uint8_t _z[_PUB_M_BYTE]; | |||
uint8_t y[_PUB_M_BYTE]; | |||
uint8_t *x_v1 = vinegar; | |||
uint8_t x_o1[_O1_BYTE]; | |||
uint8_t x_o2[_O1_BYTE]; | |||
uint8_t digest_salt[_HASH_LEN + _SALT_BYTE]; | |||
memcpy(digest_salt, _digest, _HASH_LEN); | |||
uint8_t *salt = digest_salt + _HASH_LEN; | |||
uint8_t temp_o[_MAX_O_BYTE + 32] = {0}; | |||
unsigned int succ = 0; | |||
while (!succ) { | |||
if (MAX_ATTEMPT_FRMAT <= n_attempt) { | |||
break; | |||
} | |||
// The computation: H(digest||salt) --> z --S--> y --C-map--> x --T--> w | |||
PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_prng_gen(&prng_sign, salt, _SALT_BYTE); // roll the salt | |||
PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_hash_msg(_z, _PUB_M_BYTE, digest_salt, _HASH_LEN + _SALT_BYTE); // H(digest||salt) | |||
// y = S^-1 * z | |||
memcpy(y, _z, _PUB_M_BYTE); // identity part of S | |||
gfmat_prod(temp_o, sk->s1, _O1_BYTE, _O2, _z + _O1_BYTE); | |||
gf256v_add(y, temp_o, _O1_BYTE); | |||
// Central Map: | |||
// layer 1: calculate x_o1 | |||
memcpy(temp_o, r_l1_F1, _O1_BYTE); | |||
gf256v_add(temp_o, y, _O1_BYTE); | |||
gfmat_prod(x_o1, mat_l1, _O1_BYTE, _O1, temp_o); | |||
// layer 2: calculate x_o2 | |||
PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256v_set_zero(temp_o, _O2_BYTE); | |||
gfmat_prod(temp_o, mat_l2_F2, _O2_BYTE, _O1, x_o1); // F2 | |||
batch_quad_trimat_eval(mat_l2, sk->l2_F5, x_o1, _O1, _O2_BYTE); // F5 | |||
gf256v_add(temp_o, mat_l2, _O2_BYTE); | |||
gf256v_add(temp_o, r_l2_F1, _O2_BYTE); // F1 | |||
gf256v_add(temp_o, y + _O1_BYTE, _O2_BYTE); | |||
// generate the linear equations of the 2nd layer | |||
gfmat_prod(mat_l2, sk->l2_F6, _O2 * _O2_BYTE, _O1, x_o1); // F6 | |||
gf256v_add(mat_l2, mat_l2_F3, _O2 * _O2_BYTE); // F3 | |||
succ = gfmat_inv(mat_l2, mat_l2, _O2, mat_buffer); | |||
gfmat_prod(x_o2, mat_l2, _O2_BYTE, _O2, temp_o); // solve l2 eqs | |||
n_attempt++; | |||
}; | |||
// w = T^-1 * y | |||
uint8_t w[_PUB_N_BYTE]; | |||
// identity part of T. | |||
memcpy(w, x_v1, _V1_BYTE); | |||
memcpy(w + _V1_BYTE, x_o1, _O1_BYTE); | |||
memcpy(w + _V2_BYTE, x_o2, _O2_BYTE); | |||
// Computing the t1 part. | |||
gfmat_prod(y, sk->t1, _V1_BYTE, _O1, x_o1); | |||
gf256v_add(w, y, _V1_BYTE); | |||
// Computing the t4 part. | |||
gfmat_prod(y, sk->t4, _V1_BYTE, _O2, x_o2); | |||
gf256v_add(w, y, _V1_BYTE); | |||
// Computing the t3 part. | |||
gfmat_prod(y, sk->t3, _O1_BYTE, _O2, x_o2); | |||
gf256v_add(w + _V1_BYTE, y, _O1_BYTE); | |||
memset(signature, 0, _SIGNATURE_BYTE); // set the output 0 | |||
// clean | |||
memset(&prng_sign, 0, sizeof(prng_t)); | |||
memset(vinegar, 0, _V1_BYTE); | |||
memset(r_l1_F1, 0, _O1_BYTE); | |||
memset(r_l2_F1, 0, _O2_BYTE); | |||
memset(_z, 0, _PUB_M_BYTE); | |||
memset(y, 0, _PUB_M_BYTE); | |||
memset(x_o1, 0, _O1_BYTE); | |||
memset(x_o2, 0, _O2_BYTE); | |||
memset(temp_o, 0, sizeof(temp_o)); | |||
// return: copy w and salt to the signature. | |||
if (MAX_ATTEMPT_FRMAT <= n_attempt) { | |||
return -1; | |||
} | |||
gf256v_add(signature, w, _PUB_N_BYTE); | |||
gf256v_add(signature + _PUB_N_BYTE, salt, _SALT_BYTE); | |||
return 0; | |||
} | |||
int PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_rainbow_verify(const uint8_t *digest, const uint8_t *signature, const pk_t *pk) { | |||
unsigned char digest_ck[_PUB_M_BYTE]; | |||
// public_map( digest_ck , pk , signature ); Evaluating the quadratic public polynomials. | |||
batch_quad_trimat_eval(digest_ck, pk->pk, signature, _PUB_N, _PUB_M_BYTE); | |||
unsigned char correct[_PUB_M_BYTE]; | |||
unsigned char digest_salt[_HASH_LEN + _SALT_BYTE]; | |||
memcpy(digest_salt, digest, _HASH_LEN); | |||
memcpy(digest_salt + _HASH_LEN, signature + _PUB_N_BYTE, _SALT_BYTE); | |||
PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_hash_msg(correct, _PUB_M_BYTE, digest_salt, _HASH_LEN + _SALT_BYTE); // H( digest || salt ) | |||
// check consistancy. | |||
unsigned char cc = 0; | |||
for (unsigned int i = 0; i < _PUB_M_BYTE; i++) { | |||
cc |= (digest_ck[i] ^ correct[i]); | |||
} | |||
return (0 == cc) ? 0 : -1; | |||
} | |||
@@ -0,0 +1,33 @@ | |||
#ifndef _RAINBOW_H_ | |||
#define _RAINBOW_H_ | |||
/// @file rainbow.h | |||
/// @brief APIs for rainbow. | |||
/// | |||
#include "rainbow_config.h" | |||
#include "rainbow_keypair.h" | |||
#include <stdint.h> | |||
/// | |||
/// @brief Signing function for classical secret key. | |||
/// | |||
/// @param[out] signature - the signature. | |||
/// @param[in] sk - the secret key. | |||
/// @param[in] digest - the digest. | |||
/// | |||
int PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_rainbow_sign(uint8_t *signature, const sk_t *sk, const uint8_t *digest); | |||
/// | |||
/// @brief Verifying function. | |||
/// | |||
/// @param[in] digest - the digest. | |||
/// @param[in] signature - the signature. | |||
/// @param[in] pk - the public key. | |||
/// @return 0 for successful verified. -1 for failed verification. | |||
/// | |||
int PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_rainbow_verify(const uint8_t *digest, const uint8_t *signature, const pk_t *pk); | |||
#endif // _RAINBOW_H_ |
@@ -0,0 +1,31 @@ | |||
#ifndef _RAINBOW_BLAS_H_ | |||
#define _RAINBOW_BLAS_H_ | |||
/// @file rainbow_blas.h | |||
/// @brief Defining the functions used in rainbow.c acconding to the definitions in rainbow_config.h | |||
/// | |||
/// Defining the functions used in rainbow.c acconding to the definitions in rainbow_config.h | |||
#include "blas.h" | |||
#include "parallel_matrix_op.h" | |||
#include "rainbow_config.h" | |||
#define gfv_get_ele PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256v_get_ele | |||
#define gfv_mul_scalar PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256v_mul_scalar | |||
#define gfv_madd PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256v_madd | |||
#define gfmat_prod PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256mat_prod | |||
#define gfmat_inv PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_gf256mat_inv | |||
#define batch_trimat_madd PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_batch_trimat_madd_gf256 | |||
#define batch_trimatTr_madd PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_batch_trimatTr_madd_gf256 | |||
#define batch_2trimat_madd PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_batch_2trimat_madd_gf256 | |||
#define batch_matTr_madd PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_batch_matTr_madd_gf256 | |||
#define batch_bmatTr_madd PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_batch_bmatTr_madd_gf256 | |||
#define batch_mat_madd PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_batch_mat_madd_gf256 | |||
#define batch_quad_trimat_eval PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_batch_quad_trimat_eval_gf256 | |||
#define batch_quad_recmat_eval PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_batch_quad_recmat_eval_gf256 | |||
#endif // _RAINBOW_BLAS_H_ |
@@ -0,0 +1,46 @@ | |||
#ifndef _H_RAINBOW_CONFIG_H_ | |||
#define _H_RAINBOW_CONFIG_H_ | |||
/// @file rainbow_config.h | |||
/// @brief Defining the parameters of the Rainbow and the corresponding constants. | |||
/// | |||
#define _GFSIZE 256 | |||
#define _V1 68 | |||
#define _O1 36 | |||
#define _O2 36 | |||
#define _HASH_LEN 48 | |||
#define _V2 ((_V1) + (_O1)) | |||
/// size of N, in # of gf elements. | |||
#define _PUB_N (_V1 + _O1 + _O2) | |||
/// size of M, in # gf elements. | |||
#define _PUB_M (_O1 + _O2) | |||
/// size of variables, in # bytes. | |||
// GF256 | |||
#define _V1_BYTE (_V1) | |||
#define _V2_BYTE (_V2) | |||
#define _O1_BYTE (_O1) | |||
#define _O2_BYTE (_O2) | |||
#define _PUB_N_BYTE (_PUB_N) | |||
#define _PUB_M_BYTE (_PUB_M) | |||
/// length of seed for public key, in # bytes | |||
#define LEN_PKSEED 32 | |||
/// length of seed for secret key, in # bytes | |||
#define LEN_SKSEED 32 | |||
/// length of salt for a signature, in # bytes | |||
#define _SALT_BYTE 16 | |||
/// length of a signature | |||
#define _SIGNATURE_BYTE (_PUB_N_BYTE + _SALT_BYTE) | |||
#endif // _H_RAINBOW_CONFIG_H_ |
@@ -0,0 +1,126 @@ | |||
/// @file rainbow_keypair.c | |||
/// @brief implementations of functions in rainbow_keypair.h | |||
/// | |||
#include "rainbow_keypair.h" | |||
#include "blas.h" | |||
#include "blas_comm.h" | |||
#include "rainbow_blas.h" | |||
#include "rainbow_keypair_computation.h" | |||
#include "utils_prng.h" | |||
#include <stdint.h> | |||
#include <stdlib.h> | |||
#include <string.h> | |||
static void generate_S_T(unsigned char *s_and_t, prng_t *prng0) { | |||
PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_prng_gen(prng0, s_and_t, _O1_BYTE * _O2); // S1 | |||
s_and_t += _O1_BYTE * _O2; | |||
PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_prng_gen(prng0, s_and_t, _V1_BYTE * _O1); // T1 | |||
s_and_t += _V1_BYTE * _O1; | |||
PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_prng_gen(prng0, s_and_t, _V1_BYTE * _O2); // T2 | |||
s_and_t += _V1_BYTE * _O2; | |||
PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_prng_gen(prng0, s_and_t, _O1_BYTE * _O2); // T3 | |||
} | |||
static unsigned int generate_l1_F12(unsigned char *sk, prng_t *prng0) { | |||
unsigned int n_byte_generated = 0; | |||
PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_prng_gen(prng0, sk, _O1_BYTE * N_TRIANGLE_TERMS(_V1)); // l1_F1 | |||
sk += _O1_BYTE * N_TRIANGLE_TERMS(_V1); | |||
n_byte_generated += _O1_BYTE * N_TRIANGLE_TERMS(_V1); | |||
PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_prng_gen(prng0, sk, _O1_BYTE * _V1 * _O1); // l1_F2 | |||
n_byte_generated += _O1_BYTE * _V1 * _O1; | |||
return n_byte_generated; | |||
} | |||
static unsigned int generate_l2_F12356(unsigned char *sk, prng_t *prng0) { | |||
unsigned int n_byte_generated = 0; | |||
PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_prng_gen(prng0, sk, _O2_BYTE * N_TRIANGLE_TERMS(_V1)); // l2_F1 | |||
sk += _O2_BYTE * N_TRIANGLE_TERMS(_V1); | |||
n_byte_generated += _O2_BYTE * N_TRIANGLE_TERMS(_V1); | |||
PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_prng_gen(prng0, sk, _O2_BYTE * _V1 * _O1); // l2_F2 | |||
sk += _O2_BYTE * _V1 * _O1; | |||
n_byte_generated += _O2_BYTE * _V1 * _O1; | |||
PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_prng_gen(prng0, sk, _O2_BYTE * _V1 * _O2); // l2_F3 | |||
sk += _O2_BYTE * _V1 * _O1; | |||
n_byte_generated += _O2_BYTE * _V1 * _O1; | |||
PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_prng_gen(prng0, sk, _O2_BYTE * N_TRIANGLE_TERMS(_O1)); // l2_F5 | |||
sk += _O2_BYTE * N_TRIANGLE_TERMS(_O1); | |||
n_byte_generated += _O2_BYTE * N_TRIANGLE_TERMS(_O1); | |||
PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_prng_gen(prng0, sk, _O2_BYTE * _O1 * _O2); // l2_F6 | |||
n_byte_generated += _O2_BYTE * _O1 * _O2; | |||
return n_byte_generated; | |||
} | |||
static void generate_B1_B2(unsigned char *sk, prng_t *prng0) { | |||
sk += generate_l1_F12(sk, prng0); | |||
generate_l2_F12356(sk, prng0); | |||
} | |||
static void calculate_t4(unsigned char *t2_to_t4, const unsigned char *t1, const unsigned char *t3) { | |||
// t4 = T_sk.t1 * T_sk.t3 - T_sk.t2 | |||
unsigned char temp[_V1_BYTE + 32]; | |||
unsigned char *t4 = t2_to_t4; | |||
for (unsigned int i = 0; i < _O2; i++) { /// t3 width | |||
gfmat_prod(temp, t1, _V1_BYTE, _O1, t3); | |||
gf256v_add(t4, temp, _V1_BYTE); | |||
t4 += _V1_BYTE; | |||
t3 += _O1_BYTE; | |||
} | |||
} | |||
static void obsfucate_l1_polys(unsigned char *l1_polys, const unsigned char *l2_polys, unsigned int n_terms, const unsigned char *s1) { | |||
unsigned char temp[_O1_BYTE + 32]; | |||
while (n_terms--) { | |||
gfmat_prod(temp, s1, _O1_BYTE, _O2, l2_polys); | |||
gf256v_add(l1_polys, temp, _O1_BYTE); | |||
l1_polys += _O1_BYTE; | |||
l2_polys += _O2_BYTE; | |||
} | |||
} | |||
/////////////////// Classic ////////////////////////////////// | |||
static void _generate_secretkey(sk_t *sk, const unsigned char *sk_seed) { | |||
memcpy(sk->sk_seed, sk_seed, LEN_SKSEED); | |||
// set up prng | |||
prng_t prng0; | |||
PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_prng_set(&prng0, sk_seed, LEN_SKSEED); | |||
// generating secret key with prng. | |||
generate_S_T(sk->s1, &prng0); | |||
generate_B1_B2(sk->l1_F1, &prng0); | |||
// clean prng | |||
memset(&prng0, 0, sizeof(prng_t)); | |||
} | |||
void PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_generate_keypair(pk_t *rpk, sk_t *sk, const unsigned char *sk_seed) { | |||
_generate_secretkey(sk, sk_seed); | |||
// set up a temporary structure ext_cpk_t for calculating public key. | |||
ext_cpk_t pk; | |||
PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_calculate_Q_from_F(&pk, sk, sk); // compute the public key in ext_cpk_t format. | |||
calculate_t4(sk->t4, sk->t1, sk->t3); | |||
obsfucate_l1_polys(pk.l1_Q1, pk.l2_Q1, N_TRIANGLE_TERMS(_V1), sk->s1); | |||
obsfucate_l1_polys(pk.l1_Q2, pk.l2_Q2, _V1 * _O1, sk->s1); | |||
obsfucate_l1_polys(pk.l1_Q3, pk.l2_Q3, _V1 * _O2, sk->s1); | |||
obsfucate_l1_polys(pk.l1_Q5, pk.l2_Q5, N_TRIANGLE_TERMS(_O1), sk->s1); | |||
obsfucate_l1_polys(pk.l1_Q6, pk.l2_Q6, _O1 * _O2, sk->s1); | |||
obsfucate_l1_polys(pk.l1_Q9, pk.l2_Q9, N_TRIANGLE_TERMS(_O2), sk->s1); | |||
// so far, the pk contains the full pk but in ext_cpk_t format. | |||
PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_extcpk_to_pk(rpk, &pk); // convert the public key from ext_cpk_t to pk_t. | |||
} | |||
@@ -0,0 +1,61 @@ | |||
#ifndef _RAINBOW_KEYPAIR_H_ | |||
#define _RAINBOW_KEYPAIR_H_ | |||
/// @file rainbow_keypair.h | |||
/// @brief Formats of key pairs and functions for generating key pairs. | |||
/// Formats of key pairs and functions for generating key pairs. | |||
/// | |||
#include "rainbow_config.h" | |||
#define N_TRIANGLE_TERMS(n_var) ((n_var) * ((n_var) + 1) / 2) | |||
/// @brief public key for classic rainbow | |||
/// | |||
/// public key for classic rainbow | |||
/// | |||
typedef struct rainbow_publickey { | |||
unsigned char pk[(_PUB_M_BYTE)*N_TRIANGLE_TERMS(_PUB_N)]; | |||
} pk_t; | |||
/// @brief secret key for classic rainbow | |||
/// | |||
/// secret key for classic rainbow | |||
/// | |||
typedef struct rainbow_secretkey { | |||
/// | |||
/// seed for generating secret key. | |||
/// Generating S, T, and F for classic rainbow. | |||
/// Generating S and T only for cyclic rainbow. | |||
unsigned char sk_seed[LEN_SKSEED]; | |||
unsigned char s1[_O1_BYTE * _O2]; ///< part of S map | |||
unsigned char t1[_V1_BYTE * _O1]; ///< part of T map | |||
unsigned char t4[_V1_BYTE * _O2]; ///< part of T map | |||
unsigned char t3[_O1_BYTE * _O2]; ///< part of T map | |||
unsigned char l1_F1[_O1_BYTE * N_TRIANGLE_TERMS(_V1)]; ///< part of C-map, F1, Layer1 | |||
unsigned char l1_F2[_O1_BYTE * _V1 * _O1]; ///< part of C-map, F2, Layer1 | |||
unsigned char l2_F1[_O2_BYTE * N_TRIANGLE_TERMS(_V1)]; ///< part of C-map, F1, Layer2 | |||
unsigned char l2_F2[_O2_BYTE * _V1 * _O1]; ///< part of C-map, F2, Layer2 | |||
unsigned char l2_F3[_O2_BYTE * _V1 * _O2]; ///< part of C-map, F3, Layer2 | |||
unsigned char l2_F5[_O2_BYTE * N_TRIANGLE_TERMS(_O1)]; ///< part of C-map, F5, Layer2 | |||
unsigned char l2_F6[_O2_BYTE * _O1 * _O2]; ///< part of C-map, F6, Layer2 | |||
} sk_t; | |||
/// | |||
/// @brief Generate key pairs for classic rainbow. | |||
/// | |||
/// @param[out] pk - the public key. | |||
/// @param[out] sk - the secret key. | |||
/// @param[in] sk_seed - seed for generating the secret key. | |||
/// | |||
void PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_generate_keypair(pk_t *pk, sk_t *sk, const unsigned char *sk_seed); | |||
#endif // _RAINBOW_KEYPAIR_H_ |
@@ -0,0 +1,189 @@ | |||
/// @file rainbow_keypair_computation.c | |||
/// @brief Implementations for functions in rainbow_keypair_computation.h | |||
/// | |||
#include "rainbow_keypair_computation.h" | |||
#include "blas.h" | |||
#include "blas_comm.h" | |||
#include "rainbow_blas.h" | |||
#include "rainbow_keypair.h" | |||
#include <stdint.h> | |||
#include <stdlib.h> | |||
#include <string.h> | |||
void PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_extcpk_to_pk(pk_t *pk, const ext_cpk_t *cpk) { | |||
const unsigned char *idx_l1 = cpk->l1_Q1; | |||
const unsigned char *idx_l2 = cpk->l2_Q1; | |||
for (unsigned int i = 0; i < _V1; i++) { | |||
for (unsigned int j = i; j < _V1; j++) { | |||
unsigned int pub_idx = PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_idx_of_trimat(i, j, _PUB_N); | |||
memcpy(&pk->pk[_PUB_M_BYTE * pub_idx], idx_l1, _O1_BYTE); | |||
memcpy((&pk->pk[_PUB_M_BYTE * pub_idx]) + _O1_BYTE, idx_l2, _O2_BYTE); | |||
idx_l1 += _O1_BYTE; | |||
idx_l2 += _O2_BYTE; | |||
} | |||
} | |||
idx_l1 = cpk->l1_Q2; | |||
idx_l2 = cpk->l2_Q2; | |||
for (unsigned int i = 0; i < _V1; i++) { | |||
for (unsigned int j = _V1; j < _V1 + _O1; j++) { | |||
unsigned int pub_idx = PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_idx_of_trimat(i, j, _PUB_N); | |||
memcpy(&pk->pk[_PUB_M_BYTE * pub_idx], idx_l1, _O1_BYTE); | |||
memcpy((&pk->pk[_PUB_M_BYTE * pub_idx]) + _O1_BYTE, idx_l2, _O2_BYTE); | |||
idx_l1 += _O1_BYTE; | |||
idx_l2 += _O2_BYTE; | |||
} | |||
} | |||
idx_l1 = cpk->l1_Q3; | |||
idx_l2 = cpk->l2_Q3; | |||
for (unsigned int i = 0; i < _V1; i++) { | |||
for (unsigned int j = _V1 + _O1; j < _PUB_N; j++) { | |||
unsigned int pub_idx = PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_idx_of_trimat(i, j, _PUB_N); | |||
memcpy(&pk->pk[_PUB_M_BYTE * pub_idx], idx_l1, _O1_BYTE); | |||
memcpy((&pk->pk[_PUB_M_BYTE * pub_idx]) + _O1_BYTE, idx_l2, _O2_BYTE); | |||
idx_l1 += _O1_BYTE; | |||
idx_l2 += _O2_BYTE; | |||
} | |||
} | |||
idx_l1 = cpk->l1_Q5; | |||
idx_l2 = cpk->l2_Q5; | |||
for (unsigned int i = _V1; i < _V1 + _O1; i++) { | |||
for (unsigned int j = i; j < _V1 + _O1; j++) { | |||
unsigned int pub_idx = PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_idx_of_trimat(i, j, _PUB_N); | |||
memcpy(&pk->pk[_PUB_M_BYTE * pub_idx], idx_l1, _O1_BYTE); | |||
memcpy((&pk->pk[_PUB_M_BYTE * pub_idx]) + _O1_BYTE, idx_l2, _O2_BYTE); | |||
idx_l1 += _O1_BYTE; | |||
idx_l2 += _O2_BYTE; | |||
} | |||
} | |||
idx_l1 = cpk->l1_Q6; | |||
idx_l2 = cpk->l2_Q6; | |||
for (unsigned int i = _V1; i < _V1 + _O1; i++) { | |||
for (unsigned int j = _V1 + _O1; j < _PUB_N; j++) { | |||
unsigned int pub_idx = PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_idx_of_trimat(i, j, _PUB_N); | |||
memcpy(&pk->pk[_PUB_M_BYTE * pub_idx], idx_l1, _O1_BYTE); | |||
memcpy((&pk->pk[_PUB_M_BYTE * pub_idx]) + _O1_BYTE, idx_l2, _O2_BYTE); | |||
idx_l1 += _O1_BYTE; | |||
idx_l2 += _O2_BYTE; | |||
} | |||
} | |||
idx_l1 = cpk->l1_Q9; | |||
idx_l2 = cpk->l2_Q9; | |||
for (unsigned int i = _V1 + _O1; i < _PUB_N; i++) { | |||
for (unsigned int j = i; j < _PUB_N; j++) { | |||
unsigned int pub_idx = PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_idx_of_trimat(i, j, _PUB_N); | |||
memcpy(&pk->pk[_PUB_M_BYTE * pub_idx], idx_l1, _O1_BYTE); | |||
memcpy((&pk->pk[_PUB_M_BYTE * pub_idx]) + _O1_BYTE, idx_l2, _O2_BYTE); | |||
idx_l1 += _O1_BYTE; | |||
idx_l2 += _O2_BYTE; | |||
} | |||
} | |||
} | |||
static void calculate_Q_from_F_ref(ext_cpk_t *Qs, const sk_t *Fs, const sk_t *Ts) { | |||
/* | |||
Layer 1 | |||
Computing : | |||
Q_pk.l1_F1s[i] = F_sk.l1_F1s[i] | |||
Q_pk.l1_F2s[i] = (F1* T1 + F2) + F1tr * t1 | |||
Q_pk.l1_F5s[i] = UT( T1tr* (F1 * T1 + F2) ) | |||
*/ | |||
const unsigned char *t2 = Ts->t4; | |||
memcpy(Qs->l1_Q1, Fs->l1_F1, _O1_BYTE * N_TRIANGLE_TERMS(_V1)); | |||
memcpy(Qs->l1_Q2, Fs->l1_F2, _O1_BYTE * _V1 * _O1); | |||
batch_trimat_madd(Qs->l1_Q2, Fs->l1_F1, Ts->t1, _V1, _V1_BYTE, _O1, _O1_BYTE); // F1*T1 + F2 | |||
memset(Qs->l1_Q3, 0, _O1_BYTE * _V1 * _O2); | |||
memset(Qs->l1_Q5, 0, _O1_BYTE * N_TRIANGLE_TERMS(_O1)); | |||
memset(Qs->l1_Q6, 0, _O1_BYTE * _O1 * _O2); | |||
memset(Qs->l1_Q9, 0, _O1_BYTE * N_TRIANGLE_TERMS(_O2)); | |||
// l1_Q5 : _O1_BYTE * _O1 * _O1 | |||
// l1_Q9 : _O1_BYTE * _O2 * _O2 | |||
// l2_Q5 : _O2_BYTE * _V1 * _O1 | |||
// l2_Q9 : _O2_BYTE * _V1 * _O2 | |||
unsigned char tempQ[_O1_BYTE * _O1 * _O1 + 32]; | |||
memset(tempQ, 0, _O1_BYTE * _O1 * _O1); // l1_Q5 | |||
batch_matTr_madd(tempQ, Ts->t1, _V1, _V1_BYTE, _O1, Qs->l1_Q2, _O1, _O1_BYTE); // t1_tr*(F1*T1 + F2) | |||
PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_UpperTrianglize(Qs->l1_Q5, tempQ, _O1, _O1_BYTE); // UT( ... ) // Q5 | |||
batch_trimatTr_madd(Qs->l1_Q2, Fs->l1_F1, Ts->t1, _V1, _V1_BYTE, _O1, _O1_BYTE); // Q2 | |||
/* | |||
Computing: | |||
F1_T2 = F1 * t2 | |||
F2_T3 = F2 * t3 | |||
F1_F1T_T2 + F2_T3 = F1_T2 + F2_T3 + F1tr * t2 | |||
Q_pk.l1_F3s[i] = F1_F1T_T2 + F2_T3 | |||
Q_pk.l1_F6s[i] = T1tr* ( F1_F1T_T2 + F2_T3 ) + F2tr * t2 | |||
Q_pk.l1_F9s[i] = UT( T2tr* ( F1_T2 + F2_T3 ) ) | |||
*/ | |||
batch_trimat_madd(Qs->l1_Q3, Fs->l1_F1, t2, _V1, _V1_BYTE, _O2, _O1_BYTE); // F1*T2 | |||
batch_mat_madd(Qs->l1_Q3, Fs->l1_F2, _V1, Ts->t3, _O1, _O1_BYTE, _O2, _O1_BYTE); // F1_T2 + F2_T3 | |||
memset(tempQ, 0, _O1_BYTE * _O2 * _O2); // l1_Q9 | |||
batch_matTr_madd(tempQ, t2, _V1, _V1_BYTE, _O2, Qs->l1_Q3, _O2, _O1_BYTE); // T2tr * ( F1_T2 + F2_T3 ) | |||
PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_UpperTrianglize(Qs->l1_Q9, tempQ, _O2, _O1_BYTE); // Q9 | |||
batch_trimatTr_madd(Qs->l1_Q3, Fs->l1_F1, t2, _V1, _V1_BYTE, _O2, _O1_BYTE); // F1_F1T_T2 + F2_T3 // Q3 | |||
batch_bmatTr_madd(Qs->l1_Q6, Fs->l1_F2, _O1, t2, _V1, _V1_BYTE, _O2, _O1_BYTE); // F2tr*T2 | |||
batch_matTr_madd(Qs->l1_Q6, Ts->t1, _V1, _V1_BYTE, _O1, Qs->l1_Q3, _O2, _O1_BYTE); // Q6 | |||
/* | |||
layer 2 | |||
Computing: | |||
Q1 = F1 | |||
Q2 = F1_F1T*T1 + F2 | |||
Q5 = UT( T1tr( F1*T1 + F2 ) + F5 ) | |||
*/ | |||
memcpy(Qs->l2_Q1, Fs->l2_F1, _O2_BYTE * N_TRIANGLE_TERMS(_V1)); | |||
memcpy(Qs->l2_Q2, Fs->l2_F2, _O2_BYTE * _V1 * _O1); | |||
batch_trimat_madd(Qs->l2_Q2, Fs->l2_F1, Ts->t1, _V1, _V1_BYTE, _O1, _O2_BYTE); // F1*T1 + F2 | |||
memcpy(Qs->l2_Q5, Fs->l2_F5, _O2_BYTE * N_TRIANGLE_TERMS(_O1)); | |||
memset(tempQ, 0, _O2_BYTE * _O1 * _O1); // l2_Q5 | |||
batch_matTr_madd(tempQ, Ts->t1, _V1, _V1_BYTE, _O1, Qs->l2_Q2, _O1, _O2_BYTE); // t1_tr*(F1*T1 + F2) | |||
PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_UpperTrianglize(Qs->l2_Q5, tempQ, _O1, _O2_BYTE); // UT( ... ) // Q5 | |||
batch_trimatTr_madd(Qs->l2_Q2, Fs->l2_F1, Ts->t1, _V1, _V1_BYTE, _O1, _O2_BYTE); // Q2 | |||
/* | |||
Computing: | |||
F1_T2 = F1 * t2 | |||
F2_T3 = F2 * t3 | |||
F1_F1T_T2 + F2_T3 = F1_T2 + F2_T3 + F1tr * t2 | |||
Q3 = F1_F1T*T2 + F2*T3 + F3 | |||
Q9 = UT( T2tr*( F1*T2 + F2*T3 + F3 ) + T3tr*( F5*T3 + F6 ) ) | |||
Q6 = T1tr*( F1_F1T*T2 + F2*T3 + F3 ) + F2Tr*T2 + F5_F5T*T3 + F6 | |||
*/ | |||
memcpy(Qs->l2_Q3, Fs->l2_F3, _O2_BYTE * _V1 * _O2); | |||
batch_trimat_madd(Qs->l2_Q3, Fs->l2_F1, t2, _V1, _V1_BYTE, _O2, _O2_BYTE); // F1*T2 + F3 | |||
batch_mat_madd(Qs->l2_Q3, Fs->l2_F2, _V1, Ts->t3, _O1, _O1_BYTE, _O2, _O2_BYTE); // F1_T2 + F2_T3 + F3 | |||
memset(tempQ, 0, _O2_BYTE * _O2 * _O2); // l2_Q9 | |||
batch_matTr_madd(tempQ, t2, _V1, _V1_BYTE, _O2, Qs->l2_Q3, _O2, _O2_BYTE); // T2tr * ( ..... ) | |||
memcpy(Qs->l2_Q6, Fs->l2_F6, _O2_BYTE * _O1 * _O2); | |||
batch_trimat_madd(Qs->l2_Q6, Fs->l2_F5, Ts->t3, _O1, _O1_BYTE, _O2, _O2_BYTE); // F5*T3 + F6 | |||
batch_matTr_madd(tempQ, Ts->t3, _O1, _O1_BYTE, _O2, Qs->l2_Q6, _O2, _O2_BYTE); // T2tr*( ..... ) + T3tr*( ..... ) | |||
memset(Qs->l2_Q9, 0, _O2_BYTE * N_TRIANGLE_TERMS(_O2)); | |||
PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_UpperTrianglize(Qs->l2_Q9, tempQ, _O2, _O2_BYTE); // Q9 | |||
batch_trimatTr_madd(Qs->l2_Q3, Fs->l2_F1, t2, _V1, _V1_BYTE, _O2, _O2_BYTE); // F1_F1T_T2 + F2_T3 + F3 // Q3 | |||
batch_bmatTr_madd(Qs->l2_Q6, Fs->l2_F2, _O1, t2, _V1, _V1_BYTE, _O2, _O2_BYTE); // F5*T3 + F6 + F2tr*T2 | |||
batch_trimatTr_madd(Qs->l2_Q6, Fs->l2_F5, Ts->t3, _O1, _O1_BYTE, _O2, _O2_BYTE); // F2tr*T2 + F5_F5T*T3 + F6 | |||
batch_matTr_madd(Qs->l2_Q6, Ts->t1, _V1, _V1_BYTE, _O1, Qs->l2_Q3, _O2, _O2_BYTE); // Q6 | |||
} | |||
#define calculate_Q_from_F_impl calculate_Q_from_F_ref | |||
void PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_calculate_Q_from_F(ext_cpk_t *Qs, const sk_t *Fs, const sk_t *Ts) { | |||
calculate_Q_from_F_impl(Qs, Fs, Ts); | |||
} |
@@ -0,0 +1,53 @@ | |||
#ifndef _RAINBOW_KEYPAIR_COMP_H_ | |||
#define _RAINBOW_KEYPAIR_COMP_H_ | |||
/// @file rainbow_keypair_computation.h | |||
/// @brief Functions for calculating pk/sk while generating keys. | |||
/// | |||
/// Defining an internal structure of public key. | |||
/// Functions for calculating pk/sk for key generation. | |||
/// | |||
#include "rainbow_keypair.h" | |||
/// @brief The (internal use) public key for rainbow | |||
/// | |||
/// The (internal use) public key for rainbow. The public | |||
/// polynomials are divided into l1_Q1, l1_Q2, ... l1_Q9, | |||
/// l2_Q1, .... , l2_Q9. | |||
/// | |||
typedef struct rainbow_extend_publickey { | |||
unsigned char l1_Q1[_O1_BYTE * N_TRIANGLE_TERMS(_V1)]; | |||
unsigned char l1_Q2[_O1_BYTE * _V1 * _O1]; | |||
unsigned char l1_Q3[_O1_BYTE * _V1 * _O2]; | |||
unsigned char l1_Q5[_O1_BYTE * N_TRIANGLE_TERMS(_O1)]; | |||
unsigned char l1_Q6[_O1_BYTE * _O1 * _O2]; | |||
unsigned char l1_Q9[_O1_BYTE * N_TRIANGLE_TERMS(_O2)]; | |||
unsigned char l2_Q1[_O2_BYTE * N_TRIANGLE_TERMS(_V1)]; | |||
unsigned char l2_Q2[_O2_BYTE * _V1 * _O1]; | |||
unsigned char l2_Q3[_O2_BYTE * _V1 * _O2]; | |||
unsigned char l2_Q5[_O2_BYTE * N_TRIANGLE_TERMS(_O1)]; | |||
unsigned char l2_Q6[_O2_BYTE * _O1 * _O2]; | |||
unsigned char l2_Q9[_O2_BYTE * N_TRIANGLE_TERMS(_O2)]; | |||
} ext_cpk_t; | |||
/// | |||
/// @brief converting formats of public keys : from ext_cpk_t version to pk_t | |||
/// | |||
/// @param[out] pk - the classic public key. | |||
/// @param[in] cpk - the internel public key. | |||
/// | |||
void PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_extcpk_to_pk(pk_t *pk, const ext_cpk_t *cpk); | |||
///////////////////////////////////////////////// | |||
/// | |||
/// @brief Computing public key from secret key | |||
/// | |||
/// @param[out] Qs - the public key | |||
/// @param[in] Fs - parts of the secret key: l1_F1, l1_F2, l2_F1, l2_F2, l2_F3, l2_F5, l2_F6 | |||
/// @param[in] Ts - parts of the secret key: T1, T4, T3 | |||
/// | |||
void PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_calculate_Q_from_F(ext_cpk_t *Qs, const sk_t *Fs, const sk_t *Ts); | |||
#endif // _RAINBOW_KEYPAIR_COMP_H_ |
@@ -0,0 +1,74 @@ | |||
/// @file sign.c | |||
/// @brief the implementations for functions in api.h | |||
/// | |||
/// | |||
#include "api.h" | |||
#include "rainbow.h" | |||
#include "rainbow_config.h" | |||
#include "rainbow_keypair.h" | |||
#include "randombytes.h" | |||
#include "utils_hash.h" | |||
#include <stdlib.h> | |||
#include <string.h> | |||
int PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_crypto_sign_keypair(unsigned char *pk, unsigned char *sk) { | |||
unsigned char sk_seed[LEN_SKSEED] = {0}; | |||
randombytes(sk_seed, LEN_SKSEED); | |||
PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_generate_keypair((pk_t *)pk, (sk_t *)sk, sk_seed); | |||
return 0; | |||
} | |||
int PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_crypto_sign(unsigned char *sm, size_t *smlen, const unsigned char *m, size_t mlen, const unsigned char *sk) { | |||
unsigned char digest[_HASH_LEN]; | |||
PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_hash_msg(digest, _HASH_LEN, m, mlen); | |||
memcpy(sm, m, mlen); | |||
smlen[0] = mlen + _SIGNATURE_BYTE; | |||
return PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_rainbow_sign(sm + mlen, (const sk_t *)sk, digest); | |||
} | |||
int PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_crypto_sign_open(unsigned char *m, size_t *mlen, const unsigned char *sm, size_t smlen, const unsigned char *pk) { | |||
int rc; | |||
if (_SIGNATURE_BYTE > smlen) { | |||
rc = -1; | |||
} else { | |||
*mlen = smlen - _SIGNATURE_BYTE; | |||
unsigned char digest[_HASH_LEN]; | |||
PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_hash_msg(digest, _HASH_LEN, sm, *mlen); | |||
rc = PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_rainbow_verify(digest, sm + mlen[0], (const pk_t *)pk); | |||
} | |||
if (!rc) { | |||
memcpy(m, sm, smlen - _SIGNATURE_BYTE); | |||
} else { // bad signature | |||
*mlen = (size_t) -1; | |||
memset(m, 0, smlen); | |||
} | |||
return rc; | |||
} | |||
int PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_crypto_sign_signature( | |||
uint8_t *sig, size_t *siglen, | |||
const uint8_t *m, size_t mlen, const uint8_t *sk) { | |||
unsigned char digest[_HASH_LEN]; | |||
PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_hash_msg(digest, _HASH_LEN, m, mlen); | |||
*siglen = _SIGNATURE_BYTE; | |||
return PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_rainbow_sign(sig, (const sk_t *)sk, digest); | |||
} | |||
int PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_crypto_sign_verify( | |||
const uint8_t *sig, size_t siglen, | |||
const uint8_t *m, size_t mlen, const uint8_t *pk) { | |||
if (siglen != _SIGNATURE_BYTE) { | |||
return -1; | |||
} | |||
unsigned char digest[_HASH_LEN]; | |||
PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_hash_msg(digest, _HASH_LEN, m, mlen); | |||
return PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_rainbow_verify(digest, sig, (const pk_t *)pk); | |||
} |
@@ -0,0 +1,50 @@ | |||
/// @file utils_hash.c | |||
/// @brief the adapter for SHA2 families. | |||
/// | |||
/// | |||
#include "utils_hash.h" | |||
#include "rainbow_config.h" | |||
#include "sha2.h" | |||
static inline int _hash(unsigned char *digest, const unsigned char *m, size_t mlen) { | |||
sha384(digest, m, mlen); | |||
return 0; | |||
} | |||
static inline int expand_hash(unsigned char *digest, size_t n_digest, const unsigned char *hash) { | |||
if (_HASH_LEN >= n_digest) { | |||
for (size_t i = 0; i < n_digest; i++) { | |||
digest[i] = hash[i]; | |||
} | |||
return 0; | |||
} | |||
for (size_t i = 0; i < _HASH_LEN; i++) { | |||
digest[i] = hash[i]; | |||
} | |||
n_digest -= _HASH_LEN; | |||
while (_HASH_LEN <= n_digest) { | |||
_hash(digest + _HASH_LEN, digest, _HASH_LEN); | |||
n_digest -= _HASH_LEN; | |||
digest += _HASH_LEN; | |||
} | |||
unsigned char temp[_HASH_LEN]; | |||
if (n_digest) { | |||
_hash(temp, digest, _HASH_LEN); | |||
for (size_t i = 0; i < n_digest; i++) { | |||
digest[_HASH_LEN + i] = temp[i]; | |||
} | |||
} | |||
return 0; | |||
} | |||
int PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_hash_msg(unsigned char *digest, | |||
size_t len_digest, | |||
const unsigned char *m, | |||
size_t mlen) { | |||
unsigned char buf[_HASH_LEN]; | |||
_hash(buf, m, mlen); | |||
return expand_hash(digest, len_digest, buf); | |||
} |
@@ -0,0 +1,11 @@ | |||
#ifndef _UTILS_HASH_H_ | |||
#define _UTILS_HASH_H_ | |||
/// @file utils_hash.h | |||
/// @brief the interface for adapting hash functions. | |||
/// | |||
#include <stddef.h> | |||
int PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_hash_msg(unsigned char *digest, size_t len_digest, const unsigned char *m, size_t mlen); | |||
#endif // _UTILS_HASH_H_ |
@@ -0,0 +1,95 @@ | |||
/// @file utils_prng.c | |||
/// @brief The implementation of PRNG related functions. | |||
/// | |||
#include "utils_prng.h" | |||
#include "aes.h" | |||
#include "randombytes.h" | |||
#include "utils_hash.h" | |||
#include <stdlib.h> | |||
#include <string.h> | |||
static void prng_update(const unsigned char *provided_data, | |||
unsigned char *Key, | |||
unsigned char *V) { | |||
unsigned char temp[48]; | |||
aes256ctx ctx; | |||
aes256_keyexp(&ctx, Key); | |||
for (int i = 0; i < 3; i++) { | |||
//increment V | |||
for (int j = 15; j >= 0; j--) { | |||
if (V[j] == 0xff) { | |||
V[j] = 0x00; | |||
} else { | |||
V[j]++; | |||
break; | |||
} | |||
} | |||
aes256_ecb(temp + 16 * i, V, 1, &ctx); | |||
} | |||
if (provided_data != NULL) { | |||
for (int i = 0; i < 48; i++) { | |||
temp[i] ^= provided_data[i]; | |||
} | |||
} | |||
memcpy(Key, temp, 32); | |||
memcpy(V, temp + 32, 16); | |||
} | |||
static void randombytes_init_with_state(prng_t *state, | |||
unsigned char *entropy_input_48bytes) { | |||
memset(state->Key, 0x00, 32); | |||
memset(state->V, 0x00, 16); | |||
prng_update(entropy_input_48bytes, state->Key, state->V); | |||
} | |||
static int randombytes_with_state(prng_t *state, | |||
unsigned char *x, | |||
size_t xlen) { | |||
unsigned char block[16]; | |||
int i = 0; | |||
aes256ctx ctx; | |||
aes256_keyexp(&ctx, state->Key); | |||
while (xlen > 0) { | |||
//increment V | |||
for (int j = 15; j >= 0; j--) { | |||
if (state->V[j] == 0xff) { | |||
state->V[j] = 0x00; | |||
} else { | |||
state->V[j]++; | |||
break; | |||
} | |||
} | |||
aes256_ecb(block, state->V, 1, &ctx); | |||
if (xlen > 15) { | |||
memcpy(x + i, block, 16); | |||
i += 16; | |||
xlen -= 16; | |||
} else { | |||
memcpy(x + i, block, xlen); | |||
xlen = 0; | |||
} | |||
} | |||
prng_update(NULL, state->Key, state->V); | |||
return 0; | |||
} | |||
int PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_prng_set(prng_t *ctx, const void *prng_seed, unsigned long prng_seedlen) { | |||
unsigned char seed[48]; | |||
if (prng_seedlen >= 48) { | |||
memcpy(seed, prng_seed, 48); | |||
} else { | |||
memcpy(seed, prng_seed, prng_seedlen); | |||
PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_hash_msg(seed + prng_seedlen, 48 - (unsigned)prng_seedlen, (const unsigned char *)prng_seed, prng_seedlen); | |||
} | |||
randombytes_init_with_state(ctx, seed); | |||
return 0; | |||
} | |||
int PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_prng_gen(prng_t *ctx, unsigned char *out, unsigned long outlen) { | |||
return randombytes_with_state(ctx, out, outlen); | |||
} |
@@ -0,0 +1,18 @@ | |||
#ifndef _UTILS_PRNG_H_ | |||
#define _UTILS_PRNG_H_ | |||
/// @file utils_prng.h | |||
/// @brief the interface for adapting PRNG functions. | |||
/// | |||
/// | |||
#include "randombytes.h" | |||
typedef struct { | |||
unsigned char Key[32]; | |||
unsigned char V[16]; | |||
} prng_t; | |||
int PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_prng_set(prng_t *ctx, const void *prng_seed, unsigned long prng_seedlen); | |||
int PQCLEAN_RAINBOWIIICCLASSIC_CLEAN_prng_gen(prng_t *ctx, unsigned char *out, unsigned long outlen); | |||
#endif // _UTILS_PRNG_H_ |
@@ -0,0 +1,18 @@ | |||
name: Rainbow-IIIc-cyclic-compressed | |||
type: signature | |||
claimed-nist-level: 3 | |||
length-public-key: 206744 | |||
length-secret-key: 64 | |||
length-signature: 156 | |||
nistkat-sha256: 1ad6d22a9e98c3e05a6aceb5b892dd75908924733aadfe074b6556e1dbd881c0 | |||
testvectors-sha256: 40df2d3b2eb52aada14469c95e6890c486eaf22dcfca9604bbf528a0b7b75070 | |||
principal-submitters: | |||
- Jintai Ding | |||
auxiliary-submitters: | |||
- Ming-Shing Chen | |||
- Albrecht Petzoldt | |||
- Dieter Schmidt | |||
- Bo-Yin Yang | |||
implementations: | |||
- name: clean | |||
version: https://github.com/fast-crypto-lab/rainbow-submission-round2/commit/af826fcb78f6af51a02d0352cff28a9690467bfd |
@@ -0,0 +1,8 @@ | |||
`Software implementation of Rainbow for NIST R2 submission' by Ming-Shing Chen | |||
To the extent possible under law, the person who associated CC0 with | |||
`Software implementation of Rainbow for NIST R2 submission' has waived all copyright and related or neighboring rights | |||
to `Software implementation of Rainbow for NIST R2 submission'. | |||
You should have received a copy of the CC0 legalcode along with this | |||
work. If not, see <http://creativecommons.org/publicdomain/zero/1.0/>. |
@@ -0,0 +1,20 @@ | |||
# This Makefile can be used with GNU Make or BSD Make | |||
LIB=librainbowIIIc-cyclic-compressed_clean.a | |||
HEADERS = api.h blas_comm.h blas.h blas_u32.h gf.h parallel_matrix_op.h rainbow_blas.h rainbow_config.h rainbow.h rainbow_keypair_computation.h rainbow_keypair.h utils_hash.h utils_prng.h | |||
OBJECTS = blas_comm.o parallel_matrix_op.o rainbow.o rainbow_keypair.o rainbow_keypair_computation.o sign.o utils_hash.o utils_prng.o blas_u32.o gf.o | |||
CFLAGS=-O3 -Wall -Wconversion -Wextra -Wpedantic -Wvla -Werror -Wmissing-prototypes -Wredundant-decls -std=c99 -I../../../common $(EXTRAFLAGS) | |||
all: $(LIB) | |||
%.o: %.c $(HEADERS) | |||
$(CC) $(CFLAGS) -c -o $@ $< | |||
$(LIB): $(OBJECTS) | |||
$(AR) -r $@ $(OBJECTS) | |||
clean: | |||
$(RM) $(OBJECTS) | |||
$(RM) $(LIB) |
@@ -0,0 +1,19 @@ | |||
# This Makefile can be used with Microsoft Visual Studio's nmake using the command: | |||
# nmake /f Makefile.Microsoft_nmake | |||
LIBRARY=librainbowIIIc-cyclic-compressed_clean.lib | |||
OBJECTS = blas_comm.obj parallel_matrix_op.obj rainbow.obj rainbow_keypair.obj rainbow_keypair_computation.obj sign.obj utils_hash.obj utils_prng.obj blas_u32.obj gf.obj | |||
CFLAGS=/nologo /I ..\..\..\common /W4 /WX | |||
all: $(LIBRARY) | |||
# Make sure objects are recompiled if headers change. | |||
$(OBJECTS): *.h | |||
$(LIBRARY): $(OBJECTS) | |||
LIB.EXE /NOLOGO /WX /OUT:$@ $** | |||
clean: | |||
-DEL $(OBJECTS) | |||
-DEL $(LIBRARY) |
@@ -0,0 +1,32 @@ | |||
#ifndef PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_API_H | |||
#define PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_API_H | |||
#include <stddef.h> | |||
#include <stdint.h> | |||
#define PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_CRYPTO_SECRETKEYBYTES 64 | |||
#define PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_CRYPTO_PUBLICKEYBYTES 206744 | |||
#define PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_CRYPTO_BYTES 156 | |||
#define PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_CRYPTO_ALGNAME "RAINBOW(256,68,36,36) - cyclic compressed" | |||
int PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_crypto_sign_keypair(uint8_t *pk, uint8_t *sk); | |||
int PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_crypto_sign_signature( | |||
uint8_t *sig, size_t *siglen, | |||
const uint8_t *m, size_t mlen, const uint8_t *sk); | |||
int PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_crypto_sign_verify( | |||
const uint8_t *sig, size_t siglen, | |||
const uint8_t *m, size_t mlen, const uint8_t *pk); | |||
int PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_crypto_sign(uint8_t *sm, size_t *smlen, | |||
const uint8_t *m, size_t mlen, | |||
const uint8_t *sk); | |||
int PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_crypto_sign_open(uint8_t *m, size_t *mlen, | |||
const uint8_t *sm, size_t smlen, | |||
const uint8_t *pk); | |||
#endif |
@@ -0,0 +1,19 @@ | |||
#ifndef _BLAS_H_ | |||
#define _BLAS_H_ | |||
/// @file blas.h | |||
/// @brief Defining the implementations for linear algebra functions depending on the machine architecture. | |||
/// | |||
#include "blas_comm.h" | |||
#include "blas_u32.h" | |||
#include "rainbow_config.h" | |||
#define gf256v_predicated_add PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256v_predicated_add_u32 | |||
#define gf256v_add PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256v_add_u32 | |||
#define gf256v_mul_scalar PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256v_mul_scalar_u32 | |||
#define gf256v_madd PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256v_madd_u32 | |||
#endif // _BLAS_H_ |
@@ -0,0 +1,142 @@ | |||
/// @file blas_comm.c | |||
/// @brief The standard implementations for blas_comm.h | |||
/// | |||
#include "blas_comm.h" | |||
#include "blas.h" | |||
#include "gf.h" | |||
#include "rainbow_config.h" | |||
#include <stdint.h> | |||
#include <string.h> | |||
void PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256v_set_zero(uint8_t *b, unsigned int _num_byte) { | |||
gf256v_add(b, b, _num_byte); | |||
} | |||
/// @brief get an element from GF(256) vector . | |||
/// | |||
/// @param[in] a - the input vector a. | |||
/// @param[in] i - the index in the vector a. | |||
/// @return the value of the element. | |||
/// | |||
uint8_t PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256v_get_ele(const uint8_t *a, unsigned int i) { | |||
return a[i]; | |||
} | |||
unsigned int PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256v_is_zero(const uint8_t *a, unsigned int _num_byte) { | |||
uint8_t r = 0; | |||
while (_num_byte--) { | |||
r |= a[0]; | |||
a++; | |||
} | |||
return (0 == r); | |||
} | |||
/// polynomial multplication | |||
/// School boook | |||
void PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256v_polymul(uint8_t *c, const uint8_t *a, const uint8_t *b, unsigned int _num) { | |||
PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256v_set_zero(c, _num * 2 - 1); | |||
for (unsigned int i = 0; i < _num; i++) { | |||
gf256v_madd(c + i, a, b[i], _num); | |||
} | |||
} | |||
static void gf256mat_prod_ref(uint8_t *c, const uint8_t *matA, unsigned int n_A_vec_byte, unsigned int n_A_width, const uint8_t *b) { | |||
PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256v_set_zero(c, n_A_vec_byte); | |||
for (unsigned int i = 0; i < n_A_width; i++) { | |||
gf256v_madd(c, matA, b[i], n_A_vec_byte); | |||
matA += n_A_vec_byte; | |||
} | |||
} | |||
void PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256mat_mul(uint8_t *c, const uint8_t *a, const uint8_t *b, unsigned int len_vec) { | |||
unsigned int n_vec_byte = len_vec; | |||
for (unsigned int k = 0; k < len_vec; k++) { | |||
PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256v_set_zero(c, n_vec_byte); | |||
const uint8_t *bk = b + n_vec_byte * k; | |||
for (unsigned int i = 0; i < len_vec; i++) { | |||
gf256v_madd(c, a + n_vec_byte * i, bk[i], n_vec_byte); | |||
} | |||
c += n_vec_byte; | |||
} | |||
} | |||
static unsigned int gf256mat_gauss_elim_ref(uint8_t *mat, unsigned int h, unsigned int w) { | |||
unsigned int r8 = 1; | |||
for (unsigned int i = 0; i < h; i++) { | |||
uint8_t *ai = mat + w * i; | |||
unsigned int skip_len_align4 = i & ((unsigned int)~0x3); | |||
for (unsigned int j = i + 1; j < h; j++) { | |||
uint8_t *aj = mat + w * j; | |||
gf256v_predicated_add(ai + skip_len_align4, !PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256_is_nonzero(ai[i]), aj + skip_len_align4, w - skip_len_align4); | |||
} | |||
r8 &= PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256_is_nonzero(ai[i]); | |||
uint8_t pivot = ai[i]; | |||
pivot = PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256_inv(pivot); | |||
gf256v_mul_scalar(ai + skip_len_align4, pivot, w - skip_len_align4); | |||
for (unsigned int j = 0; j < h; j++) { | |||
if (i == j) { | |||
continue; | |||
} | |||
uint8_t *aj = mat + w * j; | |||
gf256v_madd(aj + skip_len_align4, ai + skip_len_align4, aj[i], w - skip_len_align4); | |||
} | |||
} | |||
return r8; | |||
} | |||
static unsigned int gf256mat_solve_linear_eq_ref(uint8_t *sol, const uint8_t *inp_mat, const uint8_t *c_terms, unsigned int n) { | |||
uint8_t mat[64 * 64]; | |||
for (unsigned int i = 0; i < n; i++) { | |||
memcpy(mat + i * (n + 1), inp_mat + i * n, n); | |||
mat[i * (n + 1) + n] = c_terms[i]; | |||
} | |||
unsigned int r8 = PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256mat_gauss_elim(mat, n, n + 1); | |||
for (unsigned int i = 0; i < n; i++) { | |||
sol[i] = mat[i * (n + 1) + n]; | |||
} | |||
return r8; | |||
} | |||
static inline void gf256mat_submat(uint8_t *mat2, unsigned int w2, unsigned int st, const uint8_t *mat, unsigned int w, unsigned int h) { | |||
for (unsigned int i = 0; i < h; i++) { | |||
for (unsigned int j = 0; j < w2; j++) { | |||
mat2[i * w2 + j] = mat[i * w + st + j]; | |||
} | |||
} | |||
} | |||
unsigned int PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256mat_inv(uint8_t *inv_a, const uint8_t *a, unsigned int H, uint8_t *buffer) { | |||
uint8_t *aa = buffer; | |||
for (unsigned int i = 0; i < H; i++) { | |||
uint8_t *ai = aa + i * 2 * H; | |||
PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256v_set_zero(ai, 2 * H); | |||
gf256v_add(ai, a + i * H, H); | |||
ai[H + i] = 1; | |||
} | |||
unsigned int r8 = PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256mat_gauss_elim(aa, H, 2 * H); | |||
gf256mat_submat(inv_a, H, H, aa, 2 * H, H); | |||
return r8; | |||
} | |||
// choosing the implementations depends on the macros _BLAS_AVX2_ and _BLAS_SSE | |||
#define gf256mat_prod_impl gf256mat_prod_ref | |||
#define gf256mat_gauss_elim_impl gf256mat_gauss_elim_ref | |||
#define gf256mat_solve_linear_eq_impl gf256mat_solve_linear_eq_ref | |||
void PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256mat_prod(uint8_t *c, const uint8_t *matA, unsigned int n_A_vec_byte, unsigned int n_A_width, const uint8_t *b) { | |||
gf256mat_prod_impl(c, matA, n_A_vec_byte, n_A_width, b); | |||
} | |||
unsigned int PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256mat_gauss_elim(uint8_t *mat, unsigned int h, unsigned int w) { | |||
return gf256mat_gauss_elim_impl(mat, h, w); | |||
} | |||
unsigned int PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256mat_solve_linear_eq(uint8_t *sol, const uint8_t *inp_mat, const uint8_t *c_terms, unsigned int n) { | |||
return gf256mat_solve_linear_eq_impl(sol, inp_mat, c_terms, n); | |||
} | |||
@@ -0,0 +1,90 @@ | |||
#ifndef _BLAS_COMM_H_ | |||
#define _BLAS_COMM_H_ | |||
/// @file blas_comm.h | |||
/// @brief Common functions for linear algebra. | |||
/// | |||
#include "rainbow_config.h" | |||
#include <stdint.h> | |||
/// @brief set a vector to 0. | |||
/// | |||
/// @param[in,out] b - the vector b. | |||
/// @param[in] _num_byte - number of bytes for the vector b. | |||
/// | |||
void PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256v_set_zero(uint8_t *b, unsigned int _num_byte); | |||
/// @brief get an element from GF(256) vector . | |||
/// | |||
/// @param[in] a - the input vector a. | |||
/// @param[in] i - the index in the vector a. | |||
/// @return the value of the element. | |||
/// | |||
uint8_t PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256v_get_ele(const uint8_t *a, unsigned int i); | |||
/// @brief check if a vector is 0. | |||
/// | |||
/// @param[in] a - the vector a. | |||
/// @param[in] _num_byte - number of bytes for the vector a. | |||
/// @return 1(true) if a is 0. 0(false) else. | |||
/// | |||
unsigned int PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256v_is_zero(const uint8_t *a, unsigned int _num_byte); | |||
/// @brief polynomial multiplication: c = a*b | |||
/// | |||
/// @param[out] c - the output polynomial c | |||
/// @param[in] a - the vector a. | |||
/// @param[in] b - the vector b. | |||
/// @param[in] _num - number of elements for the polynomials a and b. | |||
/// | |||
void PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256v_polymul(uint8_t *c, const uint8_t *a, const uint8_t *b, unsigned int _num); | |||
/// @brief matrix-vector multiplication: c = matA * b , in GF(256) | |||
/// | |||
/// @param[out] c - the output vector c | |||
/// @param[in] matA - a column-major matrix A. | |||
/// @param[in] n_A_vec_byte - the size of column vectors in bytes. | |||
/// @param[in] n_A_width - the width of matrix A. | |||
/// @param[in] b - the vector b. | |||
/// | |||
void PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256mat_prod(uint8_t *c, const uint8_t *matA, unsigned int n_A_vec_byte, unsigned int n_A_width, const uint8_t *b); | |||
/// @brief matrix-matrix multiplication: c = a * b , in GF(256) | |||
/// | |||
/// @param[out] c - the output matrix c | |||
/// @param[in] c - a matrix a. | |||
/// @param[in] b - a matrix b. | |||
/// @param[in] len_vec - the length of column vectors. | |||
/// | |||
void PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256mat_mul(uint8_t *c, const uint8_t *a, const uint8_t *b, unsigned int len_vec); | |||
/// @brief Gauss elimination for a matrix, in GF(256) | |||
/// | |||
/// @param[in,out] mat - the matrix. | |||
/// @param[in] h - the height of the matrix. | |||
/// @param[in] w - the width of the matrix. | |||
/// @return 1(true) if success. 0(false) if the matrix is singular. | |||
/// | |||
unsigned int PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256mat_gauss_elim(uint8_t *mat, unsigned int h, unsigned int w); | |||
/// @brief Solving linear equations, in GF(256) | |||
/// | |||
/// @param[out] sol - the solutions. | |||
/// @param[in] inp_mat - the matrix parts of input equations. | |||
/// @param[in] c_terms - the constant terms of the input equations. | |||
/// @param[in] n - the number of equations. | |||
/// @return 1(true) if success. 0(false) if the matrix is singular. | |||
/// | |||
unsigned int PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256mat_solve_linear_eq(uint8_t *sol, const uint8_t *inp_mat, const uint8_t *c_terms, unsigned int n); | |||
/// @brief Computing the inverse matrix, in GF(256) | |||
/// | |||
/// @param[out] inv_a - the output of matrix a. | |||
/// @param[in] a - a matrix a. | |||
/// @param[in] H - height of matrix a, i.e., matrix a is an HxH matrix. | |||
/// @param[in] buffer - The buffer for computations. it has to be as large as 2 input matrixes. | |||
/// @return 1(true) if success. 0(false) if the matrix is singular. | |||
/// | |||
unsigned int PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256mat_inv(uint8_t *inv_a, const uint8_t *a, unsigned int H, uint8_t *buffer); | |||
#endif // _BLAS_COMM_H_ |
@@ -0,0 +1,87 @@ | |||
#include "blas_u32.h" | |||
#include "gf.h" | |||
void PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256v_predicated_add_u32(uint8_t *accu_b, uint8_t predicate, const uint8_t *a, unsigned int _num_byte) { | |||
uint32_t pr_u32 = ((uint32_t)0) - ((uint32_t)predicate); | |||
uint8_t pr_u8 = pr_u32 & 0xff; | |||
unsigned int n_u32 = _num_byte >> 2; | |||
uint32_t *b_u32 = (uint32_t *)accu_b; | |||
const uint32_t *a_u32 = (const uint32_t *)a; | |||
for (unsigned int i = 0; i < n_u32; i++) { | |||
b_u32[i] ^= (a_u32[i] & pr_u32); | |||
} | |||
a += (n_u32 << 2); | |||
accu_b += (n_u32 << 2); | |||
unsigned int rem = _num_byte & 3; | |||
for (unsigned int i = 0; i < rem; i++) { | |||
accu_b[i] ^= (a[i] & pr_u8); | |||
} | |||
} | |||
void PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256v_add_u32(uint8_t *accu_b, const uint8_t *a, unsigned int _num_byte) { | |||
unsigned int n_u32 = _num_byte >> 2; | |||
uint32_t *b_u32 = (uint32_t *)accu_b; | |||
const uint32_t *a_u32 = (const uint32_t *)a; | |||
for (unsigned int i = 0; i < n_u32; i++) { | |||
b_u32[i] ^= a_u32[i]; | |||
} | |||
a += (n_u32 << 2); | |||
accu_b += (n_u32 << 2); | |||
unsigned int rem = _num_byte & 3; | |||
for (unsigned int i = 0; i < rem; i++) { | |||
accu_b[i] ^= a[i]; | |||
} | |||
} | |||
void PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256v_mul_scalar_u32(uint8_t *a, uint8_t b, unsigned int _num_byte) { | |||
unsigned int n_u32 = _num_byte >> 2; | |||
uint32_t *a_u32 = (uint32_t *)a; | |||
for (unsigned int i = 0; i < n_u32; i++) { | |||
a_u32[i] = PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256v_mul_u32(a_u32[i], b); | |||
} | |||
union tmp_32 { | |||
uint8_t u8[4]; | |||
uint32_t u32; | |||
} t; | |||
t.u32 = 0; | |||
a += (n_u32 << 2); | |||
unsigned int rem = _num_byte & 3; | |||
for (unsigned int i = 0; i < rem; i++) { | |||
t.u8[i] = a[i]; | |||
} | |||
t.u32 = PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256v_mul_u32(t.u32, b); | |||
for (unsigned int i = 0; i < rem; i++) { | |||
a[i] = t.u8[i]; | |||
} | |||
} | |||
void PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256v_madd_u32(uint8_t *accu_c, const uint8_t *a, uint8_t gf256_b, unsigned int _num_byte) { | |||
unsigned int n_u32 = _num_byte >> 2; | |||
uint32_t *c_u32 = (uint32_t *)accu_c; | |||
const uint32_t *a_u32 = (const uint32_t *)a; | |||
for (unsigned int i = 0; i < n_u32; i++) { | |||
c_u32[i] ^= PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256v_mul_u32(a_u32[i], gf256_b); | |||
} | |||
union tmp_32 { | |||
uint8_t u8[4]; | |||
uint32_t u32; | |||
} t; | |||
t.u32 = 0; | |||
accu_c += (n_u32 << 2); | |||
a += (n_u32 << 2); | |||
unsigned int rem = _num_byte & 3; | |||
for (unsigned int i = 0; i < rem; i++) { | |||
t.u8[i] = a[i]; | |||
} | |||
t.u32 = PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256v_mul_u32(t.u32, gf256_b); | |||
for (unsigned int i = 0; i < rem; i++) { | |||
accu_c[i] ^= t.u8[i]; | |||
} | |||
} | |||
@@ -0,0 +1,18 @@ | |||
#ifndef _BLAS_U32_H_ | |||
#define _BLAS_U32_H_ | |||
/// @file blas_u32.h | |||
/// @brief Inlined functions for implementing basic linear algebra functions for uint32 arch. | |||
/// | |||
#include "rainbow_config.h" | |||
#include <stdint.h> | |||
void PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256v_predicated_add_u32(uint8_t *accu_b, uint8_t predicate, const uint8_t *a, unsigned int _num_byte); | |||
void PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256v_add_u32(uint8_t *accu_b, const uint8_t *a, unsigned int _num_byte); | |||
void PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256v_mul_scalar_u32(uint8_t *a, uint8_t b, unsigned int _num_byte); | |||
void PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256v_madd_u32(uint8_t *accu_c, const uint8_t *a, uint8_t gf256_b, unsigned int _num_byte); | |||
#endif // _BLAS_U32_H_ |
@@ -0,0 +1,134 @@ | |||
#include "gf.h" | |||
//// gf4 := gf2[x]/x^2+x+1 | |||
static inline uint8_t gf4_mul_2(uint8_t a) { | |||
uint8_t r = (uint8_t)(a << 1); | |||
r ^= (uint8_t)((a >> 1) * 7); | |||
return r; | |||
} | |||
static inline uint8_t gf4_mul(uint8_t a, uint8_t b) { | |||
uint8_t r = (uint8_t)(a * (b & 1)); | |||
return r ^ (uint8_t)(gf4_mul_2(a) * (b >> 1)); | |||
} | |||
static inline uint8_t gf4_squ(uint8_t a) { | |||
return a ^ (a >> 1); | |||
} | |||
static inline uint32_t gf4v_mul_2_u32(uint32_t a) { | |||
uint32_t bit0 = a & 0x55555555; | |||
uint32_t bit1 = a & 0xaaaaaaaa; | |||
return (bit0 << 1) ^ bit1 ^ (bit1 >> 1); | |||
} | |||
static inline uint32_t gf4v_mul_u32(uint32_t a, uint8_t b) { | |||
uint32_t bit0_b = ((uint32_t)0) - ((uint32_t)(b & 1)); | |||
uint32_t bit1_b = ((uint32_t)0) - ((uint32_t)((b >> 1) & 1)); | |||
return (a & bit0_b) ^ (bit1_b & gf4v_mul_2_u32(a)); | |||
} | |||
//// gf16 := gf4[y]/y^2+y+x | |||
static inline uint8_t gf16_mul(uint8_t a, uint8_t b) { | |||
uint8_t a0 = a & 3; | |||
uint8_t a1 = (a >> 2); | |||
uint8_t b0 = b & 3; | |||
uint8_t b1 = (b >> 2); | |||
uint8_t a0b0 = gf4_mul(a0, b0); | |||
uint8_t a1b1 = gf4_mul(a1, b1); | |||
uint8_t a0b1_a1b0 = gf4_mul(a0 ^ a1, b0 ^ b1) ^ a0b0 ^ a1b1; | |||
uint8_t a1b1_x2 = gf4_mul_2(a1b1); | |||
return (uint8_t)((a0b1_a1b0 ^ a1b1) << 2 ^ a0b0 ^ a1b1_x2); | |||
} | |||
static inline uint8_t gf16_squ(uint8_t a) { | |||
uint8_t a0 = a & 3; | |||
uint8_t a1 = (a >> 2); | |||
a1 = gf4_squ(a1); | |||
uint8_t a1squ_x2 = gf4_mul_2(a1); | |||
return (uint8_t)((a1 << 2) ^ a1squ_x2 ^ gf4_squ(a0)); | |||
} | |||
// gf16 := gf4[y]/y^2+y+x | |||
uint32_t PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf16v_mul_u32(uint32_t a, uint8_t b) { | |||
uint32_t axb0 = gf4v_mul_u32(a, b); | |||
uint32_t axb1 = gf4v_mul_u32(a, b >> 2); | |||
uint32_t a0b1 = (axb1 << 2) & 0xcccccccc; | |||
uint32_t a1b1 = axb1 & 0xcccccccc; | |||
uint32_t a1b1_2 = a1b1 >> 2; | |||
return axb0 ^ a0b1 ^ a1b1 ^ gf4v_mul_2_u32(a1b1_2); | |||
} | |||
uint8_t PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256_is_nonzero(uint8_t a) { | |||
unsigned int a8 = a; | |||
unsigned int r = ((unsigned int)0) - a8; | |||
r >>= 8; | |||
return r & 1; | |||
} | |||
static inline uint8_t gf4_mul_3(uint8_t a) { | |||
uint8_t msk = (uint8_t)((a - 2) >> 1); | |||
return (uint8_t)((msk & ((int)a * 3)) | ((~msk) & ((int)a - 1))); | |||
} | |||
static inline uint8_t gf16_mul_8(uint8_t a) { | |||
uint8_t a0 = a & 3; | |||
uint8_t a1 = a >> 2; | |||
return (uint8_t)((gf4_mul_2(a0 ^ a1) << 2) | gf4_mul_3(a1)); | |||
} | |||
// gf256 := gf16[X]/X^2+X+xy | |||
static inline uint8_t gf256_mul(uint8_t a, uint8_t b) { | |||
uint8_t a0 = a & 15; | |||
uint8_t a1 = (a >> 4); | |||
uint8_t b0 = b & 15; | |||
uint8_t b1 = (b >> 4); | |||
uint8_t a0b0 = gf16_mul(a0, b0); | |||
uint8_t a1b1 = gf16_mul(a1, b1); | |||
uint8_t a0b1_a1b0 = gf16_mul(a0 ^ a1, b0 ^ b1) ^ a0b0 ^ a1b1; | |||
uint8_t a1b1_x8 = gf16_mul_8(a1b1); | |||
return (uint8_t)((a0b1_a1b0 ^ a1b1) << 4 ^ a0b0 ^ a1b1_x8); | |||
} | |||
static inline uint8_t gf256_squ(uint8_t a) { | |||
uint8_t a0 = a & 15; | |||
uint8_t a1 = (a >> 4); | |||
a1 = gf16_squ(a1); | |||
uint8_t a1squ_x8 = gf16_mul_8(a1); | |||
return (uint8_t)((a1 << 4) ^ a1squ_x8 ^ gf16_squ(a0)); | |||
} | |||
uint8_t PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256_inv(uint8_t a) { | |||
// 128+64+32+16+8+4+2 = 254 | |||
uint8_t a2 = gf256_squ(a); | |||
uint8_t a4 = gf256_squ(a2); | |||
uint8_t a8 = gf256_squ(a4); | |||
uint8_t a4_2 = gf256_mul(a4, a2); | |||
uint8_t a8_4_2 = gf256_mul(a4_2, a8); | |||
uint8_t a64_ = gf256_squ(a8_4_2); | |||
a64_ = gf256_squ(a64_); | |||
a64_ = gf256_squ(a64_); | |||
uint8_t a64_2 = gf256_mul(a64_, a8_4_2); | |||
uint8_t a128_ = gf256_squ(a64_2); | |||
return gf256_mul(a2, a128_); | |||
} | |||
static inline uint32_t gf4v_mul_3_u32(uint32_t a) { | |||
uint32_t bit0 = a & 0x55555555; | |||
uint32_t bit1 = a & 0xaaaaaaaa; | |||
return (bit0 << 1) ^ bit0 ^ (bit1 >> 1); | |||
} | |||
static inline uint32_t gf16v_mul_8_u32(uint32_t a) { | |||
uint32_t a1 = a & 0xcccccccc; | |||
uint32_t a0 = (a << 2) & 0xcccccccc; | |||
return gf4v_mul_2_u32(a0 ^ a1) | gf4v_mul_3_u32(a1 >> 2); | |||
} | |||
uint32_t PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256v_mul_u32(uint32_t a, uint8_t b) { | |||
uint32_t axb0 = PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf16v_mul_u32(a, b); | |||
uint32_t axb1 = PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf16v_mul_u32(a, b >> 4); | |||
uint32_t a0b1 = (axb1 << 4) & 0xf0f0f0f0; | |||
uint32_t a1b1 = axb1 & 0xf0f0f0f0; | |||
uint32_t a1b1_4 = a1b1 >> 4; | |||
return axb0 ^ a0b1 ^ a1b1 ^ gf16v_mul_8_u32(a1b1_4); | |||
} |
@@ -0,0 +1,19 @@ | |||
#ifndef _GF16_H_ | |||
#define _GF16_H_ | |||
#include "rainbow_config.h" | |||
#include <stdint.h> | |||
/// @file gf16.h | |||
/// @brief Library for arithmetics in GF(16) and GF(256) | |||
/// | |||
uint32_t PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf16v_mul_u32(uint32_t a, uint8_t b); | |||
uint8_t PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256_is_nonzero(uint8_t a); | |||
uint8_t PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256_inv(uint8_t a); | |||
uint32_t PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256v_mul_u32(uint32_t a, uint8_t b); | |||
#endif // _GF16_H_ |
@@ -0,0 +1,183 @@ | |||
/// @file parallel_matrix_op.c | |||
/// @brief the standard implementations for functions in parallel_matrix_op.h | |||
/// | |||
/// the standard implementations for functions in parallel_matrix_op.h | |||
/// | |||
#include "parallel_matrix_op.h" | |||
#include "blas.h" | |||
#include "blas_comm.h" | |||
/// | |||
/// @brief Calculate the corresponding index in an array for an upper-triangle(UT) matrix. | |||
/// | |||
/// @param[in] i_row - the i-th row in an upper-triangle matrix. | |||
/// @param[in] j_col - the j-th column in an upper-triangle matrix. | |||
/// @param[in] dim - the dimension of the upper-triangle matrix, i.e., an dim x dim matrix. | |||
/// @return the corresponding index in an array storage. | |||
/// | |||
unsigned int PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_idx_of_trimat(unsigned int i_row, unsigned int j_col, unsigned int dim) { | |||
return (dim + dim - i_row + 1) * i_row / 2 + j_col - i_row; | |||
} | |||
/// | |||
/// @brief Calculate the corresponding index in an array for an upper-triangle or lower-triangle matrix. | |||
/// | |||
/// @param[in] i_row - the i-th row in a triangle matrix. | |||
/// @param[in] j_col - the j-th column in a triangle matrix. | |||
/// @param[in] dim - the dimension of the triangle matrix, i.e., an dim x dim matrix. | |||
/// @return the corresponding index in an array storage. | |||
/// | |||
static inline unsigned int idx_of_2trimat(unsigned int i_row, unsigned int j_col, unsigned int n_var) { | |||
if (i_row > j_col) { | |||
return PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_idx_of_trimat(j_col, i_row, n_var); | |||
} | |||
return PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_idx_of_trimat(i_row, j_col, n_var); | |||
} | |||
void PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_UpperTrianglize(unsigned char *btriC, const unsigned char *bA, unsigned int Awidth, unsigned int size_batch) { | |||
unsigned char *runningC = btriC; | |||
unsigned int Aheight = Awidth; | |||
for (unsigned int i = 0; i < Aheight; i++) { | |||
for (unsigned int j = 0; j < i; j++) { | |||
unsigned int idx = PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_idx_of_trimat(j, i, Aheight); | |||
gf256v_add(btriC + idx * size_batch, bA + size_batch * (i * Awidth + j), size_batch); | |||
} | |||
gf256v_add(runningC, bA + size_batch * (i * Awidth + i), size_batch * (Aheight - i)); | |||
runningC += size_batch * (Aheight - i); | |||
} | |||
} | |||
void PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_batch_trimat_madd_gf256(unsigned char *bC, const unsigned char *btriA, | |||
const unsigned char *B, unsigned int Bheight, unsigned int size_Bcolvec, unsigned int Bwidth, unsigned int size_batch) { | |||
unsigned int Awidth = Bheight; | |||
unsigned int Aheight = Awidth; | |||
for (unsigned int i = 0; i < Aheight; i++) { | |||
for (unsigned int j = 0; j < Bwidth; j++) { | |||
for (unsigned int k = 0; k < Bheight; k++) { | |||
if (k < i) { | |||
continue; | |||
} | |||
gf256v_madd(bC, &btriA[(k - i) * size_batch], PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256v_get_ele(&B[j * size_Bcolvec], k), size_batch); | |||
} | |||
bC += size_batch; | |||
} | |||
btriA += (Aheight - i) * size_batch; | |||
} | |||
} | |||
void PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_batch_trimatTr_madd_gf256(unsigned char *bC, const unsigned char *btriA, | |||
const unsigned char *B, unsigned int Bheight, unsigned int size_Bcolvec, unsigned int Bwidth, unsigned int size_batch) { | |||
unsigned int Aheight = Bheight; | |||
for (unsigned int i = 0; i < Aheight; i++) { | |||
for (unsigned int j = 0; j < Bwidth; j++) { | |||
for (unsigned int k = 0; k < Bheight; k++) { | |||
if (i < k) { | |||
continue; | |||
} | |||
gf256v_madd(bC, &btriA[size_batch * (PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_idx_of_trimat(k, i, Aheight))], PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256v_get_ele(&B[j * size_Bcolvec], k), size_batch); | |||
} | |||
bC += size_batch; | |||
} | |||
} | |||
} | |||
void PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_batch_2trimat_madd_gf256(unsigned char *bC, const unsigned char *btriA, | |||
const unsigned char *B, unsigned int Bheight, unsigned int size_Bcolvec, unsigned int Bwidth, unsigned int size_batch) { | |||
unsigned int Aheight = Bheight; | |||
for (unsigned int i = 0; i < Aheight; i++) { | |||
for (unsigned int j = 0; j < Bwidth; j++) { | |||
for (unsigned int k = 0; k < Bheight; k++) { | |||
if (i == k) { | |||
continue; | |||
} | |||
gf256v_madd(bC, &btriA[size_batch * (idx_of_2trimat(i, k, Aheight))], PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256v_get_ele(&B[j * size_Bcolvec], k), size_batch); | |||
} | |||
bC += size_batch; | |||
} | |||
} | |||
} | |||
void PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_batch_matTr_madd_gf256(unsigned char *bC, const unsigned char *A_to_tr, unsigned int Aheight, unsigned int size_Acolvec, unsigned int Awidth, | |||
const unsigned char *bB, unsigned int Bwidth, unsigned int size_batch) { | |||
unsigned int Atr_height = Awidth; | |||
unsigned int Atr_width = Aheight; | |||
for (unsigned int i = 0; i < Atr_height; i++) { | |||
for (unsigned int j = 0; j < Atr_width; j++) { | |||
gf256v_madd(bC, &bB[j * Bwidth * size_batch], PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256v_get_ele(&A_to_tr[size_Acolvec * i], j), size_batch * Bwidth); | |||
} | |||
bC += size_batch * Bwidth; | |||
} | |||
} | |||
void PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_batch_bmatTr_madd_gf256(unsigned char *bC, const unsigned char *bA_to_tr, unsigned int Awidth_before_tr, | |||
const unsigned char *B, unsigned int Bheight, unsigned int size_Bcolvec, unsigned int Bwidth, unsigned int size_batch) { | |||
const unsigned char *bA = bA_to_tr; | |||
unsigned int Aheight = Awidth_before_tr; | |||
for (unsigned int i = 0; i < Aheight; i++) { | |||
for (unsigned int j = 0; j < Bwidth; j++) { | |||
for (unsigned int k = 0; k < Bheight; k++) { | |||
gf256v_madd(bC, &bA[size_batch * (i + k * Aheight)], PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256v_get_ele(&B[j * size_Bcolvec], k), size_batch); | |||
} | |||
bC += size_batch; | |||
} | |||
} | |||
} | |||
void PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_batch_mat_madd_gf256(unsigned char *bC, const unsigned char *bA, unsigned int Aheight, | |||
const unsigned char *B, unsigned int Bheight, unsigned int size_Bcolvec, unsigned int Bwidth, unsigned int size_batch) { | |||
unsigned int Awidth = Bheight; | |||
for (unsigned int i = 0; i < Aheight; i++) { | |||
for (unsigned int j = 0; j < Bwidth; j++) { | |||
for (unsigned int k = 0; k < Bheight; k++) { | |||
gf256v_madd(bC, &bA[k * size_batch], PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256v_get_ele(&B[j * size_Bcolvec], k), size_batch); | |||
} | |||
bC += size_batch; | |||
} | |||
bA += (Awidth) * size_batch; | |||
} | |||
} | |||
void PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_batch_quad_trimat_eval_gf256(unsigned char *y, const unsigned char *trimat, const unsigned char *x, unsigned int dim, unsigned int size_batch) { | |||
unsigned char tmp[256]; | |||
unsigned char _x[256]; | |||
for (unsigned int i = 0; i < dim; i++) { | |||
_x[i] = PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256v_get_ele(x, i); | |||
} | |||
PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256v_set_zero(y, size_batch); | |||
for (unsigned int i = 0; i < dim; i++) { | |||
PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256v_set_zero(tmp, size_batch); | |||
for (unsigned int j = i; j < dim; j++) { | |||
gf256v_madd(tmp, trimat, _x[j], size_batch); | |||
trimat += size_batch; | |||
} | |||
gf256v_madd(y, tmp, _x[i], size_batch); | |||
} | |||
} | |||
void PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_batch_quad_recmat_eval_gf256(unsigned char *z, const unsigned char *y, unsigned int dim_y, const unsigned char *mat, | |||
const unsigned char *x, unsigned dim_x, unsigned size_batch) { | |||
unsigned char tmp[128]; | |||
unsigned char _x[128]; | |||
for (unsigned int i = 0; i < dim_x; i++) { | |||
_x[i] = PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256v_get_ele(x, i); | |||
} | |||
unsigned char _y[128]; | |||
for (unsigned int i = 0; i < dim_y; i++) { | |||
_y[i] = PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256v_get_ele(y, i); | |||
} | |||
PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256v_set_zero(z, size_batch); | |||
for (unsigned int i = 0; i < dim_y; i++) { | |||
PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256v_set_zero(tmp, size_batch); | |||
for (unsigned int j = 0; j < dim_x; j++) { | |||
gf256v_madd(tmp, mat, _x[j], size_batch); | |||
mat += size_batch; | |||
} | |||
gf256v_madd(z, tmp, _y[i], size_batch); | |||
} | |||
} | |||
@@ -0,0 +1,260 @@ | |||
#ifndef _P_MATRIX_OP_H_ | |||
#define _P_MATRIX_OP_H_ | |||
/// @file parallel_matrix_op.h | |||
/// @brief Librarys for operations of batched matrixes. | |||
/// | |||
/// | |||
//////////////// Section: triangle matrix <-> rectangle matrix /////////////////////////////////// | |||
/// | |||
/// @brief Calculate the corresponding index in an array for an upper-triangle(UT) matrix. | |||
/// | |||
/// @param[in] i_row - the i-th row in an upper-triangle matrix. | |||
/// @param[in] j_col - the j-th column in an upper-triangle matrix. | |||
/// @param[in] dim - the dimension of the upper-triangle matrix, i.e., an dim x dim matrix. | |||
/// @return the corresponding index in an array storage. | |||
/// | |||
unsigned int PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_idx_of_trimat(unsigned int i_row, unsigned int j_col, unsigned int dim); | |||
/// | |||
/// @brief Upper trianglize a rectangle matrix to the corresponding upper-trangle matrix. | |||
/// | |||
/// @param[out] btriC - the batched upper-trianglized matrix C. | |||
/// @param[in] bA - a batched retangle matrix A. | |||
/// @param[in] bwidth - the width of the batched matrix A, i.e., A is a Awidth x Awidth matrix. | |||
/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix. | |||
/// | |||
void PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_UpperTrianglize(unsigned char *btriC, const unsigned char *bA, unsigned int Awidth, unsigned int size_batch); | |||
//////////////////// Section: matrix multiplications /////////////////////////////// | |||
/// | |||
/// @brief bC += btriA * B , in GF(16) | |||
/// | |||
/// @param[out] bC - the batched matrix C. | |||
/// @param[in] btriA - a batched UT matrix A. | |||
/// @param[in] B - a column-major matrix B. | |||
/// @param[in] Bheight - the height of B. | |||
/// @param[in] size_Bcolvec - the size of the column vector in B. | |||
/// @param[in] Bwidth - the width of B. | |||
/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix. | |||
/// | |||
void PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_batch_trimat_madd_gf16(unsigned char *bC, const unsigned char *btriA, | |||
const unsigned char *B, unsigned int Bheight, unsigned int size_Bcolvec, unsigned int Bwidth, unsigned int size_batch); | |||
/// | |||
/// @brief bC += btriA * B , in GF(256) | |||
/// | |||
/// @param[out] bC - the batched matrix C. | |||
/// @param[in] btriA - a batched UT matrix A. | |||
/// @param[in] B - a column-major matrix B. | |||
/// @param[in] Bheight - the height of B. | |||
/// @param[in] size_Bcolvec - the size of the column vector in B. | |||
/// @param[in] Bwidth - the width of B. | |||
/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix. | |||
/// | |||
void PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_batch_trimat_madd_gf256(unsigned char *bC, const unsigned char *btriA, | |||
const unsigned char *B, unsigned int Bheight, unsigned int size_Bcolvec, unsigned int Bwidth, unsigned int size_batch); | |||
/// | |||
/// @brief bC += btriA^Tr * B , in GF(16) | |||
/// | |||
/// @param[out] bC - the batched matrix C. | |||
/// @param[in] btriA - a batched UT matrix A. A will be transposed while multiplying. | |||
/// @param[in] B - a column-major matrix B. | |||
/// @param[in] Bheight - the height of B. | |||
/// @param[in] size_Bcolvec - the size of the column vector in B. | |||
/// @param[in] Bwidth - the width of B. | |||
/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix. | |||
/// | |||
void PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_batch_trimatTr_madd_gf16(unsigned char *bC, const unsigned char *btriA, | |||
const unsigned char *B, unsigned int Bheight, unsigned int size_Bcolvec, unsigned int Bwidth, unsigned int size_batch); | |||
/// | |||
/// @brief bC += btriA^Tr * B , in GF(256) | |||
/// | |||
/// @param[out] bC - the batched matrix C. | |||
/// @param[in] btriA - a batched UT matrix A, which will be transposed while multiplying. | |||
/// @param[in] B - a column-major matrix B. | |||
/// @param[in] Bheight - the height of B. | |||
/// @param[in] size_Bcolvec - the size of the column vector in B. | |||
/// @param[in] Bwidth - the width of B. | |||
/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix. | |||
/// | |||
void PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_batch_trimatTr_madd_gf256(unsigned char *bC, const unsigned char *btriA, | |||
const unsigned char *B, unsigned int Bheight, unsigned int size_Bcolvec, unsigned int Bwidth, unsigned int size_batch); | |||
/// | |||
/// @brief bC += (btriA + btriA^Tr) *B , in GF(16) | |||
/// | |||
/// @param[out] bC - the batched matrix C. | |||
/// @param[in] btriA - a batched UT matrix A. The operand for multiplication is (btriA + btriA^Tr). | |||
/// @param[in] B - a column-major matrix B. | |||
/// @param[in] Bheight - the height of B. | |||
/// @param[in] size_Bcolvec - the size of the column vector in B. | |||
/// @param[in] Bwidth - the width of B. | |||
/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix. | |||
/// | |||
void PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_batch_2trimat_madd_gf16(unsigned char *bC, const unsigned char *btriA, | |||
const unsigned char *B, unsigned int Bheight, unsigned int size_Bcolvec, unsigned int Bwidth, unsigned int size_batch); | |||
/// | |||
/// @brief bC += (btriA + btriA^Tr) *B , in GF(256) | |||
/// | |||
/// @param[out] bC - the batched matrix C. | |||
/// @param[in] btriA - a batched UT matrix A. The operand for multiplication is (btriA + btriA^Tr). | |||
/// @param[in] B - a column-major matrix B. | |||
/// @param[in] Bheight - the height of B. | |||
/// @param[in] size_Bcolvec - the size of the column vector in B. | |||
/// @param[in] Bwidth - the width of B. | |||
/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix. | |||
/// | |||
void PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_batch_2trimat_madd_gf256(unsigned char *bC, const unsigned char *btriA, | |||
const unsigned char *B, unsigned int Bheight, unsigned int size_Bcolvec, unsigned int Bwidth, unsigned int size_batch); | |||
/// | |||
/// @brief bC += A^Tr * bB , in GF(16) | |||
/// | |||
/// @param[out] bC - the batched matrix C. | |||
/// @param[in] A_to_tr - a column-major matrix A. The operand for multiplication is A^Tr. | |||
/// @param[in] Aheight - the height of A. | |||
/// @param[in] size_Acolvec - the size of a column vector in A. | |||
/// @param[in] Awidth - the width of A. | |||
/// @param[in] bB - a batched matrix B. | |||
/// @param[in] Bwidth - the width of B. | |||
/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix. | |||
/// | |||
void PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_batch_matTr_madd_gf16(unsigned char *bC, | |||
const unsigned char *A_to_tr, unsigned int Aheight, unsigned int size_Acolvec, unsigned int Awidth, | |||
const unsigned char *bB, unsigned int Bwidth, unsigned int size_batch); | |||
/// | |||
/// @brief bC += A^Tr * bB , in GF(256) | |||
/// | |||
/// @param[out] bC - the batched matrix C. | |||
/// @param[in] A_to_tr - a column-major matrix A. The operand for multiplication is A^Tr. | |||
/// @param[in] Aheight - the height of A. | |||
/// @param[in] size_Acolvec - the size of a column vector in A. | |||
/// @param[in] Awidth - the width of A. | |||
/// @param[in] bB - a batched matrix B. | |||
/// @param[in] Bwidth - the width of B. | |||
/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix. | |||
/// | |||
void PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_batch_matTr_madd_gf256(unsigned char *bC, | |||
const unsigned char *A_to_tr, unsigned int Aheight, unsigned int size_Acolvec, unsigned int Awidth, | |||
const unsigned char *bB, unsigned int Bwidth, unsigned int size_batch); | |||
/// | |||
/// @brief bC += bA^Tr * B , in GF(16) | |||
/// | |||
/// @param[out] bC - the batched matrix C. | |||
/// @param[in] bA_to_tr - a batched matrix A. The operand for multiplication is (bA^Tr). | |||
/// @param[in] Awidth_befor_tr - the width of A. | |||
/// @param[in] B - a column-major matrix B. | |||
/// @param[in] Bheight - the height of B. | |||
/// @param[in] size_Bcolvec - the size of the column vector in B. | |||
/// @param[in] Bwidth - the width of B. | |||
/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix. | |||
/// | |||
void PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_batch_bmatTr_madd_gf16(unsigned char *bC, const unsigned char *bA_to_tr, unsigned int Awidth_before_tr, | |||
const unsigned char *B, unsigned int Bheight, unsigned int size_Bcolvec, unsigned int Bwidth, unsigned int size_batch); | |||
/// | |||
/// @brief bC += bA^Tr * B , in GF(256) | |||
/// | |||
/// @param[out] bC - the batched matrix C. | |||
/// @param[in] bA_to_tr - a batched matrix A. The operand for multiplication is (bA^Tr). | |||
/// @param[in] Awidth_befor_tr - the width of A. | |||
/// @param[in] B - a column-major matrix B. | |||
/// @param[in] Bheight - the height of B. | |||
/// @param[in] size_Bcolvec - the size of the column vector in B. | |||
/// @param[in] Bwidth - the width of B. | |||
/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix. | |||
/// | |||
void PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_batch_bmatTr_madd_gf256(unsigned char *bC, const unsigned char *bA_to_tr, unsigned int Awidth_before_tr, | |||
const unsigned char *B, unsigned int Bheight, unsigned int size_Bcolvec, unsigned int Bwidth, unsigned int size_batch); | |||
/// | |||
/// @brief bC += bA * B , in GF(16) | |||
/// | |||
/// @param[out] bC - the batched matrix C. | |||
/// @param[in] bA - a batched matrix A. | |||
/// @param[in] Aheigh - the height of A. | |||
/// @param[in] B - a column-major matrix B. | |||
/// @param[in] Bheight - the height of B. | |||
/// @param[in] size_Bcolvec - the size of the column vector in B. | |||
/// @param[in] Bwidth - the width of B. | |||
/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix. | |||
/// | |||
void PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_batch_mat_madd_gf16(unsigned char *bC, const unsigned char *bA, unsigned int Aheight, | |||
const unsigned char *B, unsigned int Bheight, unsigned int size_Bcolvec, unsigned int Bwidth, unsigned int size_batch); | |||
/// | |||
/// @brief bC += bA * B , in GF(256) | |||
/// | |||
/// @param[out] bC - the batched matrix C. | |||
/// @param[in] bA - a batched matrix A. | |||
/// @param[in] Aheigh - the height of A. | |||
/// @param[in] B - a column-major matrix B. | |||
/// @param[in] Bheight - the height of B. | |||
/// @param[in] size_Bcolvec - the size of the column vector in B. | |||
/// @param[in] Bwidth - the width of B. | |||
/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix. | |||
/// | |||
void PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_batch_mat_madd_gf256(unsigned char *bC, const unsigned char *bA, unsigned int Aheight, | |||
const unsigned char *B, unsigned int Bheight, unsigned int size_Bcolvec, unsigned int Bwidth, unsigned int size_batch); | |||
//////////////////// Section: "quadratric" matrix evaluation /////////////////////////////// | |||
/// | |||
/// @brief y = x^Tr * trimat * x , in GF(16) | |||
/// | |||
/// @param[out] y - the returned batched element y. | |||
/// @param[in] trimat - a batched matrix. | |||
/// @param[in] x - an input vector x. | |||
/// @param[in] dim - the dimension of matrix trimat (and x). | |||
/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix. | |||
/// | |||
void PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_batch_quad_trimat_eval_gf16(unsigned char *y, const unsigned char *trimat, const unsigned char *x, unsigned int dim, unsigned int size_batch); | |||
/// | |||
/// @brief y = x^Tr * trimat * x , in GF(256) | |||
/// | |||
/// @param[out] y - the returned batched element y. | |||
/// @param[in] trimat - a batched matrix. | |||
/// @param[in] x - an input vector x. | |||
/// @param[in] dim - the dimension of matrix trimat (and x). | |||
/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix. | |||
/// | |||
void PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_batch_quad_trimat_eval_gf256(unsigned char *y, const unsigned char *trimat, const unsigned char *x, unsigned int dim, unsigned int size_batch); | |||
/// | |||
/// @brief z = y^Tr * mat * x , in GF(16) | |||
/// | |||
/// @param[out] z - the returned batched element z. | |||
/// @param[in] y - an input vector y. | |||
/// @param[in] dim_y - the length of y. | |||
/// @param[in] mat - a batched matrix. | |||
/// @param[in] x - an input vector x. | |||
/// @param[in] dim_x - the length of x. | |||
/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix. | |||
/// | |||
void PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_batch_quad_recmat_eval_gf16(unsigned char *z, const unsigned char *y, unsigned int dim_y, | |||
const unsigned char *mat, const unsigned char *x, unsigned int dim_x, unsigned int size_batch); | |||
/// | |||
/// @brief z = y^Tr * mat * x , in GF(256) | |||
/// | |||
/// @param[out] z - the returned batched element z. | |||
/// @param[in] y - an input vector y. | |||
/// @param[in] dim_y - the length of y. | |||
/// @param[in] mat - a batched matrix. | |||
/// @param[in] x - an input vector x. | |||
/// @param[in] dim_x - the length of x. | |||
/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix. | |||
/// | |||
void PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_batch_quad_recmat_eval_gf256(unsigned char *z, const unsigned char *y, unsigned int dim_y, | |||
const unsigned char *mat, const unsigned char *x, unsigned int dim_x, unsigned int size_batch); | |||
#endif // _P_MATRIX_OP_H_ |
@@ -0,0 +1,180 @@ | |||
/// @file rainbow.c | |||
/// @brief The standard implementations for functions in rainbow.h | |||
/// | |||
#include "rainbow.h" | |||
#include "blas.h" | |||
#include "rainbow_blas.h" | |||
#include "rainbow_config.h" | |||
#include "rainbow_keypair.h" | |||
#include "utils_hash.h" | |||
#include "utils_prng.h" | |||
#include <stdint.h> | |||
#include <stdlib.h> | |||
#include <string.h> | |||
#define MAX_ATTEMPT_FRMAT 128 | |||
#define _MAX_O ((_O1 > _O2) ? _O1 : _O2) | |||
#define _MAX_O_BYTE ((_O1_BYTE > _O2_BYTE) ? _O1_BYTE : _O2_BYTE) | |||
int PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_rainbow_sign(uint8_t *signature, const sk_t *sk, const uint8_t *_digest) { | |||
uint8_t mat_l1[_O1 * _O1_BYTE]; | |||
uint8_t mat_l2[_O2 * _O2_BYTE]; | |||
uint8_t mat_buffer[2 * _MAX_O * _MAX_O_BYTE]; | |||
// setup PRNG | |||
prng_t prng_sign; | |||
uint8_t prng_preseed[LEN_SKSEED + _HASH_LEN]; | |||
memcpy(prng_preseed, sk->sk_seed, LEN_SKSEED); | |||
memcpy(prng_preseed + LEN_SKSEED, _digest, _HASH_LEN); // prng_preseed = sk_seed || digest | |||
uint8_t prng_seed[_HASH_LEN]; | |||
PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_hash_msg(prng_seed, _HASH_LEN, prng_preseed, _HASH_LEN + LEN_SKSEED); | |||
PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_prng_set(&prng_sign, prng_seed, _HASH_LEN); // seed = H( sk_seed || digest ) | |||
for (unsigned int i = 0; i < LEN_SKSEED + _HASH_LEN; i++) { | |||
prng_preseed[i] ^= prng_preseed[i]; // clean | |||
} | |||
for (unsigned int i = 0; i < _HASH_LEN; i++) { | |||
prng_seed[i] ^= prng_seed[i]; // clean | |||
} | |||
// roll vinegars. | |||
uint8_t vinegar[_V1_BYTE]; | |||
unsigned int n_attempt = 0; | |||
unsigned int l1_succ = 0; | |||
while (!l1_succ) { | |||
if (MAX_ATTEMPT_FRMAT <= n_attempt) { | |||
break; | |||
} | |||
PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_prng_gen(&prng_sign, vinegar, _V1_BYTE); // generating vinegars | |||
gfmat_prod(mat_l1, sk->l1_F2, _O1 * _O1_BYTE, _V1, vinegar); // generating the linear equations for layer 1 | |||
l1_succ = gfmat_inv(mat_l1, mat_l1, _O1, mat_buffer); // check if the linear equation solvable | |||
n_attempt++; | |||
} | |||
// Given the vinegars, pre-compute variables needed for layer 2 | |||
uint8_t r_l1_F1[_O1_BYTE] = {0}; | |||
uint8_t r_l2_F1[_O2_BYTE] = {0}; | |||
batch_quad_trimat_eval(r_l1_F1, sk->l1_F1, vinegar, _V1, _O1_BYTE); | |||
batch_quad_trimat_eval(r_l2_F1, sk->l2_F1, vinegar, _V1, _O2_BYTE); | |||
uint8_t mat_l2_F3[_O2 * _O2_BYTE]; | |||
uint8_t mat_l2_F2[_O1 * _O2_BYTE]; | |||
gfmat_prod(mat_l2_F3, sk->l2_F3, _O2 * _O2_BYTE, _V1, vinegar); | |||
gfmat_prod(mat_l2_F2, sk->l2_F2, _O1 * _O2_BYTE, _V1, vinegar); | |||
// Some local variables. | |||
uint8_t _z[_PUB_M_BYTE]; | |||
uint8_t y[_PUB_M_BYTE]; | |||
uint8_t *x_v1 = vinegar; | |||
uint8_t x_o1[_O1_BYTE]; | |||
uint8_t x_o2[_O1_BYTE]; | |||
uint8_t digest_salt[_HASH_LEN + _SALT_BYTE]; | |||
memcpy(digest_salt, _digest, _HASH_LEN); | |||
uint8_t *salt = digest_salt + _HASH_LEN; | |||
uint8_t temp_o[_MAX_O_BYTE + 32] = {0}; | |||
unsigned int succ = 0; | |||
while (!succ) { | |||
if (MAX_ATTEMPT_FRMAT <= n_attempt) { | |||
break; | |||
} | |||
// The computation: H(digest||salt) --> z --S--> y --C-map--> x --T--> w | |||
PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_prng_gen(&prng_sign, salt, _SALT_BYTE); // roll the salt | |||
PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_hash_msg(_z, _PUB_M_BYTE, digest_salt, _HASH_LEN + _SALT_BYTE); // H(digest||salt) | |||
// y = S^-1 * z | |||
memcpy(y, _z, _PUB_M_BYTE); // identity part of S | |||
gfmat_prod(temp_o, sk->s1, _O1_BYTE, _O2, _z + _O1_BYTE); | |||
gf256v_add(y, temp_o, _O1_BYTE); | |||
// Central Map: | |||
// layer 1: calculate x_o1 | |||
memcpy(temp_o, r_l1_F1, _O1_BYTE); | |||
gf256v_add(temp_o, y, _O1_BYTE); | |||
gfmat_prod(x_o1, mat_l1, _O1_BYTE, _O1, temp_o); | |||
// layer 2: calculate x_o2 | |||
PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256v_set_zero(temp_o, _O2_BYTE); | |||
gfmat_prod(temp_o, mat_l2_F2, _O2_BYTE, _O1, x_o1); // F2 | |||
batch_quad_trimat_eval(mat_l2, sk->l2_F5, x_o1, _O1, _O2_BYTE); // F5 | |||
gf256v_add(temp_o, mat_l2, _O2_BYTE); | |||
gf256v_add(temp_o, r_l2_F1, _O2_BYTE); // F1 | |||
gf256v_add(temp_o, y + _O1_BYTE, _O2_BYTE); | |||
// generate the linear equations of the 2nd layer | |||
gfmat_prod(mat_l2, sk->l2_F6, _O2 * _O2_BYTE, _O1, x_o1); // F6 | |||
gf256v_add(mat_l2, mat_l2_F3, _O2 * _O2_BYTE); // F3 | |||
succ = gfmat_inv(mat_l2, mat_l2, _O2, mat_buffer); | |||
gfmat_prod(x_o2, mat_l2, _O2_BYTE, _O2, temp_o); // solve l2 eqs | |||
n_attempt++; | |||
}; | |||
// w = T^-1 * y | |||
uint8_t w[_PUB_N_BYTE]; | |||
// identity part of T. | |||
memcpy(w, x_v1, _V1_BYTE); | |||
memcpy(w + _V1_BYTE, x_o1, _O1_BYTE); | |||
memcpy(w + _V2_BYTE, x_o2, _O2_BYTE); | |||
// Computing the t1 part. | |||
gfmat_prod(y, sk->t1, _V1_BYTE, _O1, x_o1); | |||
gf256v_add(w, y, _V1_BYTE); | |||
// Computing the t4 part. | |||
gfmat_prod(y, sk->t4, _V1_BYTE, _O2, x_o2); | |||
gf256v_add(w, y, _V1_BYTE); | |||
// Computing the t3 part. | |||
gfmat_prod(y, sk->t3, _O1_BYTE, _O2, x_o2); | |||
gf256v_add(w + _V1_BYTE, y, _O1_BYTE); | |||
memset(signature, 0, _SIGNATURE_BYTE); // set the output 0 | |||
// clean | |||
memset(&prng_sign, 0, sizeof(prng_t)); | |||
memset(vinegar, 0, _V1_BYTE); | |||
memset(r_l1_F1, 0, _O1_BYTE); | |||
memset(r_l2_F1, 0, _O2_BYTE); | |||
memset(_z, 0, _PUB_M_BYTE); | |||
memset(y, 0, _PUB_M_BYTE); | |||
memset(x_o1, 0, _O1_BYTE); | |||
memset(x_o2, 0, _O2_BYTE); | |||
memset(temp_o, 0, sizeof(temp_o)); | |||
// return: copy w and salt to the signature. | |||
if (MAX_ATTEMPT_FRMAT <= n_attempt) { | |||
return -1; | |||
} | |||
gf256v_add(signature, w, _PUB_N_BYTE); | |||
gf256v_add(signature + _PUB_N_BYTE, salt, _SALT_BYTE); | |||
return 0; | |||
} | |||
int PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_rainbow_verify(const uint8_t *digest, const uint8_t *signature, const pk_t *pk) { | |||
unsigned char digest_ck[_PUB_M_BYTE]; | |||
// public_map( digest_ck , pk , signature ); Evaluating the quadratic public polynomials. | |||
batch_quad_trimat_eval(digest_ck, pk->pk, signature, _PUB_N, _PUB_M_BYTE); | |||
unsigned char correct[_PUB_M_BYTE]; | |||
unsigned char digest_salt[_HASH_LEN + _SALT_BYTE]; | |||
memcpy(digest_salt, digest, _HASH_LEN); | |||
memcpy(digest_salt + _HASH_LEN, signature + _PUB_N_BYTE, _SALT_BYTE); | |||
PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_hash_msg(correct, _PUB_M_BYTE, digest_salt, _HASH_LEN + _SALT_BYTE); // H( digest || salt ) | |||
// check consistancy. | |||
unsigned char cc = 0; | |||
for (unsigned int i = 0; i < _PUB_M_BYTE; i++) { | |||
cc |= (digest_ck[i] ^ correct[i]); | |||
} | |||
return (0 == cc) ? 0 : -1; | |||
} | |||
/////////////// cyclic version /////////////////////////// | |||
int PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_rainbow_sign_cyclic(uint8_t *signature, const csk_t *csk, const uint8_t *digest) { | |||
unsigned char sk[sizeof(sk_t) + 32]; | |||
PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_generate_secretkey_cyclic((sk_t *)sk, csk->pk_seed, csk->sk_seed); // generating classic secret key. | |||
return PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_rainbow_sign(signature, (sk_t *)sk, digest); | |||
} | |||
int PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_rainbow_verify_cyclic(const uint8_t *digest, const uint8_t *signature, const cpk_t *_pk) { | |||
unsigned char pk[sizeof(pk_t) + 32]; | |||
PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_cpk_to_pk((pk_t *)pk, _pk); // generating classic public key. | |||
return PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_rainbow_verify(digest, signature, (pk_t *)pk); | |||
} |
@@ -0,0 +1,50 @@ | |||
#ifndef _RAINBOW_H_ | |||
#define _RAINBOW_H_ | |||
/// @file rainbow.h | |||
/// @brief APIs for rainbow. | |||
/// | |||
#include "rainbow_config.h" | |||
#include "rainbow_keypair.h" | |||
#include <stdint.h> | |||
/// | |||
/// @brief Signing function for classical secret key. | |||
/// | |||
/// @param[out] signature - the signature. | |||
/// @param[in] sk - the secret key. | |||
/// @param[in] digest - the digest. | |||
/// | |||
int PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_rainbow_sign(uint8_t *signature, const sk_t *sk, const uint8_t *digest); | |||
/// | |||
/// @brief Verifying function. | |||
/// | |||
/// @param[in] digest - the digest. | |||
/// @param[in] signature - the signature. | |||
/// @param[in] pk - the public key. | |||
/// @return 0 for successful verified. -1 for failed verification. | |||
/// | |||
int PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_rainbow_verify(const uint8_t *digest, const uint8_t *signature, const pk_t *pk); | |||
/// | |||
/// @brief Signing function for compressed secret key of the cyclic rainbow. | |||
/// | |||
/// @param[out] signature - the signature. | |||
/// @param[in] sk - the compressed secret key. | |||
/// @param[in] digest - the digest. | |||
/// | |||
int PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_rainbow_sign_cyclic(uint8_t *signature, const csk_t *sk, const uint8_t *digest); | |||
/// | |||
/// @brief Verifying function for cyclic public keys. | |||
/// | |||
/// @param[in] digest - the digest. | |||
/// @param[in] signature - the signature. | |||
/// @param[in] pk - the public key of cyclic rainbow. | |||
/// @return 0 for successful verified. -1 for failed verification. | |||
/// | |||
int PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_rainbow_verify_cyclic(const uint8_t *digest, const uint8_t *signature, const cpk_t *pk); | |||
#endif // _RAINBOW_H_ |
@@ -0,0 +1,31 @@ | |||
#ifndef _RAINBOW_BLAS_H_ | |||
#define _RAINBOW_BLAS_H_ | |||
/// @file rainbow_blas.h | |||
/// @brief Defining the functions used in rainbow.c acconding to the definitions in rainbow_config.h | |||
/// | |||
/// Defining the functions used in rainbow.c acconding to the definitions in rainbow_config.h | |||
#include "blas.h" | |||
#include "parallel_matrix_op.h" | |||
#include "rainbow_config.h" | |||
#define gfv_get_ele PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256v_get_ele | |||
#define gfv_mul_scalar PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256v_mul_scalar | |||
#define gfv_madd PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256v_madd | |||
#define gfmat_prod PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256mat_prod | |||
#define gfmat_inv PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_gf256mat_inv | |||
#define batch_trimat_madd PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_batch_trimat_madd_gf256 | |||
#define batch_trimatTr_madd PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_batch_trimatTr_madd_gf256 | |||
#define batch_2trimat_madd PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_batch_2trimat_madd_gf256 | |||
#define batch_matTr_madd PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_batch_matTr_madd_gf256 | |||
#define batch_bmatTr_madd PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_batch_bmatTr_madd_gf256 | |||
#define batch_mat_madd PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_batch_mat_madd_gf256 | |||
#define batch_quad_trimat_eval PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_batch_quad_trimat_eval_gf256 | |||
#define batch_quad_recmat_eval PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_batch_quad_recmat_eval_gf256 | |||
#endif // _RAINBOW_BLAS_H_ |
@@ -0,0 +1,46 @@ | |||
#ifndef _H_RAINBOW_CONFIG_H_ | |||
#define _H_RAINBOW_CONFIG_H_ | |||
/// @file rainbow_config.h | |||
/// @brief Defining the parameters of the Rainbow and the corresponding constants. | |||
/// | |||
#define _GFSIZE 256 | |||
#define _V1 68 | |||
#define _O1 36 | |||
#define _O2 36 | |||
#define _HASH_LEN 48 | |||
#define _V2 ((_V1) + (_O1)) | |||
/// size of N, in # of gf elements. | |||
#define _PUB_N (_V1 + _O1 + _O2) | |||
/// size of M, in # gf elements. | |||
#define _PUB_M (_O1 + _O2) | |||
/// size of variables, in # bytes. | |||
// GF256 | |||
#define _V1_BYTE (_V1) | |||
#define _V2_BYTE (_V2) | |||
#define _O1_BYTE (_O1) | |||
#define _O2_BYTE (_O2) | |||
#define _PUB_N_BYTE (_PUB_N) | |||
#define _PUB_M_BYTE (_PUB_M) | |||
/// length of seed for public key, in # bytes | |||
#define LEN_PKSEED 32 | |||
/// length of seed for secret key, in # bytes | |||
#define LEN_SKSEED 32 | |||
/// length of salt for a signature, in # bytes | |||
#define _SALT_BYTE 16 | |||
/// length of a signature | |||
#define _SIGNATURE_BYTE (_PUB_N_BYTE + _SALT_BYTE) | |||
#endif // _H_RAINBOW_CONFIG_H_ |
@@ -0,0 +1,188 @@ | |||
/// @file rainbow_keypair.c | |||
/// @brief implementations of functions in rainbow_keypair.h | |||
/// | |||
#include "rainbow_keypair.h" | |||
#include "blas.h" | |||
#include "blas_comm.h" | |||
#include "rainbow_blas.h" | |||
#include "rainbow_keypair_computation.h" | |||
#include "utils_prng.h" | |||
#include <stdint.h> | |||
#include <stdlib.h> | |||
#include <string.h> | |||
static void generate_S_T(unsigned char *s_and_t, prng_t *prng0) { | |||
PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_prng_gen(prng0, s_and_t, _O1_BYTE * _O2); // S1 | |||
s_and_t += _O1_BYTE * _O2; | |||
PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_prng_gen(prng0, s_and_t, _V1_BYTE * _O1); // T1 | |||
s_and_t += _V1_BYTE * _O1; | |||
PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_prng_gen(prng0, s_and_t, _V1_BYTE * _O2); // T2 | |||
s_and_t += _V1_BYTE * _O2; | |||
PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_prng_gen(prng0, s_and_t, _O1_BYTE * _O2); // T3 | |||
} | |||
static unsigned int generate_l1_F12(unsigned char *sk, prng_t *prng0) { | |||
unsigned int n_byte_generated = 0; | |||
PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_prng_gen(prng0, sk, _O1_BYTE * N_TRIANGLE_TERMS(_V1)); // l1_F1 | |||
sk += _O1_BYTE * N_TRIANGLE_TERMS(_V1); | |||
n_byte_generated += _O1_BYTE * N_TRIANGLE_TERMS(_V1); | |||
PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_prng_gen(prng0, sk, _O1_BYTE * _V1 * _O1); // l1_F2 | |||
n_byte_generated += _O1_BYTE * _V1 * _O1; | |||
return n_byte_generated; | |||
} | |||
static unsigned int generate_l2_F12356(unsigned char *sk, prng_t *prng0) { | |||
unsigned int n_byte_generated = 0; | |||
PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_prng_gen(prng0, sk, _O2_BYTE * N_TRIANGLE_TERMS(_V1)); // l2_F1 | |||
sk += _O2_BYTE * N_TRIANGLE_TERMS(_V1); | |||
n_byte_generated += _O2_BYTE * N_TRIANGLE_TERMS(_V1); | |||
PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_prng_gen(prng0, sk, _O2_BYTE * _V1 * _O1); // l2_F2 | |||
sk += _O2_BYTE * _V1 * _O1; | |||
n_byte_generated += _O2_BYTE * _V1 * _O1; | |||
PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_prng_gen(prng0, sk, _O2_BYTE * _V1 * _O2); // l2_F3 | |||
sk += _O2_BYTE * _V1 * _O1; | |||
n_byte_generated += _O2_BYTE * _V1 * _O1; | |||
PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_prng_gen(prng0, sk, _O2_BYTE * N_TRIANGLE_TERMS(_O1)); // l2_F5 | |||
sk += _O2_BYTE * N_TRIANGLE_TERMS(_O1); | |||
n_byte_generated += _O2_BYTE * N_TRIANGLE_TERMS(_O1); | |||
PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_prng_gen(prng0, sk, _O2_BYTE * _O1 * _O2); // l2_F6 | |||
n_byte_generated += _O2_BYTE * _O1 * _O2; | |||
return n_byte_generated; | |||
} | |||
static void generate_B1_B2(unsigned char *sk, prng_t *prng0) { | |||
sk += generate_l1_F12(sk, prng0); | |||
generate_l2_F12356(sk, prng0); | |||
} | |||
static void calculate_t4(unsigned char *t2_to_t4, const unsigned char *t1, const unsigned char *t3) { | |||
// t4 = T_sk.t1 * T_sk.t3 - T_sk.t2 | |||
unsigned char temp[_V1_BYTE + 32]; | |||
unsigned char *t4 = t2_to_t4; | |||
for (unsigned int i = 0; i < _O2; i++) { /// t3 width | |||
gfmat_prod(temp, t1, _V1_BYTE, _O1, t3); | |||
gf256v_add(t4, temp, _V1_BYTE); | |||
t4 += _V1_BYTE; | |||
t3 += _O1_BYTE; | |||
} | |||
} | |||
static void obsfucate_l1_polys(unsigned char *l1_polys, const unsigned char *l2_polys, unsigned int n_terms, const unsigned char *s1) { | |||
unsigned char temp[_O1_BYTE + 32]; | |||
while (n_terms--) { | |||
gfmat_prod(temp, s1, _O1_BYTE, _O2, l2_polys); | |||
gf256v_add(l1_polys, temp, _O1_BYTE); | |||
l1_polys += _O1_BYTE; | |||
l2_polys += _O2_BYTE; | |||
} | |||
} | |||
/////////////////// Classic ////////////////////////////////// | |||
///////////////////// Cyclic ////////////////////////////////// | |||
void PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_generate_keypair_cyclic(cpk_t *pk, sk_t *sk, const unsigned char *pk_seed, const unsigned char *sk_seed) { | |||
memcpy(pk->pk_seed, pk_seed, LEN_PKSEED); | |||
memcpy(sk->sk_seed, sk_seed, LEN_SKSEED); | |||
// prng for sk | |||
prng_t prng; | |||
prng_t *prng0 = &prng; | |||
PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_prng_set(prng0, sk_seed, LEN_SKSEED); | |||
generate_S_T(sk->s1, prng0); // S,T: only a part of sk | |||
unsigned char t2[sizeof(sk->t4)]; | |||
memcpy(t2, sk->t4, _V1_BYTE * _O2); // temporarily store t2 | |||
calculate_t4(sk->t4, sk->t1, sk->t3); // t2 <- t4 | |||
// prng for pk | |||
sk_t inst_Qs; | |||
sk_t *Qs = &inst_Qs; | |||
prng_t *prng1 = &prng; | |||
PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_prng_set(prng1, pk_seed, LEN_PKSEED); | |||
generate_B1_B2(Qs->l1_F1, prng1); // generating l1_Q1, l1_Q2, l2_Q1, l2_Q2, l2_Q3, l2_Q5, l2_Q6 | |||
obsfucate_l1_polys(Qs->l1_F1, Qs->l2_F1, N_TRIANGLE_TERMS(_V1), sk->s1); | |||
obsfucate_l1_polys(Qs->l1_F2, Qs->l2_F2, _V1 * _O1, sk->s1); | |||
// so far, the Qs contains l1_F1, l1_F2, l2_F1, l2_F2, l2_F3, l2_F5, l2_F6. | |||
PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_calculate_F_from_Q(sk, Qs, sk); // calcuate the rest parts of secret key from Qs and S,T | |||
unsigned char t4[sizeof(sk->t4)]; | |||
memcpy(t4, sk->t4, _V1_BYTE * _O2); // temporarily store t4 | |||
memcpy(sk->t4, t2, _V1_BYTE * _O2); // restore t2 | |||
PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_calculate_Q_from_F_cyclic(pk, sk, sk); // calculate the rest parts of public key: l1_Q3, l1_Q5, l1_Q6, l1_Q9, l2_Q9 | |||
memcpy(sk->t4, t4, _V1_BYTE * _O2); // restore t4 | |||
obsfucate_l1_polys(pk->l1_Q3, Qs->l2_F3, _V1 * _O2, sk->s1); | |||
obsfucate_l1_polys(pk->l1_Q5, Qs->l2_F5, N_TRIANGLE_TERMS(_O1), sk->s1); | |||
obsfucate_l1_polys(pk->l1_Q6, Qs->l2_F6, _O1 * _O2, sk->s1); | |||
obsfucate_l1_polys(pk->l1_Q9, pk->l2_Q9, N_TRIANGLE_TERMS(_O2), sk->s1); | |||
// clean | |||
memset(&prng, 0, sizeof(prng_t)); | |||
} | |||
void PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_generate_compact_keypair_cyclic(cpk_t *pk, csk_t *rsk, const unsigned char *pk_seed, const unsigned char *sk_seed) { | |||
memcpy(rsk->pk_seed, pk_seed, LEN_PKSEED); | |||
memcpy(rsk->sk_seed, sk_seed, LEN_SKSEED); | |||
sk_t sk; | |||
PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_generate_keypair_cyclic(pk, &sk, pk_seed, sk_seed); | |||
} | |||
void PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_generate_secretkey_cyclic(sk_t *sk, const unsigned char *pk_seed, const unsigned char *sk_seed) { | |||
memcpy(sk->sk_seed, sk_seed, LEN_SKSEED); | |||
// prng for sk | |||
prng_t prng0; | |||
PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_prng_set(&prng0, sk_seed, LEN_SKSEED); | |||
generate_S_T(sk->s1, &prng0); | |||
calculate_t4(sk->t4, sk->t1, sk->t3); | |||
// prng for pk | |||
sk_t inst_Qs; | |||
sk_t *Qs = &inst_Qs; | |||
prng_t prng1; | |||
PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_prng_set(&prng1, pk_seed, LEN_PKSEED); | |||
generate_B1_B2(Qs->l1_F1, &prng1); | |||
obsfucate_l1_polys(Qs->l1_F1, Qs->l2_F1, N_TRIANGLE_TERMS(_V1), sk->s1); | |||
obsfucate_l1_polys(Qs->l1_F2, Qs->l2_F2, _V1 * _O1, sk->s1); | |||
// calcuate the parts of sk according to pk. | |||
PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_calculate_F_from_Q(sk, Qs, sk); | |||
// clean prng for sk | |||
memset(&prng0, 0, sizeof(prng_t)); | |||
} | |||
void PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_cpk_to_pk(pk_t *rpk, const cpk_t *cpk) { | |||
// procedure: cpk_t --> extcpk_t --> pk_t | |||
// convert from cpk_t to extcpk_t | |||
ext_cpk_t pk; | |||
// setup prng | |||
prng_t prng0; | |||
PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_prng_set(&prng0, cpk->pk_seed, LEN_SKSEED); | |||
// generating parts of key with prng | |||
generate_l1_F12(pk.l1_Q1, &prng0); | |||
// copying parts of key from input. l1_Q3, l1_Q5, l1_Q6, l1_Q9 | |||
memcpy(pk.l1_Q3, cpk->l1_Q3, _O1_BYTE * (_V1 * _O2 + N_TRIANGLE_TERMS(_O1) + _O1 * _O2 + N_TRIANGLE_TERMS(_O2))); | |||
// generating parts of key with prng | |||
generate_l2_F12356(pk.l2_Q1, &prng0); | |||
// copying parts of key from input: l2_Q9 | |||
memcpy(pk.l2_Q9, cpk->l2_Q9, _O2_BYTE * N_TRIANGLE_TERMS(_O2)); | |||
// convert from extcpk_t to pk_t | |||
PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_extcpk_to_pk(rpk, &pk); | |||
} |
@@ -0,0 +1,111 @@ | |||
#ifndef _RAINBOW_KEYPAIR_H_ | |||
#define _RAINBOW_KEYPAIR_H_ | |||
/// @file rainbow_keypair.h | |||
/// @brief Formats of key pairs and functions for generating key pairs. | |||
/// Formats of key pairs and functions for generating key pairs. | |||
/// | |||
#include "rainbow_config.h" | |||
#define N_TRIANGLE_TERMS(n_var) ((n_var) * ((n_var) + 1) / 2) | |||
/// @brief public key for classic rainbow | |||
/// | |||
/// public key for classic rainbow | |||
/// | |||
typedef struct rainbow_publickey { | |||
unsigned char pk[(_PUB_M_BYTE)*N_TRIANGLE_TERMS(_PUB_N)]; | |||
} pk_t; | |||
/// @brief secret key for classic rainbow | |||
/// | |||
/// secret key for classic rainbow | |||
/// | |||
typedef struct rainbow_secretkey { | |||
/// | |||
/// seed for generating secret key. | |||
/// Generating S, T, and F for classic rainbow. | |||
/// Generating S and T only for cyclic rainbow. | |||
unsigned char sk_seed[LEN_SKSEED]; | |||
unsigned char s1[_O1_BYTE * _O2]; ///< part of S map | |||
unsigned char t1[_V1_BYTE * _O1]; ///< part of T map | |||
unsigned char t4[_V1_BYTE * _O2]; ///< part of T map | |||
unsigned char t3[_O1_BYTE * _O2]; ///< part of T map | |||
unsigned char l1_F1[_O1_BYTE * N_TRIANGLE_TERMS(_V1)]; ///< part of C-map, F1, Layer1 | |||
unsigned char l1_F2[_O1_BYTE * _V1 * _O1]; ///< part of C-map, F2, Layer1 | |||
unsigned char l2_F1[_O2_BYTE * N_TRIANGLE_TERMS(_V1)]; ///< part of C-map, F1, Layer2 | |||
unsigned char l2_F2[_O2_BYTE * _V1 * _O1]; ///< part of C-map, F2, Layer2 | |||
unsigned char l2_F3[_O2_BYTE * _V1 * _O2]; ///< part of C-map, F3, Layer2 | |||
unsigned char l2_F5[_O2_BYTE * N_TRIANGLE_TERMS(_O1)]; ///< part of C-map, F5, Layer2 | |||
unsigned char l2_F6[_O2_BYTE * _O1 * _O2]; ///< part of C-map, F6, Layer2 | |||
} sk_t; | |||
/// @brief public key for cyclic rainbow | |||
/// | |||
/// public key for cyclic rainbow | |||
/// | |||
typedef struct rainbow_publickey_cyclic { | |||
unsigned char pk_seed[LEN_PKSEED]; ///< seed for generating l1_Q1,l1_Q2,l2_Q1,l2_Q2,l2_Q3,l2_Q5,l2_Q6 | |||
unsigned char l1_Q3[_O1_BYTE * _V1 * _O2]; ///< Q3, layer1 | |||
unsigned char l1_Q5[_O1_BYTE * N_TRIANGLE_TERMS(_O1)]; ///< Q5, layer1 | |||
unsigned char l1_Q6[_O1_BYTE * _O1 * _O2]; ///< Q6, layer1 | |||
unsigned char l1_Q9[_O1_BYTE * N_TRIANGLE_TERMS(_O2)]; ///< Q9, layer1 | |||
unsigned char l2_Q9[_O2_BYTE * N_TRIANGLE_TERMS(_O2)]; ///< Q9, layer2 | |||
} cpk_t; | |||
/// @brief compressed secret key for cyclic rainbow | |||
/// | |||
/// compressed secret key for cyclic rainbow | |||
/// | |||
typedef struct rainbow_secretkey_cyclic { | |||
unsigned char pk_seed[LEN_PKSEED]; ///< seed for generating a part of public key. | |||
unsigned char sk_seed[LEN_SKSEED]; ///< seed for generating a part of secret key. | |||
} csk_t; | |||
/// | |||
/// @brief Generate key pairs for cyclic rainbow. | |||
/// | |||
/// @param[out] pk - the public key. | |||
/// @param[out] sk - the secret key. | |||
/// @param[in] pk_seed - seed for generating parts of public key. | |||
/// @param[in] sk_seed - seed for generating secret key. | |||
/// | |||
void PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_generate_keypair_cyclic(cpk_t *pk, sk_t *sk, const unsigned char *pk_seed, const unsigned char *sk_seed); | |||
/// | |||
/// @brief Generate compressed key pairs for cyclic rainbow. | |||
/// | |||
/// @param[out] pk - the public key. | |||
/// @param[out] sk - the compressed secret key. | |||
/// @param[in] pk_seed - seed for generating parts of the public key. | |||
/// @param[in] sk_seed - seed for generating the secret key. | |||
/// | |||
void PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_generate_compact_keypair_cyclic(cpk_t *pk, csk_t *sk, const unsigned char *pk_seed, const unsigned char *sk_seed); | |||
/// | |||
/// @brief Generate secret key for cyclic rainbow. | |||
/// | |||
/// @param[out] sk - the secret key. | |||
/// @param[in] pk_seed - seed for generating parts of the pbulic key. | |||
/// @param[in] sk_seed - seed for generating the secret key. | |||
/// | |||
void PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_generate_secretkey_cyclic(sk_t *sk, const unsigned char *pk_seed, const unsigned char *sk_seed); | |||
//////////////////////////////////// | |||
/// | |||
/// @brief converting formats of public keys : from cyclic version to classic key | |||
/// | |||
/// @param[out] pk - the classic public key. | |||
/// @param[in] cpk - the cyclic public key. | |||
/// | |||
void PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_cpk_to_pk(pk_t *pk, const cpk_t *cpk); | |||
#endif // _RAINBOW_KEYPAIR_H_ |
@@ -0,0 +1,213 @@ | |||
/// @file rainbow_keypair_computation.c | |||
/// @brief Implementations for functions in rainbow_keypair_computation.h | |||
/// | |||
#include "rainbow_keypair_computation.h" | |||
#include "blas.h" | |||
#include "blas_comm.h" | |||
#include "rainbow_blas.h" | |||
#include "rainbow_keypair.h" | |||
#include <stdint.h> | |||
#include <stdlib.h> | |||
#include <string.h> | |||
void PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_extcpk_to_pk(pk_t *pk, const ext_cpk_t *cpk) { | |||
const unsigned char *idx_l1 = cpk->l1_Q1; | |||
const unsigned char *idx_l2 = cpk->l2_Q1; | |||
for (unsigned int i = 0; i < _V1; i++) { | |||
for (unsigned int j = i; j < _V1; j++) { | |||
unsigned int pub_idx = PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_idx_of_trimat(i, j, _PUB_N); | |||
memcpy(&pk->pk[_PUB_M_BYTE * pub_idx], idx_l1, _O1_BYTE); | |||
memcpy((&pk->pk[_PUB_M_BYTE * pub_idx]) + _O1_BYTE, idx_l2, _O2_BYTE); | |||
idx_l1 += _O1_BYTE; | |||
idx_l2 += _O2_BYTE; | |||
} | |||
} | |||
idx_l1 = cpk->l1_Q2; | |||
idx_l2 = cpk->l2_Q2; | |||
for (unsigned int i = 0; i < _V1; i++) { | |||
for (unsigned int j = _V1; j < _V1 + _O1; j++) { | |||
unsigned int pub_idx = PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_idx_of_trimat(i, j, _PUB_N); | |||
memcpy(&pk->pk[_PUB_M_BYTE * pub_idx], idx_l1, _O1_BYTE); | |||
memcpy((&pk->pk[_PUB_M_BYTE * pub_idx]) + _O1_BYTE, idx_l2, _O2_BYTE); | |||
idx_l1 += _O1_BYTE; | |||
idx_l2 += _O2_BYTE; | |||
} | |||
} | |||
idx_l1 = cpk->l1_Q3; | |||
idx_l2 = cpk->l2_Q3; | |||
for (unsigned int i = 0; i < _V1; i++) { | |||
for (unsigned int j = _V1 + _O1; j < _PUB_N; j++) { | |||
unsigned int pub_idx = PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_idx_of_trimat(i, j, _PUB_N); | |||
memcpy(&pk->pk[_PUB_M_BYTE * pub_idx], idx_l1, _O1_BYTE); | |||
memcpy((&pk->pk[_PUB_M_BYTE * pub_idx]) + _O1_BYTE, idx_l2, _O2_BYTE); | |||
idx_l1 += _O1_BYTE; | |||
idx_l2 += _O2_BYTE; | |||
} | |||
} | |||
idx_l1 = cpk->l1_Q5; | |||
idx_l2 = cpk->l2_Q5; | |||
for (unsigned int i = _V1; i < _V1 + _O1; i++) { | |||
for (unsigned int j = i; j < _V1 + _O1; j++) { | |||
unsigned int pub_idx = PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_idx_of_trimat(i, j, _PUB_N); | |||
memcpy(&pk->pk[_PUB_M_BYTE * pub_idx], idx_l1, _O1_BYTE); | |||
memcpy((&pk->pk[_PUB_M_BYTE * pub_idx]) + _O1_BYTE, idx_l2, _O2_BYTE); | |||
idx_l1 += _O1_BYTE; | |||
idx_l2 += _O2_BYTE; | |||
} | |||
} | |||
idx_l1 = cpk->l1_Q6; | |||
idx_l2 = cpk->l2_Q6; | |||
for (unsigned int i = _V1; i < _V1 + _O1; i++) { | |||
for (unsigned int j = _V1 + _O1; j < _PUB_N; j++) { | |||
unsigned int pub_idx = PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_idx_of_trimat(i, j, _PUB_N); | |||
memcpy(&pk->pk[_PUB_M_BYTE * pub_idx], idx_l1, _O1_BYTE); | |||
memcpy((&pk->pk[_PUB_M_BYTE * pub_idx]) + _O1_BYTE, idx_l2, _O2_BYTE); | |||
idx_l1 += _O1_BYTE; | |||
idx_l2 += _O2_BYTE; | |||
} | |||
} | |||
idx_l1 = cpk->l1_Q9; | |||
idx_l2 = cpk->l2_Q9; | |||
for (unsigned int i = _V1 + _O1; i < _PUB_N; i++) { | |||
for (unsigned int j = i; j < _PUB_N; j++) { | |||
unsigned int pub_idx = PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_idx_of_trimat(i, j, _PUB_N); | |||
memcpy(&pk->pk[_PUB_M_BYTE * pub_idx], idx_l1, _O1_BYTE); | |||
memcpy((&pk->pk[_PUB_M_BYTE * pub_idx]) + _O1_BYTE, idx_l2, _O2_BYTE); | |||
idx_l1 += _O1_BYTE; | |||
idx_l2 += _O2_BYTE; | |||
} | |||
} | |||
} | |||
static void calculate_F_from_Q_ref(sk_t *Fs, const sk_t *Qs, sk_t *Ts) { | |||
// Layer 1 | |||
// F_sk.l1_F1s[i] = Q_pk.l1_F1s[i] | |||
memcpy(Fs->l1_F1, Qs->l1_F1, _O1_BYTE * N_TRIANGLE_TERMS(_V1)); | |||
// F_sk.l1_F2s[i] = ( Q_pk.l1_F1s[i] + Q_pk.l1_F1s[i].transpose() ) * T_sk.t1 + Q_pk.l1_F2s[i] | |||
memcpy(Fs->l1_F2, Qs->l1_F2, _O1_BYTE * _V1 * _O1); | |||
batch_2trimat_madd(Fs->l1_F2, Qs->l1_F1, Ts->t1, _V1, _V1_BYTE, _O1, _O1_BYTE); | |||
/* | |||
Layer 2 | |||
computations: | |||
F_sk.l2_F1s[i] = Q_pk.l2_F1s[i] | |||
Q1_T1 = Q_pk.l2_F1s[i]*T_sk.t1 | |||
F_sk.l2_F2s[i] = Q1_T1 + Q_pk.l2_F2s[i] + Q_pk.l2_F1s[i].transpose() * T_sk.t1 | |||
F_sk.l2_F5s[i] = UT( t1_tr* ( Q1_T1 + Q_pk.l2_F2s[i] ) ) + Q_pk.l2_F5s[i] | |||
Q1_Q1T_T4 = (Q_pk.l2_F1s[i] + Q_pk.l2_F1s[i].transpose()) * t4 | |||
#Q1_Q1T_T4 = Q1_Q1T * t4 | |||
Q2_T3 = Q_pk.l2_F2s[i]*T_sk.t3 | |||
F_sk.l2_F3s[i] = Q1_Q1T_T4 + Q2_T3 + Q_pk.l2_F3s[i] | |||
F_sk.l2_F6s[i] = t1_tr * ( Q1_Q1T_T4 + Q2_T3 + Q_pk.l2_F3s[i] ) | |||
+ Q_pk.l2_F2s[i].transpose() * t4 | |||
+ (Q_pk.l2_F5s[i] + Q_pk.l2_F5s[i].transpose())*T_sk.t3 + Q_pk.l2_F6s[i] | |||
*/ | |||
memcpy(Fs->l2_F1, Qs->l2_F1, _O2_BYTE * N_TRIANGLE_TERMS(_V1)); // F_sk.l2_F1s[i] = Q_pk.l2_F1s[i] | |||
// F_sk.l2_F2s[i] = Q1_T1 + Q_pk.l2_F2s[i] + Q_pk.l2_F1s[i].transpose() * T_sk.t1 | |||
// F_sk.l2_F5s[i] = UT( t1_tr* ( Q1_T1 + Q_pk.l2_F2s[i] ) ) + Q_pk.l2_F5s[i] | |||
memcpy(Fs->l2_F2, Qs->l2_F2, _O2_BYTE * _V1 * _O1); | |||
batch_trimat_madd(Fs->l2_F2, Qs->l2_F1, Ts->t1, _V1, _V1_BYTE, _O1, _O2_BYTE); // Q1_T1+ Q2 | |||
unsigned char tempQ[_O1 * _O1 * _O2_BYTE + 32]; | |||
memset(tempQ, 0, _O1 * _O1 * _O2_BYTE); | |||
batch_matTr_madd(tempQ, Ts->t1, _V1, _V1_BYTE, _O1, Fs->l2_F2, _O1, _O2_BYTE); // t1_tr*(Q1_T1+Q2) | |||
memcpy(Fs->l2_F5, Qs->l2_F5, _O2_BYTE * N_TRIANGLE_TERMS(_O1)); // F5 | |||
PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_UpperTrianglize(Fs->l2_F5, tempQ, _O1, _O2_BYTE); // UT( ... ) | |||
batch_trimatTr_madd(Fs->l2_F2, Qs->l2_F1, Ts->t1, _V1, _V1_BYTE, _O1, _O2_BYTE); // F2 = Q1_T1 + Q2 + Q1^tr*t1 | |||
// Q1_Q1T_T4 = (Q_pk.l2_F1s[i] + Q_pk.l2_F1s[i].transpose()) * t4 | |||
// Q2_T3 = Q_pk.l2_F2s[i]*T_sk.t3 | |||
// F_sk.l2_F3s[i] = Q1_Q1T_T4 + Q2_T3 + Q_pk.l2_F3s[i] | |||
memcpy(Fs->l2_F3, Qs->l2_F3, _V1 * _O2 * _O2_BYTE); | |||
batch_2trimat_madd(Fs->l2_F3, Qs->l2_F1, Ts->t4, _V1, _V1_BYTE, _O2, _O2_BYTE); // Q1_Q1T_T4 | |||
batch_mat_madd(Fs->l2_F3, Qs->l2_F2, _V1, Ts->t3, _O1, _O1_BYTE, _O2, _O2_BYTE); // Q2_T3 | |||
// F_sk.l2_F6s[i] = t1_tr * ( Q1_Q1T_T4 + Q2_T3 + Q_pk.l2_F3s[i] ) | |||
// + Q_pk.l2_F2s[i].transpose() * t4 | |||
// + (Q_pk.l2_F5s[i] + Q_pk.l2_F5s[i].transpose())*T_sk.t3 + Q_pk.l2_F6s[i] | |||
memcpy(Fs->l2_F6, Qs->l2_F6, _O1 * _O2 * _O2_BYTE); | |||
batch_matTr_madd(Fs->l2_F6, Ts->t1, _V1, _V1_BYTE, _O1, Fs->l2_F3, _O2, _O2_BYTE); // t1_tr * ( Q1_Q1T_T4 + Q2_T3 + Q_pk.l2_F3s[i] ) | |||
batch_2trimat_madd(Fs->l2_F6, Qs->l2_F5, Ts->t3, _O1, _O1_BYTE, _O2, _O2_BYTE); // (Q_pk.l2_F5s[i] + Q_pk.l2_F5s[i].transpose())*T_sk.t3 | |||
batch_bmatTr_madd(Fs->l2_F6, Qs->l2_F2, _O1, Ts->t4, _V1, _V1_BYTE, _O2, _O2_BYTE); | |||
} | |||
static void calculate_Q_from_F_cyclic_ref(cpk_t *Qs, const sk_t *Fs, const sk_t *Ts) { | |||
// Layer 1: Computing Q5, Q3, Q6, Q9 | |||
// Q_pk.l1_F5s[i] = UT( T1tr* (F1 * T1 + F2) ) | |||
const unsigned char *t2 = Ts->t4; | |||
sk_t tempQ; | |||
memcpy(tempQ.l1_F2, Fs->l1_F2, _O1_BYTE * _V1 * _O1); | |||
batch_trimat_madd(tempQ.l1_F2, Fs->l1_F1, Ts->t1, _V1, _V1_BYTE, _O1, _O1_BYTE); // F1*T1 + F2 | |||
memset(tempQ.l2_F1, 0, sizeof(tempQ.l2_F1)); | |||
memset(tempQ.l2_F2, 0, sizeof(tempQ.l2_F2)); | |||
batch_matTr_madd(tempQ.l2_F1, Ts->t1, _V1, _V1_BYTE, _O1, tempQ.l1_F2, _O1, _O1_BYTE); // T1tr*(F1*T1 + F2) | |||
memset(Qs->l1_Q5, 0, _O1_BYTE * N_TRIANGLE_TERMS(_O1)); | |||
PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_UpperTrianglize(Qs->l1_Q5, tempQ.l2_F1, _O1, _O1_BYTE); // UT( ... ) // Q5 | |||
/* | |||
F1_T2 = F1 * t2 | |||
F2_T3 = F2 * t3 | |||
F1_F1T_T2 + F2_T3 = F1_T2 + F2_T3 + F1tr * t2 | |||
Q_pk.l1_F3s[i] = F1_F1T_T2 + F2_T3 | |||
Q_pk.l1_F6s[i] = T1tr* ( F1_F1T_T2 + F2_T3 ) + F2tr * t2 | |||
Q_pk.l1_F9s[i] = UT( T2tr* ( F1_T2 + F2_T3 ) ) | |||
*/ | |||
memset(Qs->l1_Q3, 0, _O1_BYTE * _V1 * _O2); | |||
memset(Qs->l1_Q6, 0, _O1_BYTE * _O1 * _O2); | |||
memset(Qs->l1_Q9, 0, _O1_BYTE * N_TRIANGLE_TERMS(_O2)); | |||
batch_trimat_madd(Qs->l1_Q3, Fs->l1_F1, t2, _V1, _V1_BYTE, _O2, _O1_BYTE); // F1*T2 | |||
batch_mat_madd(Qs->l1_Q3, Fs->l1_F2, _V1, Ts->t3, _O1, _O1_BYTE, _O2, _O1_BYTE); // F1_T2 + F2_T3 | |||
memset(tempQ.l1_F2, 0, _O1_BYTE * _V1 * _O2); // should be F3. assuming: _O1 >= _O2 | |||
batch_matTr_madd(tempQ.l1_F2, t2, _V1, _V1_BYTE, _O2, Qs->l1_Q3, _O2, _O1_BYTE); // T2tr * ( F1_T2 + F2_T3 ) | |||
PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_UpperTrianglize(Qs->l1_Q9, tempQ.l1_F2, _O2, _O1_BYTE); // Q9 | |||
batch_trimatTr_madd(Qs->l1_Q3, Fs->l1_F1, t2, _V1, _V1_BYTE, _O2, _O1_BYTE); // F1_F1T_T2 + F2_T3 // Q3 | |||
batch_bmatTr_madd(Qs->l1_Q6, Fs->l1_F2, _O1, t2, _V1, _V1_BYTE, _O2, _O1_BYTE); // F2tr*T2 | |||
batch_matTr_madd(Qs->l1_Q6, Ts->t1, _V1, _V1_BYTE, _O1, Qs->l1_Q3, _O2, _O1_BYTE); // Q6 | |||
/* | |||
Layer 2 | |||
Computing Q9: | |||
F1_T2 = F1 * t2 | |||
F2_T3 = F2 * t3 | |||
Q9 = UT( T2tr*( F1*T2 + F2*T3 + F3 ) + T3tr*( F5*T3 + F6 ) ) | |||
*/ | |||
sk_t tempQ2; | |||
memcpy(tempQ2.l2_F3, Fs->l2_F3, _O2_BYTE * _V1 * _O2); /// F3 actually. | |||
batch_trimat_madd(tempQ2.l2_F3, Fs->l2_F1, t2, _V1, _V1_BYTE, _O2, _O2_BYTE); // F1*T2 + F3 | |||
batch_mat_madd(tempQ2.l2_F3, Fs->l2_F2, _V1, Ts->t3, _O1, _O1_BYTE, _O2, _O2_BYTE); // F1_T2 + F2_T3 + F3 | |||
memset(tempQ.l2_F3, 0, _O2_BYTE * _V1 * _O2); | |||
batch_matTr_madd(tempQ.l2_F3, t2, _V1, _V1_BYTE, _O2, tempQ2.l2_F3, _O2, _O2_BYTE); // T2tr * ( ..... ) | |||
memcpy(tempQ.l2_F6, Fs->l2_F6, _O2_BYTE * _O1 * _O2); | |||
batch_trimat_madd(tempQ.l2_F6, Fs->l2_F5, Ts->t3, _O1, _O1_BYTE, _O2, _O2_BYTE); // F5*T3 + F6 | |||
batch_matTr_madd(tempQ.l2_F3, Ts->t3, _O1, _O1_BYTE, _O2, tempQ.l2_F6, _O2, _O2_BYTE); // T2tr*( ..... ) + T3tr*( ..... ) | |||
memset(Qs->l2_Q9, 0, _O2_BYTE * N_TRIANGLE_TERMS(_O2)); | |||
PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_UpperTrianglize(Qs->l2_Q9, tempQ.l2_F3, _O2, _O2_BYTE); // Q9 | |||
} | |||
// Choosing implementations depends on the macros: _BLAS_SSE_ and _BLAS_AVX2_ | |||
#define calculate_F_from_Q_impl calculate_F_from_Q_ref | |||
#define calculate_Q_from_F_cyclic_impl calculate_Q_from_F_cyclic_ref | |||
void PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_calculate_F_from_Q(sk_t *Fs, const sk_t *Qs, sk_t *Ts) { | |||
calculate_F_from_Q_impl(Fs, Qs, Ts); | |||
} | |||
void PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_calculate_Q_from_F_cyclic(cpk_t *Qs, const sk_t *Fs, const sk_t *Ts) { | |||
calculate_Q_from_F_cyclic_impl(Qs, Fs, Ts); | |||
} |
@@ -0,0 +1,71 @@ | |||
#ifndef _RAINBOW_KEYPAIR_COMP_H_ | |||
#define _RAINBOW_KEYPAIR_COMP_H_ | |||
/// @file rainbow_keypair_computation.h | |||
/// @brief Functions for calculating pk/sk while generating keys. | |||
/// | |||
/// Defining an internal structure of public key. | |||
/// Functions for calculating pk/sk for key generation. | |||
/// | |||
#include "rainbow_keypair.h" | |||
/// @brief The (internal use) public key for rainbow | |||
/// | |||
/// The (internal use) public key for rainbow. The public | |||
/// polynomials are divided into l1_Q1, l1_Q2, ... l1_Q9, | |||
/// l2_Q1, .... , l2_Q9. | |||
/// | |||
typedef struct rainbow_extend_publickey { | |||
unsigned char l1_Q1[_O1_BYTE * N_TRIANGLE_TERMS(_V1)]; | |||
unsigned char l1_Q2[_O1_BYTE * _V1 * _O1]; | |||
unsigned char l1_Q3[_O1_BYTE * _V1 * _O2]; | |||
unsigned char l1_Q5[_O1_BYTE * N_TRIANGLE_TERMS(_O1)]; | |||
unsigned char l1_Q6[_O1_BYTE * _O1 * _O2]; | |||
unsigned char l1_Q9[_O1_BYTE * N_TRIANGLE_TERMS(_O2)]; | |||
unsigned char l2_Q1[_O2_BYTE * N_TRIANGLE_TERMS(_V1)]; | |||
unsigned char l2_Q2[_O2_BYTE * _V1 * _O1]; | |||
unsigned char l2_Q3[_O2_BYTE * _V1 * _O2]; | |||
unsigned char l2_Q5[_O2_BYTE * N_TRIANGLE_TERMS(_O1)]; | |||
unsigned char l2_Q6[_O2_BYTE * _O1 * _O2]; | |||
unsigned char l2_Q9[_O2_BYTE * N_TRIANGLE_TERMS(_O2)]; | |||
} ext_cpk_t; | |||
/// | |||
/// @brief converting formats of public keys : from ext_cpk_t version to pk_t | |||
/// | |||
/// @param[out] pk - the classic public key. | |||
/// @param[in] cpk - the internel public key. | |||
/// | |||
void PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_extcpk_to_pk(pk_t *pk, const ext_cpk_t *cpk); | |||
///////////////////////////////////////////////// | |||
/// | |||
/// @brief Computing public key from secret key | |||
/// | |||
/// @param[out] Qs - the public key | |||
/// @param[in] Fs - parts of the secret key: l1_F1, l1_F2, l2_F1, l2_F2, l2_F3, l2_F5, l2_F6 | |||
/// @param[in] Ts - parts of the secret key: T1, T4, T3 | |||
/// | |||
void PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_calculate_Q_from_F(ext_cpk_t *Qs, const sk_t *Fs, const sk_t *Ts); | |||
/// | |||
/// @brief Computing parts of the sk from parts of pk and sk | |||
/// | |||
/// @param[out] Fs - parts of the sk: l1_F1, l1_F2, l2_F1, l2_F2, l2_F3, l2_F5, l2_F6 | |||
/// @param[in] Qs - parts of the pk: l1_Q1, l1_Q2, l2_Q1, l2_Q2, l2_Q3, l2_Q5, l2_Q6 | |||
/// @param[in] Ts - parts of the sk: T1, T4, T3 | |||
/// | |||
void PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_calculate_F_from_Q(sk_t *Fs, const sk_t *Qs, sk_t *Ts); | |||
/// | |||
/// @brief Computing parts of the pk from the secret key | |||
/// | |||
/// @param[out] Qs - parts of the pk: l1_Q3, l1_Q5, l2_Q6, l1_Q9, l2_Q9 | |||
/// @param[in] Fs - parts of the sk: l1_F1, l1_F2, l2_F1, l2_F2, l2_F3, l2_F5, l2_F6 | |||
/// @param[in] Ts - parts of the sk: T1, T4, T3 | |||
/// | |||
void PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_calculate_Q_from_F_cyclic(cpk_t *Qs, const sk_t *Fs, const sk_t *Ts); | |||
#endif // _RAINBOW_KEYPAIR_COMP_H_ |
@@ -0,0 +1,76 @@ | |||
/// @file sign.c | |||
/// @brief the implementations for functions in api.h | |||
/// | |||
/// | |||
#include "api.h" | |||
#include "rainbow.h" | |||
#include "rainbow_config.h" | |||
#include "rainbow_keypair.h" | |||
#include "randombytes.h" | |||
#include "utils_hash.h" | |||
#include <stdlib.h> | |||
#include <string.h> | |||
int PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_crypto_sign_keypair(unsigned char *pk, unsigned char *sk) { | |||
unsigned char sk_seed[LEN_SKSEED] = {0}; | |||
randombytes(sk_seed, LEN_SKSEED); | |||
unsigned char pk_seed[LEN_PKSEED] = {0}; | |||
randombytes(pk_seed, LEN_PKSEED); | |||
PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_generate_compact_keypair_cyclic((cpk_t *)pk, (csk_t *)sk, pk_seed, sk_seed); | |||
return 0; | |||
} | |||
int PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_crypto_sign(unsigned char *sm, size_t *smlen, const unsigned char *m, size_t mlen, const unsigned char *sk) { | |||
unsigned char digest[_HASH_LEN]; | |||
PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_hash_msg(digest, _HASH_LEN, m, mlen); | |||
memcpy(sm, m, mlen); | |||
smlen[0] = mlen + _SIGNATURE_BYTE; | |||
return PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_rainbow_sign_cyclic(sm + mlen, (const csk_t *)sk, digest); | |||
} | |||
int PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_crypto_sign_open(unsigned char *m, size_t *mlen, const unsigned char *sm, size_t smlen, const unsigned char *pk) { | |||
int rc; | |||
if (_SIGNATURE_BYTE > smlen) { | |||
rc = -1; | |||
} else { | |||
*mlen = smlen - _SIGNATURE_BYTE; | |||
unsigned char digest[_HASH_LEN]; | |||
PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_hash_msg(digest, _HASH_LEN, sm, *mlen); | |||
rc = PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_rainbow_verify_cyclic(digest, sm + mlen[0], (const cpk_t *)pk); | |||
} | |||
if (!rc) { | |||
memcpy(m, sm, smlen - _SIGNATURE_BYTE); | |||
} else { // bad signature | |||
*mlen = (size_t) -1; | |||
memset(m, 0, smlen); | |||
} | |||
return rc; | |||
} | |||
int PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_crypto_sign_signature( | |||
uint8_t *sig, size_t *siglen, | |||
const uint8_t *m, size_t mlen, const uint8_t *sk) { | |||
unsigned char digest[_HASH_LEN]; | |||
PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_hash_msg(digest, _HASH_LEN, m, mlen); | |||
*siglen = _SIGNATURE_BYTE; | |||
return PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_rainbow_sign_cyclic(sig, (const csk_t *)sk, digest); | |||
} | |||
int PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_crypto_sign_verify( | |||
const uint8_t *sig, size_t siglen, | |||
const uint8_t *m, size_t mlen, const uint8_t *pk) { | |||
if (siglen != _SIGNATURE_BYTE) { | |||
return -1; | |||
} | |||
unsigned char digest[_HASH_LEN]; | |||
PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_hash_msg(digest, _HASH_LEN, m, mlen); | |||
return PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_rainbow_verify_cyclic(digest, sig, (const cpk_t *)pk); | |||
} |
@@ -0,0 +1,50 @@ | |||
/// @file utils_hash.c | |||
/// @brief the adapter for SHA2 families. | |||
/// | |||
/// | |||
#include "utils_hash.h" | |||
#include "rainbow_config.h" | |||
#include "sha2.h" | |||
static inline int _hash(unsigned char *digest, const unsigned char *m, size_t mlen) { | |||
sha384(digest, m, mlen); | |||
return 0; | |||
} | |||
static inline int expand_hash(unsigned char *digest, size_t n_digest, const unsigned char *hash) { | |||
if (_HASH_LEN >= n_digest) { | |||
for (size_t i = 0; i < n_digest; i++) { | |||
digest[i] = hash[i]; | |||
} | |||
return 0; | |||
} | |||
for (size_t i = 0; i < _HASH_LEN; i++) { | |||
digest[i] = hash[i]; | |||
} | |||
n_digest -= _HASH_LEN; | |||
while (_HASH_LEN <= n_digest) { | |||
_hash(digest + _HASH_LEN, digest, _HASH_LEN); | |||
n_digest -= _HASH_LEN; | |||
digest += _HASH_LEN; | |||
} | |||
unsigned char temp[_HASH_LEN]; | |||
if (n_digest) { | |||
_hash(temp, digest, _HASH_LEN); | |||
for (size_t i = 0; i < n_digest; i++) { | |||
digest[_HASH_LEN + i] = temp[i]; | |||
} | |||
} | |||
return 0; | |||
} | |||
int PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_hash_msg(unsigned char *digest, | |||
size_t len_digest, | |||
const unsigned char *m, | |||
size_t mlen) { | |||
unsigned char buf[_HASH_LEN]; | |||
_hash(buf, m, mlen); | |||
return expand_hash(digest, len_digest, buf); | |||
} |
@@ -0,0 +1,11 @@ | |||
#ifndef _UTILS_HASH_H_ | |||
#define _UTILS_HASH_H_ | |||
/// @file utils_hash.h | |||
/// @brief the interface for adapting hash functions. | |||
/// | |||
#include <stddef.h> | |||
int PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_hash_msg(unsigned char *digest, size_t len_digest, const unsigned char *m, size_t mlen); | |||
#endif // _UTILS_HASH_H_ |
@@ -0,0 +1,95 @@ | |||
/// @file utils_prng.c | |||
/// @brief The implementation of PRNG related functions. | |||
/// | |||
#include "utils_prng.h" | |||
#include "aes.h" | |||
#include "randombytes.h" | |||
#include "utils_hash.h" | |||
#include <stdlib.h> | |||
#include <string.h> | |||
static void prng_update(const unsigned char *provided_data, | |||
unsigned char *Key, | |||
unsigned char *V) { | |||
unsigned char temp[48]; | |||
aes256ctx ctx; | |||
aes256_keyexp(&ctx, Key); | |||
for (int i = 0; i < 3; i++) { | |||
//increment V | |||
for (int j = 15; j >= 0; j--) { | |||
if (V[j] == 0xff) { | |||
V[j] = 0x00; | |||
} else { | |||
V[j]++; | |||
break; | |||
} | |||
} | |||
aes256_ecb(temp + 16 * i, V, 1, &ctx); | |||
} | |||
if (provided_data != NULL) { | |||
for (int i = 0; i < 48; i++) { | |||
temp[i] ^= provided_data[i]; | |||
} | |||
} | |||
memcpy(Key, temp, 32); | |||
memcpy(V, temp + 32, 16); | |||
} | |||
static void randombytes_init_with_state(prng_t *state, | |||
unsigned char *entropy_input_48bytes) { | |||
memset(state->Key, 0x00, 32); | |||
memset(state->V, 0x00, 16); | |||
prng_update(entropy_input_48bytes, state->Key, state->V); | |||
} | |||
static int randombytes_with_state(prng_t *state, | |||
unsigned char *x, | |||
size_t xlen) { | |||
unsigned char block[16]; | |||
int i = 0; | |||
aes256ctx ctx; | |||
aes256_keyexp(&ctx, state->Key); | |||
while (xlen > 0) { | |||
//increment V | |||
for (int j = 15; j >= 0; j--) { | |||
if (state->V[j] == 0xff) { | |||
state->V[j] = 0x00; | |||
} else { | |||
state->V[j]++; | |||
break; | |||
} | |||
} | |||
aes256_ecb(block, state->V, 1, &ctx); | |||
if (xlen > 15) { | |||
memcpy(x + i, block, 16); | |||
i += 16; | |||
xlen -= 16; | |||
} else { | |||
memcpy(x + i, block, xlen); | |||
xlen = 0; | |||
} | |||
} | |||
prng_update(NULL, state->Key, state->V); | |||
return 0; | |||
} | |||
int PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_prng_set(prng_t *ctx, const void *prng_seed, unsigned long prng_seedlen) { | |||
unsigned char seed[48]; | |||
if (prng_seedlen >= 48) { | |||
memcpy(seed, prng_seed, 48); | |||
} else { | |||
memcpy(seed, prng_seed, prng_seedlen); | |||
PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_hash_msg(seed + prng_seedlen, 48 - (unsigned)prng_seedlen, (const unsigned char *)prng_seed, prng_seedlen); | |||
} | |||
randombytes_init_with_state(ctx, seed); | |||
return 0; | |||
} | |||
int PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_prng_gen(prng_t *ctx, unsigned char *out, unsigned long outlen) { | |||
return randombytes_with_state(ctx, out, outlen); | |||
} |
@@ -0,0 +1,18 @@ | |||
#ifndef _UTILS_PRNG_H_ | |||
#define _UTILS_PRNG_H_ | |||
/// @file utils_prng.h | |||
/// @brief the interface for adapting PRNG functions. | |||
/// | |||
/// | |||
#include "randombytes.h" | |||
typedef struct { | |||
unsigned char Key[32]; | |||
unsigned char V[16]; | |||
} prng_t; | |||
int PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_prng_set(prng_t *ctx, const void *prng_seed, unsigned long prng_seedlen); | |||
int PQCLEAN_RAINBOWIIICCYCLICCOMPRESSED_CLEAN_prng_gen(prng_t *ctx, unsigned char *out, unsigned long outlen); | |||
#endif // _UTILS_PRNG_H_ |
@@ -0,0 +1,18 @@ | |||
name: Rainbow-IIIc-cyclic | |||
type: signature | |||
claimed-nist-level: 3 | |||
length-public-key: 206744 | |||
length-secret-key: 511448 | |||
length-signature: 156 | |||
nistkat-sha256: 607fa94312778210c443431974087ce99357494ab16c8ad5a8418784b811223d | |||
testvectors-sha256: 51559c38aefe636abd36094741be3b5f65de9e09cf9a5d37866b2e8d0eb58d22 | |||
principal-submitters: | |||
- Jintai Ding | |||
auxiliary-submitters: | |||
- Ming-Shing Chen | |||
- Albrecht Petzoldt | |||
- Dieter Schmidt | |||
- Bo-Yin Yang | |||
implementations: | |||
- name: clean | |||
version: https://github.com/fast-crypto-lab/rainbow-submission-round2/commit/af826fcb78f6af51a02d0352cff28a9690467bfd |
@@ -0,0 +1,8 @@ | |||
`Software implementation of Rainbow for NIST R2 submission' by Ming-Shing Chen | |||
To the extent possible under law, the person who associated CC0 with | |||
`Software implementation of Rainbow for NIST R2 submission' has waived all copyright and related or neighboring rights | |||
to `Software implementation of Rainbow for NIST R2 submission'. | |||
You should have received a copy of the CC0 legalcode along with this | |||
work. If not, see <http://creativecommons.org/publicdomain/zero/1.0/>. |
@@ -0,0 +1,20 @@ | |||
# This Makefile can be used with GNU Make or BSD Make | |||
LIB=librainbowIIIc-cyclic_clean.a | |||
HEADERS = api.h blas_comm.h blas.h blas_u32.h gf.h parallel_matrix_op.h rainbow_blas.h rainbow_config.h rainbow.h rainbow_keypair_computation.h rainbow_keypair.h utils_hash.h utils_prng.h | |||
OBJECTS = blas_comm.o parallel_matrix_op.o rainbow.o rainbow_keypair.o rainbow_keypair_computation.o sign.o utils_hash.o utils_prng.o blas_u32.o gf.o | |||
CFLAGS=-O3 -Wall -Wconversion -Wextra -Wpedantic -Wvla -Werror -Wmissing-prototypes -Wredundant-decls -std=c99 -I../../../common $(EXTRAFLAGS) | |||
all: $(LIB) | |||
%.o: %.c $(HEADERS) | |||
$(CC) $(CFLAGS) -c -o $@ $< | |||
$(LIB): $(OBJECTS) | |||
$(AR) -r $@ $(OBJECTS) | |||
clean: | |||
$(RM) $(OBJECTS) | |||
$(RM) $(LIB) |
@@ -0,0 +1,19 @@ | |||
# This Makefile can be used with Microsoft Visual Studio's nmake using the command: | |||
# nmake /f Makefile.Microsoft_nmake | |||
LIBRARY=librainbowIIIc-cyclic_clean.lib | |||
OBJECTS = blas_comm.obj parallel_matrix_op.obj rainbow.obj rainbow_keypair.obj rainbow_keypair_computation.obj sign.obj utils_hash.obj utils_prng.obj blas_u32.obj gf.obj | |||
CFLAGS=/nologo /I ..\..\..\common /W4 /WX | |||
all: $(LIBRARY) | |||
# Make sure objects are recompiled if headers change. | |||
$(OBJECTS): *.h | |||
$(LIBRARY): $(OBJECTS) | |||
LIB.EXE /NOLOGO /WX /OUT:$@ $** | |||
clean: | |||
-DEL $(OBJECTS) | |||
-DEL $(LIBRARY) |
@@ -0,0 +1,32 @@ | |||
#ifndef PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_API_H | |||
#define PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_API_H | |||
#include <stddef.h> | |||
#include <stdint.h> | |||
#define PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_CRYPTO_SECRETKEYBYTES 511448 | |||
#define PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_CRYPTO_PUBLICKEYBYTES 206744 | |||
#define PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_CRYPTO_BYTES 156 | |||
#define PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_CRYPTO_ALGNAME "RAINBOW(256,68,36,36) - cyclic" | |||
int PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_crypto_sign_keypair(uint8_t *pk, uint8_t *sk); | |||
int PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_crypto_sign_signature( | |||
uint8_t *sig, size_t *siglen, | |||
const uint8_t *m, size_t mlen, const uint8_t *sk); | |||
int PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_crypto_sign_verify( | |||
const uint8_t *sig, size_t siglen, | |||
const uint8_t *m, size_t mlen, const uint8_t *pk); | |||
int PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_crypto_sign(uint8_t *sm, size_t *smlen, | |||
const uint8_t *m, size_t mlen, | |||
const uint8_t *sk); | |||
int PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_crypto_sign_open(uint8_t *m, size_t *mlen, | |||
const uint8_t *sm, size_t smlen, | |||
const uint8_t *pk); | |||
#endif |
@@ -0,0 +1,19 @@ | |||
#ifndef _BLAS_H_ | |||
#define _BLAS_H_ | |||
/// @file blas.h | |||
/// @brief Defining the implementations for linear algebra functions depending on the machine architecture. | |||
/// | |||
#include "blas_comm.h" | |||
#include "blas_u32.h" | |||
#include "rainbow_config.h" | |||
#define gf256v_predicated_add PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256v_predicated_add_u32 | |||
#define gf256v_add PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256v_add_u32 | |||
#define gf256v_mul_scalar PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256v_mul_scalar_u32 | |||
#define gf256v_madd PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256v_madd_u32 | |||
#endif // _BLAS_H_ |
@@ -0,0 +1,142 @@ | |||
/// @file blas_comm.c | |||
/// @brief The standard implementations for blas_comm.h | |||
/// | |||
#include "blas_comm.h" | |||
#include "blas.h" | |||
#include "gf.h" | |||
#include "rainbow_config.h" | |||
#include <stdint.h> | |||
#include <string.h> | |||
void PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256v_set_zero(uint8_t *b, unsigned int _num_byte) { | |||
gf256v_add(b, b, _num_byte); | |||
} | |||
/// @brief get an element from GF(256) vector . | |||
/// | |||
/// @param[in] a - the input vector a. | |||
/// @param[in] i - the index in the vector a. | |||
/// @return the value of the element. | |||
/// | |||
uint8_t PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256v_get_ele(const uint8_t *a, unsigned int i) { | |||
return a[i]; | |||
} | |||
unsigned int PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256v_is_zero(const uint8_t *a, unsigned int _num_byte) { | |||
uint8_t r = 0; | |||
while (_num_byte--) { | |||
r |= a[0]; | |||
a++; | |||
} | |||
return (0 == r); | |||
} | |||
/// polynomial multplication | |||
/// School boook | |||
void PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256v_polymul(uint8_t *c, const uint8_t *a, const uint8_t *b, unsigned int _num) { | |||
PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256v_set_zero(c, _num * 2 - 1); | |||
for (unsigned int i = 0; i < _num; i++) { | |||
gf256v_madd(c + i, a, b[i], _num); | |||
} | |||
} | |||
static void gf256mat_prod_ref(uint8_t *c, const uint8_t *matA, unsigned int n_A_vec_byte, unsigned int n_A_width, const uint8_t *b) { | |||
PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256v_set_zero(c, n_A_vec_byte); | |||
for (unsigned int i = 0; i < n_A_width; i++) { | |||
gf256v_madd(c, matA, b[i], n_A_vec_byte); | |||
matA += n_A_vec_byte; | |||
} | |||
} | |||
void PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256mat_mul(uint8_t *c, const uint8_t *a, const uint8_t *b, unsigned int len_vec) { | |||
unsigned int n_vec_byte = len_vec; | |||
for (unsigned int k = 0; k < len_vec; k++) { | |||
PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256v_set_zero(c, n_vec_byte); | |||
const uint8_t *bk = b + n_vec_byte * k; | |||
for (unsigned int i = 0; i < len_vec; i++) { | |||
gf256v_madd(c, a + n_vec_byte * i, bk[i], n_vec_byte); | |||
} | |||
c += n_vec_byte; | |||
} | |||
} | |||
static unsigned int gf256mat_gauss_elim_ref(uint8_t *mat, unsigned int h, unsigned int w) { | |||
unsigned int r8 = 1; | |||
for (unsigned int i = 0; i < h; i++) { | |||
uint8_t *ai = mat + w * i; | |||
unsigned int skip_len_align4 = i & ((unsigned int)~0x3); | |||
for (unsigned int j = i + 1; j < h; j++) { | |||
uint8_t *aj = mat + w * j; | |||
gf256v_predicated_add(ai + skip_len_align4, !PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256_is_nonzero(ai[i]), aj + skip_len_align4, w - skip_len_align4); | |||
} | |||
r8 &= PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256_is_nonzero(ai[i]); | |||
uint8_t pivot = ai[i]; | |||
pivot = PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256_inv(pivot); | |||
gf256v_mul_scalar(ai + skip_len_align4, pivot, w - skip_len_align4); | |||
for (unsigned int j = 0; j < h; j++) { | |||
if (i == j) { | |||
continue; | |||
} | |||
uint8_t *aj = mat + w * j; | |||
gf256v_madd(aj + skip_len_align4, ai + skip_len_align4, aj[i], w - skip_len_align4); | |||
} | |||
} | |||
return r8; | |||
} | |||
static unsigned int gf256mat_solve_linear_eq_ref(uint8_t *sol, const uint8_t *inp_mat, const uint8_t *c_terms, unsigned int n) { | |||
uint8_t mat[64 * 64]; | |||
for (unsigned int i = 0; i < n; i++) { | |||
memcpy(mat + i * (n + 1), inp_mat + i * n, n); | |||
mat[i * (n + 1) + n] = c_terms[i]; | |||
} | |||
unsigned int r8 = PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256mat_gauss_elim(mat, n, n + 1); | |||
for (unsigned int i = 0; i < n; i++) { | |||
sol[i] = mat[i * (n + 1) + n]; | |||
} | |||
return r8; | |||
} | |||
static inline void gf256mat_submat(uint8_t *mat2, unsigned int w2, unsigned int st, const uint8_t *mat, unsigned int w, unsigned int h) { | |||
for (unsigned int i = 0; i < h; i++) { | |||
for (unsigned int j = 0; j < w2; j++) { | |||
mat2[i * w2 + j] = mat[i * w + st + j]; | |||
} | |||
} | |||
} | |||
unsigned int PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256mat_inv(uint8_t *inv_a, const uint8_t *a, unsigned int H, uint8_t *buffer) { | |||
uint8_t *aa = buffer; | |||
for (unsigned int i = 0; i < H; i++) { | |||
uint8_t *ai = aa + i * 2 * H; | |||
PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256v_set_zero(ai, 2 * H); | |||
gf256v_add(ai, a + i * H, H); | |||
ai[H + i] = 1; | |||
} | |||
unsigned int r8 = PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256mat_gauss_elim(aa, H, 2 * H); | |||
gf256mat_submat(inv_a, H, H, aa, 2 * H, H); | |||
return r8; | |||
} | |||
// choosing the implementations depends on the macros _BLAS_AVX2_ and _BLAS_SSE | |||
#define gf256mat_prod_impl gf256mat_prod_ref | |||
#define gf256mat_gauss_elim_impl gf256mat_gauss_elim_ref | |||
#define gf256mat_solve_linear_eq_impl gf256mat_solve_linear_eq_ref | |||
void PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256mat_prod(uint8_t *c, const uint8_t *matA, unsigned int n_A_vec_byte, unsigned int n_A_width, const uint8_t *b) { | |||
gf256mat_prod_impl(c, matA, n_A_vec_byte, n_A_width, b); | |||
} | |||
unsigned int PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256mat_gauss_elim(uint8_t *mat, unsigned int h, unsigned int w) { | |||
return gf256mat_gauss_elim_impl(mat, h, w); | |||
} | |||
unsigned int PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256mat_solve_linear_eq(uint8_t *sol, const uint8_t *inp_mat, const uint8_t *c_terms, unsigned int n) { | |||
return gf256mat_solve_linear_eq_impl(sol, inp_mat, c_terms, n); | |||
} | |||
@@ -0,0 +1,90 @@ | |||
#ifndef _BLAS_COMM_H_ | |||
#define _BLAS_COMM_H_ | |||
/// @file blas_comm.h | |||
/// @brief Common functions for linear algebra. | |||
/// | |||
#include "rainbow_config.h" | |||
#include <stdint.h> | |||
/// @brief set a vector to 0. | |||
/// | |||
/// @param[in,out] b - the vector b. | |||
/// @param[in] _num_byte - number of bytes for the vector b. | |||
/// | |||
void PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256v_set_zero(uint8_t *b, unsigned int _num_byte); | |||
/// @brief get an element from GF(256) vector . | |||
/// | |||
/// @param[in] a - the input vector a. | |||
/// @param[in] i - the index in the vector a. | |||
/// @return the value of the element. | |||
/// | |||
uint8_t PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256v_get_ele(const uint8_t *a, unsigned int i); | |||
/// @brief check if a vector is 0. | |||
/// | |||
/// @param[in] a - the vector a. | |||
/// @param[in] _num_byte - number of bytes for the vector a. | |||
/// @return 1(true) if a is 0. 0(false) else. | |||
/// | |||
unsigned int PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256v_is_zero(const uint8_t *a, unsigned int _num_byte); | |||
/// @brief polynomial multiplication: c = a*b | |||
/// | |||
/// @param[out] c - the output polynomial c | |||
/// @param[in] a - the vector a. | |||
/// @param[in] b - the vector b. | |||
/// @param[in] _num - number of elements for the polynomials a and b. | |||
/// | |||
void PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256v_polymul(uint8_t *c, const uint8_t *a, const uint8_t *b, unsigned int _num); | |||
/// @brief matrix-vector multiplication: c = matA * b , in GF(256) | |||
/// | |||
/// @param[out] c - the output vector c | |||
/// @param[in] matA - a column-major matrix A. | |||
/// @param[in] n_A_vec_byte - the size of column vectors in bytes. | |||
/// @param[in] n_A_width - the width of matrix A. | |||
/// @param[in] b - the vector b. | |||
/// | |||
void PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256mat_prod(uint8_t *c, const uint8_t *matA, unsigned int n_A_vec_byte, unsigned int n_A_width, const uint8_t *b); | |||
/// @brief matrix-matrix multiplication: c = a * b , in GF(256) | |||
/// | |||
/// @param[out] c - the output matrix c | |||
/// @param[in] c - a matrix a. | |||
/// @param[in] b - a matrix b. | |||
/// @param[in] len_vec - the length of column vectors. | |||
/// | |||
void PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256mat_mul(uint8_t *c, const uint8_t *a, const uint8_t *b, unsigned int len_vec); | |||
/// @brief Gauss elimination for a matrix, in GF(256) | |||
/// | |||
/// @param[in,out] mat - the matrix. | |||
/// @param[in] h - the height of the matrix. | |||
/// @param[in] w - the width of the matrix. | |||
/// @return 1(true) if success. 0(false) if the matrix is singular. | |||
/// | |||
unsigned int PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256mat_gauss_elim(uint8_t *mat, unsigned int h, unsigned int w); | |||
/// @brief Solving linear equations, in GF(256) | |||
/// | |||
/// @param[out] sol - the solutions. | |||
/// @param[in] inp_mat - the matrix parts of input equations. | |||
/// @param[in] c_terms - the constant terms of the input equations. | |||
/// @param[in] n - the number of equations. | |||
/// @return 1(true) if success. 0(false) if the matrix is singular. | |||
/// | |||
unsigned int PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256mat_solve_linear_eq(uint8_t *sol, const uint8_t *inp_mat, const uint8_t *c_terms, unsigned int n); | |||
/// @brief Computing the inverse matrix, in GF(256) | |||
/// | |||
/// @param[out] inv_a - the output of matrix a. | |||
/// @param[in] a - a matrix a. | |||
/// @param[in] H - height of matrix a, i.e., matrix a is an HxH matrix. | |||
/// @param[in] buffer - The buffer for computations. it has to be as large as 2 input matrixes. | |||
/// @return 1(true) if success. 0(false) if the matrix is singular. | |||
/// | |||
unsigned int PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256mat_inv(uint8_t *inv_a, const uint8_t *a, unsigned int H, uint8_t *buffer); | |||
#endif // _BLAS_COMM_H_ |
@@ -0,0 +1,87 @@ | |||
#include "blas_u32.h" | |||
#include "gf.h" | |||
void PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256v_predicated_add_u32(uint8_t *accu_b, uint8_t predicate, const uint8_t *a, unsigned int _num_byte) { | |||
uint32_t pr_u32 = ((uint32_t)0) - ((uint32_t)predicate); | |||
uint8_t pr_u8 = pr_u32 & 0xff; | |||
unsigned int n_u32 = _num_byte >> 2; | |||
uint32_t *b_u32 = (uint32_t *)accu_b; | |||
const uint32_t *a_u32 = (const uint32_t *)a; | |||
for (unsigned int i = 0; i < n_u32; i++) { | |||
b_u32[i] ^= (a_u32[i] & pr_u32); | |||
} | |||
a += (n_u32 << 2); | |||
accu_b += (n_u32 << 2); | |||
unsigned int rem = _num_byte & 3; | |||
for (unsigned int i = 0; i < rem; i++) { | |||
accu_b[i] ^= (a[i] & pr_u8); | |||
} | |||
} | |||
void PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256v_add_u32(uint8_t *accu_b, const uint8_t *a, unsigned int _num_byte) { | |||
unsigned int n_u32 = _num_byte >> 2; | |||
uint32_t *b_u32 = (uint32_t *)accu_b; | |||
const uint32_t *a_u32 = (const uint32_t *)a; | |||
for (unsigned int i = 0; i < n_u32; i++) { | |||
b_u32[i] ^= a_u32[i]; | |||
} | |||
a += (n_u32 << 2); | |||
accu_b += (n_u32 << 2); | |||
unsigned int rem = _num_byte & 3; | |||
for (unsigned int i = 0; i < rem; i++) { | |||
accu_b[i] ^= a[i]; | |||
} | |||
} | |||
void PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256v_mul_scalar_u32(uint8_t *a, uint8_t b, unsigned int _num_byte) { | |||
unsigned int n_u32 = _num_byte >> 2; | |||
uint32_t *a_u32 = (uint32_t *)a; | |||
for (unsigned int i = 0; i < n_u32; i++) { | |||
a_u32[i] = PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256v_mul_u32(a_u32[i], b); | |||
} | |||
union tmp_32 { | |||
uint8_t u8[4]; | |||
uint32_t u32; | |||
} t; | |||
t.u32 = 0; | |||
a += (n_u32 << 2); | |||
unsigned int rem = _num_byte & 3; | |||
for (unsigned int i = 0; i < rem; i++) { | |||
t.u8[i] = a[i]; | |||
} | |||
t.u32 = PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256v_mul_u32(t.u32, b); | |||
for (unsigned int i = 0; i < rem; i++) { | |||
a[i] = t.u8[i]; | |||
} | |||
} | |||
void PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256v_madd_u32(uint8_t *accu_c, const uint8_t *a, uint8_t gf256_b, unsigned int _num_byte) { | |||
unsigned int n_u32 = _num_byte >> 2; | |||
uint32_t *c_u32 = (uint32_t *)accu_c; | |||
const uint32_t *a_u32 = (const uint32_t *)a; | |||
for (unsigned int i = 0; i < n_u32; i++) { | |||
c_u32[i] ^= PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256v_mul_u32(a_u32[i], gf256_b); | |||
} | |||
union tmp_32 { | |||
uint8_t u8[4]; | |||
uint32_t u32; | |||
} t; | |||
t.u32 = 0; | |||
accu_c += (n_u32 << 2); | |||
a += (n_u32 << 2); | |||
unsigned int rem = _num_byte & 3; | |||
for (unsigned int i = 0; i < rem; i++) { | |||
t.u8[i] = a[i]; | |||
} | |||
t.u32 = PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256v_mul_u32(t.u32, gf256_b); | |||
for (unsigned int i = 0; i < rem; i++) { | |||
accu_c[i] ^= t.u8[i]; | |||
} | |||
} | |||
@@ -0,0 +1,18 @@ | |||
#ifndef _BLAS_U32_H_ | |||
#define _BLAS_U32_H_ | |||
/// @file blas_u32.h | |||
/// @brief Inlined functions for implementing basic linear algebra functions for uint32 arch. | |||
/// | |||
#include "rainbow_config.h" | |||
#include <stdint.h> | |||
void PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256v_predicated_add_u32(uint8_t *accu_b, uint8_t predicate, const uint8_t *a, unsigned int _num_byte); | |||
void PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256v_add_u32(uint8_t *accu_b, const uint8_t *a, unsigned int _num_byte); | |||
void PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256v_mul_scalar_u32(uint8_t *a, uint8_t b, unsigned int _num_byte); | |||
void PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256v_madd_u32(uint8_t *accu_c, const uint8_t *a, uint8_t gf256_b, unsigned int _num_byte); | |||
#endif // _BLAS_U32_H_ |
@@ -0,0 +1,134 @@ | |||
#include "gf.h" | |||
//// gf4 := gf2[x]/x^2+x+1 | |||
static inline uint8_t gf4_mul_2(uint8_t a) { | |||
uint8_t r = (uint8_t)(a << 1); | |||
r ^= (uint8_t)((a >> 1) * 7); | |||
return r; | |||
} | |||
static inline uint8_t gf4_mul(uint8_t a, uint8_t b) { | |||
uint8_t r = (uint8_t)(a * (b & 1)); | |||
return r ^ (uint8_t)(gf4_mul_2(a) * (b >> 1)); | |||
} | |||
static inline uint8_t gf4_squ(uint8_t a) { | |||
return a ^ (a >> 1); | |||
} | |||
static inline uint32_t gf4v_mul_2_u32(uint32_t a) { | |||
uint32_t bit0 = a & 0x55555555; | |||
uint32_t bit1 = a & 0xaaaaaaaa; | |||
return (bit0 << 1) ^ bit1 ^ (bit1 >> 1); | |||
} | |||
static inline uint32_t gf4v_mul_u32(uint32_t a, uint8_t b) { | |||
uint32_t bit0_b = ((uint32_t)0) - ((uint32_t)(b & 1)); | |||
uint32_t bit1_b = ((uint32_t)0) - ((uint32_t)((b >> 1) & 1)); | |||
return (a & bit0_b) ^ (bit1_b & gf4v_mul_2_u32(a)); | |||
} | |||
//// gf16 := gf4[y]/y^2+y+x | |||
static inline uint8_t gf16_mul(uint8_t a, uint8_t b) { | |||
uint8_t a0 = a & 3; | |||
uint8_t a1 = (a >> 2); | |||
uint8_t b0 = b & 3; | |||
uint8_t b1 = (b >> 2); | |||
uint8_t a0b0 = gf4_mul(a0, b0); | |||
uint8_t a1b1 = gf4_mul(a1, b1); | |||
uint8_t a0b1_a1b0 = gf4_mul(a0 ^ a1, b0 ^ b1) ^ a0b0 ^ a1b1; | |||
uint8_t a1b1_x2 = gf4_mul_2(a1b1); | |||
return (uint8_t)((a0b1_a1b0 ^ a1b1) << 2 ^ a0b0 ^ a1b1_x2); | |||
} | |||
static inline uint8_t gf16_squ(uint8_t a) { | |||
uint8_t a0 = a & 3; | |||
uint8_t a1 = (a >> 2); | |||
a1 = gf4_squ(a1); | |||
uint8_t a1squ_x2 = gf4_mul_2(a1); | |||
return (uint8_t)((a1 << 2) ^ a1squ_x2 ^ gf4_squ(a0)); | |||
} | |||
// gf16 := gf4[y]/y^2+y+x | |||
uint32_t PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf16v_mul_u32(uint32_t a, uint8_t b) { | |||
uint32_t axb0 = gf4v_mul_u32(a, b); | |||
uint32_t axb1 = gf4v_mul_u32(a, b >> 2); | |||
uint32_t a0b1 = (axb1 << 2) & 0xcccccccc; | |||
uint32_t a1b1 = axb1 & 0xcccccccc; | |||
uint32_t a1b1_2 = a1b1 >> 2; | |||
return axb0 ^ a0b1 ^ a1b1 ^ gf4v_mul_2_u32(a1b1_2); | |||
} | |||
uint8_t PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256_is_nonzero(uint8_t a) { | |||
unsigned int a8 = a; | |||
unsigned int r = ((unsigned int)0) - a8; | |||
r >>= 8; | |||
return r & 1; | |||
} | |||
static inline uint8_t gf4_mul_3(uint8_t a) { | |||
uint8_t msk = (uint8_t)((a - 2) >> 1); | |||
return (uint8_t)((msk & ((int)a * 3)) | ((~msk) & ((int)a - 1))); | |||
} | |||
static inline uint8_t gf16_mul_8(uint8_t a) { | |||
uint8_t a0 = a & 3; | |||
uint8_t a1 = a >> 2; | |||
return (uint8_t)((gf4_mul_2(a0 ^ a1) << 2) | gf4_mul_3(a1)); | |||
} | |||
// gf256 := gf16[X]/X^2+X+xy | |||
static inline uint8_t gf256_mul(uint8_t a, uint8_t b) { | |||
uint8_t a0 = a & 15; | |||
uint8_t a1 = (a >> 4); | |||
uint8_t b0 = b & 15; | |||
uint8_t b1 = (b >> 4); | |||
uint8_t a0b0 = gf16_mul(a0, b0); | |||
uint8_t a1b1 = gf16_mul(a1, b1); | |||
uint8_t a0b1_a1b0 = gf16_mul(a0 ^ a1, b0 ^ b1) ^ a0b0 ^ a1b1; | |||
uint8_t a1b1_x8 = gf16_mul_8(a1b1); | |||
return (uint8_t)((a0b1_a1b0 ^ a1b1) << 4 ^ a0b0 ^ a1b1_x8); | |||
} | |||
static inline uint8_t gf256_squ(uint8_t a) { | |||
uint8_t a0 = a & 15; | |||
uint8_t a1 = (a >> 4); | |||
a1 = gf16_squ(a1); | |||
uint8_t a1squ_x8 = gf16_mul_8(a1); | |||
return (uint8_t)((a1 << 4) ^ a1squ_x8 ^ gf16_squ(a0)); | |||
} | |||
uint8_t PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256_inv(uint8_t a) { | |||
// 128+64+32+16+8+4+2 = 254 | |||
uint8_t a2 = gf256_squ(a); | |||
uint8_t a4 = gf256_squ(a2); | |||
uint8_t a8 = gf256_squ(a4); | |||
uint8_t a4_2 = gf256_mul(a4, a2); | |||
uint8_t a8_4_2 = gf256_mul(a4_2, a8); | |||
uint8_t a64_ = gf256_squ(a8_4_2); | |||
a64_ = gf256_squ(a64_); | |||
a64_ = gf256_squ(a64_); | |||
uint8_t a64_2 = gf256_mul(a64_, a8_4_2); | |||
uint8_t a128_ = gf256_squ(a64_2); | |||
return gf256_mul(a2, a128_); | |||
} | |||
static inline uint32_t gf4v_mul_3_u32(uint32_t a) { | |||
uint32_t bit0 = a & 0x55555555; | |||
uint32_t bit1 = a & 0xaaaaaaaa; | |||
return (bit0 << 1) ^ bit0 ^ (bit1 >> 1); | |||
} | |||
static inline uint32_t gf16v_mul_8_u32(uint32_t a) { | |||
uint32_t a1 = a & 0xcccccccc; | |||
uint32_t a0 = (a << 2) & 0xcccccccc; | |||
return gf4v_mul_2_u32(a0 ^ a1) | gf4v_mul_3_u32(a1 >> 2); | |||
} | |||
uint32_t PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256v_mul_u32(uint32_t a, uint8_t b) { | |||
uint32_t axb0 = PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf16v_mul_u32(a, b); | |||
uint32_t axb1 = PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf16v_mul_u32(a, b >> 4); | |||
uint32_t a0b1 = (axb1 << 4) & 0xf0f0f0f0; | |||
uint32_t a1b1 = axb1 & 0xf0f0f0f0; | |||
uint32_t a1b1_4 = a1b1 >> 4; | |||
return axb0 ^ a0b1 ^ a1b1 ^ gf16v_mul_8_u32(a1b1_4); | |||
} |
@@ -0,0 +1,19 @@ | |||
#ifndef _GF16_H_ | |||
#define _GF16_H_ | |||
#include "rainbow_config.h" | |||
#include <stdint.h> | |||
/// @file gf16.h | |||
/// @brief Library for arithmetics in GF(16) and GF(256) | |||
/// | |||
uint32_t PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf16v_mul_u32(uint32_t a, uint8_t b); | |||
uint8_t PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256_is_nonzero(uint8_t a); | |||
uint8_t PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256_inv(uint8_t a); | |||
uint32_t PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256v_mul_u32(uint32_t a, uint8_t b); | |||
#endif // _GF16_H_ |
@@ -0,0 +1,183 @@ | |||
/// @file parallel_matrix_op.c | |||
/// @brief the standard implementations for functions in parallel_matrix_op.h | |||
/// | |||
/// the standard implementations for functions in parallel_matrix_op.h | |||
/// | |||
#include "parallel_matrix_op.h" | |||
#include "blas.h" | |||
#include "blas_comm.h" | |||
/// | |||
/// @brief Calculate the corresponding index in an array for an upper-triangle(UT) matrix. | |||
/// | |||
/// @param[in] i_row - the i-th row in an upper-triangle matrix. | |||
/// @param[in] j_col - the j-th column in an upper-triangle matrix. | |||
/// @param[in] dim - the dimension of the upper-triangle matrix, i.e., an dim x dim matrix. | |||
/// @return the corresponding index in an array storage. | |||
/// | |||
unsigned int PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_idx_of_trimat(unsigned int i_row, unsigned int j_col, unsigned int dim) { | |||
return (dim + dim - i_row + 1) * i_row / 2 + j_col - i_row; | |||
} | |||
/// | |||
/// @brief Calculate the corresponding index in an array for an upper-triangle or lower-triangle matrix. | |||
/// | |||
/// @param[in] i_row - the i-th row in a triangle matrix. | |||
/// @param[in] j_col - the j-th column in a triangle matrix. | |||
/// @param[in] dim - the dimension of the triangle matrix, i.e., an dim x dim matrix. | |||
/// @return the corresponding index in an array storage. | |||
/// | |||
static inline unsigned int idx_of_2trimat(unsigned int i_row, unsigned int j_col, unsigned int n_var) { | |||
if (i_row > j_col) { | |||
return PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_idx_of_trimat(j_col, i_row, n_var); | |||
} | |||
return PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_idx_of_trimat(i_row, j_col, n_var); | |||
} | |||
void PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_UpperTrianglize(unsigned char *btriC, const unsigned char *bA, unsigned int Awidth, unsigned int size_batch) { | |||
unsigned char *runningC = btriC; | |||
unsigned int Aheight = Awidth; | |||
for (unsigned int i = 0; i < Aheight; i++) { | |||
for (unsigned int j = 0; j < i; j++) { | |||
unsigned int idx = PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_idx_of_trimat(j, i, Aheight); | |||
gf256v_add(btriC + idx * size_batch, bA + size_batch * (i * Awidth + j), size_batch); | |||
} | |||
gf256v_add(runningC, bA + size_batch * (i * Awidth + i), size_batch * (Aheight - i)); | |||
runningC += size_batch * (Aheight - i); | |||
} | |||
} | |||
void PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_batch_trimat_madd_gf256(unsigned char *bC, const unsigned char *btriA, | |||
const unsigned char *B, unsigned int Bheight, unsigned int size_Bcolvec, unsigned int Bwidth, unsigned int size_batch) { | |||
unsigned int Awidth = Bheight; | |||
unsigned int Aheight = Awidth; | |||
for (unsigned int i = 0; i < Aheight; i++) { | |||
for (unsigned int j = 0; j < Bwidth; j++) { | |||
for (unsigned int k = 0; k < Bheight; k++) { | |||
if (k < i) { | |||
continue; | |||
} | |||
gf256v_madd(bC, &btriA[(k - i) * size_batch], PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256v_get_ele(&B[j * size_Bcolvec], k), size_batch); | |||
} | |||
bC += size_batch; | |||
} | |||
btriA += (Aheight - i) * size_batch; | |||
} | |||
} | |||
void PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_batch_trimatTr_madd_gf256(unsigned char *bC, const unsigned char *btriA, | |||
const unsigned char *B, unsigned int Bheight, unsigned int size_Bcolvec, unsigned int Bwidth, unsigned int size_batch) { | |||
unsigned int Aheight = Bheight; | |||
for (unsigned int i = 0; i < Aheight; i++) { | |||
for (unsigned int j = 0; j < Bwidth; j++) { | |||
for (unsigned int k = 0; k < Bheight; k++) { | |||
if (i < k) { | |||
continue; | |||
} | |||
gf256v_madd(bC, &btriA[size_batch * (PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_idx_of_trimat(k, i, Aheight))], PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256v_get_ele(&B[j * size_Bcolvec], k), size_batch); | |||
} | |||
bC += size_batch; | |||
} | |||
} | |||
} | |||
void PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_batch_2trimat_madd_gf256(unsigned char *bC, const unsigned char *btriA, | |||
const unsigned char *B, unsigned int Bheight, unsigned int size_Bcolvec, unsigned int Bwidth, unsigned int size_batch) { | |||
unsigned int Aheight = Bheight; | |||
for (unsigned int i = 0; i < Aheight; i++) { | |||
for (unsigned int j = 0; j < Bwidth; j++) { | |||
for (unsigned int k = 0; k < Bheight; k++) { | |||
if (i == k) { | |||
continue; | |||
} | |||
gf256v_madd(bC, &btriA[size_batch * (idx_of_2trimat(i, k, Aheight))], PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256v_get_ele(&B[j * size_Bcolvec], k), size_batch); | |||
} | |||
bC += size_batch; | |||
} | |||
} | |||
} | |||
void PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_batch_matTr_madd_gf256(unsigned char *bC, const unsigned char *A_to_tr, unsigned int Aheight, unsigned int size_Acolvec, unsigned int Awidth, | |||
const unsigned char *bB, unsigned int Bwidth, unsigned int size_batch) { | |||
unsigned int Atr_height = Awidth; | |||
unsigned int Atr_width = Aheight; | |||
for (unsigned int i = 0; i < Atr_height; i++) { | |||
for (unsigned int j = 0; j < Atr_width; j++) { | |||
gf256v_madd(bC, &bB[j * Bwidth * size_batch], PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256v_get_ele(&A_to_tr[size_Acolvec * i], j), size_batch * Bwidth); | |||
} | |||
bC += size_batch * Bwidth; | |||
} | |||
} | |||
void PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_batch_bmatTr_madd_gf256(unsigned char *bC, const unsigned char *bA_to_tr, unsigned int Awidth_before_tr, | |||
const unsigned char *B, unsigned int Bheight, unsigned int size_Bcolvec, unsigned int Bwidth, unsigned int size_batch) { | |||
const unsigned char *bA = bA_to_tr; | |||
unsigned int Aheight = Awidth_before_tr; | |||
for (unsigned int i = 0; i < Aheight; i++) { | |||
for (unsigned int j = 0; j < Bwidth; j++) { | |||
for (unsigned int k = 0; k < Bheight; k++) { | |||
gf256v_madd(bC, &bA[size_batch * (i + k * Aheight)], PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256v_get_ele(&B[j * size_Bcolvec], k), size_batch); | |||
} | |||
bC += size_batch; | |||
} | |||
} | |||
} | |||
void PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_batch_mat_madd_gf256(unsigned char *bC, const unsigned char *bA, unsigned int Aheight, | |||
const unsigned char *B, unsigned int Bheight, unsigned int size_Bcolvec, unsigned int Bwidth, unsigned int size_batch) { | |||
unsigned int Awidth = Bheight; | |||
for (unsigned int i = 0; i < Aheight; i++) { | |||
for (unsigned int j = 0; j < Bwidth; j++) { | |||
for (unsigned int k = 0; k < Bheight; k++) { | |||
gf256v_madd(bC, &bA[k * size_batch], PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256v_get_ele(&B[j * size_Bcolvec], k), size_batch); | |||
} | |||
bC += size_batch; | |||
} | |||
bA += (Awidth) * size_batch; | |||
} | |||
} | |||
void PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_batch_quad_trimat_eval_gf256(unsigned char *y, const unsigned char *trimat, const unsigned char *x, unsigned int dim, unsigned int size_batch) { | |||
unsigned char tmp[256]; | |||
unsigned char _x[256]; | |||
for (unsigned int i = 0; i < dim; i++) { | |||
_x[i] = PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256v_get_ele(x, i); | |||
} | |||
PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256v_set_zero(y, size_batch); | |||
for (unsigned int i = 0; i < dim; i++) { | |||
PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256v_set_zero(tmp, size_batch); | |||
for (unsigned int j = i; j < dim; j++) { | |||
gf256v_madd(tmp, trimat, _x[j], size_batch); | |||
trimat += size_batch; | |||
} | |||
gf256v_madd(y, tmp, _x[i], size_batch); | |||
} | |||
} | |||
void PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_batch_quad_recmat_eval_gf256(unsigned char *z, const unsigned char *y, unsigned int dim_y, const unsigned char *mat, | |||
const unsigned char *x, unsigned dim_x, unsigned size_batch) { | |||
unsigned char tmp[128]; | |||
unsigned char _x[128]; | |||
for (unsigned int i = 0; i < dim_x; i++) { | |||
_x[i] = PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256v_get_ele(x, i); | |||
} | |||
unsigned char _y[128]; | |||
for (unsigned int i = 0; i < dim_y; i++) { | |||
_y[i] = PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256v_get_ele(y, i); | |||
} | |||
PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256v_set_zero(z, size_batch); | |||
for (unsigned int i = 0; i < dim_y; i++) { | |||
PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256v_set_zero(tmp, size_batch); | |||
for (unsigned int j = 0; j < dim_x; j++) { | |||
gf256v_madd(tmp, mat, _x[j], size_batch); | |||
mat += size_batch; | |||
} | |||
gf256v_madd(z, tmp, _y[i], size_batch); | |||
} | |||
} | |||
@@ -0,0 +1,260 @@ | |||
#ifndef _P_MATRIX_OP_H_ | |||
#define _P_MATRIX_OP_H_ | |||
/// @file parallel_matrix_op.h | |||
/// @brief Librarys for operations of batched matrixes. | |||
/// | |||
/// | |||
//////////////// Section: triangle matrix <-> rectangle matrix /////////////////////////////////// | |||
/// | |||
/// @brief Calculate the corresponding index in an array for an upper-triangle(UT) matrix. | |||
/// | |||
/// @param[in] i_row - the i-th row in an upper-triangle matrix. | |||
/// @param[in] j_col - the j-th column in an upper-triangle matrix. | |||
/// @param[in] dim - the dimension of the upper-triangle matrix, i.e., an dim x dim matrix. | |||
/// @return the corresponding index in an array storage. | |||
/// | |||
unsigned int PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_idx_of_trimat(unsigned int i_row, unsigned int j_col, unsigned int dim); | |||
/// | |||
/// @brief Upper trianglize a rectangle matrix to the corresponding upper-trangle matrix. | |||
/// | |||
/// @param[out] btriC - the batched upper-trianglized matrix C. | |||
/// @param[in] bA - a batched retangle matrix A. | |||
/// @param[in] bwidth - the width of the batched matrix A, i.e., A is a Awidth x Awidth matrix. | |||
/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix. | |||
/// | |||
void PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_UpperTrianglize(unsigned char *btriC, const unsigned char *bA, unsigned int Awidth, unsigned int size_batch); | |||
//////////////////// Section: matrix multiplications /////////////////////////////// | |||
/// | |||
/// @brief bC += btriA * B , in GF(16) | |||
/// | |||
/// @param[out] bC - the batched matrix C. | |||
/// @param[in] btriA - a batched UT matrix A. | |||
/// @param[in] B - a column-major matrix B. | |||
/// @param[in] Bheight - the height of B. | |||
/// @param[in] size_Bcolvec - the size of the column vector in B. | |||
/// @param[in] Bwidth - the width of B. | |||
/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix. | |||
/// | |||
void PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_batch_trimat_madd_gf16(unsigned char *bC, const unsigned char *btriA, | |||
const unsigned char *B, unsigned int Bheight, unsigned int size_Bcolvec, unsigned int Bwidth, unsigned int size_batch); | |||
/// | |||
/// @brief bC += btriA * B , in GF(256) | |||
/// | |||
/// @param[out] bC - the batched matrix C. | |||
/// @param[in] btriA - a batched UT matrix A. | |||
/// @param[in] B - a column-major matrix B. | |||
/// @param[in] Bheight - the height of B. | |||
/// @param[in] size_Bcolvec - the size of the column vector in B. | |||
/// @param[in] Bwidth - the width of B. | |||
/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix. | |||
/// | |||
void PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_batch_trimat_madd_gf256(unsigned char *bC, const unsigned char *btriA, | |||
const unsigned char *B, unsigned int Bheight, unsigned int size_Bcolvec, unsigned int Bwidth, unsigned int size_batch); | |||
/// | |||
/// @brief bC += btriA^Tr * B , in GF(16) | |||
/// | |||
/// @param[out] bC - the batched matrix C. | |||
/// @param[in] btriA - a batched UT matrix A. A will be transposed while multiplying. | |||
/// @param[in] B - a column-major matrix B. | |||
/// @param[in] Bheight - the height of B. | |||
/// @param[in] size_Bcolvec - the size of the column vector in B. | |||
/// @param[in] Bwidth - the width of B. | |||
/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix. | |||
/// | |||
void PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_batch_trimatTr_madd_gf16(unsigned char *bC, const unsigned char *btriA, | |||
const unsigned char *B, unsigned int Bheight, unsigned int size_Bcolvec, unsigned int Bwidth, unsigned int size_batch); | |||
/// | |||
/// @brief bC += btriA^Tr * B , in GF(256) | |||
/// | |||
/// @param[out] bC - the batched matrix C. | |||
/// @param[in] btriA - a batched UT matrix A, which will be transposed while multiplying. | |||
/// @param[in] B - a column-major matrix B. | |||
/// @param[in] Bheight - the height of B. | |||
/// @param[in] size_Bcolvec - the size of the column vector in B. | |||
/// @param[in] Bwidth - the width of B. | |||
/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix. | |||
/// | |||
void PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_batch_trimatTr_madd_gf256(unsigned char *bC, const unsigned char *btriA, | |||
const unsigned char *B, unsigned int Bheight, unsigned int size_Bcolvec, unsigned int Bwidth, unsigned int size_batch); | |||
/// | |||
/// @brief bC += (btriA + btriA^Tr) *B , in GF(16) | |||
/// | |||
/// @param[out] bC - the batched matrix C. | |||
/// @param[in] btriA - a batched UT matrix A. The operand for multiplication is (btriA + btriA^Tr). | |||
/// @param[in] B - a column-major matrix B. | |||
/// @param[in] Bheight - the height of B. | |||
/// @param[in] size_Bcolvec - the size of the column vector in B. | |||
/// @param[in] Bwidth - the width of B. | |||
/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix. | |||
/// | |||
void PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_batch_2trimat_madd_gf16(unsigned char *bC, const unsigned char *btriA, | |||
const unsigned char *B, unsigned int Bheight, unsigned int size_Bcolvec, unsigned int Bwidth, unsigned int size_batch); | |||
/// | |||
/// @brief bC += (btriA + btriA^Tr) *B , in GF(256) | |||
/// | |||
/// @param[out] bC - the batched matrix C. | |||
/// @param[in] btriA - a batched UT matrix A. The operand for multiplication is (btriA + btriA^Tr). | |||
/// @param[in] B - a column-major matrix B. | |||
/// @param[in] Bheight - the height of B. | |||
/// @param[in] size_Bcolvec - the size of the column vector in B. | |||
/// @param[in] Bwidth - the width of B. | |||
/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix. | |||
/// | |||
void PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_batch_2trimat_madd_gf256(unsigned char *bC, const unsigned char *btriA, | |||
const unsigned char *B, unsigned int Bheight, unsigned int size_Bcolvec, unsigned int Bwidth, unsigned int size_batch); | |||
/// | |||
/// @brief bC += A^Tr * bB , in GF(16) | |||
/// | |||
/// @param[out] bC - the batched matrix C. | |||
/// @param[in] A_to_tr - a column-major matrix A. The operand for multiplication is A^Tr. | |||
/// @param[in] Aheight - the height of A. | |||
/// @param[in] size_Acolvec - the size of a column vector in A. | |||
/// @param[in] Awidth - the width of A. | |||
/// @param[in] bB - a batched matrix B. | |||
/// @param[in] Bwidth - the width of B. | |||
/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix. | |||
/// | |||
void PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_batch_matTr_madd_gf16(unsigned char *bC, | |||
const unsigned char *A_to_tr, unsigned int Aheight, unsigned int size_Acolvec, unsigned int Awidth, | |||
const unsigned char *bB, unsigned int Bwidth, unsigned int size_batch); | |||
/// | |||
/// @brief bC += A^Tr * bB , in GF(256) | |||
/// | |||
/// @param[out] bC - the batched matrix C. | |||
/// @param[in] A_to_tr - a column-major matrix A. The operand for multiplication is A^Tr. | |||
/// @param[in] Aheight - the height of A. | |||
/// @param[in] size_Acolvec - the size of a column vector in A. | |||
/// @param[in] Awidth - the width of A. | |||
/// @param[in] bB - a batched matrix B. | |||
/// @param[in] Bwidth - the width of B. | |||
/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix. | |||
/// | |||
void PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_batch_matTr_madd_gf256(unsigned char *bC, | |||
const unsigned char *A_to_tr, unsigned int Aheight, unsigned int size_Acolvec, unsigned int Awidth, | |||
const unsigned char *bB, unsigned int Bwidth, unsigned int size_batch); | |||
/// | |||
/// @brief bC += bA^Tr * B , in GF(16) | |||
/// | |||
/// @param[out] bC - the batched matrix C. | |||
/// @param[in] bA_to_tr - a batched matrix A. The operand for multiplication is (bA^Tr). | |||
/// @param[in] Awidth_befor_tr - the width of A. | |||
/// @param[in] B - a column-major matrix B. | |||
/// @param[in] Bheight - the height of B. | |||
/// @param[in] size_Bcolvec - the size of the column vector in B. | |||
/// @param[in] Bwidth - the width of B. | |||
/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix. | |||
/// | |||
void PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_batch_bmatTr_madd_gf16(unsigned char *bC, const unsigned char *bA_to_tr, unsigned int Awidth_before_tr, | |||
const unsigned char *B, unsigned int Bheight, unsigned int size_Bcolvec, unsigned int Bwidth, unsigned int size_batch); | |||
/// | |||
/// @brief bC += bA^Tr * B , in GF(256) | |||
/// | |||
/// @param[out] bC - the batched matrix C. | |||
/// @param[in] bA_to_tr - a batched matrix A. The operand for multiplication is (bA^Tr). | |||
/// @param[in] Awidth_befor_tr - the width of A. | |||
/// @param[in] B - a column-major matrix B. | |||
/// @param[in] Bheight - the height of B. | |||
/// @param[in] size_Bcolvec - the size of the column vector in B. | |||
/// @param[in] Bwidth - the width of B. | |||
/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix. | |||
/// | |||
void PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_batch_bmatTr_madd_gf256(unsigned char *bC, const unsigned char *bA_to_tr, unsigned int Awidth_before_tr, | |||
const unsigned char *B, unsigned int Bheight, unsigned int size_Bcolvec, unsigned int Bwidth, unsigned int size_batch); | |||
/// | |||
/// @brief bC += bA * B , in GF(16) | |||
/// | |||
/// @param[out] bC - the batched matrix C. | |||
/// @param[in] bA - a batched matrix A. | |||
/// @param[in] Aheigh - the height of A. | |||
/// @param[in] B - a column-major matrix B. | |||
/// @param[in] Bheight - the height of B. | |||
/// @param[in] size_Bcolvec - the size of the column vector in B. | |||
/// @param[in] Bwidth - the width of B. | |||
/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix. | |||
/// | |||
void PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_batch_mat_madd_gf16(unsigned char *bC, const unsigned char *bA, unsigned int Aheight, | |||
const unsigned char *B, unsigned int Bheight, unsigned int size_Bcolvec, unsigned int Bwidth, unsigned int size_batch); | |||
/// | |||
/// @brief bC += bA * B , in GF(256) | |||
/// | |||
/// @param[out] bC - the batched matrix C. | |||
/// @param[in] bA - a batched matrix A. | |||
/// @param[in] Aheigh - the height of A. | |||
/// @param[in] B - a column-major matrix B. | |||
/// @param[in] Bheight - the height of B. | |||
/// @param[in] size_Bcolvec - the size of the column vector in B. | |||
/// @param[in] Bwidth - the width of B. | |||
/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix. | |||
/// | |||
void PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_batch_mat_madd_gf256(unsigned char *bC, const unsigned char *bA, unsigned int Aheight, | |||
const unsigned char *B, unsigned int Bheight, unsigned int size_Bcolvec, unsigned int Bwidth, unsigned int size_batch); | |||
//////////////////// Section: "quadratric" matrix evaluation /////////////////////////////// | |||
/// | |||
/// @brief y = x^Tr * trimat * x , in GF(16) | |||
/// | |||
/// @param[out] y - the returned batched element y. | |||
/// @param[in] trimat - a batched matrix. | |||
/// @param[in] x - an input vector x. | |||
/// @param[in] dim - the dimension of matrix trimat (and x). | |||
/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix. | |||
/// | |||
void PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_batch_quad_trimat_eval_gf16(unsigned char *y, const unsigned char *trimat, const unsigned char *x, unsigned int dim, unsigned int size_batch); | |||
/// | |||
/// @brief y = x^Tr * trimat * x , in GF(256) | |||
/// | |||
/// @param[out] y - the returned batched element y. | |||
/// @param[in] trimat - a batched matrix. | |||
/// @param[in] x - an input vector x. | |||
/// @param[in] dim - the dimension of matrix trimat (and x). | |||
/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix. | |||
/// | |||
void PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_batch_quad_trimat_eval_gf256(unsigned char *y, const unsigned char *trimat, const unsigned char *x, unsigned int dim, unsigned int size_batch); | |||
/// | |||
/// @brief z = y^Tr * mat * x , in GF(16) | |||
/// | |||
/// @param[out] z - the returned batched element z. | |||
/// @param[in] y - an input vector y. | |||
/// @param[in] dim_y - the length of y. | |||
/// @param[in] mat - a batched matrix. | |||
/// @param[in] x - an input vector x. | |||
/// @param[in] dim_x - the length of x. | |||
/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix. | |||
/// | |||
void PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_batch_quad_recmat_eval_gf16(unsigned char *z, const unsigned char *y, unsigned int dim_y, | |||
const unsigned char *mat, const unsigned char *x, unsigned int dim_x, unsigned int size_batch); | |||
/// | |||
/// @brief z = y^Tr * mat * x , in GF(256) | |||
/// | |||
/// @param[out] z - the returned batched element z. | |||
/// @param[in] y - an input vector y. | |||
/// @param[in] dim_y - the length of y. | |||
/// @param[in] mat - a batched matrix. | |||
/// @param[in] x - an input vector x. | |||
/// @param[in] dim_x - the length of x. | |||
/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix. | |||
/// | |||
void PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_batch_quad_recmat_eval_gf256(unsigned char *z, const unsigned char *y, unsigned int dim_y, | |||
const unsigned char *mat, const unsigned char *x, unsigned int dim_x, unsigned int size_batch); | |||
#endif // _P_MATRIX_OP_H_ |
@@ -0,0 +1,174 @@ | |||
/// @file rainbow.c | |||
/// @brief The standard implementations for functions in rainbow.h | |||
/// | |||
#include "rainbow.h" | |||
#include "blas.h" | |||
#include "rainbow_blas.h" | |||
#include "rainbow_config.h" | |||
#include "rainbow_keypair.h" | |||
#include "utils_hash.h" | |||
#include "utils_prng.h" | |||
#include <stdint.h> | |||
#include <stdlib.h> | |||
#include <string.h> | |||
#define MAX_ATTEMPT_FRMAT 128 | |||
#define _MAX_O ((_O1 > _O2) ? _O1 : _O2) | |||
#define _MAX_O_BYTE ((_O1_BYTE > _O2_BYTE) ? _O1_BYTE : _O2_BYTE) | |||
int PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_rainbow_sign(uint8_t *signature, const sk_t *sk, const uint8_t *_digest) { | |||
uint8_t mat_l1[_O1 * _O1_BYTE]; | |||
uint8_t mat_l2[_O2 * _O2_BYTE]; | |||
uint8_t mat_buffer[2 * _MAX_O * _MAX_O_BYTE]; | |||
// setup PRNG | |||
prng_t prng_sign; | |||
uint8_t prng_preseed[LEN_SKSEED + _HASH_LEN]; | |||
memcpy(prng_preseed, sk->sk_seed, LEN_SKSEED); | |||
memcpy(prng_preseed + LEN_SKSEED, _digest, _HASH_LEN); // prng_preseed = sk_seed || digest | |||
uint8_t prng_seed[_HASH_LEN]; | |||
PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_hash_msg(prng_seed, _HASH_LEN, prng_preseed, _HASH_LEN + LEN_SKSEED); | |||
PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_prng_set(&prng_sign, prng_seed, _HASH_LEN); // seed = H( sk_seed || digest ) | |||
for (unsigned int i = 0; i < LEN_SKSEED + _HASH_LEN; i++) { | |||
prng_preseed[i] ^= prng_preseed[i]; // clean | |||
} | |||
for (unsigned int i = 0; i < _HASH_LEN; i++) { | |||
prng_seed[i] ^= prng_seed[i]; // clean | |||
} | |||
// roll vinegars. | |||
uint8_t vinegar[_V1_BYTE]; | |||
unsigned int n_attempt = 0; | |||
unsigned int l1_succ = 0; | |||
while (!l1_succ) { | |||
if (MAX_ATTEMPT_FRMAT <= n_attempt) { | |||
break; | |||
} | |||
PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_prng_gen(&prng_sign, vinegar, _V1_BYTE); // generating vinegars | |||
gfmat_prod(mat_l1, sk->l1_F2, _O1 * _O1_BYTE, _V1, vinegar); // generating the linear equations for layer 1 | |||
l1_succ = gfmat_inv(mat_l1, mat_l1, _O1, mat_buffer); // check if the linear equation solvable | |||
n_attempt++; | |||
} | |||
// Given the vinegars, pre-compute variables needed for layer 2 | |||
uint8_t r_l1_F1[_O1_BYTE] = {0}; | |||
uint8_t r_l2_F1[_O2_BYTE] = {0}; | |||
batch_quad_trimat_eval(r_l1_F1, sk->l1_F1, vinegar, _V1, _O1_BYTE); | |||
batch_quad_trimat_eval(r_l2_F1, sk->l2_F1, vinegar, _V1, _O2_BYTE); | |||
uint8_t mat_l2_F3[_O2 * _O2_BYTE]; | |||
uint8_t mat_l2_F2[_O1 * _O2_BYTE]; | |||
gfmat_prod(mat_l2_F3, sk->l2_F3, _O2 * _O2_BYTE, _V1, vinegar); | |||
gfmat_prod(mat_l2_F2, sk->l2_F2, _O1 * _O2_BYTE, _V1, vinegar); | |||
// Some local variables. | |||
uint8_t _z[_PUB_M_BYTE]; | |||
uint8_t y[_PUB_M_BYTE]; | |||
uint8_t *x_v1 = vinegar; | |||
uint8_t x_o1[_O1_BYTE]; | |||
uint8_t x_o2[_O1_BYTE]; | |||
uint8_t digest_salt[_HASH_LEN + _SALT_BYTE]; | |||
memcpy(digest_salt, _digest, _HASH_LEN); | |||
uint8_t *salt = digest_salt + _HASH_LEN; | |||
uint8_t temp_o[_MAX_O_BYTE + 32] = {0}; | |||
unsigned int succ = 0; | |||
while (!succ) { | |||
if (MAX_ATTEMPT_FRMAT <= n_attempt) { | |||
break; | |||
} | |||
// The computation: H(digest||salt) --> z --S--> y --C-map--> x --T--> w | |||
PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_prng_gen(&prng_sign, salt, _SALT_BYTE); // roll the salt | |||
PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_hash_msg(_z, _PUB_M_BYTE, digest_salt, _HASH_LEN + _SALT_BYTE); // H(digest||salt) | |||
// y = S^-1 * z | |||
memcpy(y, _z, _PUB_M_BYTE); // identity part of S | |||
gfmat_prod(temp_o, sk->s1, _O1_BYTE, _O2, _z + _O1_BYTE); | |||
gf256v_add(y, temp_o, _O1_BYTE); | |||
// Central Map: | |||
// layer 1: calculate x_o1 | |||
memcpy(temp_o, r_l1_F1, _O1_BYTE); | |||
gf256v_add(temp_o, y, _O1_BYTE); | |||
gfmat_prod(x_o1, mat_l1, _O1_BYTE, _O1, temp_o); | |||
// layer 2: calculate x_o2 | |||
PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256v_set_zero(temp_o, _O2_BYTE); | |||
gfmat_prod(temp_o, mat_l2_F2, _O2_BYTE, _O1, x_o1); // F2 | |||
batch_quad_trimat_eval(mat_l2, sk->l2_F5, x_o1, _O1, _O2_BYTE); // F5 | |||
gf256v_add(temp_o, mat_l2, _O2_BYTE); | |||
gf256v_add(temp_o, r_l2_F1, _O2_BYTE); // F1 | |||
gf256v_add(temp_o, y + _O1_BYTE, _O2_BYTE); | |||
// generate the linear equations of the 2nd layer | |||
gfmat_prod(mat_l2, sk->l2_F6, _O2 * _O2_BYTE, _O1, x_o1); // F6 | |||
gf256v_add(mat_l2, mat_l2_F3, _O2 * _O2_BYTE); // F3 | |||
succ = gfmat_inv(mat_l2, mat_l2, _O2, mat_buffer); | |||
gfmat_prod(x_o2, mat_l2, _O2_BYTE, _O2, temp_o); // solve l2 eqs | |||
n_attempt++; | |||
}; | |||
// w = T^-1 * y | |||
uint8_t w[_PUB_N_BYTE]; | |||
// identity part of T. | |||
memcpy(w, x_v1, _V1_BYTE); | |||
memcpy(w + _V1_BYTE, x_o1, _O1_BYTE); | |||
memcpy(w + _V2_BYTE, x_o2, _O2_BYTE); | |||
// Computing the t1 part. | |||
gfmat_prod(y, sk->t1, _V1_BYTE, _O1, x_o1); | |||
gf256v_add(w, y, _V1_BYTE); | |||
// Computing the t4 part. | |||
gfmat_prod(y, sk->t4, _V1_BYTE, _O2, x_o2); | |||
gf256v_add(w, y, _V1_BYTE); | |||
// Computing the t3 part. | |||
gfmat_prod(y, sk->t3, _O1_BYTE, _O2, x_o2); | |||
gf256v_add(w + _V1_BYTE, y, _O1_BYTE); | |||
memset(signature, 0, _SIGNATURE_BYTE); // set the output 0 | |||
// clean | |||
memset(&prng_sign, 0, sizeof(prng_t)); | |||
memset(vinegar, 0, _V1_BYTE); | |||
memset(r_l1_F1, 0, _O1_BYTE); | |||
memset(r_l2_F1, 0, _O2_BYTE); | |||
memset(_z, 0, _PUB_M_BYTE); | |||
memset(y, 0, _PUB_M_BYTE); | |||
memset(x_o1, 0, _O1_BYTE); | |||
memset(x_o2, 0, _O2_BYTE); | |||
memset(temp_o, 0, sizeof(temp_o)); | |||
// return: copy w and salt to the signature. | |||
if (MAX_ATTEMPT_FRMAT <= n_attempt) { | |||
return -1; | |||
} | |||
gf256v_add(signature, w, _PUB_N_BYTE); | |||
gf256v_add(signature + _PUB_N_BYTE, salt, _SALT_BYTE); | |||
return 0; | |||
} | |||
int PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_rainbow_verify(const uint8_t *digest, const uint8_t *signature, const pk_t *pk) { | |||
unsigned char digest_ck[_PUB_M_BYTE]; | |||
// public_map( digest_ck , pk , signature ); Evaluating the quadratic public polynomials. | |||
batch_quad_trimat_eval(digest_ck, pk->pk, signature, _PUB_N, _PUB_M_BYTE); | |||
unsigned char correct[_PUB_M_BYTE]; | |||
unsigned char digest_salt[_HASH_LEN + _SALT_BYTE]; | |||
memcpy(digest_salt, digest, _HASH_LEN); | |||
memcpy(digest_salt + _HASH_LEN, signature + _PUB_N_BYTE, _SALT_BYTE); | |||
PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_hash_msg(correct, _PUB_M_BYTE, digest_salt, _HASH_LEN + _SALT_BYTE); // H( digest || salt ) | |||
// check consistancy. | |||
unsigned char cc = 0; | |||
for (unsigned int i = 0; i < _PUB_M_BYTE; i++) { | |||
cc |= (digest_ck[i] ^ correct[i]); | |||
} | |||
return (0 == cc) ? 0 : -1; | |||
} | |||
int PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_rainbow_verify_cyclic(const uint8_t *digest, const uint8_t *signature, const cpk_t *_pk) { | |||
unsigned char pk[sizeof(pk_t) + 32]; | |||
PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_cpk_to_pk((pk_t *)pk, _pk); // generating classic public key. | |||
return PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_rainbow_verify(digest, signature, (pk_t *)pk); | |||
} |
@@ -0,0 +1,42 @@ | |||
#ifndef _RAINBOW_H_ | |||
#define _RAINBOW_H_ | |||
/// @file rainbow.h | |||
/// @brief APIs for rainbow. | |||
/// | |||
#include "rainbow_config.h" | |||
#include "rainbow_keypair.h" | |||
#include <stdint.h> | |||
/// | |||
/// @brief Signing function for classical secret key. | |||
/// | |||
/// @param[out] signature - the signature. | |||
/// @param[in] sk - the secret key. | |||
/// @param[in] digest - the digest. | |||
/// | |||
int PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_rainbow_sign(uint8_t *signature, const sk_t *sk, const uint8_t *digest); | |||
/// | |||
/// @brief Verifying function. | |||
/// | |||
/// @param[in] digest - the digest. | |||
/// @param[in] signature - the signature. | |||
/// @param[in] pk - the public key. | |||
/// @return 0 for successful verified. -1 for failed verification. | |||
/// | |||
int PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_rainbow_verify(const uint8_t *digest, const uint8_t *signature, const pk_t *pk); | |||
/// | |||
/// @brief Verifying function for cyclic public keys. | |||
/// | |||
/// @param[in] digest - the digest. | |||
/// @param[in] signature - the signature. | |||
/// @param[in] pk - the public key of cyclic rainbow. | |||
/// @return 0 for successful verified. -1 for failed verification. | |||
/// | |||
int PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_rainbow_verify_cyclic(const uint8_t *digest, const uint8_t *signature, const cpk_t *pk); | |||
#endif // _RAINBOW_H_ |
@@ -0,0 +1,31 @@ | |||
#ifndef _RAINBOW_BLAS_H_ | |||
#define _RAINBOW_BLAS_H_ | |||
/// @file rainbow_blas.h | |||
/// @brief Defining the functions used in rainbow.c acconding to the definitions in rainbow_config.h | |||
/// | |||
/// Defining the functions used in rainbow.c acconding to the definitions in rainbow_config.h | |||
#include "blas.h" | |||
#include "parallel_matrix_op.h" | |||
#include "rainbow_config.h" | |||
#define gfv_get_ele PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256v_get_ele | |||
#define gfv_mul_scalar PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256v_mul_scalar | |||
#define gfv_madd PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256v_madd | |||
#define gfmat_prod PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256mat_prod | |||
#define gfmat_inv PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_gf256mat_inv | |||
#define batch_trimat_madd PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_batch_trimat_madd_gf256 | |||
#define batch_trimatTr_madd PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_batch_trimatTr_madd_gf256 | |||
#define batch_2trimat_madd PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_batch_2trimat_madd_gf256 | |||
#define batch_matTr_madd PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_batch_matTr_madd_gf256 | |||
#define batch_bmatTr_madd PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_batch_bmatTr_madd_gf256 | |||
#define batch_mat_madd PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_batch_mat_madd_gf256 | |||
#define batch_quad_trimat_eval PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_batch_quad_trimat_eval_gf256 | |||
#define batch_quad_recmat_eval PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_batch_quad_recmat_eval_gf256 | |||
#endif // _RAINBOW_BLAS_H_ |
@@ -0,0 +1,46 @@ | |||
#ifndef _H_RAINBOW_CONFIG_H_ | |||
#define _H_RAINBOW_CONFIG_H_ | |||
/// @file rainbow_config.h | |||
/// @brief Defining the parameters of the Rainbow and the corresponding constants. | |||
/// | |||
#define _GFSIZE 256 | |||
#define _V1 68 | |||
#define _O1 36 | |||
#define _O2 36 | |||
#define _HASH_LEN 48 | |||
#define _V2 ((_V1) + (_O1)) | |||
/// size of N, in # of gf elements. | |||
#define _PUB_N (_V1 + _O1 + _O2) | |||
/// size of M, in # gf elements. | |||
#define _PUB_M (_O1 + _O2) | |||
/// size of variables, in # bytes. | |||
// GF256 | |||
#define _V1_BYTE (_V1) | |||
#define _V2_BYTE (_V2) | |||
#define _O1_BYTE (_O1) | |||
#define _O2_BYTE (_O2) | |||
#define _PUB_N_BYTE (_PUB_N) | |||
#define _PUB_M_BYTE (_PUB_M) | |||
/// length of seed for public key, in # bytes | |||
#define LEN_PKSEED 32 | |||
/// length of seed for secret key, in # bytes | |||
#define LEN_SKSEED 32 | |||
/// length of salt for a signature, in # bytes | |||
#define _SALT_BYTE 16 | |||
/// length of a signature | |||
#define _SIGNATURE_BYTE (_PUB_N_BYTE + _SALT_BYTE) | |||
#endif // _H_RAINBOW_CONFIG_H_ |
@@ -0,0 +1,157 @@ | |||
/// @file rainbow_keypair.c | |||
/// @brief implementations of functions in rainbow_keypair.h | |||
/// | |||
#include "rainbow_keypair.h" | |||
#include "blas.h" | |||
#include "blas_comm.h" | |||
#include "rainbow_blas.h" | |||
#include "rainbow_keypair_computation.h" | |||
#include "utils_prng.h" | |||
#include <stdint.h> | |||
#include <stdlib.h> | |||
#include <string.h> | |||
static void generate_S_T(unsigned char *s_and_t, prng_t *prng0) { | |||
PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_prng_gen(prng0, s_and_t, _O1_BYTE * _O2); // S1 | |||
s_and_t += _O1_BYTE * _O2; | |||
PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_prng_gen(prng0, s_and_t, _V1_BYTE * _O1); // T1 | |||
s_and_t += _V1_BYTE * _O1; | |||
PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_prng_gen(prng0, s_and_t, _V1_BYTE * _O2); // T2 | |||
s_and_t += _V1_BYTE * _O2; | |||
PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_prng_gen(prng0, s_and_t, _O1_BYTE * _O2); // T3 | |||
} | |||
static unsigned int generate_l1_F12(unsigned char *sk, prng_t *prng0) { | |||
unsigned int n_byte_generated = 0; | |||
PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_prng_gen(prng0, sk, _O1_BYTE * N_TRIANGLE_TERMS(_V1)); // l1_F1 | |||
sk += _O1_BYTE * N_TRIANGLE_TERMS(_V1); | |||
n_byte_generated += _O1_BYTE * N_TRIANGLE_TERMS(_V1); | |||
PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_prng_gen(prng0, sk, _O1_BYTE * _V1 * _O1); // l1_F2 | |||
n_byte_generated += _O1_BYTE * _V1 * _O1; | |||
return n_byte_generated; | |||
} | |||
static unsigned int generate_l2_F12356(unsigned char *sk, prng_t *prng0) { | |||
unsigned int n_byte_generated = 0; | |||
PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_prng_gen(prng0, sk, _O2_BYTE * N_TRIANGLE_TERMS(_V1)); // l2_F1 | |||
sk += _O2_BYTE * N_TRIANGLE_TERMS(_V1); | |||
n_byte_generated += _O2_BYTE * N_TRIANGLE_TERMS(_V1); | |||
PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_prng_gen(prng0, sk, _O2_BYTE * _V1 * _O1); // l2_F2 | |||
sk += _O2_BYTE * _V1 * _O1; | |||
n_byte_generated += _O2_BYTE * _V1 * _O1; | |||
PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_prng_gen(prng0, sk, _O2_BYTE * _V1 * _O2); // l2_F3 | |||
sk += _O2_BYTE * _V1 * _O1; | |||
n_byte_generated += _O2_BYTE * _V1 * _O1; | |||
PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_prng_gen(prng0, sk, _O2_BYTE * N_TRIANGLE_TERMS(_O1)); // l2_F5 | |||
sk += _O2_BYTE * N_TRIANGLE_TERMS(_O1); | |||
n_byte_generated += _O2_BYTE * N_TRIANGLE_TERMS(_O1); | |||
PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_prng_gen(prng0, sk, _O2_BYTE * _O1 * _O2); // l2_F6 | |||
n_byte_generated += _O2_BYTE * _O1 * _O2; | |||
return n_byte_generated; | |||
} | |||
static void generate_B1_B2(unsigned char *sk, prng_t *prng0) { | |||
sk += generate_l1_F12(sk, prng0); | |||
generate_l2_F12356(sk, prng0); | |||
} | |||
static void calculate_t4(unsigned char *t2_to_t4, const unsigned char *t1, const unsigned char *t3) { | |||
// t4 = T_sk.t1 * T_sk.t3 - T_sk.t2 | |||
unsigned char temp[_V1_BYTE + 32]; | |||
unsigned char *t4 = t2_to_t4; | |||
for (unsigned int i = 0; i < _O2; i++) { /// t3 width | |||
gfmat_prod(temp, t1, _V1_BYTE, _O1, t3); | |||
gf256v_add(t4, temp, _V1_BYTE); | |||
t4 += _V1_BYTE; | |||
t3 += _O1_BYTE; | |||
} | |||
} | |||
static void obsfucate_l1_polys(unsigned char *l1_polys, const unsigned char *l2_polys, unsigned int n_terms, const unsigned char *s1) { | |||
unsigned char temp[_O1_BYTE + 32]; | |||
while (n_terms--) { | |||
gfmat_prod(temp, s1, _O1_BYTE, _O2, l2_polys); | |||
gf256v_add(l1_polys, temp, _O1_BYTE); | |||
l1_polys += _O1_BYTE; | |||
l2_polys += _O2_BYTE; | |||
} | |||
} | |||
/////////////////// Classic ////////////////////////////////// | |||
///////////////////// Cyclic ////////////////////////////////// | |||
void PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_generate_keypair_cyclic(cpk_t *pk, sk_t *sk, const unsigned char *pk_seed, const unsigned char *sk_seed) { | |||
memcpy(pk->pk_seed, pk_seed, LEN_PKSEED); | |||
memcpy(sk->sk_seed, sk_seed, LEN_SKSEED); | |||
// prng for sk | |||
prng_t prng; | |||
prng_t *prng0 = &prng; | |||
PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_prng_set(prng0, sk_seed, LEN_SKSEED); | |||
generate_S_T(sk->s1, prng0); // S,T: only a part of sk | |||
unsigned char t2[sizeof(sk->t4)]; | |||
memcpy(t2, sk->t4, _V1_BYTE * _O2); // temporarily store t2 | |||
calculate_t4(sk->t4, sk->t1, sk->t3); // t2 <- t4 | |||
// prng for pk | |||
sk_t inst_Qs; | |||
sk_t *Qs = &inst_Qs; | |||
prng_t *prng1 = &prng; | |||
PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_prng_set(prng1, pk_seed, LEN_PKSEED); | |||
generate_B1_B2(Qs->l1_F1, prng1); // generating l1_Q1, l1_Q2, l2_Q1, l2_Q2, l2_Q3, l2_Q5, l2_Q6 | |||
obsfucate_l1_polys(Qs->l1_F1, Qs->l2_F1, N_TRIANGLE_TERMS(_V1), sk->s1); | |||
obsfucate_l1_polys(Qs->l1_F2, Qs->l2_F2, _V1 * _O1, sk->s1); | |||
// so far, the Qs contains l1_F1, l1_F2, l2_F1, l2_F2, l2_F3, l2_F5, l2_F6. | |||
PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_calculate_F_from_Q(sk, Qs, sk); // calcuate the rest parts of secret key from Qs and S,T | |||
unsigned char t4[sizeof(sk->t4)]; | |||
memcpy(t4, sk->t4, _V1_BYTE * _O2); // temporarily store t4 | |||
memcpy(sk->t4, t2, _V1_BYTE * _O2); // restore t2 | |||
PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_calculate_Q_from_F_cyclic(pk, sk, sk); // calculate the rest parts of public key: l1_Q3, l1_Q5, l1_Q6, l1_Q9, l2_Q9 | |||
memcpy(sk->t4, t4, _V1_BYTE * _O2); // restore t4 | |||
obsfucate_l1_polys(pk->l1_Q3, Qs->l2_F3, _V1 * _O2, sk->s1); | |||
obsfucate_l1_polys(pk->l1_Q5, Qs->l2_F5, N_TRIANGLE_TERMS(_O1), sk->s1); | |||
obsfucate_l1_polys(pk->l1_Q6, Qs->l2_F6, _O1 * _O2, sk->s1); | |||
obsfucate_l1_polys(pk->l1_Q9, pk->l2_Q9, N_TRIANGLE_TERMS(_O2), sk->s1); | |||
// clean | |||
memset(&prng, 0, sizeof(prng_t)); | |||
} | |||
void PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_cpk_to_pk(pk_t *rpk, const cpk_t *cpk) { | |||
// procedure: cpk_t --> extcpk_t --> pk_t | |||
// convert from cpk_t to extcpk_t | |||
ext_cpk_t pk; | |||
// setup prng | |||
prng_t prng0; | |||
PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_prng_set(&prng0, cpk->pk_seed, LEN_SKSEED); | |||
// generating parts of key with prng | |||
generate_l1_F12(pk.l1_Q1, &prng0); | |||
// copying parts of key from input. l1_Q3, l1_Q5, l1_Q6, l1_Q9 | |||
memcpy(pk.l1_Q3, cpk->l1_Q3, _O1_BYTE * (_V1 * _O2 + N_TRIANGLE_TERMS(_O1) + _O1 * _O2 + N_TRIANGLE_TERMS(_O2))); | |||
// generating parts of key with prng | |||
generate_l2_F12356(pk.l2_Q1, &prng0); | |||
// copying parts of key from input: l2_Q9 | |||
memcpy(pk.l2_Q9, cpk->l2_Q9, _O2_BYTE * N_TRIANGLE_TERMS(_O2)); | |||
// convert from extcpk_t to pk_t | |||
PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_extcpk_to_pk(rpk, &pk); | |||
} |
@@ -0,0 +1,94 @@ | |||
#ifndef _RAINBOW_KEYPAIR_H_ | |||
#define _RAINBOW_KEYPAIR_H_ | |||
/// @file rainbow_keypair.h | |||
/// @brief Formats of key pairs and functions for generating key pairs. | |||
/// Formats of key pairs and functions for generating key pairs. | |||
/// | |||
#include "rainbow_config.h" | |||
#define N_TRIANGLE_TERMS(n_var) ((n_var) * ((n_var) + 1) / 2) | |||
/// @brief public key for classic rainbow | |||
/// | |||
/// public key for classic rainbow | |||
/// | |||
typedef struct rainbow_publickey { | |||
unsigned char pk[(_PUB_M_BYTE)*N_TRIANGLE_TERMS(_PUB_N)]; | |||
} pk_t; | |||
/// @brief secret key for classic rainbow | |||
/// | |||
/// secret key for classic rainbow | |||
/// | |||
typedef struct rainbow_secretkey { | |||
/// | |||
/// seed for generating secret key. | |||
/// Generating S, T, and F for classic rainbow. | |||
/// Generating S and T only for cyclic rainbow. | |||
unsigned char sk_seed[LEN_SKSEED]; | |||
unsigned char s1[_O1_BYTE * _O2]; ///< part of S map | |||
unsigned char t1[_V1_BYTE * _O1]; ///< part of T map | |||
unsigned char t4[_V1_BYTE * _O2]; ///< part of T map | |||
unsigned char t3[_O1_BYTE * _O2]; ///< part of T map | |||
unsigned char l1_F1[_O1_BYTE * N_TRIANGLE_TERMS(_V1)]; ///< part of C-map, F1, Layer1 | |||
unsigned char l1_F2[_O1_BYTE * _V1 * _O1]; ///< part of C-map, F2, Layer1 | |||
unsigned char l2_F1[_O2_BYTE * N_TRIANGLE_TERMS(_V1)]; ///< part of C-map, F1, Layer2 | |||
unsigned char l2_F2[_O2_BYTE * _V1 * _O1]; ///< part of C-map, F2, Layer2 | |||
unsigned char l2_F3[_O2_BYTE * _V1 * _O2]; ///< part of C-map, F3, Layer2 | |||
unsigned char l2_F5[_O2_BYTE * N_TRIANGLE_TERMS(_O1)]; ///< part of C-map, F5, Layer2 | |||
unsigned char l2_F6[_O2_BYTE * _O1 * _O2]; ///< part of C-map, F6, Layer2 | |||
} sk_t; | |||
/// @brief public key for cyclic rainbow | |||
/// | |||
/// public key for cyclic rainbow | |||
/// | |||
typedef struct rainbow_publickey_cyclic { | |||
unsigned char pk_seed[LEN_PKSEED]; ///< seed for generating l1_Q1,l1_Q2,l2_Q1,l2_Q2,l2_Q3,l2_Q5,l2_Q6 | |||
unsigned char l1_Q3[_O1_BYTE * _V1 * _O2]; ///< Q3, layer1 | |||
unsigned char l1_Q5[_O1_BYTE * N_TRIANGLE_TERMS(_O1)]; ///< Q5, layer1 | |||
unsigned char l1_Q6[_O1_BYTE * _O1 * _O2]; ///< Q6, layer1 | |||
unsigned char l1_Q9[_O1_BYTE * N_TRIANGLE_TERMS(_O2)]; ///< Q9, layer1 | |||
unsigned char l2_Q9[_O2_BYTE * N_TRIANGLE_TERMS(_O2)]; ///< Q9, layer2 | |||
} cpk_t; | |||
/// @brief compressed secret key for cyclic rainbow | |||
/// | |||
/// compressed secret key for cyclic rainbow | |||
/// | |||
typedef struct rainbow_secretkey_cyclic { | |||
unsigned char pk_seed[LEN_PKSEED]; ///< seed for generating a part of public key. | |||
unsigned char sk_seed[LEN_SKSEED]; ///< seed for generating a part of secret key. | |||
} csk_t; | |||
/// | |||
/// @brief Generate key pairs for cyclic rainbow. | |||
/// | |||
/// @param[out] pk - the public key. | |||
/// @param[out] sk - the secret key. | |||
/// @param[in] pk_seed - seed for generating parts of public key. | |||
/// @param[in] sk_seed - seed for generating secret key. | |||
/// | |||
void PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_generate_keypair_cyclic(cpk_t *pk, sk_t *sk, const unsigned char *pk_seed, const unsigned char *sk_seed); | |||
//////////////////////////////////// | |||
/// | |||
/// @brief converting formats of public keys : from cyclic version to classic key | |||
/// | |||
/// @param[out] pk - the classic public key. | |||
/// @param[in] cpk - the cyclic public key. | |||
/// | |||
void PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_cpk_to_pk(pk_t *pk, const cpk_t *cpk); | |||
#endif // _RAINBOW_KEYPAIR_H_ |
@@ -0,0 +1,213 @@ | |||
/// @file rainbow_keypair_computation.c | |||
/// @brief Implementations for functions in rainbow_keypair_computation.h | |||
/// | |||
#include "rainbow_keypair_computation.h" | |||
#include "blas.h" | |||
#include "blas_comm.h" | |||
#include "rainbow_blas.h" | |||
#include "rainbow_keypair.h" | |||
#include <stdint.h> | |||
#include <stdlib.h> | |||
#include <string.h> | |||
void PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_extcpk_to_pk(pk_t *pk, const ext_cpk_t *cpk) { | |||
const unsigned char *idx_l1 = cpk->l1_Q1; | |||
const unsigned char *idx_l2 = cpk->l2_Q1; | |||
for (unsigned int i = 0; i < _V1; i++) { | |||
for (unsigned int j = i; j < _V1; j++) { | |||
unsigned int pub_idx = PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_idx_of_trimat(i, j, _PUB_N); | |||
memcpy(&pk->pk[_PUB_M_BYTE * pub_idx], idx_l1, _O1_BYTE); | |||
memcpy((&pk->pk[_PUB_M_BYTE * pub_idx]) + _O1_BYTE, idx_l2, _O2_BYTE); | |||
idx_l1 += _O1_BYTE; | |||
idx_l2 += _O2_BYTE; | |||
} | |||
} | |||
idx_l1 = cpk->l1_Q2; | |||
idx_l2 = cpk->l2_Q2; | |||
for (unsigned int i = 0; i < _V1; i++) { | |||
for (unsigned int j = _V1; j < _V1 + _O1; j++) { | |||
unsigned int pub_idx = PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_idx_of_trimat(i, j, _PUB_N); | |||
memcpy(&pk->pk[_PUB_M_BYTE * pub_idx], idx_l1, _O1_BYTE); | |||
memcpy((&pk->pk[_PUB_M_BYTE * pub_idx]) + _O1_BYTE, idx_l2, _O2_BYTE); | |||
idx_l1 += _O1_BYTE; | |||
idx_l2 += _O2_BYTE; | |||
} | |||
} | |||
idx_l1 = cpk->l1_Q3; | |||
idx_l2 = cpk->l2_Q3; | |||
for (unsigned int i = 0; i < _V1; i++) { | |||
for (unsigned int j = _V1 + _O1; j < _PUB_N; j++) { | |||
unsigned int pub_idx = PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_idx_of_trimat(i, j, _PUB_N); | |||
memcpy(&pk->pk[_PUB_M_BYTE * pub_idx], idx_l1, _O1_BYTE); | |||
memcpy((&pk->pk[_PUB_M_BYTE * pub_idx]) + _O1_BYTE, idx_l2, _O2_BYTE); | |||
idx_l1 += _O1_BYTE; | |||
idx_l2 += _O2_BYTE; | |||
} | |||
} | |||
idx_l1 = cpk->l1_Q5; | |||
idx_l2 = cpk->l2_Q5; | |||
for (unsigned int i = _V1; i < _V1 + _O1; i++) { | |||
for (unsigned int j = i; j < _V1 + _O1; j++) { | |||
unsigned int pub_idx = PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_idx_of_trimat(i, j, _PUB_N); | |||
memcpy(&pk->pk[_PUB_M_BYTE * pub_idx], idx_l1, _O1_BYTE); | |||
memcpy((&pk->pk[_PUB_M_BYTE * pub_idx]) + _O1_BYTE, idx_l2, _O2_BYTE); | |||
idx_l1 += _O1_BYTE; | |||
idx_l2 += _O2_BYTE; | |||
} | |||
} | |||
idx_l1 = cpk->l1_Q6; | |||
idx_l2 = cpk->l2_Q6; | |||
for (unsigned int i = _V1; i < _V1 + _O1; i++) { | |||
for (unsigned int j = _V1 + _O1; j < _PUB_N; j++) { | |||
unsigned int pub_idx = PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_idx_of_trimat(i, j, _PUB_N); | |||
memcpy(&pk->pk[_PUB_M_BYTE * pub_idx], idx_l1, _O1_BYTE); | |||
memcpy((&pk->pk[_PUB_M_BYTE * pub_idx]) + _O1_BYTE, idx_l2, _O2_BYTE); | |||
idx_l1 += _O1_BYTE; | |||
idx_l2 += _O2_BYTE; | |||
} | |||
} | |||
idx_l1 = cpk->l1_Q9; | |||
idx_l2 = cpk->l2_Q9; | |||
for (unsigned int i = _V1 + _O1; i < _PUB_N; i++) { | |||
for (unsigned int j = i; j < _PUB_N; j++) { | |||
unsigned int pub_idx = PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_idx_of_trimat(i, j, _PUB_N); | |||
memcpy(&pk->pk[_PUB_M_BYTE * pub_idx], idx_l1, _O1_BYTE); | |||
memcpy((&pk->pk[_PUB_M_BYTE * pub_idx]) + _O1_BYTE, idx_l2, _O2_BYTE); | |||
idx_l1 += _O1_BYTE; | |||
idx_l2 += _O2_BYTE; | |||
} | |||
} | |||
} | |||
static void calculate_F_from_Q_ref(sk_t *Fs, const sk_t *Qs, sk_t *Ts) { | |||
// Layer 1 | |||
// F_sk.l1_F1s[i] = Q_pk.l1_F1s[i] | |||
memcpy(Fs->l1_F1, Qs->l1_F1, _O1_BYTE * N_TRIANGLE_TERMS(_V1)); | |||
// F_sk.l1_F2s[i] = ( Q_pk.l1_F1s[i] + Q_pk.l1_F1s[i].transpose() ) * T_sk.t1 + Q_pk.l1_F2s[i] | |||
memcpy(Fs->l1_F2, Qs->l1_F2, _O1_BYTE * _V1 * _O1); | |||
batch_2trimat_madd(Fs->l1_F2, Qs->l1_F1, Ts->t1, _V1, _V1_BYTE, _O1, _O1_BYTE); | |||
/* | |||
Layer 2 | |||
computations: | |||
F_sk.l2_F1s[i] = Q_pk.l2_F1s[i] | |||
Q1_T1 = Q_pk.l2_F1s[i]*T_sk.t1 | |||
F_sk.l2_F2s[i] = Q1_T1 + Q_pk.l2_F2s[i] + Q_pk.l2_F1s[i].transpose() * T_sk.t1 | |||
F_sk.l2_F5s[i] = UT( t1_tr* ( Q1_T1 + Q_pk.l2_F2s[i] ) ) + Q_pk.l2_F5s[i] | |||
Q1_Q1T_T4 = (Q_pk.l2_F1s[i] + Q_pk.l2_F1s[i].transpose()) * t4 | |||
#Q1_Q1T_T4 = Q1_Q1T * t4 | |||
Q2_T3 = Q_pk.l2_F2s[i]*T_sk.t3 | |||
F_sk.l2_F3s[i] = Q1_Q1T_T4 + Q2_T3 + Q_pk.l2_F3s[i] | |||
F_sk.l2_F6s[i] = t1_tr * ( Q1_Q1T_T4 + Q2_T3 + Q_pk.l2_F3s[i] ) | |||
+ Q_pk.l2_F2s[i].transpose() * t4 | |||
+ (Q_pk.l2_F5s[i] + Q_pk.l2_F5s[i].transpose())*T_sk.t3 + Q_pk.l2_F6s[i] | |||
*/ | |||
memcpy(Fs->l2_F1, Qs->l2_F1, _O2_BYTE * N_TRIANGLE_TERMS(_V1)); // F_sk.l2_F1s[i] = Q_pk.l2_F1s[i] | |||
// F_sk.l2_F2s[i] = Q1_T1 + Q_pk.l2_F2s[i] + Q_pk.l2_F1s[i].transpose() * T_sk.t1 | |||
// F_sk.l2_F5s[i] = UT( t1_tr* ( Q1_T1 + Q_pk.l2_F2s[i] ) ) + Q_pk.l2_F5s[i] | |||
memcpy(Fs->l2_F2, Qs->l2_F2, _O2_BYTE * _V1 * _O1); | |||
batch_trimat_madd(Fs->l2_F2, Qs->l2_F1, Ts->t1, _V1, _V1_BYTE, _O1, _O2_BYTE); // Q1_T1+ Q2 | |||
unsigned char tempQ[_O1 * _O1 * _O2_BYTE + 32]; | |||
memset(tempQ, 0, _O1 * _O1 * _O2_BYTE); | |||
batch_matTr_madd(tempQ, Ts->t1, _V1, _V1_BYTE, _O1, Fs->l2_F2, _O1, _O2_BYTE); // t1_tr*(Q1_T1+Q2) | |||
memcpy(Fs->l2_F5, Qs->l2_F5, _O2_BYTE * N_TRIANGLE_TERMS(_O1)); // F5 | |||
PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_UpperTrianglize(Fs->l2_F5, tempQ, _O1, _O2_BYTE); // UT( ... ) | |||
batch_trimatTr_madd(Fs->l2_F2, Qs->l2_F1, Ts->t1, _V1, _V1_BYTE, _O1, _O2_BYTE); // F2 = Q1_T1 + Q2 + Q1^tr*t1 | |||
// Q1_Q1T_T4 = (Q_pk.l2_F1s[i] + Q_pk.l2_F1s[i].transpose()) * t4 | |||
// Q2_T3 = Q_pk.l2_F2s[i]*T_sk.t3 | |||
// F_sk.l2_F3s[i] = Q1_Q1T_T4 + Q2_T3 + Q_pk.l2_F3s[i] | |||
memcpy(Fs->l2_F3, Qs->l2_F3, _V1 * _O2 * _O2_BYTE); | |||
batch_2trimat_madd(Fs->l2_F3, Qs->l2_F1, Ts->t4, _V1, _V1_BYTE, _O2, _O2_BYTE); // Q1_Q1T_T4 | |||
batch_mat_madd(Fs->l2_F3, Qs->l2_F2, _V1, Ts->t3, _O1, _O1_BYTE, _O2, _O2_BYTE); // Q2_T3 | |||
// F_sk.l2_F6s[i] = t1_tr * ( Q1_Q1T_T4 + Q2_T3 + Q_pk.l2_F3s[i] ) | |||
// + Q_pk.l2_F2s[i].transpose() * t4 | |||
// + (Q_pk.l2_F5s[i] + Q_pk.l2_F5s[i].transpose())*T_sk.t3 + Q_pk.l2_F6s[i] | |||
memcpy(Fs->l2_F6, Qs->l2_F6, _O1 * _O2 * _O2_BYTE); | |||
batch_matTr_madd(Fs->l2_F6, Ts->t1, _V1, _V1_BYTE, _O1, Fs->l2_F3, _O2, _O2_BYTE); // t1_tr * ( Q1_Q1T_T4 + Q2_T3 + Q_pk.l2_F3s[i] ) | |||
batch_2trimat_madd(Fs->l2_F6, Qs->l2_F5, Ts->t3, _O1, _O1_BYTE, _O2, _O2_BYTE); // (Q_pk.l2_F5s[i] + Q_pk.l2_F5s[i].transpose())*T_sk.t3 | |||
batch_bmatTr_madd(Fs->l2_F6, Qs->l2_F2, _O1, Ts->t4, _V1, _V1_BYTE, _O2, _O2_BYTE); | |||
} | |||
static void calculate_Q_from_F_cyclic_ref(cpk_t *Qs, const sk_t *Fs, const sk_t *Ts) { | |||
// Layer 1: Computing Q5, Q3, Q6, Q9 | |||
// Q_pk.l1_F5s[i] = UT( T1tr* (F1 * T1 + F2) ) | |||
const unsigned char *t2 = Ts->t4; | |||
sk_t tempQ; | |||
memcpy(tempQ.l1_F2, Fs->l1_F2, _O1_BYTE * _V1 * _O1); | |||
batch_trimat_madd(tempQ.l1_F2, Fs->l1_F1, Ts->t1, _V1, _V1_BYTE, _O1, _O1_BYTE); // F1*T1 + F2 | |||
memset(tempQ.l2_F1, 0, sizeof(tempQ.l2_F1)); | |||
memset(tempQ.l2_F2, 0, sizeof(tempQ.l2_F2)); | |||
batch_matTr_madd(tempQ.l2_F1, Ts->t1, _V1, _V1_BYTE, _O1, tempQ.l1_F2, _O1, _O1_BYTE); // T1tr*(F1*T1 + F2) | |||
memset(Qs->l1_Q5, 0, _O1_BYTE * N_TRIANGLE_TERMS(_O1)); | |||
PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_UpperTrianglize(Qs->l1_Q5, tempQ.l2_F1, _O1, _O1_BYTE); // UT( ... ) // Q5 | |||
/* | |||
F1_T2 = F1 * t2 | |||
F2_T3 = F2 * t3 | |||
F1_F1T_T2 + F2_T3 = F1_T2 + F2_T3 + F1tr * t2 | |||
Q_pk.l1_F3s[i] = F1_F1T_T2 + F2_T3 | |||
Q_pk.l1_F6s[i] = T1tr* ( F1_F1T_T2 + F2_T3 ) + F2tr * t2 | |||
Q_pk.l1_F9s[i] = UT( T2tr* ( F1_T2 + F2_T3 ) ) | |||
*/ | |||
memset(Qs->l1_Q3, 0, _O1_BYTE * _V1 * _O2); | |||
memset(Qs->l1_Q6, 0, _O1_BYTE * _O1 * _O2); | |||
memset(Qs->l1_Q9, 0, _O1_BYTE * N_TRIANGLE_TERMS(_O2)); | |||
batch_trimat_madd(Qs->l1_Q3, Fs->l1_F1, t2, _V1, _V1_BYTE, _O2, _O1_BYTE); // F1*T2 | |||
batch_mat_madd(Qs->l1_Q3, Fs->l1_F2, _V1, Ts->t3, _O1, _O1_BYTE, _O2, _O1_BYTE); // F1_T2 + F2_T3 | |||
memset(tempQ.l1_F2, 0, _O1_BYTE * _V1 * _O2); // should be F3. assuming: _O1 >= _O2 | |||
batch_matTr_madd(tempQ.l1_F2, t2, _V1, _V1_BYTE, _O2, Qs->l1_Q3, _O2, _O1_BYTE); // T2tr * ( F1_T2 + F2_T3 ) | |||
PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_UpperTrianglize(Qs->l1_Q9, tempQ.l1_F2, _O2, _O1_BYTE); // Q9 | |||
batch_trimatTr_madd(Qs->l1_Q3, Fs->l1_F1, t2, _V1, _V1_BYTE, _O2, _O1_BYTE); // F1_F1T_T2 + F2_T3 // Q3 | |||
batch_bmatTr_madd(Qs->l1_Q6, Fs->l1_F2, _O1, t2, _V1, _V1_BYTE, _O2, _O1_BYTE); // F2tr*T2 | |||
batch_matTr_madd(Qs->l1_Q6, Ts->t1, _V1, _V1_BYTE, _O1, Qs->l1_Q3, _O2, _O1_BYTE); // Q6 | |||
/* | |||
Layer 2 | |||
Computing Q9: | |||
F1_T2 = F1 * t2 | |||
F2_T3 = F2 * t3 | |||
Q9 = UT( T2tr*( F1*T2 + F2*T3 + F3 ) + T3tr*( F5*T3 + F6 ) ) | |||
*/ | |||
sk_t tempQ2; | |||
memcpy(tempQ2.l2_F3, Fs->l2_F3, _O2_BYTE * _V1 * _O2); /// F3 actually. | |||
batch_trimat_madd(tempQ2.l2_F3, Fs->l2_F1, t2, _V1, _V1_BYTE, _O2, _O2_BYTE); // F1*T2 + F3 | |||
batch_mat_madd(tempQ2.l2_F3, Fs->l2_F2, _V1, Ts->t3, _O1, _O1_BYTE, _O2, _O2_BYTE); // F1_T2 + F2_T3 + F3 | |||
memset(tempQ.l2_F3, 0, _O2_BYTE * _V1 * _O2); | |||
batch_matTr_madd(tempQ.l2_F3, t2, _V1, _V1_BYTE, _O2, tempQ2.l2_F3, _O2, _O2_BYTE); // T2tr * ( ..... ) | |||
memcpy(tempQ.l2_F6, Fs->l2_F6, _O2_BYTE * _O1 * _O2); | |||
batch_trimat_madd(tempQ.l2_F6, Fs->l2_F5, Ts->t3, _O1, _O1_BYTE, _O2, _O2_BYTE); // F5*T3 + F6 | |||
batch_matTr_madd(tempQ.l2_F3, Ts->t3, _O1, _O1_BYTE, _O2, tempQ.l2_F6, _O2, _O2_BYTE); // T2tr*( ..... ) + T3tr*( ..... ) | |||
memset(Qs->l2_Q9, 0, _O2_BYTE * N_TRIANGLE_TERMS(_O2)); | |||
PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_UpperTrianglize(Qs->l2_Q9, tempQ.l2_F3, _O2, _O2_BYTE); // Q9 | |||
} | |||
// Choosing implementations depends on the macros: _BLAS_SSE_ and _BLAS_AVX2_ | |||
#define calculate_F_from_Q_impl calculate_F_from_Q_ref | |||
#define calculate_Q_from_F_cyclic_impl calculate_Q_from_F_cyclic_ref | |||
void PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_calculate_F_from_Q(sk_t *Fs, const sk_t *Qs, sk_t *Ts) { | |||
calculate_F_from_Q_impl(Fs, Qs, Ts); | |||
} | |||
void PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_calculate_Q_from_F_cyclic(cpk_t *Qs, const sk_t *Fs, const sk_t *Ts) { | |||
calculate_Q_from_F_cyclic_impl(Qs, Fs, Ts); | |||
} |
@@ -0,0 +1,71 @@ | |||
#ifndef _RAINBOW_KEYPAIR_COMP_H_ | |||
#define _RAINBOW_KEYPAIR_COMP_H_ | |||
/// @file rainbow_keypair_computation.h | |||
/// @brief Functions for calculating pk/sk while generating keys. | |||
/// | |||
/// Defining an internal structure of public key. | |||
/// Functions for calculating pk/sk for key generation. | |||
/// | |||
#include "rainbow_keypair.h" | |||
/// @brief The (internal use) public key for rainbow | |||
/// | |||
/// The (internal use) public key for rainbow. The public | |||
/// polynomials are divided into l1_Q1, l1_Q2, ... l1_Q9, | |||
/// l2_Q1, .... , l2_Q9. | |||
/// | |||
typedef struct rainbow_extend_publickey { | |||
unsigned char l1_Q1[_O1_BYTE * N_TRIANGLE_TERMS(_V1)]; | |||
unsigned char l1_Q2[_O1_BYTE * _V1 * _O1]; | |||
unsigned char l1_Q3[_O1_BYTE * _V1 * _O2]; | |||
unsigned char l1_Q5[_O1_BYTE * N_TRIANGLE_TERMS(_O1)]; | |||
unsigned char l1_Q6[_O1_BYTE * _O1 * _O2]; | |||
unsigned char l1_Q9[_O1_BYTE * N_TRIANGLE_TERMS(_O2)]; | |||
unsigned char l2_Q1[_O2_BYTE * N_TRIANGLE_TERMS(_V1)]; | |||
unsigned char l2_Q2[_O2_BYTE * _V1 * _O1]; | |||
unsigned char l2_Q3[_O2_BYTE * _V1 * _O2]; | |||
unsigned char l2_Q5[_O2_BYTE * N_TRIANGLE_TERMS(_O1)]; | |||
unsigned char l2_Q6[_O2_BYTE * _O1 * _O2]; | |||
unsigned char l2_Q9[_O2_BYTE * N_TRIANGLE_TERMS(_O2)]; | |||
} ext_cpk_t; | |||
/// | |||
/// @brief converting formats of public keys : from ext_cpk_t version to pk_t | |||
/// | |||
/// @param[out] pk - the classic public key. | |||
/// @param[in] cpk - the internel public key. | |||
/// | |||
void PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_extcpk_to_pk(pk_t *pk, const ext_cpk_t *cpk); | |||
///////////////////////////////////////////////// | |||
/// | |||
/// @brief Computing public key from secret key | |||
/// | |||
/// @param[out] Qs - the public key | |||
/// @param[in] Fs - parts of the secret key: l1_F1, l1_F2, l2_F1, l2_F2, l2_F3, l2_F5, l2_F6 | |||
/// @param[in] Ts - parts of the secret key: T1, T4, T3 | |||
/// | |||
void PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_calculate_Q_from_F(ext_cpk_t *Qs, const sk_t *Fs, const sk_t *Ts); | |||
/// | |||
/// @brief Computing parts of the sk from parts of pk and sk | |||
/// | |||
/// @param[out] Fs - parts of the sk: l1_F1, l1_F2, l2_F1, l2_F2, l2_F3, l2_F5, l2_F6 | |||
/// @param[in] Qs - parts of the pk: l1_Q1, l1_Q2, l2_Q1, l2_Q2, l2_Q3, l2_Q5, l2_Q6 | |||
/// @param[in] Ts - parts of the sk: T1, T4, T3 | |||
/// | |||
void PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_calculate_F_from_Q(sk_t *Fs, const sk_t *Qs, sk_t *Ts); | |||
/// | |||
/// @brief Computing parts of the pk from the secret key | |||
/// | |||
/// @param[out] Qs - parts of the pk: l1_Q3, l1_Q5, l2_Q6, l1_Q9, l2_Q9 | |||
/// @param[in] Fs - parts of the sk: l1_F1, l1_F2, l2_F1, l2_F2, l2_F3, l2_F5, l2_F6 | |||
/// @param[in] Ts - parts of the sk: T1, T4, T3 | |||
/// | |||
void PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_calculate_Q_from_F_cyclic(cpk_t *Qs, const sk_t *Fs, const sk_t *Ts); | |||
#endif // _RAINBOW_KEYPAIR_COMP_H_ |
@@ -0,0 +1,76 @@ | |||
/// @file sign.c | |||
/// @brief the implementations for functions in api.h | |||
/// | |||
/// | |||
#include "api.h" | |||
#include "rainbow.h" | |||
#include "rainbow_config.h" | |||
#include "rainbow_keypair.h" | |||
#include "randombytes.h" | |||
#include "utils_hash.h" | |||
#include <stdlib.h> | |||
#include <string.h> | |||
int PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_crypto_sign_keypair(unsigned char *pk, unsigned char *sk) { | |||
unsigned char sk_seed[LEN_SKSEED] = {0}; | |||
randombytes(sk_seed, LEN_SKSEED); | |||
unsigned char pk_seed[LEN_PKSEED] = {0}; | |||
randombytes(pk_seed, LEN_PKSEED); | |||
PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_generate_keypair_cyclic((cpk_t *)pk, (sk_t *)sk, pk_seed, sk_seed); | |||
return 0; | |||
} | |||
int PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_crypto_sign(unsigned char *sm, size_t *smlen, const unsigned char *m, size_t mlen, const unsigned char *sk) { | |||
unsigned char digest[_HASH_LEN]; | |||
PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_hash_msg(digest, _HASH_LEN, m, mlen); | |||
memcpy(sm, m, mlen); | |||
smlen[0] = mlen + _SIGNATURE_BYTE; | |||
return PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_rainbow_sign(sm + mlen, (const sk_t *)sk, digest); | |||
} | |||
int PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_crypto_sign_open(unsigned char *m, size_t *mlen, const unsigned char *sm, size_t smlen, const unsigned char *pk) { | |||
int rc; | |||
if (_SIGNATURE_BYTE > smlen) { | |||
rc = -1; | |||
} else { | |||
*mlen = smlen - _SIGNATURE_BYTE; | |||
unsigned char digest[_HASH_LEN]; | |||
PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_hash_msg(digest, _HASH_LEN, sm, *mlen); | |||
rc = PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_rainbow_verify_cyclic(digest, sm + mlen[0], (const cpk_t *)pk); | |||
} | |||
if (!rc) { | |||
memcpy(m, sm, smlen - _SIGNATURE_BYTE); | |||
} else { // bad signature | |||
*mlen = (size_t) -1; | |||
memset(m, 0, smlen); | |||
} | |||
return rc; | |||
} | |||
int PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_crypto_sign_signature( | |||
uint8_t *sig, size_t *siglen, | |||
const uint8_t *m, size_t mlen, const uint8_t *sk) { | |||
unsigned char digest[_HASH_LEN]; | |||
PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_hash_msg(digest, _HASH_LEN, m, mlen); | |||
*siglen = _SIGNATURE_BYTE; | |||
return PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_rainbow_sign(sig, (const sk_t *)sk, digest); | |||
} | |||
int PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_crypto_sign_verify( | |||
const uint8_t *sig, size_t siglen, | |||
const uint8_t *m, size_t mlen, const uint8_t *pk) { | |||
if (siglen != _SIGNATURE_BYTE) { | |||
return -1; | |||
} | |||
unsigned char digest[_HASH_LEN]; | |||
PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_hash_msg(digest, _HASH_LEN, m, mlen); | |||
return PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_rainbow_verify_cyclic(digest, sig, (const cpk_t *)pk); | |||
} |
@@ -0,0 +1,50 @@ | |||
/// @file utils_hash.c | |||
/// @brief the adapter for SHA2 families. | |||
/// | |||
/// | |||
#include "utils_hash.h" | |||
#include "rainbow_config.h" | |||
#include "sha2.h" | |||
static inline int _hash(unsigned char *digest, const unsigned char *m, size_t mlen) { | |||
sha384(digest, m, mlen); | |||
return 0; | |||
} | |||
static inline int expand_hash(unsigned char *digest, size_t n_digest, const unsigned char *hash) { | |||
if (_HASH_LEN >= n_digest) { | |||
for (size_t i = 0; i < n_digest; i++) { | |||
digest[i] = hash[i]; | |||
} | |||
return 0; | |||
} | |||
for (size_t i = 0; i < _HASH_LEN; i++) { | |||
digest[i] = hash[i]; | |||
} | |||
n_digest -= _HASH_LEN; | |||
while (_HASH_LEN <= n_digest) { | |||
_hash(digest + _HASH_LEN, digest, _HASH_LEN); | |||
n_digest -= _HASH_LEN; | |||
digest += _HASH_LEN; | |||
} | |||
unsigned char temp[_HASH_LEN]; | |||
if (n_digest) { | |||
_hash(temp, digest, _HASH_LEN); | |||
for (size_t i = 0; i < n_digest; i++) { | |||
digest[_HASH_LEN + i] = temp[i]; | |||
} | |||
} | |||
return 0; | |||
} | |||
int PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_hash_msg(unsigned char *digest, | |||
size_t len_digest, | |||
const unsigned char *m, | |||
size_t mlen) { | |||
unsigned char buf[_HASH_LEN]; | |||
_hash(buf, m, mlen); | |||
return expand_hash(digest, len_digest, buf); | |||
} |
@@ -0,0 +1,11 @@ | |||
#ifndef _UTILS_HASH_H_ | |||
#define _UTILS_HASH_H_ | |||
/// @file utils_hash.h | |||
/// @brief the interface for adapting hash functions. | |||
/// | |||
#include <stddef.h> | |||
int PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_hash_msg(unsigned char *digest, size_t len_digest, const unsigned char *m, size_t mlen); | |||
#endif // _UTILS_HASH_H_ |
@@ -0,0 +1,95 @@ | |||
/// @file utils_prng.c | |||
/// @brief The implementation of PRNG related functions. | |||
/// | |||
#include "utils_prng.h" | |||
#include "aes.h" | |||
#include "randombytes.h" | |||
#include "utils_hash.h" | |||
#include <stdlib.h> | |||
#include <string.h> | |||
static void prng_update(const unsigned char *provided_data, | |||
unsigned char *Key, | |||
unsigned char *V) { | |||
unsigned char temp[48]; | |||
aes256ctx ctx; | |||
aes256_keyexp(&ctx, Key); | |||
for (int i = 0; i < 3; i++) { | |||
//increment V | |||
for (int j = 15; j >= 0; j--) { | |||
if (V[j] == 0xff) { | |||
V[j] = 0x00; | |||
} else { | |||
V[j]++; | |||
break; | |||
} | |||
} | |||
aes256_ecb(temp + 16 * i, V, 1, &ctx); | |||
} | |||
if (provided_data != NULL) { | |||
for (int i = 0; i < 48; i++) { | |||
temp[i] ^= provided_data[i]; | |||
} | |||
} | |||
memcpy(Key, temp, 32); | |||
memcpy(V, temp + 32, 16); | |||
} | |||
static void randombytes_init_with_state(prng_t *state, | |||
unsigned char *entropy_input_48bytes) { | |||
memset(state->Key, 0x00, 32); | |||
memset(state->V, 0x00, 16); | |||
prng_update(entropy_input_48bytes, state->Key, state->V); | |||
} | |||
static int randombytes_with_state(prng_t *state, | |||
unsigned char *x, | |||
size_t xlen) { | |||
unsigned char block[16]; | |||
int i = 0; | |||
aes256ctx ctx; | |||
aes256_keyexp(&ctx, state->Key); | |||
while (xlen > 0) { | |||
//increment V | |||
for (int j = 15; j >= 0; j--) { | |||
if (state->V[j] == 0xff) { | |||
state->V[j] = 0x00; | |||
} else { | |||
state->V[j]++; | |||
break; | |||
} | |||
} | |||
aes256_ecb(block, state->V, 1, &ctx); | |||
if (xlen > 15) { | |||
memcpy(x + i, block, 16); | |||
i += 16; | |||
xlen -= 16; | |||
} else { | |||
memcpy(x + i, block, xlen); | |||
xlen = 0; | |||
} | |||
} | |||
prng_update(NULL, state->Key, state->V); | |||
return 0; | |||
} | |||
int PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_prng_set(prng_t *ctx, const void *prng_seed, unsigned long prng_seedlen) { | |||
unsigned char seed[48]; | |||
if (prng_seedlen >= 48) { | |||
memcpy(seed, prng_seed, 48); | |||
} else { | |||
memcpy(seed, prng_seed, prng_seedlen); | |||
PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_hash_msg(seed + prng_seedlen, 48 - (unsigned)prng_seedlen, (const unsigned char *)prng_seed, prng_seedlen); | |||
} | |||
randombytes_init_with_state(ctx, seed); | |||
return 0; | |||
} | |||
int PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_prng_gen(prng_t *ctx, unsigned char *out, unsigned long outlen) { | |||
return randombytes_with_state(ctx, out, outlen); | |||
} |
@@ -0,0 +1,18 @@ | |||
#ifndef _UTILS_PRNG_H_ | |||
#define _UTILS_PRNG_H_ | |||
/// @file utils_prng.h | |||
/// @brief the interface for adapting PRNG functions. | |||
/// | |||
/// | |||
#include "randombytes.h" | |||
typedef struct { | |||
unsigned char Key[32]; | |||
unsigned char V[16]; | |||
} prng_t; | |||
int PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_prng_set(prng_t *ctx, const void *prng_seed, unsigned long prng_seedlen); | |||
int PQCLEAN_RAINBOWIIICCYCLIC_CLEAN_prng_gen(prng_t *ctx, unsigned char *out, unsigned long outlen); | |||
#endif // _UTILS_PRNG_H_ |
@@ -0,0 +1,18 @@ | |||
name: Rainbow-Ia-classic | |||
type: signature | |||
claimed-nist-level: 1 | |||
length-public-key: 148992 | |||
length-secret-key: 92960 | |||
length-signature: 64 | |||
nistkat-sha256: b75c6fcda2100e2f6f56e9b97c4cbdda4b533116ab217f24f12e08788eb37fd0 | |||
testvectors-sha256: edc48db3f93a66c0aa497fbbdba0bad173e3ab9cd0e3f651004b3e94d2187b75 | |||
principal-submitters: | |||
- Jintai Ding | |||
auxiliary-submitters: | |||
- Ming-Shing Chen | |||
- Albrecht Petzoldt | |||
- Dieter Schmidt | |||
- Bo-Yin Yang | |||
implementations: | |||
- name: clean | |||
version: https://github.com/fast-crypto-lab/rainbow-submission-round2/commit/af826fcb78f6af51a02d0352cff28a9690467bfd |
@@ -0,0 +1,8 @@ | |||
`Software implementation of Rainbow for NIST R2 submission' by Ming-Shing Chen | |||
To the extent possible under law, the person who associated CC0 with | |||
`Software implementation of Rainbow for NIST R2 submission' has waived all copyright and related or neighboring rights | |||
to `Software implementation of Rainbow for NIST R2 submission'. | |||
You should have received a copy of the CC0 legalcode along with this | |||
work. If not, see <http://creativecommons.org/publicdomain/zero/1.0/>. |
@@ -0,0 +1,20 @@ | |||
# This Makefile can be used with GNU Make or BSD Make | |||
LIB=librainbowIa-classic_clean.a | |||
HEADERS = api.h blas_comm.h blas.h blas_u32.h gf.h parallel_matrix_op.h rainbow_blas.h rainbow_config.h rainbow.h rainbow_keypair_computation.h rainbow_keypair.h utils_hash.h utils_prng.h | |||
OBJECTS = blas_comm.o parallel_matrix_op.o rainbow.o rainbow_keypair.o rainbow_keypair_computation.o sign.o utils_hash.o utils_prng.o blas_u32.o gf.o | |||
CFLAGS=-O3 -Wall -Wconversion -Wextra -Wpedantic -Wvla -Werror -Wmissing-prototypes -Wredundant-decls -std=c99 -I../../../common $(EXTRAFLAGS) | |||
all: $(LIB) | |||
%.o: %.c $(HEADERS) | |||
$(CC) $(CFLAGS) -c -o $@ $< | |||
$(LIB): $(OBJECTS) | |||
$(AR) -r $@ $(OBJECTS) | |||
clean: | |||
$(RM) $(OBJECTS) | |||
$(RM) $(LIB) |
@@ -0,0 +1,19 @@ | |||
# This Makefile can be used with Microsoft Visual Studio's nmake using the command: | |||
# nmake /f Makefile.Microsoft_nmake | |||
LIBRARY=librainbowIa-classic_clean.lib | |||
OBJECTS = blas_comm.obj parallel_matrix_op.obj rainbow.obj rainbow_keypair.obj rainbow_keypair_computation.obj sign.obj utils_hash.obj utils_prng.obj blas_u32.obj gf.obj | |||
CFLAGS=/nologo /I ..\..\..\common /W4 /WX | |||
all: $(LIBRARY) | |||
# Make sure objects are recompiled if headers change. | |||
$(OBJECTS): *.h | |||
$(LIBRARY): $(OBJECTS) | |||
LIB.EXE /NOLOGO /WX /OUT:$@ $** | |||
clean: | |||
-DEL $(OBJECTS) | |||
-DEL $(LIBRARY) |
@@ -0,0 +1,32 @@ | |||
#ifndef PQCLEAN_RAINBOWIACLASSIC_CLEAN_API_H | |||
#define PQCLEAN_RAINBOWIACLASSIC_CLEAN_API_H | |||
#include <stddef.h> | |||
#include <stdint.h> | |||
#define PQCLEAN_RAINBOWIACLASSIC_CLEAN_CRYPTO_SECRETKEYBYTES 92960 | |||
#define PQCLEAN_RAINBOWIACLASSIC_CLEAN_CRYPTO_PUBLICKEYBYTES 148992 | |||
#define PQCLEAN_RAINBOWIACLASSIC_CLEAN_CRYPTO_BYTES 64 | |||
#define PQCLEAN_RAINBOWIACLASSIC_CLEAN_CRYPTO_ALGNAME "RAINBOW(16,32,32,32) - classic" | |||
int PQCLEAN_RAINBOWIACLASSIC_CLEAN_crypto_sign_keypair(uint8_t *pk, uint8_t *sk); | |||
int PQCLEAN_RAINBOWIACLASSIC_CLEAN_crypto_sign_signature( | |||
uint8_t *sig, size_t *siglen, | |||
const uint8_t *m, size_t mlen, const uint8_t *sk); | |||
int PQCLEAN_RAINBOWIACLASSIC_CLEAN_crypto_sign_verify( | |||
const uint8_t *sig, size_t siglen, | |||
const uint8_t *m, size_t mlen, const uint8_t *pk); | |||
int PQCLEAN_RAINBOWIACLASSIC_CLEAN_crypto_sign(uint8_t *sm, size_t *smlen, | |||
const uint8_t *m, size_t mlen, | |||
const uint8_t *sk); | |||
int PQCLEAN_RAINBOWIACLASSIC_CLEAN_crypto_sign_open(uint8_t *m, size_t *mlen, | |||
const uint8_t *sm, size_t smlen, | |||
const uint8_t *pk); | |||
#endif |
@@ -0,0 +1,20 @@ | |||
#ifndef _BLAS_H_ | |||
#define _BLAS_H_ | |||
/// @file blas.h | |||
/// @brief Defining the implementations for linear algebra functions depending on the machine architecture. | |||
/// | |||
#include "blas_comm.h" | |||
#include "blas_u32.h" | |||
#include "rainbow_config.h" | |||
#define gf256v_predicated_add PQCLEAN_RAINBOWIACLASSIC_CLEAN_gf256v_predicated_add_u32 | |||
#define gf256v_add PQCLEAN_RAINBOWIACLASSIC_CLEAN_gf256v_add_u32 | |||
#define gf16v_mul_scalar PQCLEAN_RAINBOWIACLASSIC_CLEAN_gf16v_mul_scalar_u32 | |||
#define gf16v_madd PQCLEAN_RAINBOWIACLASSIC_CLEAN_gf16v_madd_u32 | |||
#define gf16v_dot PQCLEAN_RAINBOWIACLASSIC_CLEAN_gf16v_dot_u32 | |||
#endif // _BLAS_H_ |
@@ -0,0 +1,150 @@ | |||
/// @file blas_comm.c | |||
/// @brief The standard implementations for blas_comm.h | |||
/// | |||
#include "blas_comm.h" | |||
#include "blas.h" | |||
#include "gf.h" | |||
#include "rainbow_config.h" | |||
#include <stdint.h> | |||
#include <string.h> | |||
void PQCLEAN_RAINBOWIACLASSIC_CLEAN_gf256v_set_zero(uint8_t *b, unsigned int _num_byte) { | |||
gf256v_add(b, b, _num_byte); | |||
} | |||
/// @brief get an element from GF(16) vector . | |||
/// | |||
/// @param[in] a - the input vector a. | |||
/// @param[in] i - the index in the vector a. | |||
/// @return the value of the element. | |||
/// | |||
uint8_t PQCLEAN_RAINBOWIACLASSIC_CLEAN_gf16v_get_ele(const uint8_t *a, unsigned int i) { | |||
uint8_t r = a[i >> 1]; | |||
uint8_t r0 = r & 0xf; | |||
uint8_t r1 = r >> 4; | |||
uint8_t m = (uint8_t)(-((int8_t)i & 1)); | |||
return (uint8_t)((r1 & m) | ((~m) & r0)); | |||
} | |||
/// @brief set an element for a GF(16) vector . | |||
/// | |||
/// @param[in,out] a - the vector a. | |||
/// @param[in] i - the index in the vector a. | |||
/// @param[in] v - the value for the i-th element in vector a. | |||
/// @return the value of the element. | |||
/// | |||
static uint8_t PQCLEAN_RAINBOWIACLASSIC_CLEAN_gf16v_set_ele(uint8_t *a, unsigned int i, uint8_t v) { | |||
uint8_t m = (uint8_t)(0xf ^ (-((int8_t)i & 1))); /// 1--> 0xf0 , 0--> 0x0f | |||
uint8_t ai_remaining = (uint8_t)(a[i >> 1] & (~m)); /// erase | |||
a[i >> 1] = (uint8_t)(ai_remaining | (m & (v << 4)) | (m & v & 0xf)); /// set | |||
return v; | |||
} | |||
static void gf16mat_prod_ref(uint8_t *c, const uint8_t *matA, unsigned int n_A_vec_byte, unsigned int n_A_width, const uint8_t *b) { | |||
PQCLEAN_RAINBOWIACLASSIC_CLEAN_gf256v_set_zero(c, n_A_vec_byte); | |||
for (unsigned int i = 0; i < n_A_width; i++) { | |||
uint8_t bb = PQCLEAN_RAINBOWIACLASSIC_CLEAN_gf16v_get_ele(b, i); | |||
gf16v_madd(c, matA, bb, n_A_vec_byte); | |||
matA += n_A_vec_byte; | |||
} | |||
} | |||
void PQCLEAN_RAINBOWIACLASSIC_CLEAN_gf16mat_mul(uint8_t *c, const uint8_t *a, const uint8_t *b, unsigned int len_vec) { | |||
unsigned int n_vec_byte = (len_vec + 1) / 2; | |||
for (unsigned int k = 0; k < len_vec; k++) { | |||
PQCLEAN_RAINBOWIACLASSIC_CLEAN_gf256v_set_zero(c, n_vec_byte); | |||
const uint8_t *bk = b + n_vec_byte * k; | |||
for (unsigned int i = 0; i < len_vec; i++) { | |||
uint8_t bb = PQCLEAN_RAINBOWIACLASSIC_CLEAN_gf16v_get_ele(bk, i); | |||
gf16v_madd(c, a + n_vec_byte * i, bb, n_vec_byte); | |||
} | |||
c += n_vec_byte; | |||
} | |||
} | |||
static unsigned int gf16mat_gauss_elim_ref(uint8_t *mat, unsigned int h, unsigned int w) { | |||
unsigned int n_w_byte = (w + 1) / 2; | |||
unsigned int r8 = 1; | |||
for (unsigned int i = 0; i < h; i++) { | |||
unsigned int offset_byte = i >> 1; | |||
uint8_t *ai = mat + n_w_byte * i; | |||
for (unsigned int j = i + 1; j < h; j++) { | |||
uint8_t *aj = mat + n_w_byte * j; | |||
gf256v_predicated_add(ai + offset_byte, !PQCLEAN_RAINBOWIACLASSIC_CLEAN_gf16_is_nonzero(PQCLEAN_RAINBOWIACLASSIC_CLEAN_gf16v_get_ele(ai, i)), aj + offset_byte, n_w_byte - offset_byte); | |||
} | |||
uint8_t pivot = PQCLEAN_RAINBOWIACLASSIC_CLEAN_gf16v_get_ele(ai, i); | |||
r8 &= PQCLEAN_RAINBOWIACLASSIC_CLEAN_gf16_is_nonzero(pivot); | |||
pivot = PQCLEAN_RAINBOWIACLASSIC_CLEAN_gf16_inv(pivot); | |||
offset_byte = (i + 1) >> 1; | |||
gf16v_mul_scalar(ai + offset_byte, pivot, n_w_byte - offset_byte); | |||
for (unsigned int j = 0; j < h; j++) { | |||
if (i == j) { | |||
continue; | |||
} | |||
uint8_t *aj = mat + n_w_byte * j; | |||
gf16v_madd(aj + offset_byte, ai + offset_byte, PQCLEAN_RAINBOWIACLASSIC_CLEAN_gf16v_get_ele(aj, i), n_w_byte - offset_byte); | |||
} | |||
} | |||
return r8; | |||
} | |||
static unsigned int gf16mat_solve_linear_eq_ref(uint8_t *sol, const uint8_t *inp_mat, const uint8_t *c_terms, unsigned int n) { | |||
uint8_t mat[64 * 33]; | |||
unsigned int n_byte = (n + 1) >> 1; | |||
for (unsigned int i = 0; i < n; i++) { | |||
memcpy(mat + i * (n_byte + 1), inp_mat + i * n_byte, n_byte); | |||
mat[i * (n_byte + 1) + n_byte] = PQCLEAN_RAINBOWIACLASSIC_CLEAN_gf16v_get_ele(c_terms, i); | |||
} | |||
unsigned int r8 = PQCLEAN_RAINBOWIACLASSIC_CLEAN_gf16mat_gauss_elim(mat, n, n + 2); | |||
for (unsigned int i = 0; i < n; i++) { | |||
PQCLEAN_RAINBOWIACLASSIC_CLEAN_gf16v_set_ele(sol, i, mat[i * (n_byte + 1) + n_byte]); | |||
} | |||
return r8; | |||
} | |||
static inline void gf16mat_submat(uint8_t *mat2, unsigned int w2, unsigned int st, const uint8_t *mat, unsigned int w, unsigned int h) { | |||
unsigned int n_byte_w1 = (w + 1) / 2; | |||
unsigned int n_byte_w2 = (w2 + 1) / 2; | |||
unsigned int st_2 = st / 2; | |||
for (unsigned int i = 0; i < h; i++) { | |||
for (unsigned int j = 0; j < n_byte_w2; j++) { | |||
mat2[i * n_byte_w2 + j] = mat[i * n_byte_w1 + st_2 + j]; | |||
} | |||
} | |||
} | |||
unsigned int PQCLEAN_RAINBOWIACLASSIC_CLEAN_gf16mat_inv(uint8_t *inv_a, const uint8_t *a, unsigned int H, uint8_t *buffer) { | |||
unsigned int n_w_byte = (H + 1) / 2; | |||
uint8_t *aa = buffer; | |||
for (unsigned int i = 0; i < H; i++) { | |||
uint8_t *ai = aa + i * 2 * n_w_byte; | |||
PQCLEAN_RAINBOWIACLASSIC_CLEAN_gf256v_set_zero(ai, 2 * n_w_byte); | |||
gf256v_add(ai, a + i * n_w_byte, n_w_byte); | |||
PQCLEAN_RAINBOWIACLASSIC_CLEAN_gf16v_set_ele(ai + n_w_byte, i, 1); | |||
} | |||
unsigned int r8 = PQCLEAN_RAINBOWIACLASSIC_CLEAN_gf16mat_gauss_elim(aa, H, 2 * H); | |||
gf16mat_submat(inv_a, H, H, aa, 2 * H, H); | |||
return r8; | |||
} | |||
// choosing the implementations depends on the macros _BLAS_AVX2_ and _BLAS_SSE | |||
#define gf16mat_prod_impl gf16mat_prod_ref | |||
#define gf16mat_gauss_elim_impl gf16mat_gauss_elim_ref | |||
#define gf16mat_solve_linear_eq_impl gf16mat_solve_linear_eq_ref | |||
void PQCLEAN_RAINBOWIACLASSIC_CLEAN_gf16mat_prod(uint8_t *c, const uint8_t *matA, unsigned int n_A_vec_byte, unsigned int n_A_width, const uint8_t *b) { | |||
gf16mat_prod_impl(c, matA, n_A_vec_byte, n_A_width, b); | |||
} | |||
unsigned int PQCLEAN_RAINBOWIACLASSIC_CLEAN_gf16mat_gauss_elim(uint8_t *mat, unsigned int h, unsigned int w) { | |||
return gf16mat_gauss_elim_impl(mat, h, w); | |||
} | |||
unsigned int PQCLEAN_RAINBOWIACLASSIC_CLEAN_gf16mat_solve_linear_eq(uint8_t *sol, const uint8_t *inp_mat, const uint8_t *c_terms, unsigned int n) { | |||
return gf16mat_solve_linear_eq_impl(sol, inp_mat, c_terms, n); | |||
} | |||
@@ -0,0 +1,74 @@ | |||
#ifndef _BLAS_COMM_H_ | |||
#define _BLAS_COMM_H_ | |||
/// @file blas_comm.h | |||
/// @brief Common functions for linear algebra. | |||
/// | |||
#include "rainbow_config.h" | |||
#include <stdint.h> | |||
/// @brief set a vector to 0. | |||
/// | |||
/// @param[in,out] b - the vector b. | |||
/// @param[in] _num_byte - number of bytes for the vector b. | |||
/// | |||
void PQCLEAN_RAINBOWIACLASSIC_CLEAN_gf256v_set_zero(uint8_t *b, unsigned int _num_byte); | |||
/// @brief get an element from GF(16) vector . | |||
/// | |||
/// @param[in] a - the input vector a. | |||
/// @param[in] i - the index in the vector a. | |||
/// @return the value of the element. | |||
/// | |||
uint8_t PQCLEAN_RAINBOWIACLASSIC_CLEAN_gf16v_get_ele(const uint8_t *a, unsigned int i); | |||
/// @brief matrix-matrix multiplication: c = a * b , in GF(16) | |||
/// | |||
/// @param[out] c - the output matrix c | |||
/// @param[in] c - a matrix a. | |||
/// @param[in] b - a matrix b. | |||
/// @param[in] len_vec - the length of column vectors. | |||
/// | |||
void PQCLEAN_RAINBOWIACLASSIC_CLEAN_gf16mat_mul(uint8_t *c, const uint8_t *a, const uint8_t *b, unsigned int len_vec); | |||
/// @brief Gauss elimination for a matrix, in GF(16) | |||
/// | |||
/// @param[in,out] mat - the matrix. | |||
/// @param[in] h - the height of the matrix. | |||
/// @param[in] w - the width of the matrix. | |||
/// @return 1(true) if success. 0(false) if the matrix is singular. | |||
/// | |||
unsigned int PQCLEAN_RAINBOWIACLASSIC_CLEAN_gf16mat_gauss_elim(uint8_t *mat, unsigned int h, unsigned int w); | |||
/// @brief Solving linear equations, in GF(16) | |||
/// | |||
/// @param[out] sol - the solutions. | |||
/// @param[in] inp_mat - the matrix parts of input equations. | |||
/// @param[in] c_terms - the constant terms of the input equations. | |||
/// @param[in] n - the number of equations. | |||
/// @return 1(true) if success. 0(false) if the matrix is singular. | |||
/// | |||
unsigned int PQCLEAN_RAINBOWIACLASSIC_CLEAN_gf16mat_solve_linear_eq(uint8_t *sol, const uint8_t *inp_mat, const uint8_t *c_terms, unsigned int n); | |||
/// @brief Computing the inverse matrix, in GF(16) | |||
/// | |||
/// @param[out] inv_a - the output of matrix a. | |||
/// @param[in] a - a matrix a. | |||
/// @param[in] H - height of matrix a, i.e., matrix a is an HxH matrix. | |||
/// @param[in] buffer - The buffer for computations. it has to be as large as 2 input matrixes. | |||
/// @return 1(true) if success. 0(false) if the matrix is singular. | |||
/// | |||
unsigned int PQCLEAN_RAINBOWIACLASSIC_CLEAN_gf16mat_inv(uint8_t *inv_a, const uint8_t *a, unsigned int H, uint8_t *buffer); | |||
/// @brief matrix-vector multiplication: c = matA * b , in GF(16) | |||
/// | |||
/// @param[out] c - the output vector c | |||
/// @param[in] matA - a column-major matrix A. | |||
/// @param[in] n_A_vec_byte - the size of column vectors in bytes. | |||
/// @param[in] n_A_width - the width of matrix A. | |||
/// @param[in] b - the vector b. | |||
/// | |||
void PQCLEAN_RAINBOWIACLASSIC_CLEAN_gf16mat_prod(uint8_t *c, const uint8_t *matA, unsigned int n_A_vec_byte, unsigned int n_A_width, const uint8_t *b); | |||
#endif // _BLAS_COMM_H_ |
@@ -0,0 +1,115 @@ | |||
#include "blas_u32.h" | |||
#include "gf.h" | |||
void PQCLEAN_RAINBOWIACLASSIC_CLEAN_gf256v_predicated_add_u32(uint8_t *accu_b, uint8_t predicate, const uint8_t *a, unsigned int _num_byte) { | |||
uint32_t pr_u32 = ((uint32_t)0) - ((uint32_t)predicate); | |||
uint8_t pr_u8 = pr_u32 & 0xff; | |||
unsigned int n_u32 = _num_byte >> 2; | |||
uint32_t *b_u32 = (uint32_t *)accu_b; | |||
const uint32_t *a_u32 = (const uint32_t *)a; | |||
for (unsigned int i = 0; i < n_u32; i++) { | |||
b_u32[i] ^= (a_u32[i] & pr_u32); | |||
} | |||
a += (n_u32 << 2); | |||
accu_b += (n_u32 << 2); | |||
unsigned int rem = _num_byte & 3; | |||
for (unsigned int i = 0; i < rem; i++) { | |||
accu_b[i] ^= (a[i] & pr_u8); | |||
} | |||
} | |||
void PQCLEAN_RAINBOWIACLASSIC_CLEAN_gf256v_add_u32(uint8_t *accu_b, const uint8_t *a, unsigned int _num_byte) { | |||
unsigned int n_u32 = _num_byte >> 2; | |||
uint32_t *b_u32 = (uint32_t *)accu_b; | |||
const uint32_t *a_u32 = (const uint32_t *)a; | |||
for (unsigned int i = 0; i < n_u32; i++) { | |||
b_u32[i] ^= a_u32[i]; | |||
} | |||
a += (n_u32 << 2); | |||
accu_b += (n_u32 << 2); | |||
unsigned int rem = _num_byte & 3; | |||
for (unsigned int i = 0; i < rem; i++) { | |||
accu_b[i] ^= a[i]; | |||
} | |||
} | |||
void PQCLEAN_RAINBOWIACLASSIC_CLEAN_gf16v_mul_scalar_u32(uint8_t *a, uint8_t gf16_b, unsigned int _num_byte) { | |||
unsigned int n_u32 = _num_byte >> 2; | |||
uint32_t *a_u32 = (uint32_t *)a; | |||
for (unsigned int i = 0; i < n_u32; i++) { | |||
a_u32[i] = PQCLEAN_RAINBOWIACLASSIC_CLEAN_gf16v_mul_u32(a_u32[i], gf16_b); | |||
} | |||
union tmp_32 { | |||
uint8_t u8[4]; | |||
uint32_t u32; | |||
} t; | |||
t.u32 = 0; | |||
a += (n_u32 << 2); | |||
unsigned int rem = _num_byte & 3; | |||
for (unsigned int i = 0; i < rem; i++) { | |||
t.u8[i] = a[i]; | |||
} | |||
t.u32 = PQCLEAN_RAINBOWIACLASSIC_CLEAN_gf16v_mul_u32(t.u32, gf16_b); | |||
for (unsigned int i = 0; i < rem; i++) { | |||
a[i] = t.u8[i]; | |||
} | |||
} | |||
void PQCLEAN_RAINBOWIACLASSIC_CLEAN_gf16v_madd_u32(uint8_t *accu_c, const uint8_t *a, uint8_t gf16_b, unsigned int _num_byte) { | |||
unsigned int n_u32 = _num_byte >> 2; | |||
uint32_t *c_u32 = (uint32_t *)accu_c; | |||
const uint32_t *a_u32 = (const uint32_t *)a; | |||
for (unsigned int i = 0; i < n_u32; i++) { | |||
c_u32[i] ^= PQCLEAN_RAINBOWIACLASSIC_CLEAN_gf16v_mul_u32(a_u32[i], gf16_b); | |||
} | |||
union tmp_32 { | |||
uint8_t u8[4]; | |||
uint32_t u32; | |||
} t; | |||
t.u32 = 0; | |||
accu_c += (n_u32 << 2); | |||
a += (n_u32 << 2); | |||
unsigned int rem = _num_byte & 3; | |||
for (unsigned int i = 0; i < rem; i++) { | |||
t.u8[i] = a[i]; | |||
} | |||
t.u32 = PQCLEAN_RAINBOWIACLASSIC_CLEAN_gf16v_mul_u32(t.u32, gf16_b); | |||
for (unsigned int i = 0; i < rem; i++) { | |||
accu_c[i] ^= t.u8[i]; | |||
} | |||
} | |||
uint8_t PQCLEAN_RAINBOWIACLASSIC_CLEAN_gf16v_dot_u32(const uint8_t *a, const uint8_t *b, unsigned int _num_byte) { | |||
unsigned int n_u32 = _num_byte >> 2; | |||
const uint32_t *a_u32 = (const uint32_t *)a; | |||
const uint32_t *b_u32 = (const uint32_t *)b; | |||
uint32_t r = 0; | |||
for (unsigned int i = 0; i < n_u32; i++) { | |||
r ^= PQCLEAN_RAINBOWIACLASSIC_CLEAN_gf16v_mul_u32_u32(a_u32[i], b_u32[i]); | |||
} | |||
unsigned int rem = _num_byte & 3; | |||
if (rem) { | |||
union tmp_32 { | |||
uint8_t u8[4]; | |||
uint32_t u32; | |||
} ta, tb; | |||
ta.u32 = 0; | |||
tb.u32 = 0; | |||
for (unsigned int i = 0; i < rem; i++) { | |||
ta.u8[i] = a[(n_u32 << 2) + i]; | |||
} | |||
for (unsigned int i = 0; i < rem; i++) { | |||
tb.u8[i] = b[(n_u32 << 2) + i]; | |||
} | |||
r ^= PQCLEAN_RAINBOWIACLASSIC_CLEAN_gf16v_mul_u32_u32(ta.u32, tb.u32); | |||
} | |||
return PQCLEAN_RAINBOWIACLASSIC_CLEAN_gf16v_reduce_u32(r); | |||
} | |||
@@ -0,0 +1,19 @@ | |||
#ifndef _BLAS_U32_H_ | |||
#define _BLAS_U32_H_ | |||
/// @file blas_u32.h | |||
/// @brief Inlined functions for implementing basic linear algebra functions for uint32 arch. | |||
/// | |||
#include "rainbow_config.h" | |||
#include <stdint.h> | |||
void PQCLEAN_RAINBOWIACLASSIC_CLEAN_gf256v_predicated_add_u32(uint8_t *accu_b, uint8_t predicate, const uint8_t *a, unsigned int _num_byte); | |||
void PQCLEAN_RAINBOWIACLASSIC_CLEAN_gf256v_add_u32(uint8_t *accu_b, const uint8_t *a, unsigned int _num_byte); | |||
void PQCLEAN_RAINBOWIACLASSIC_CLEAN_gf16v_madd_u32(uint8_t *accu_c, const uint8_t *a, uint8_t gf16_b, unsigned int _num_byte); | |||
void PQCLEAN_RAINBOWIACLASSIC_CLEAN_gf16v_mul_scalar_u32(uint8_t *a, uint8_t gf16_b, unsigned int _num_byte); | |||
uint8_t PQCLEAN_RAINBOWIACLASSIC_CLEAN_gf16v_dot_u32(const uint8_t *a, const uint8_t *b, unsigned int _num_byte); | |||
#endif // _BLAS_U32_H_ |
@@ -0,0 +1,124 @@ | |||
#include "gf.h" | |||
//// gf4 := gf2[x]/x^2+x+1 | |||
static inline uint8_t gf4_mul_2(uint8_t a) { | |||
uint8_t r = (uint8_t)(a << 1); | |||
r ^= (uint8_t)((a >> 1) * 7); | |||
return r; | |||
} | |||
static inline uint8_t gf4_mul(uint8_t a, uint8_t b) { | |||
uint8_t r = (uint8_t)(a * (b & 1)); | |||
return r ^ (uint8_t)(gf4_mul_2(a) * (b >> 1)); | |||
} | |||
static inline uint8_t gf4_squ(uint8_t a) { | |||
return a ^ (a >> 1); | |||
} | |||
static inline uint32_t gf4v_mul_2_u32(uint32_t a) { | |||
uint32_t bit0 = a & 0x55555555; | |||
uint32_t bit1 = a & 0xaaaaaaaa; | |||
return (bit0 << 1) ^ bit1 ^ (bit1 >> 1); | |||
} | |||
static inline uint32_t gf4v_mul_u32(uint32_t a, uint8_t b) { | |||
uint32_t bit0_b = ((uint32_t)0) - ((uint32_t)(b & 1)); | |||
uint32_t bit1_b = ((uint32_t)0) - ((uint32_t)((b >> 1) & 1)); | |||
return (a & bit0_b) ^ (bit1_b & gf4v_mul_2_u32(a)); | |||
} | |||
//// gf16 := gf4[y]/y^2+y+x | |||
static inline uint8_t gf16_mul(uint8_t a, uint8_t b) { | |||
uint8_t a0 = a & 3; | |||
uint8_t a1 = (a >> 2); | |||
uint8_t b0 = b & 3; | |||
uint8_t b1 = (b >> 2); | |||
uint8_t a0b0 = gf4_mul(a0, b0); | |||
uint8_t a1b1 = gf4_mul(a1, b1); | |||
uint8_t a0b1_a1b0 = gf4_mul(a0 ^ a1, b0 ^ b1) ^ a0b0 ^ a1b1; | |||
uint8_t a1b1_x2 = gf4_mul_2(a1b1); | |||
return (uint8_t)((a0b1_a1b0 ^ a1b1) << 2 ^ a0b0 ^ a1b1_x2); | |||
} | |||
static inline uint8_t gf16_squ(uint8_t a) { | |||
uint8_t a0 = a & 3; | |||
uint8_t a1 = (a >> 2); | |||
a1 = gf4_squ(a1); | |||
uint8_t a1squ_x2 = gf4_mul_2(a1); | |||
return (uint8_t)((a1 << 2) ^ a1squ_x2 ^ gf4_squ(a0)); | |||
} | |||
// gf16 := gf4[y]/y^2+y+x | |||
uint32_t PQCLEAN_RAINBOWIACLASSIC_CLEAN_gf16v_mul_u32(uint32_t a, uint8_t b) { | |||
uint32_t axb0 = gf4v_mul_u32(a, b); | |||
uint32_t axb1 = gf4v_mul_u32(a, b >> 2); | |||
uint32_t a0b1 = (axb1 << 2) & 0xcccccccc; | |||
uint32_t a1b1 = axb1 & 0xcccccccc; | |||
uint32_t a1b1_2 = a1b1 >> 2; | |||
return axb0 ^ a0b1 ^ a1b1 ^ gf4v_mul_2_u32(a1b1_2); | |||
} | |||
static inline uint32_t _gf4v_mul_u32_u32(uint32_t a0, uint32_t a1, uint32_t b0, uint32_t b1) { | |||
uint32_t c0 = a0 & b0; | |||
uint32_t c2 = a1 & b1; | |||
uint32_t c1_ = (a0 ^ a1) & (b0 ^ b1); | |||
return ((c1_ ^ c0) << 1) ^ c0 ^ c2; | |||
} | |||
uint8_t PQCLEAN_RAINBOWIACLASSIC_CLEAN_gf16_is_nonzero(uint8_t a) { | |||
unsigned int a4 = a & 0xf; | |||
unsigned int r = ((unsigned int)0) - a4; | |||
r >>= 4; | |||
return r & 1; | |||
} | |||
uint8_t PQCLEAN_RAINBOWIACLASSIC_CLEAN_gf16_inv(uint8_t a) { | |||
uint8_t a2 = gf16_squ(a); | |||
uint8_t a4 = gf16_squ(a2); | |||
uint8_t a8 = gf16_squ(a4); | |||
uint8_t a6 = gf16_mul(a4, a2); | |||
return gf16_mul(a8, a6); | |||
} | |||
static inline uint32_t _gf16v_mul_u32_u32(uint32_t a0, uint32_t a1, uint32_t a2, uint32_t a3, uint32_t b0, uint32_t b1, uint32_t b2, uint32_t b3) { | |||
uint32_t c0 = _gf4v_mul_u32_u32(a0, a1, b0, b1); | |||
uint32_t c1_ = _gf4v_mul_u32_u32(a0 ^ a2, a1 ^ a3, b0 ^ b2, b1 ^ b3); | |||
uint32_t c2_0 = a2 & b2; | |||
uint32_t c2_2 = a3 & b3; | |||
uint32_t c2_1_ = (a2 ^ a3) & (b2 ^ b3); | |||
uint32_t c2_r0 = c2_0 ^ c2_2; | |||
uint32_t c2_r1 = c2_0 ^ c2_1_; | |||
// GF(4) x2: (bit0<<1)^bit1^(bit1>>1); | |||
return ((c1_ ^ c0) << 2) ^ c0 ^ (c2_r0 << 1) ^ c2_r1 ^ (c2_r1 << 1); | |||
} | |||
uint32_t PQCLEAN_RAINBOWIACLASSIC_CLEAN_gf16v_mul_u32_u32(uint32_t a, uint32_t b) { | |||
uint32_t a0 = a & 0x11111111; | |||
uint32_t a1 = (a >> 1) & 0x11111111; | |||
uint32_t a2 = (a >> 2) & 0x11111111; | |||
uint32_t a3 = (a >> 3) & 0x11111111; | |||
uint32_t b0 = b & 0x11111111; | |||
uint32_t b1 = (b >> 1) & 0x11111111; | |||
uint32_t b2 = (b >> 2) & 0x11111111; | |||
uint32_t b3 = (b >> 3) & 0x11111111; | |||
return _gf16v_mul_u32_u32(a0, a1, a2, a3, b0, b1, b2, b3); | |||
} | |||
static inline uint8_t gf256v_reduce_u32(uint32_t a) { | |||
// https://godbolt.org/z/7hirMb | |||
uint16_t *aa = (uint16_t *)(&a); | |||
uint16_t r = aa[0] ^ aa[1]; | |||
uint8_t *rr = (uint8_t *)(&r); | |||
return rr[0] ^ rr[1]; | |||
} | |||
uint8_t PQCLEAN_RAINBOWIACLASSIC_CLEAN_gf16v_reduce_u32(uint32_t a) { | |||
uint8_t r256 = gf256v_reduce_u32(a); | |||
return (uint8_t)((r256 & 0xf) ^ (r256 >> 4)); | |||
} | |||
@@ -0,0 +1,20 @@ | |||
#ifndef _GF16_H_ | |||
#define _GF16_H_ | |||
#include "rainbow_config.h" | |||
#include <stdint.h> | |||
/// @file gf16.h | |||
/// @brief Library for arithmetics in GF(16) and GF(256) | |||
/// | |||
uint32_t PQCLEAN_RAINBOWIACLASSIC_CLEAN_gf16v_mul_u32(uint32_t a, uint8_t b); | |||
uint8_t PQCLEAN_RAINBOWIACLASSIC_CLEAN_gf16_is_nonzero(uint8_t a); | |||
uint8_t PQCLEAN_RAINBOWIACLASSIC_CLEAN_gf16_inv(uint8_t a); | |||
uint32_t PQCLEAN_RAINBOWIACLASSIC_CLEAN_gf16v_mul_u32_u32(uint32_t a, uint32_t b); | |||
uint8_t PQCLEAN_RAINBOWIACLASSIC_CLEAN_gf16v_reduce_u32(uint32_t a); | |||
#endif // _GF16_H_ |
@@ -0,0 +1,182 @@ | |||
/// @file parallel_matrix_op.c | |||
/// @brief the standard implementations for functions in parallel_matrix_op.h | |||
/// | |||
/// the standard implementations for functions in parallel_matrix_op.h | |||
/// | |||
#include "parallel_matrix_op.h" | |||
#include "blas.h" | |||
#include "blas_comm.h" | |||
/// | |||
/// @brief Calculate the corresponding index in an array for an upper-triangle(UT) matrix. | |||
/// | |||
/// @param[in] i_row - the i-th row in an upper-triangle matrix. | |||
/// @param[in] j_col - the j-th column in an upper-triangle matrix. | |||
/// @param[in] dim - the dimension of the upper-triangle matrix, i.e., an dim x dim matrix. | |||
/// @return the corresponding index in an array storage. | |||
/// | |||
unsigned int PQCLEAN_RAINBOWIACLASSIC_CLEAN_idx_of_trimat(unsigned int i_row, unsigned int j_col, unsigned int dim) { | |||
return (dim + dim - i_row + 1) * i_row / 2 + j_col - i_row; | |||
} | |||
/// | |||
/// @brief Calculate the corresponding index in an array for an upper-triangle or lower-triangle matrix. | |||
/// | |||
/// @param[in] i_row - the i-th row in a triangle matrix. | |||
/// @param[in] j_col - the j-th column in a triangle matrix. | |||
/// @param[in] dim - the dimension of the triangle matrix, i.e., an dim x dim matrix. | |||
/// @return the corresponding index in an array storage. | |||
/// | |||
static inline unsigned int idx_of_2trimat(unsigned int i_row, unsigned int j_col, unsigned int n_var) { | |||
if (i_row > j_col) { | |||
return PQCLEAN_RAINBOWIACLASSIC_CLEAN_idx_of_trimat(j_col, i_row, n_var); | |||
} | |||
return PQCLEAN_RAINBOWIACLASSIC_CLEAN_idx_of_trimat(i_row, j_col, n_var); | |||
} | |||
void PQCLEAN_RAINBOWIACLASSIC_CLEAN_UpperTrianglize(unsigned char *btriC, const unsigned char *bA, unsigned int Awidth, unsigned int size_batch) { | |||
unsigned char *runningC = btriC; | |||
unsigned int Aheight = Awidth; | |||
for (unsigned int i = 0; i < Aheight; i++) { | |||
for (unsigned int j = 0; j < i; j++) { | |||
unsigned int idx = PQCLEAN_RAINBOWIACLASSIC_CLEAN_idx_of_trimat(j, i, Aheight); | |||
gf256v_add(btriC + idx * size_batch, bA + size_batch * (i * Awidth + j), size_batch); | |||
} | |||
gf256v_add(runningC, bA + size_batch * (i * Awidth + i), size_batch * (Aheight - i)); | |||
runningC += size_batch * (Aheight - i); | |||
} | |||
} | |||
void PQCLEAN_RAINBOWIACLASSIC_CLEAN_batch_trimat_madd_gf16(unsigned char *bC, const unsigned char *btriA, | |||
const unsigned char *B, unsigned int Bheight, unsigned int size_Bcolvec, unsigned int Bwidth, unsigned int size_batch) { | |||
unsigned int Awidth = Bheight; | |||
unsigned int Aheight = Awidth; | |||
for (unsigned int i = 0; i < Aheight; i++) { | |||
for (unsigned int j = 0; j < Bwidth; j++) { | |||
for (unsigned int k = 0; k < Bheight; k++) { | |||
if (k < i) { | |||
continue; | |||
} | |||
gf16v_madd(bC, &btriA[(k - i) * size_batch], PQCLEAN_RAINBOWIACLASSIC_CLEAN_gf16v_get_ele(&B[j * size_Bcolvec], k), size_batch); | |||
} | |||
bC += size_batch; | |||
} | |||
btriA += (Aheight - i) * size_batch; | |||
} | |||
} | |||
void PQCLEAN_RAINBOWIACLASSIC_CLEAN_batch_trimatTr_madd_gf16(unsigned char *bC, const unsigned char *btriA, | |||
const unsigned char *B, unsigned int Bheight, unsigned int size_Bcolvec, unsigned int Bwidth, unsigned int size_batch) { | |||
unsigned int Aheight = Bheight; | |||
for (unsigned int i = 0; i < Aheight; i++) { | |||
for (unsigned int j = 0; j < Bwidth; j++) { | |||
for (unsigned int k = 0; k < Bheight; k++) { | |||
if (i < k) { | |||
continue; | |||
} | |||
gf16v_madd(bC, &btriA[size_batch * (PQCLEAN_RAINBOWIACLASSIC_CLEAN_idx_of_trimat(k, i, Aheight))], PQCLEAN_RAINBOWIACLASSIC_CLEAN_gf16v_get_ele(&B[j * size_Bcolvec], k), size_batch); | |||
} | |||
bC += size_batch; | |||
} | |||
} | |||
} | |||
void PQCLEAN_RAINBOWIACLASSIC_CLEAN_batch_2trimat_madd_gf16(unsigned char *bC, const unsigned char *btriA, | |||
const unsigned char *B, unsigned int Bheight, unsigned int size_Bcolvec, unsigned int Bwidth, unsigned int size_batch) { | |||
unsigned int Aheight = Bheight; | |||
for (unsigned int i = 0; i < Aheight; i++) { | |||
for (unsigned int j = 0; j < Bwidth; j++) { | |||
for (unsigned int k = 0; k < Bheight; k++) { | |||
if (i == k) { | |||
continue; | |||
} | |||
gf16v_madd(bC, &btriA[size_batch * (idx_of_2trimat(i, k, Aheight))], PQCLEAN_RAINBOWIACLASSIC_CLEAN_gf16v_get_ele(&B[j * size_Bcolvec], k), size_batch); | |||
} | |||
bC += size_batch; | |||
} | |||
} | |||
} | |||
void PQCLEAN_RAINBOWIACLASSIC_CLEAN_batch_matTr_madd_gf16(unsigned char *bC, const unsigned char *A_to_tr, unsigned int Aheight, unsigned int size_Acolvec, unsigned int Awidth, | |||
const unsigned char *bB, unsigned int Bwidth, unsigned int size_batch) { | |||
unsigned int Atr_height = Awidth; | |||
unsigned int Atr_width = Aheight; | |||
for (unsigned int i = 0; i < Atr_height; i++) { | |||
for (unsigned int j = 0; j < Atr_width; j++) { | |||
gf16v_madd(bC, &bB[j * Bwidth * size_batch], PQCLEAN_RAINBOWIACLASSIC_CLEAN_gf16v_get_ele(&A_to_tr[size_Acolvec * i], j), size_batch * Bwidth); | |||
} | |||
bC += size_batch * Bwidth; | |||
} | |||
} | |||
void PQCLEAN_RAINBOWIACLASSIC_CLEAN_batch_bmatTr_madd_gf16(unsigned char *bC, const unsigned char *bA_to_tr, unsigned int Awidth_before_tr, | |||
const unsigned char *B, unsigned int Bheight, unsigned int size_Bcolvec, unsigned int Bwidth, unsigned int size_batch) { | |||
const unsigned char *bA = bA_to_tr; | |||
unsigned int Aheight = Awidth_before_tr; | |||
for (unsigned int i = 0; i < Aheight; i++) { | |||
for (unsigned int j = 0; j < Bwidth; j++) { | |||
for (unsigned int k = 0; k < Bheight; k++) { | |||
gf16v_madd(bC, &bA[size_batch * (i + k * Aheight)], PQCLEAN_RAINBOWIACLASSIC_CLEAN_gf16v_get_ele(&B[j * size_Bcolvec], k), size_batch); | |||
} | |||
bC += size_batch; | |||
} | |||
} | |||
} | |||
void PQCLEAN_RAINBOWIACLASSIC_CLEAN_batch_mat_madd_gf16(unsigned char *bC, const unsigned char *bA, unsigned int Aheight, | |||
const unsigned char *B, unsigned int Bheight, unsigned int size_Bcolvec, unsigned int Bwidth, unsigned int size_batch) { | |||
unsigned int Awidth = Bheight; | |||
for (unsigned int i = 0; i < Aheight; i++) { | |||
for (unsigned int j = 0; j < Bwidth; j++) { | |||
for (unsigned int k = 0; k < Bheight; k++) { | |||
gf16v_madd(bC, &bA[k * size_batch], PQCLEAN_RAINBOWIACLASSIC_CLEAN_gf16v_get_ele(&B[j * size_Bcolvec], k), size_batch); | |||
} | |||
bC += size_batch; | |||
} | |||
bA += (Awidth) * size_batch; | |||
} | |||
} | |||
void PQCLEAN_RAINBOWIACLASSIC_CLEAN_batch_quad_recmat_eval_gf16(unsigned char *z, const unsigned char *y, unsigned int dim_y, const unsigned char *mat, | |||
const unsigned char *x, unsigned int dim_x, unsigned int size_batch) { | |||
unsigned char tmp[128]; | |||
unsigned char _x[128]; | |||
for (unsigned int i = 0; i < dim_x; i++) { | |||
_x[i] = PQCLEAN_RAINBOWIACLASSIC_CLEAN_gf16v_get_ele(x, i); | |||
} | |||
unsigned char _y[128]; | |||
for (unsigned int i = 0; i < dim_y; i++) { | |||
_y[i] = PQCLEAN_RAINBOWIACLASSIC_CLEAN_gf16v_get_ele(y, i); | |||
} | |||
PQCLEAN_RAINBOWIACLASSIC_CLEAN_gf256v_set_zero(z, size_batch); | |||
for (unsigned int i = 0; i < dim_y; i++) { | |||
PQCLEAN_RAINBOWIACLASSIC_CLEAN_gf256v_set_zero(tmp, size_batch); | |||
for (unsigned int j = 0; j < dim_x; j++) { | |||
gf16v_madd(tmp, mat, _x[j], size_batch); | |||
mat += size_batch; | |||
} | |||
gf16v_madd(z, tmp, _y[i], size_batch); | |||
} | |||
} | |||
void PQCLEAN_RAINBOWIACLASSIC_CLEAN_batch_quad_trimat_eval_gf16(unsigned char *y, const unsigned char *trimat, const unsigned char *x, unsigned int dim, unsigned int size_batch) { | |||
unsigned char tmp[256]; | |||
unsigned char _x[256]; | |||
for (unsigned int i = 0; i < dim; i++) { | |||
_x[i] = PQCLEAN_RAINBOWIACLASSIC_CLEAN_gf16v_get_ele(x, i); | |||
} | |||
PQCLEAN_RAINBOWIACLASSIC_CLEAN_gf256v_set_zero(y, size_batch); | |||
for (unsigned int i = 0; i < dim; i++) { | |||
PQCLEAN_RAINBOWIACLASSIC_CLEAN_gf256v_set_zero(tmp, size_batch); | |||
for (unsigned int j = i; j < dim; j++) { | |||
gf16v_madd(tmp, trimat, _x[j], size_batch); | |||
trimat += size_batch; | |||
} | |||
gf16v_madd(y, tmp, _x[i], size_batch); | |||
} | |||
} |
@@ -0,0 +1,260 @@ | |||
#ifndef _P_MATRIX_OP_H_ | |||
#define _P_MATRIX_OP_H_ | |||
/// @file parallel_matrix_op.h | |||
/// @brief Librarys for operations of batched matrixes. | |||
/// | |||
/// | |||
//////////////// Section: triangle matrix <-> rectangle matrix /////////////////////////////////// | |||
/// | |||
/// @brief Calculate the corresponding index in an array for an upper-triangle(UT) matrix. | |||
/// | |||
/// @param[in] i_row - the i-th row in an upper-triangle matrix. | |||
/// @param[in] j_col - the j-th column in an upper-triangle matrix. | |||
/// @param[in] dim - the dimension of the upper-triangle matrix, i.e., an dim x dim matrix. | |||
/// @return the corresponding index in an array storage. | |||
/// | |||
unsigned int PQCLEAN_RAINBOWIACLASSIC_CLEAN_idx_of_trimat(unsigned int i_row, unsigned int j_col, unsigned int dim); | |||
/// | |||
/// @brief Upper trianglize a rectangle matrix to the corresponding upper-trangle matrix. | |||
/// | |||
/// @param[out] btriC - the batched upper-trianglized matrix C. | |||
/// @param[in] bA - a batched retangle matrix A. | |||
/// @param[in] bwidth - the width of the batched matrix A, i.e., A is a Awidth x Awidth matrix. | |||
/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix. | |||
/// | |||
void PQCLEAN_RAINBOWIACLASSIC_CLEAN_UpperTrianglize(unsigned char *btriC, const unsigned char *bA, unsigned int Awidth, unsigned int size_batch); | |||
//////////////////// Section: matrix multiplications /////////////////////////////// | |||
/// | |||
/// @brief bC += btriA * B , in GF(16) | |||
/// | |||
/// @param[out] bC - the batched matrix C. | |||
/// @param[in] btriA - a batched UT matrix A. | |||
/// @param[in] B - a column-major matrix B. | |||
/// @param[in] Bheight - the height of B. | |||
/// @param[in] size_Bcolvec - the size of the column vector in B. | |||
/// @param[in] Bwidth - the width of B. | |||
/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix. | |||
/// | |||
void PQCLEAN_RAINBOWIACLASSIC_CLEAN_batch_trimat_madd_gf16(unsigned char *bC, const unsigned char *btriA, | |||
const unsigned char *B, unsigned int Bheight, unsigned int size_Bcolvec, unsigned int Bwidth, unsigned int size_batch); | |||
/// | |||
/// @brief bC += btriA * B , in GF(256) | |||
/// | |||
/// @param[out] bC - the batched matrix C. | |||
/// @param[in] btriA - a batched UT matrix A. | |||
/// @param[in] B - a column-major matrix B. | |||
/// @param[in] Bheight - the height of B. | |||
/// @param[in] size_Bcolvec - the size of the column vector in B. | |||
/// @param[in] Bwidth - the width of B. | |||
/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix. | |||
/// | |||
void PQCLEAN_RAINBOWIACLASSIC_CLEAN_batch_trimat_madd_gf256(unsigned char *bC, const unsigned char *btriA, | |||
const unsigned char *B, unsigned int Bheight, unsigned int size_Bcolvec, unsigned int Bwidth, unsigned int size_batch); | |||
/// | |||
/// @brief bC += btriA^Tr * B , in GF(16) | |||
/// | |||
/// @param[out] bC - the batched matrix C. | |||
/// @param[in] btriA - a batched UT matrix A. A will be transposed while multiplying. | |||
/// @param[in] B - a column-major matrix B. | |||
/// @param[in] Bheight - the height of B. | |||
/// @param[in] size_Bcolvec - the size of the column vector in B. | |||
/// @param[in] Bwidth - the width of B. | |||
/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix. | |||
/// | |||
void PQCLEAN_RAINBOWIACLASSIC_CLEAN_batch_trimatTr_madd_gf16(unsigned char *bC, const unsigned char *btriA, | |||
const unsigned char *B, unsigned int Bheight, unsigned int size_Bcolvec, unsigned int Bwidth, unsigned int size_batch); | |||
/// | |||
/// @brief bC += btriA^Tr * B , in GF(256) | |||
/// | |||
/// @param[out] bC - the batched matrix C. | |||
/// @param[in] btriA - a batched UT matrix A, which will be transposed while multiplying. | |||
/// @param[in] B - a column-major matrix B. | |||
/// @param[in] Bheight - the height of B. | |||
/// @param[in] size_Bcolvec - the size of the column vector in B. | |||
/// @param[in] Bwidth - the width of B. | |||
/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix. | |||
/// | |||
void PQCLEAN_RAINBOWIACLASSIC_CLEAN_batch_trimatTr_madd_gf256(unsigned char *bC, const unsigned char *btriA, | |||
const unsigned char *B, unsigned int Bheight, unsigned int size_Bcolvec, unsigned int Bwidth, unsigned int size_batch); | |||
/// | |||
/// @brief bC += (btriA + btriA^Tr) *B , in GF(16) | |||
/// | |||
/// @param[out] bC - the batched matrix C. | |||
/// @param[in] btriA - a batched UT matrix A. The operand for multiplication is (btriA + btriA^Tr). | |||
/// @param[in] B - a column-major matrix B. | |||
/// @param[in] Bheight - the height of B. | |||
/// @param[in] size_Bcolvec - the size of the column vector in B. | |||
/// @param[in] Bwidth - the width of B. | |||
/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix. | |||
/// | |||
void PQCLEAN_RAINBOWIACLASSIC_CLEAN_batch_2trimat_madd_gf16(unsigned char *bC, const unsigned char *btriA, | |||
const unsigned char *B, unsigned int Bheight, unsigned int size_Bcolvec, unsigned int Bwidth, unsigned int size_batch); | |||
/// | |||
/// @brief bC += (btriA + btriA^Tr) *B , in GF(256) | |||
/// | |||
/// @param[out] bC - the batched matrix C. | |||
/// @param[in] btriA - a batched UT matrix A. The operand for multiplication is (btriA + btriA^Tr). | |||
/// @param[in] B - a column-major matrix B. | |||
/// @param[in] Bheight - the height of B. | |||
/// @param[in] size_Bcolvec - the size of the column vector in B. | |||
/// @param[in] Bwidth - the width of B. | |||
/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix. | |||
/// | |||
void PQCLEAN_RAINBOWIACLASSIC_CLEAN_batch_2trimat_madd_gf256(unsigned char *bC, const unsigned char *btriA, | |||
const unsigned char *B, unsigned int Bheight, unsigned int size_Bcolvec, unsigned int Bwidth, unsigned int size_batch); | |||
/// | |||
/// @brief bC += A^Tr * bB , in GF(16) | |||
/// | |||
/// @param[out] bC - the batched matrix C. | |||
/// @param[in] A_to_tr - a column-major matrix A. The operand for multiplication is A^Tr. | |||
/// @param[in] Aheight - the height of A. | |||
/// @param[in] size_Acolvec - the size of a column vector in A. | |||
/// @param[in] Awidth - the width of A. | |||
/// @param[in] bB - a batched matrix B. | |||
/// @param[in] Bwidth - the width of B. | |||
/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix. | |||
/// | |||
void PQCLEAN_RAINBOWIACLASSIC_CLEAN_batch_matTr_madd_gf16(unsigned char *bC, | |||
const unsigned char *A_to_tr, unsigned int Aheight, unsigned int size_Acolvec, unsigned int Awidth, | |||
const unsigned char *bB, unsigned int Bwidth, unsigned int size_batch); | |||
/// | |||
/// @brief bC += A^Tr * bB , in GF(256) | |||
/// | |||
/// @param[out] bC - the batched matrix C. | |||
/// @param[in] A_to_tr - a column-major matrix A. The operand for multiplication is A^Tr. | |||
/// @param[in] Aheight - the height of A. | |||
/// @param[in] size_Acolvec - the size of a column vector in A. | |||
/// @param[in] Awidth - the width of A. | |||
/// @param[in] bB - a batched matrix B. | |||
/// @param[in] Bwidth - the width of B. | |||
/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix. | |||
/// | |||
void PQCLEAN_RAINBOWIACLASSIC_CLEAN_batch_matTr_madd_gf256(unsigned char *bC, | |||
const unsigned char *A_to_tr, unsigned int Aheight, unsigned int size_Acolvec, unsigned int Awidth, | |||
const unsigned char *bB, unsigned int Bwidth, unsigned int size_batch); | |||
/// | |||
/// @brief bC += bA^Tr * B , in GF(16) | |||
/// | |||
/// @param[out] bC - the batched matrix C. | |||
/// @param[in] bA_to_tr - a batched matrix A. The operand for multiplication is (bA^Tr). | |||
/// @param[in] Awidth_befor_tr - the width of A. | |||
/// @param[in] B - a column-major matrix B. | |||
/// @param[in] Bheight - the height of B. | |||
/// @param[in] size_Bcolvec - the size of the column vector in B. | |||
/// @param[in] Bwidth - the width of B. | |||
/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix. | |||
/// | |||
void PQCLEAN_RAINBOWIACLASSIC_CLEAN_batch_bmatTr_madd_gf16(unsigned char *bC, const unsigned char *bA_to_tr, unsigned int Awidth_before_tr, | |||
const unsigned char *B, unsigned int Bheight, unsigned int size_Bcolvec, unsigned int Bwidth, unsigned int size_batch); | |||
/// | |||
/// @brief bC += bA^Tr * B , in GF(256) | |||
/// | |||
/// @param[out] bC - the batched matrix C. | |||
/// @param[in] bA_to_tr - a batched matrix A. The operand for multiplication is (bA^Tr). | |||
/// @param[in] Awidth_befor_tr - the width of A. | |||
/// @param[in] B - a column-major matrix B. | |||
/// @param[in] Bheight - the height of B. | |||
/// @param[in] size_Bcolvec - the size of the column vector in B. | |||
/// @param[in] Bwidth - the width of B. | |||
/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix. | |||
/// | |||
void PQCLEAN_RAINBOWIACLASSIC_CLEAN_batch_bmatTr_madd_gf256(unsigned char *bC, const unsigned char *bA_to_tr, unsigned int Awidth_before_tr, | |||
const unsigned char *B, unsigned int Bheight, unsigned int size_Bcolvec, unsigned int Bwidth, unsigned int size_batch); | |||
/// | |||
/// @brief bC += bA * B , in GF(16) | |||
/// | |||
/// @param[out] bC - the batched matrix C. | |||
/// @param[in] bA - a batched matrix A. | |||
/// @param[in] Aheigh - the height of A. | |||
/// @param[in] B - a column-major matrix B. | |||
/// @param[in] Bheight - the height of B. | |||
/// @param[in] size_Bcolvec - the size of the column vector in B. | |||
/// @param[in] Bwidth - the width of B. | |||
/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix. | |||
/// | |||
void PQCLEAN_RAINBOWIACLASSIC_CLEAN_batch_mat_madd_gf16(unsigned char *bC, const unsigned char *bA, unsigned int Aheight, | |||
const unsigned char *B, unsigned int Bheight, unsigned int size_Bcolvec, unsigned int Bwidth, unsigned int size_batch); | |||
/// | |||
/// @brief bC += bA * B , in GF(256) | |||
/// | |||
/// @param[out] bC - the batched matrix C. | |||
/// @param[in] bA - a batched matrix A. | |||
/// @param[in] Aheigh - the height of A. | |||
/// @param[in] B - a column-major matrix B. | |||
/// @param[in] Bheight - the height of B. | |||
/// @param[in] size_Bcolvec - the size of the column vector in B. | |||
/// @param[in] Bwidth - the width of B. | |||
/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix. | |||
/// | |||
void PQCLEAN_RAINBOWIACLASSIC_CLEAN_batch_mat_madd_gf256(unsigned char *bC, const unsigned char *bA, unsigned int Aheight, | |||
const unsigned char *B, unsigned int Bheight, unsigned int size_Bcolvec, unsigned int Bwidth, unsigned int size_batch); | |||
//////////////////// Section: "quadratric" matrix evaluation /////////////////////////////// | |||
/// | |||
/// @brief y = x^Tr * trimat * x , in GF(16) | |||
/// | |||
/// @param[out] y - the returned batched element y. | |||
/// @param[in] trimat - a batched matrix. | |||
/// @param[in] x - an input vector x. | |||
/// @param[in] dim - the dimension of matrix trimat (and x). | |||
/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix. | |||
/// | |||
void PQCLEAN_RAINBOWIACLASSIC_CLEAN_batch_quad_trimat_eval_gf16(unsigned char *y, const unsigned char *trimat, const unsigned char *x, unsigned int dim, unsigned int size_batch); | |||
/// | |||
/// @brief y = x^Tr * trimat * x , in GF(256) | |||
/// | |||
/// @param[out] y - the returned batched element y. | |||
/// @param[in] trimat - a batched matrix. | |||
/// @param[in] x - an input vector x. | |||
/// @param[in] dim - the dimension of matrix trimat (and x). | |||
/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix. | |||
/// | |||
void PQCLEAN_RAINBOWIACLASSIC_CLEAN_batch_quad_trimat_eval_gf256(unsigned char *y, const unsigned char *trimat, const unsigned char *x, unsigned int dim, unsigned int size_batch); | |||
/// | |||
/// @brief z = y^Tr * mat * x , in GF(16) | |||
/// | |||
/// @param[out] z - the returned batched element z. | |||
/// @param[in] y - an input vector y. | |||
/// @param[in] dim_y - the length of y. | |||
/// @param[in] mat - a batched matrix. | |||
/// @param[in] x - an input vector x. | |||
/// @param[in] dim_x - the length of x. | |||
/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix. | |||
/// | |||
void PQCLEAN_RAINBOWIACLASSIC_CLEAN_batch_quad_recmat_eval_gf16(unsigned char *z, const unsigned char *y, unsigned int dim_y, | |||
const unsigned char *mat, const unsigned char *x, unsigned int dim_x, unsigned int size_batch); | |||
/// | |||
/// @brief z = y^Tr * mat * x , in GF(256) | |||
/// | |||
/// @param[out] z - the returned batched element z. | |||
/// @param[in] y - an input vector y. | |||
/// @param[in] dim_y - the length of y. | |||
/// @param[in] mat - a batched matrix. | |||
/// @param[in] x - an input vector x. | |||
/// @param[in] dim_x - the length of x. | |||
/// @param[in] size_batch - number of the batched elements in the corresponding position of the matrix. | |||
/// | |||
void PQCLEAN_RAINBOWIACLASSIC_CLEAN_batch_quad_recmat_eval_gf256(unsigned char *z, const unsigned char *y, unsigned int dim_y, | |||
const unsigned char *mat, const unsigned char *x, unsigned int dim_x, unsigned int size_batch); | |||
#endif // _P_MATRIX_OP_H_ |
@@ -0,0 +1,169 @@ | |||
/// @file rainbow.c | |||
/// @brief The standard implementations for functions in rainbow.h | |||
/// | |||
#include "rainbow.h" | |||
#include "blas.h" | |||
#include "rainbow_blas.h" | |||
#include "rainbow_config.h" | |||
#include "rainbow_keypair.h" | |||
#include "utils_hash.h" | |||
#include "utils_prng.h" | |||
#include <stdint.h> | |||
#include <stdlib.h> | |||
#include <string.h> | |||
#define MAX_ATTEMPT_FRMAT 128 | |||
#define _MAX_O ((_O1 > _O2) ? _O1 : _O2) | |||
#define _MAX_O_BYTE ((_O1_BYTE > _O2_BYTE) ? _O1_BYTE : _O2_BYTE) | |||
int PQCLEAN_RAINBOWIACLASSIC_CLEAN_rainbow_sign(uint8_t *signature, const sk_t *sk, const uint8_t *_digest) { | |||
uint8_t mat_l1[_O1 * _O1_BYTE]; | |||
uint8_t mat_l2[_O2 * _O2_BYTE]; | |||
uint8_t mat_buffer[2 * _MAX_O * _MAX_O_BYTE]; | |||
// setup PRNG | |||
prng_t prng_sign; | |||
uint8_t prng_preseed[LEN_SKSEED + _HASH_LEN]; | |||
memcpy(prng_preseed, sk->sk_seed, LEN_SKSEED); | |||
memcpy(prng_preseed + LEN_SKSEED, _digest, _HASH_LEN); // prng_preseed = sk_seed || digest | |||
uint8_t prng_seed[_HASH_LEN]; | |||
PQCLEAN_RAINBOWIACLASSIC_CLEAN_hash_msg(prng_seed, _HASH_LEN, prng_preseed, _HASH_LEN + LEN_SKSEED); | |||
PQCLEAN_RAINBOWIACLASSIC_CLEAN_prng_set(&prng_sign, prng_seed, _HASH_LEN); // seed = H( sk_seed || digest ) | |||
for (unsigned int i = 0; i < LEN_SKSEED + _HASH_LEN; i++) { | |||
prng_preseed[i] ^= prng_preseed[i]; // clean | |||
} | |||
for (unsigned int i = 0; i < _HASH_LEN; i++) { | |||
prng_seed[i] ^= prng_seed[i]; // clean | |||
} | |||
// roll vinegars. | |||
uint8_t vinegar[_V1_BYTE]; | |||
unsigned int n_attempt = 0; | |||
unsigned int l1_succ = 0; | |||
while (!l1_succ) { | |||
if (MAX_ATTEMPT_FRMAT <= n_attempt) { | |||
break; | |||
} | |||
PQCLEAN_RAINBOWIACLASSIC_CLEAN_prng_gen(&prng_sign, vinegar, _V1_BYTE); // generating vinegars | |||
gfmat_prod(mat_l1, sk->l1_F2, _O1 * _O1_BYTE, _V1, vinegar); // generating the linear equations for layer 1 | |||
l1_succ = gfmat_inv(mat_l1, mat_l1, _O1, mat_buffer); // check if the linear equation solvable | |||
n_attempt++; | |||
} | |||
// Given the vinegars, pre-compute variables needed for layer 2 | |||
uint8_t r_l1_F1[_O1_BYTE] = {0}; | |||
uint8_t r_l2_F1[_O2_BYTE] = {0}; | |||
batch_quad_trimat_eval(r_l1_F1, sk->l1_F1, vinegar, _V1, _O1_BYTE); | |||
batch_quad_trimat_eval(r_l2_F1, sk->l2_F1, vinegar, _V1, _O2_BYTE); | |||
uint8_t mat_l2_F3[_O2 * _O2_BYTE]; | |||
uint8_t mat_l2_F2[_O1 * _O2_BYTE]; | |||
gfmat_prod(mat_l2_F3, sk->l2_F3, _O2 * _O2_BYTE, _V1, vinegar); | |||
gfmat_prod(mat_l2_F2, sk->l2_F2, _O1 * _O2_BYTE, _V1, vinegar); | |||
// Some local variables. | |||
uint8_t _z[_PUB_M_BYTE]; | |||
uint8_t y[_PUB_M_BYTE]; | |||
uint8_t *x_v1 = vinegar; | |||
uint8_t x_o1[_O1_BYTE]; | |||
uint8_t x_o2[_O1_BYTE]; | |||
uint8_t digest_salt[_HASH_LEN + _SALT_BYTE]; | |||
memcpy(digest_salt, _digest, _HASH_LEN); | |||
uint8_t *salt = digest_salt + _HASH_LEN; | |||
uint8_t temp_o[_MAX_O_BYTE + 32] = {0}; | |||
unsigned int succ = 0; | |||
while (!succ) { | |||
if (MAX_ATTEMPT_FRMAT <= n_attempt) { | |||
break; | |||
} | |||
// The computation: H(digest||salt) --> z --S--> y --C-map--> x --T--> w | |||
PQCLEAN_RAINBOWIACLASSIC_CLEAN_prng_gen(&prng_sign, salt, _SALT_BYTE); // roll the salt | |||
PQCLEAN_RAINBOWIACLASSIC_CLEAN_hash_msg(_z, _PUB_M_BYTE, digest_salt, _HASH_LEN + _SALT_BYTE); // H(digest||salt) | |||
// y = S^-1 * z | |||
memcpy(y, _z, _PUB_M_BYTE); // identity part of S | |||
gfmat_prod(temp_o, sk->s1, _O1_BYTE, _O2, _z + _O1_BYTE); | |||
gf256v_add(y, temp_o, _O1_BYTE); | |||
// Central Map: | |||
// layer 1: calculate x_o1 | |||
memcpy(temp_o, r_l1_F1, _O1_BYTE); | |||
gf256v_add(temp_o, y, _O1_BYTE); | |||
gfmat_prod(x_o1, mat_l1, _O1_BYTE, _O1, temp_o); | |||
// layer 2: calculate x_o2 | |||
PQCLEAN_RAINBOWIACLASSIC_CLEAN_gf256v_set_zero(temp_o, _O2_BYTE); | |||
gfmat_prod(temp_o, mat_l2_F2, _O2_BYTE, _O1, x_o1); // F2 | |||
batch_quad_trimat_eval(mat_l2, sk->l2_F5, x_o1, _O1, _O2_BYTE); // F5 | |||
gf256v_add(temp_o, mat_l2, _O2_BYTE); | |||
gf256v_add(temp_o, r_l2_F1, _O2_BYTE); // F1 | |||
gf256v_add(temp_o, y + _O1_BYTE, _O2_BYTE); | |||
// generate the linear equations of the 2nd layer | |||
gfmat_prod(mat_l2, sk->l2_F6, _O2 * _O2_BYTE, _O1, x_o1); // F6 | |||
gf256v_add(mat_l2, mat_l2_F3, _O2 * _O2_BYTE); // F3 | |||
succ = gfmat_inv(mat_l2, mat_l2, _O2, mat_buffer); | |||
gfmat_prod(x_o2, mat_l2, _O2_BYTE, _O2, temp_o); // solve l2 eqs | |||
n_attempt++; | |||
}; | |||
// w = T^-1 * y | |||
uint8_t w[_PUB_N_BYTE]; | |||
// identity part of T. | |||
memcpy(w, x_v1, _V1_BYTE); | |||
memcpy(w + _V1_BYTE, x_o1, _O1_BYTE); | |||
memcpy(w + _V2_BYTE, x_o2, _O2_BYTE); | |||
// Computing the t1 part. | |||
gfmat_prod(y, sk->t1, _V1_BYTE, _O1, x_o1); | |||
gf256v_add(w, y, _V1_BYTE); | |||
// Computing the t4 part. | |||
gfmat_prod(y, sk->t4, _V1_BYTE, _O2, x_o2); | |||
gf256v_add(w, y, _V1_BYTE); | |||
// Computing the t3 part. | |||
gfmat_prod(y, sk->t3, _O1_BYTE, _O2, x_o2); | |||
gf256v_add(w + _V1_BYTE, y, _O1_BYTE); | |||
memset(signature, 0, _SIGNATURE_BYTE); // set the output 0 | |||
// clean | |||
memset(&prng_sign, 0, sizeof(prng_t)); | |||
memset(vinegar, 0, _V1_BYTE); | |||
memset(r_l1_F1, 0, _O1_BYTE); | |||
memset(r_l2_F1, 0, _O2_BYTE); | |||
memset(_z, 0, _PUB_M_BYTE); | |||
memset(y, 0, _PUB_M_BYTE); | |||
memset(x_o1, 0, _O1_BYTE); | |||
memset(x_o2, 0, _O2_BYTE); | |||
memset(temp_o, 0, sizeof(temp_o)); | |||
// return: copy w and salt to the signature. | |||
if (MAX_ATTEMPT_FRMAT <= n_attempt) { | |||
return -1; | |||
} | |||
gf256v_add(signature, w, _PUB_N_BYTE); | |||
gf256v_add(signature + _PUB_N_BYTE, salt, _SALT_BYTE); | |||
return 0; | |||
} | |||
int PQCLEAN_RAINBOWIACLASSIC_CLEAN_rainbow_verify(const uint8_t *digest, const uint8_t *signature, const pk_t *pk) { | |||
unsigned char digest_ck[_PUB_M_BYTE]; | |||
// public_map( digest_ck , pk , signature ); Evaluating the quadratic public polynomials. | |||
batch_quad_trimat_eval(digest_ck, pk->pk, signature, _PUB_N, _PUB_M_BYTE); | |||
unsigned char correct[_PUB_M_BYTE]; | |||
unsigned char digest_salt[_HASH_LEN + _SALT_BYTE]; | |||
memcpy(digest_salt, digest, _HASH_LEN); | |||
memcpy(digest_salt + _HASH_LEN, signature + _PUB_N_BYTE, _SALT_BYTE); | |||
PQCLEAN_RAINBOWIACLASSIC_CLEAN_hash_msg(correct, _PUB_M_BYTE, digest_salt, _HASH_LEN + _SALT_BYTE); // H( digest || salt ) | |||
// check consistancy. | |||
unsigned char cc = 0; | |||
for (unsigned int i = 0; i < _PUB_M_BYTE; i++) { | |||
cc |= (digest_ck[i] ^ correct[i]); | |||
} | |||
return (0 == cc) ? 0 : -1; | |||
} | |||
@@ -0,0 +1,33 @@ | |||
#ifndef _RAINBOW_H_ | |||
#define _RAINBOW_H_ | |||
/// @file rainbow.h | |||
/// @brief APIs for rainbow. | |||
/// | |||
#include "rainbow_config.h" | |||
#include "rainbow_keypair.h" | |||
#include <stdint.h> | |||
/// | |||
/// @brief Signing function for classical secret key. | |||
/// | |||
/// @param[out] signature - the signature. | |||
/// @param[in] sk - the secret key. | |||
/// @param[in] digest - the digest. | |||
/// | |||
int PQCLEAN_RAINBOWIACLASSIC_CLEAN_rainbow_sign(uint8_t *signature, const sk_t *sk, const uint8_t *digest); | |||
/// | |||
/// @brief Verifying function. | |||
/// | |||
/// @param[in] digest - the digest. | |||
/// @param[in] signature - the signature. | |||
/// @param[in] pk - the public key. | |||
/// @return 0 for successful verified. -1 for failed verification. | |||
/// | |||
int PQCLEAN_RAINBOWIACLASSIC_CLEAN_rainbow_verify(const uint8_t *digest, const uint8_t *signature, const pk_t *pk); | |||
#endif // _RAINBOW_H_ |
@@ -0,0 +1,31 @@ | |||
#ifndef _RAINBOW_BLAS_H_ | |||
#define _RAINBOW_BLAS_H_ | |||
/// @file rainbow_blas.h | |||
/// @brief Defining the functions used in rainbow.c acconding to the definitions in rainbow_config.h | |||
/// | |||
/// Defining the functions used in rainbow.c acconding to the definitions in rainbow_config.h | |||
#include "blas.h" | |||
#include "parallel_matrix_op.h" | |||
#include "rainbow_config.h" | |||
#define gfv_get_ele PQCLEAN_RAINBOWIACLASSIC_CLEAN_gf16v_get_ele | |||
#define gfv_mul_scalar PQCLEAN_RAINBOWIACLASSIC_CLEAN_gf16v_mul_scalar | |||
#define gfv_madd PQCLEAN_RAINBOWIACLASSIC_CLEAN_gf16v_madd | |||
#define gfmat_prod PQCLEAN_RAINBOWIACLASSIC_CLEAN_gf16mat_prod | |||
#define gfmat_inv PQCLEAN_RAINBOWIACLASSIC_CLEAN_gf16mat_inv | |||
#define batch_trimat_madd PQCLEAN_RAINBOWIACLASSIC_CLEAN_batch_trimat_madd_gf16 | |||
#define batch_trimatTr_madd PQCLEAN_RAINBOWIACLASSIC_CLEAN_batch_trimatTr_madd_gf16 | |||
#define batch_2trimat_madd PQCLEAN_RAINBOWIACLASSIC_CLEAN_batch_2trimat_madd_gf16 | |||
#define batch_matTr_madd PQCLEAN_RAINBOWIACLASSIC_CLEAN_batch_matTr_madd_gf16 | |||
#define batch_bmatTr_madd PQCLEAN_RAINBOWIACLASSIC_CLEAN_batch_bmatTr_madd_gf16 | |||
#define batch_mat_madd PQCLEAN_RAINBOWIACLASSIC_CLEAN_batch_mat_madd_gf16 | |||
#define batch_quad_trimat_eval PQCLEAN_RAINBOWIACLASSIC_CLEAN_batch_quad_trimat_eval_gf16 | |||
#define batch_quad_recmat_eval PQCLEAN_RAINBOWIACLASSIC_CLEAN_batch_quad_recmat_eval_gf16 | |||
#endif // _RAINBOW_BLAS_H_ |
@@ -0,0 +1,47 @@ | |||
#ifndef _H_RAINBOW_CONFIG_H_ | |||
#define _H_RAINBOW_CONFIG_H_ | |||
/// @file rainbow_config.h | |||
/// @brief Defining the parameters of the Rainbow and the corresponding constants. | |||
/// | |||
#define _USE_GF16 | |||
#define _GFSIZE 16 | |||
#define _V1 32 | |||
#define _O1 32 | |||
#define _O2 32 | |||
#define _HASH_LEN 32 | |||
#define _V2 ((_V1) + (_O1)) | |||
/// size of N, in # of gf elements. | |||
#define _PUB_N (_V1 + _O1 + _O2) | |||
/// size of M, in # gf elements. | |||
#define _PUB_M (_O1 + _O2) | |||
/// size of variables, in # bytes. | |||
// GF16 | |||
#define _V1_BYTE (_V1 / 2) | |||
#define _V2_BYTE (_V2 / 2) | |||
#define _O1_BYTE (_O1 / 2) | |||
#define _O2_BYTE (_O2 / 2) | |||
#define _PUB_N_BYTE (_PUB_N / 2) | |||
#define _PUB_M_BYTE (_PUB_M / 2) | |||
/// length of seed for public key, in # bytes | |||
#define LEN_PKSEED 32 | |||
/// length of seed for secret key, in # bytes | |||
#define LEN_SKSEED 32 | |||
/// length of salt for a signature, in # bytes | |||
#define _SALT_BYTE 16 | |||
/// length of a signature | |||
#define _SIGNATURE_BYTE (_PUB_N_BYTE + _SALT_BYTE) | |||
#endif // _H_RAINBOW_CONFIG_H_ |
@@ -0,0 +1,126 @@ | |||
/// @file rainbow_keypair.c | |||
/// @brief implementations of functions in rainbow_keypair.h | |||
/// | |||
#include "rainbow_keypair.h" | |||
#include "blas.h" | |||
#include "blas_comm.h" | |||
#include "rainbow_blas.h" | |||
#include "rainbow_keypair_computation.h" | |||
#include "utils_prng.h" | |||
#include <stdint.h> | |||
#include <stdlib.h> | |||
#include <string.h> | |||
static void generate_S_T(unsigned char *s_and_t, prng_t *prng0) { | |||
PQCLEAN_RAINBOWIACLASSIC_CLEAN_prng_gen(prng0, s_and_t, _O1_BYTE * _O2); // S1 | |||
s_and_t += _O1_BYTE * _O2; | |||
PQCLEAN_RAINBOWIACLASSIC_CLEAN_prng_gen(prng0, s_and_t, _V1_BYTE * _O1); // T1 | |||
s_and_t += _V1_BYTE * _O1; | |||
PQCLEAN_RAINBOWIACLASSIC_CLEAN_prng_gen(prng0, s_and_t, _V1_BYTE * _O2); // T2 | |||
s_and_t += _V1_BYTE * _O2; | |||
PQCLEAN_RAINBOWIACLASSIC_CLEAN_prng_gen(prng0, s_and_t, _O1_BYTE * _O2); // T3 | |||
} | |||
static unsigned int generate_l1_F12(unsigned char *sk, prng_t *prng0) { | |||
unsigned int n_byte_generated = 0; | |||
PQCLEAN_RAINBOWIACLASSIC_CLEAN_prng_gen(prng0, sk, _O1_BYTE * N_TRIANGLE_TERMS(_V1)); // l1_F1 | |||
sk += _O1_BYTE * N_TRIANGLE_TERMS(_V1); | |||
n_byte_generated += _O1_BYTE * N_TRIANGLE_TERMS(_V1); | |||
PQCLEAN_RAINBOWIACLASSIC_CLEAN_prng_gen(prng0, sk, _O1_BYTE * _V1 * _O1); // l1_F2 | |||
n_byte_generated += _O1_BYTE * _V1 * _O1; | |||
return n_byte_generated; | |||
} | |||
static unsigned int generate_l2_F12356(unsigned char *sk, prng_t *prng0) { | |||
unsigned int n_byte_generated = 0; | |||
PQCLEAN_RAINBOWIACLASSIC_CLEAN_prng_gen(prng0, sk, _O2_BYTE * N_TRIANGLE_TERMS(_V1)); // l2_F1 | |||
sk += _O2_BYTE * N_TRIANGLE_TERMS(_V1); | |||
n_byte_generated += _O2_BYTE * N_TRIANGLE_TERMS(_V1); | |||
PQCLEAN_RAINBOWIACLASSIC_CLEAN_prng_gen(prng0, sk, _O2_BYTE * _V1 * _O1); // l2_F2 | |||
sk += _O2_BYTE * _V1 * _O1; | |||
n_byte_generated += _O2_BYTE * _V1 * _O1; | |||
PQCLEAN_RAINBOWIACLASSIC_CLEAN_prng_gen(prng0, sk, _O2_BYTE * _V1 * _O2); // l2_F3 | |||
sk += _O2_BYTE * _V1 * _O1; | |||
n_byte_generated += _O2_BYTE * _V1 * _O1; | |||
PQCLEAN_RAINBOWIACLASSIC_CLEAN_prng_gen(prng0, sk, _O2_BYTE * N_TRIANGLE_TERMS(_O1)); // l2_F5 | |||
sk += _O2_BYTE * N_TRIANGLE_TERMS(_O1); | |||
n_byte_generated += _O2_BYTE * N_TRIANGLE_TERMS(_O1); | |||
PQCLEAN_RAINBOWIACLASSIC_CLEAN_prng_gen(prng0, sk, _O2_BYTE * _O1 * _O2); // l2_F6 | |||
n_byte_generated += _O2_BYTE * _O1 * _O2; | |||
return n_byte_generated; | |||
} | |||
static void generate_B1_B2(unsigned char *sk, prng_t *prng0) { | |||
sk += generate_l1_F12(sk, prng0); | |||
generate_l2_F12356(sk, prng0); | |||
} | |||
static void calculate_t4(unsigned char *t2_to_t4, const unsigned char *t1, const unsigned char *t3) { | |||
// t4 = T_sk.t1 * T_sk.t3 - T_sk.t2 | |||
unsigned char temp[_V1_BYTE + 32]; | |||
unsigned char *t4 = t2_to_t4; | |||
for (unsigned int i = 0; i < _O2; i++) { /// t3 width | |||
gfmat_prod(temp, t1, _V1_BYTE, _O1, t3); | |||
gf256v_add(t4, temp, _V1_BYTE); | |||
t4 += _V1_BYTE; | |||
t3 += _O1_BYTE; | |||
} | |||
} | |||
static void obsfucate_l1_polys(unsigned char *l1_polys, const unsigned char *l2_polys, unsigned int n_terms, const unsigned char *s1) { | |||
unsigned char temp[_O1_BYTE + 32]; | |||
while (n_terms--) { | |||
gfmat_prod(temp, s1, _O1_BYTE, _O2, l2_polys); | |||
gf256v_add(l1_polys, temp, _O1_BYTE); | |||
l1_polys += _O1_BYTE; | |||
l2_polys += _O2_BYTE; | |||
} | |||
} | |||
/////////////////// Classic ////////////////////////////////// | |||
static void _generate_secretkey(sk_t *sk, const unsigned char *sk_seed) { | |||
memcpy(sk->sk_seed, sk_seed, LEN_SKSEED); | |||
// set up prng | |||
prng_t prng0; | |||
PQCLEAN_RAINBOWIACLASSIC_CLEAN_prng_set(&prng0, sk_seed, LEN_SKSEED); | |||
// generating secret key with prng. | |||
generate_S_T(sk->s1, &prng0); | |||
generate_B1_B2(sk->l1_F1, &prng0); | |||
// clean prng | |||
memset(&prng0, 0, sizeof(prng_t)); | |||
} | |||
void PQCLEAN_RAINBOWIACLASSIC_CLEAN_generate_keypair(pk_t *rpk, sk_t *sk, const unsigned char *sk_seed) { | |||
_generate_secretkey(sk, sk_seed); | |||
// set up a temporary structure ext_cpk_t for calculating public key. | |||
ext_cpk_t pk; | |||
PQCLEAN_RAINBOWIACLASSIC_CLEAN_calculate_Q_from_F(&pk, sk, sk); // compute the public key in ext_cpk_t format. | |||
calculate_t4(sk->t4, sk->t1, sk->t3); | |||
obsfucate_l1_polys(pk.l1_Q1, pk.l2_Q1, N_TRIANGLE_TERMS(_V1), sk->s1); | |||
obsfucate_l1_polys(pk.l1_Q2, pk.l2_Q2, _V1 * _O1, sk->s1); | |||
obsfucate_l1_polys(pk.l1_Q3, pk.l2_Q3, _V1 * _O2, sk->s1); | |||
obsfucate_l1_polys(pk.l1_Q5, pk.l2_Q5, N_TRIANGLE_TERMS(_O1), sk->s1); | |||
obsfucate_l1_polys(pk.l1_Q6, pk.l2_Q6, _O1 * _O2, sk->s1); | |||
obsfucate_l1_polys(pk.l1_Q9, pk.l2_Q9, N_TRIANGLE_TERMS(_O2), sk->s1); | |||
// so far, the pk contains the full pk but in ext_cpk_t format. | |||
PQCLEAN_RAINBOWIACLASSIC_CLEAN_extcpk_to_pk(rpk, &pk); // convert the public key from ext_cpk_t to pk_t. | |||
} | |||