fix requested changes
This commit is contained in:
parent
823ba3f13b
commit
9dd4a4b5da
@ -1,23 +1,19 @@
|
||||
#include "H_Q_matrices_generation.h"
|
||||
#include "gf2x_arith_mod_xPplusOne.h"
|
||||
|
||||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_generateHPosOnes(POSITION_T HPosOnes[N0][DV],
|
||||
AES_XOF_struct *keys_expander) {
|
||||
|
||||
for (int i = 0; i < N0; i++) {
|
||||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_generateHPosOnes(POSITION_T HPosOnes[N0][DV], AES_XOF_struct *keys_expander) {
|
||||
for (size_t i = 0; i < N0; i++) {
|
||||
/* Generate a random block of Htr */
|
||||
PQCLEAN_LEDAKEMLT12_LEAKTIME_rand_circulant_sparse_block(&HPosOnes[i][0],
|
||||
DV,
|
||||
keys_expander);
|
||||
PQCLEAN_LEDAKEMLT12_LEAKTIME_rand_circulant_sparse_block(&HPosOnes[i][0], DV, keys_expander);
|
||||
}
|
||||
}
|
||||
|
||||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_generateQPosOnes(POSITION_T QPosOnes[N0][M],
|
||||
AES_XOF_struct *keys_expander) {
|
||||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_generateQPosOnes(POSITION_T QPosOnes[N0][M], AES_XOF_struct *keys_expander) {
|
||||
size_t placed_ones;
|
||||
|
||||
for (int i = 0; i < N0; i++) {
|
||||
int placed_ones = 0;
|
||||
for (int j = 0; j < N0; j++) {
|
||||
for (size_t i = 0; i < N0; i++) {
|
||||
placed_ones = 0;
|
||||
for (size_t j = 0; j < N0; j++) {
|
||||
PQCLEAN_LEDAKEMLT12_LEAKTIME_rand_circulant_sparse_block(&QPosOnes[i][placed_ones],
|
||||
qBlockWeights[i][j],
|
||||
keys_expander);
|
||||
@ -26,29 +22,27 @@ void PQCLEAN_LEDAKEMLT12_LEAKTIME_generateQPosOnes(POSITION_T QPosOnes[N0][M],
|
||||
}
|
||||
}
|
||||
|
||||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_transposeHPosOnes(POSITION_T HtrPosOnes[N0][DV], /* output*/
|
||||
POSITION_T HPosOnes[N0][DV]) {
|
||||
|
||||
for (int i = 0; i < N0; i++) {
|
||||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_transposeHPosOnes(POSITION_T HtrPosOnes[N0][DV], POSITION_T HPosOnes[N0][DV]) {
|
||||
for (size_t i = 0; i < N0; i++) {
|
||||
/* Obtain directly the sparse representation of the block of H */
|
||||
for (int k = 0; k < DV; k++) {
|
||||
for (size_t k = 0; k < DV; k++) {
|
||||
HtrPosOnes[i][k] = (P - HPosOnes[i][k]) % P; /* transposes indexes */
|
||||
}// end for k
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_transposeQPosOnes(POSITION_T QtrPosOnes[N0][M], /* output*/
|
||||
POSITION_T QPosOnes[N0][M]) {
|
||||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_transposeQPosOnes(POSITION_T QtrPosOnes[N0][M], POSITION_T QPosOnes[N0][M]) {
|
||||
POSITION_T transposed_ones_idx[N0] = {0x00};
|
||||
size_t currQoneIdx, endQblockIdx;
|
||||
|
||||
unsigned transposed_ones_idx[N0] = {0x00};
|
||||
for (unsigned source_row_idx = 0; source_row_idx < N0 ; source_row_idx++) {
|
||||
int currQoneIdx = 0; // position in the column of QtrPosOnes[][...]
|
||||
int endQblockIdx = 0;
|
||||
for (size_t source_row_idx = 0; source_row_idx < N0 ; source_row_idx++) {
|
||||
currQoneIdx = 0; // position in the column of QtrPosOnes[][...]
|
||||
endQblockIdx = 0;
|
||||
for (int blockIdx = 0; blockIdx < N0; blockIdx++) {
|
||||
endQblockIdx += qBlockWeights[source_row_idx][blockIdx];
|
||||
for (; currQoneIdx < endQblockIdx; currQoneIdx++) {
|
||||
QtrPosOnes[blockIdx][transposed_ones_idx[blockIdx]] = (P -
|
||||
QPosOnes[source_row_idx][currQoneIdx]) % P;
|
||||
QtrPosOnes[blockIdx][transposed_ones_idx[blockIdx]] =
|
||||
(P - QPosOnes[source_row_idx][currQoneIdx]) % P;
|
||||
transposed_ones_idx[blockIdx]++;
|
||||
}
|
||||
}
|
||||
|
@ -7,22 +7,26 @@ int PQCLEAN_LEDAKEMLT12_LEAKTIME_bf_decoding(DIGIT err[],
|
||||
const POSITION_T HtrPosOnes[N0][DV],
|
||||
const POSITION_T QtrPosOnes[N0][M],
|
||||
DIGIT privateSyndrome[],
|
||||
uint8_t threshold) {
|
||||
uint8_t secondIterThreshold) {
|
||||
|
||||
DIGIT currSyndrome[NUM_DIGITS_GF2X_ELEMENT];
|
||||
uint8_t unsatParityChecks[N0 * P];
|
||||
POSITION_T currQBlkPos[M], currQBitPos[M];
|
||||
DIGIT currSyndrome[NUM_DIGITS_GF2X_ELEMENT];
|
||||
POSITION_T syndromePosToFlip, tmp;
|
||||
unsigned int correlation, corrt_syndrome_based;
|
||||
size_t currQoneIdx, endQblockIdx, currblockoffset;
|
||||
int check;
|
||||
int iteration = 0;
|
||||
unsigned int corrt_syndrome_based;
|
||||
|
||||
do {
|
||||
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_copy(currSyndrome, privateSyndrome);
|
||||
memset(unsatParityChecks, 0x00, N0 * P * sizeof(uint8_t));
|
||||
for (int i = 0; i < N0; i++) {
|
||||
for (int valueIdx = 0; valueIdx < P; valueIdx++) {
|
||||
for (int HtrOneIdx = 0; HtrOneIdx < DV; HtrOneIdx++) {
|
||||
POSITION_T tmp = (HtrPosOnes[i][HtrOneIdx] + valueIdx) >= P ? (HtrPosOnes[i][HtrOneIdx] + valueIdx) - P : (HtrPosOnes[i][HtrOneIdx] + valueIdx);
|
||||
for (size_t i = 0; i < N0; i++) {
|
||||
for (size_t valueIdx = 0; valueIdx < P; valueIdx++) {
|
||||
for (size_t HtrOneIdx = 0; HtrOneIdx < DV; HtrOneIdx++) {
|
||||
tmp = (HtrPosOnes[i][HtrOneIdx] + valueIdx) >= P ?
|
||||
(HtrPosOnes[i][HtrOneIdx] + valueIdx) - P :
|
||||
(HtrPosOnes[i][HtrOneIdx] + valueIdx);
|
||||
if (PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_get_coeff(currSyndrome, tmp)) {
|
||||
unsatParityChecks[i * P + valueIdx]++;
|
||||
}
|
||||
@ -31,33 +35,32 @@ int PQCLEAN_LEDAKEMLT12_LEAKTIME_bf_decoding(DIGIT err[],
|
||||
}
|
||||
|
||||
/* iteration based threshold determination*/
|
||||
corrt_syndrome_based = iteration ? (unsigned int) threshold : B0;
|
||||
corrt_syndrome_based = iteration * secondIterThreshold + (1 - iteration) * B0;
|
||||
|
||||
//Computation of correlation with a full Q matrix
|
||||
for (int i = 0; i < N0; i++) {
|
||||
for (int j = 0; j < P; j++) {
|
||||
int currQoneIdx = 0; // position in the column of QtrPosOnes[][...]
|
||||
int endQblockIdx = 0;
|
||||
unsigned int correlation = 0;
|
||||
// Computation of correlation with a full Q matrix
|
||||
for (size_t i = 0; i < N0; i++) {
|
||||
for (size_t j = 0; j < P; j++) {
|
||||
currQoneIdx = endQblockIdx = 0;
|
||||
correlation = 0;
|
||||
|
||||
for (int blockIdx = 0; blockIdx < N0; blockIdx++) {
|
||||
for (size_t blockIdx = 0; blockIdx < N0; blockIdx++) {
|
||||
endQblockIdx += qBlockWeights[blockIdx][i];
|
||||
int currblockoffset = blockIdx * P;
|
||||
currblockoffset = blockIdx * P;
|
||||
for (; currQoneIdx < endQblockIdx; currQoneIdx++) {
|
||||
POSITION_T tmp = QtrPosOnes[i][currQoneIdx] + j;
|
||||
tmp = QtrPosOnes[i][currQoneIdx] + j;
|
||||
tmp = tmp >= P ? tmp - P : tmp;
|
||||
currQBitPos[currQoneIdx] = tmp;
|
||||
currQBlkPos[currQoneIdx] = blockIdx;
|
||||
correlation += unsatParityChecks[tmp + currblockoffset];
|
||||
}
|
||||
}
|
||||
|
||||
/* Correlation based flipping */
|
||||
if (correlation >= corrt_syndrome_based) {
|
||||
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_toggle_coeff(err + NUM_DIGITS_GF2X_ELEMENT * i, j);
|
||||
for (int v = 0; v < M; v++) {
|
||||
POSITION_T syndromePosToFlip;
|
||||
for (int HtrOneIdx = 0; HtrOneIdx < DV; HtrOneIdx++) {
|
||||
syndromePosToFlip = (HtrPosOnes[currQBlkPos[v]][HtrOneIdx] + currQBitPos[v] );
|
||||
for (size_t v = 0; v < M; v++) {
|
||||
for (size_t HtrOneIdx = 0; HtrOneIdx < DV; HtrOneIdx++) {
|
||||
syndromePosToFlip = (HtrPosOnes[currQBlkPos[v]][HtrOneIdx] + currQBitPos[v]);
|
||||
syndromePosToFlip = syndromePosToFlip >= P ? syndromePosToFlip - P : syndromePosToFlip;
|
||||
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_toggle_coeff(privateSyndrome, syndromePosToFlip);
|
||||
}
|
||||
|
@ -14,47 +14,49 @@ int PQCLEAN_LEDAKEMLT12_LEAKTIME_DFR_test(POSITION_T LSparse[N0][DV * M], uint8_
|
||||
unsigned int maxMut[N0], maxMutMinusOne[N0];
|
||||
unsigned int allBlockMaxSumst, allBlockMaxSumstMinusOne;
|
||||
unsigned int gammaHist[N0][DV * M + 1] = {{0}};
|
||||
unsigned int toAdd;
|
||||
size_t histIdx;
|
||||
|
||||
for (int i = 0; i < N0; i++) {
|
||||
for (int j = 0; j < DV * M; j++) {
|
||||
for (size_t i = 0; i < N0; i++) {
|
||||
for (size_t j = 0; j < DV * M; j++) {
|
||||
if (LSparse[i][j] != 0) {
|
||||
LSparse_loc[i][j] = (P - LSparse[i][j]) ;
|
||||
LSparse_loc[i][j] = (P - LSparse[i][j]);
|
||||
}
|
||||
}
|
||||
PQCLEAN_LEDAKEMLT12_LEAKTIME_uint32_sort(LSparse_loc[i], DV * M);
|
||||
}
|
||||
|
||||
|
||||
for (int i = 0; i < N0; i++ ) {
|
||||
for (int j = 0; j < N0; j++ ) {
|
||||
for (int k = 0; k < (DV * M); k++) {
|
||||
for (int l = 0; l < (DV * M); l++) {
|
||||
gamma[i][j][ (P + LSparse_loc[i][k] - LSparse_loc[j][l]) % P ]++;
|
||||
for (size_t i = 0; i < N0; i++ ) {
|
||||
for (size_t j = 0; j < N0; j++) {
|
||||
for (size_t k = 0; k < (DV * M); k++) {
|
||||
for (size_t l = 0; l < (DV * M); l++) {
|
||||
gamma[i][j][(P + LSparse_loc[i][k] - LSparse_loc[j][l]) % P]++;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
for (int i = 0; i < N0; i++ ) {
|
||||
for (int j = 0; j < N0; j++ ) {
|
||||
for (size_t i = 0; i < N0; i++ ) {
|
||||
for (size_t j = 0; j < N0; j++ ) {
|
||||
gamma[i][j][0] = 0;
|
||||
}
|
||||
}
|
||||
|
||||
/* build histogram of values in gamma */
|
||||
for (int i = 0; i < N0; i++ ) {
|
||||
for (int j = 0; j < N0; j++ ) {
|
||||
for (int k = 0; k < P; k++) {
|
||||
for (size_t i = 0; i < N0; i++ ) {
|
||||
for (size_t j = 0; j < N0; j++ ) {
|
||||
for (size_t k = 0; k < P; k++) {
|
||||
gammaHist[i][gamma[i][j][k]]++;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
for (int gammaBlockRowIdx = 0; gammaBlockRowIdx < N0; gammaBlockRowIdx++) {
|
||||
unsigned int toAdd = T_BAR - 1;
|
||||
for (size_t gammaBlockRowIdx = 0; gammaBlockRowIdx < N0; gammaBlockRowIdx++) {
|
||||
maxMutMinusOne[gammaBlockRowIdx] = 0;
|
||||
unsigned int histIdx = DV * M;
|
||||
histIdx = DV * M;
|
||||
toAdd = T_BAR - 1;
|
||||
while ( (histIdx > 0) && (toAdd > 0)) {
|
||||
if (gammaHist[gammaBlockRowIdx][histIdx] > toAdd ) {
|
||||
maxMutMinusOne[gammaBlockRowIdx] += histIdx * toAdd;
|
||||
@ -71,7 +73,7 @@ int PQCLEAN_LEDAKEMLT12_LEAKTIME_DFR_test(POSITION_T LSparse[N0][DV * M], uint8_
|
||||
/*seek max values across all gamma blocks */
|
||||
allBlockMaxSumst = maxMut[0];
|
||||
allBlockMaxSumstMinusOne = maxMutMinusOne[0];
|
||||
for (int gammaBlockRowIdx = 0; gammaBlockRowIdx < N0 ; gammaBlockRowIdx++) {
|
||||
for (size_t gammaBlockRowIdx = 0; gammaBlockRowIdx < N0 ; gammaBlockRowIdx++) {
|
||||
allBlockMaxSumst = allBlockMaxSumst < maxMut[gammaBlockRowIdx] ?
|
||||
maxMut[gammaBlockRowIdx] :
|
||||
allBlockMaxSumst;
|
||||
|
@ -52,7 +52,7 @@ static void gf2x_mul1(DIGIT *R, const DIGIT A, const DIGIT B) {
|
||||
|
||||
R[0] = 0;
|
||||
R[1] = (A & 1) * B;
|
||||
for (unsigned i = 1; i < DIGIT_SIZE_b; i++) {
|
||||
for (uint8_t i = 1; i < DIGIT_SIZE_b; i++) {
|
||||
tmp = ((A >> i) & 1) * B;
|
||||
R[1] ^= tmp << i;
|
||||
R[0] ^= tmp >> (DIGIT_SIZE_b - i);
|
||||
|
@ -5,39 +5,39 @@
|
||||
#include <string.h> // memcpy(...), memset(...)
|
||||
|
||||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_copy(DIGIT dest[], const DIGIT in[]) {
|
||||
for (int i = NUM_DIGITS_GF2X_ELEMENT - 1; i >= 0; i--) {
|
||||
for (size_t i = 0; i < NUM_DIGITS_GF2X_ELEMENT; i++) {
|
||||
dest[i] = in[i];
|
||||
}
|
||||
}
|
||||
|
||||
/* returns the coefficient of the x^exponent term as the LSB of a digit */
|
||||
DIGIT PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_get_coeff(const DIGIT poly[], unsigned int exponent) {
|
||||
unsigned int straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent;
|
||||
unsigned int digitIdx = straightIdx / DIGIT_SIZE_b;
|
||||
unsigned int inDigitIdx = straightIdx % DIGIT_SIZE_b;
|
||||
DIGIT PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_get_coeff(const DIGIT poly[], size_t exponent) {
|
||||
size_t straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent;
|
||||
size_t digitIdx = straightIdx / DIGIT_SIZE_b;
|
||||
size_t inDigitIdx = straightIdx % DIGIT_SIZE_b;
|
||||
return (poly[digitIdx] >> (DIGIT_SIZE_b - 1 - inDigitIdx)) & ((DIGIT) 1) ;
|
||||
}
|
||||
|
||||
/* sets the coefficient of the x^exponent term as the LSB of a digit */
|
||||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_set_coeff(DIGIT poly[], unsigned int exponent, DIGIT value) {
|
||||
unsigned int straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent;
|
||||
unsigned int digitIdx = straightIdx / DIGIT_SIZE_b;
|
||||
unsigned int inDigitIdx = straightIdx % DIGIT_SIZE_b;
|
||||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_set_coeff(DIGIT poly[], size_t exponent, DIGIT value) {
|
||||
size_t straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent;
|
||||
size_t digitIdx = straightIdx / DIGIT_SIZE_b;
|
||||
size_t inDigitIdx = straightIdx % DIGIT_SIZE_b;
|
||||
|
||||
/* clear given coefficient */
|
||||
DIGIT mask = ~( ((DIGIT) 1) << (DIGIT_SIZE_b - 1 - inDigitIdx));
|
||||
DIGIT mask = ~(((DIGIT) 1) << (DIGIT_SIZE_b - 1 - inDigitIdx));
|
||||
poly[digitIdx] = poly[digitIdx] & mask;
|
||||
poly[digitIdx] = poly[digitIdx] | (( value & ((DIGIT) 1)) << (DIGIT_SIZE_b - 1 - inDigitIdx));
|
||||
poly[digitIdx] = poly[digitIdx] | ((value & ((DIGIT) 1)) << (DIGIT_SIZE_b - 1 - inDigitIdx));
|
||||
}
|
||||
|
||||
/* toggles (flips) the coefficient of the x^exponent term as the LSB of a digit */
|
||||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_toggle_coeff(DIGIT poly[], unsigned int exponent) {
|
||||
unsigned int straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent;
|
||||
unsigned int digitIdx = straightIdx / DIGIT_SIZE_b;
|
||||
unsigned int inDigitIdx = straightIdx % DIGIT_SIZE_b;
|
||||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_toggle_coeff(DIGIT poly[], size_t exponent) {
|
||||
size_t straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent;
|
||||
size_t digitIdx = straightIdx / DIGIT_SIZE_b;
|
||||
size_t inDigitIdx = straightIdx % DIGIT_SIZE_b;
|
||||
|
||||
/* clear given coefficient */
|
||||
DIGIT mask = ( ((DIGIT) 1) << (DIGIT_SIZE_b - 1 - inDigitIdx));
|
||||
DIGIT mask = (((DIGIT) 1) << (DIGIT_SIZE_b - 1 - inDigitIdx));
|
||||
poly[digitIdx] = poly[digitIdx] ^ mask;
|
||||
}
|
||||
|
||||
@ -51,7 +51,7 @@ static int popcount_uint64t(uint64_t x) {
|
||||
}
|
||||
|
||||
/* population count for a single polynomial */
|
||||
int PQCLEAN_LEDAKEMLT12_LEAKTIME_population_count(DIGIT *poly) {
|
||||
int PQCLEAN_LEDAKEMLT12_LEAKTIME_population_count(const DIGIT *poly) {
|
||||
int ret = 0;
|
||||
for (int i = NUM_DIGITS_GF2X_ELEMENT - 1; i >= 0; i--) {
|
||||
ret += popcount_uint64t(poly[i]);
|
||||
@ -74,10 +74,9 @@ static void gf2x_mod(DIGIT out[], const DIGIT in[]) {
|
||||
out[0] &= ((DIGIT)1 << MSb_POSITION_IN_MSB_DIGIT_OF_MODULUS) - 1;
|
||||
}
|
||||
|
||||
static void right_bit_shift(unsigned int length, DIGIT in[]) {
|
||||
|
||||
unsigned int j;
|
||||
for (j = length - 1; j > 0 ; j--) {
|
||||
static void right_bit_shift(size_t length, DIGIT in[]) {
|
||||
size_t j;
|
||||
for (j = length - 1; j > 0; j--) {
|
||||
in[j] >>= 1;
|
||||
in[j] |= (in[j - 1] & (DIGIT)0x01) << (DIGIT_SIZE_b - 1);
|
||||
}
|
||||
@ -86,8 +85,8 @@ static void right_bit_shift(unsigned int length, DIGIT in[]) {
|
||||
|
||||
|
||||
/* shifts by whole digits */
|
||||
static void left_DIGIT_shift_n(unsigned int length, DIGIT in[], unsigned int amount) {
|
||||
unsigned int j;
|
||||
static void left_DIGIT_shift_n(size_t length, DIGIT in[], size_t amount) {
|
||||
size_t j;
|
||||
for (j = 0; (j + amount) < length; j++) {
|
||||
in[j] = in[j + amount];
|
||||
}
|
||||
@ -97,7 +96,7 @@ static void left_DIGIT_shift_n(unsigned int length, DIGIT in[], unsigned int amo
|
||||
}
|
||||
|
||||
/* may shift by an arbitrary amount*/
|
||||
static void left_bit_shift_wide_n(const int length, DIGIT in[], unsigned int amount) {
|
||||
static void left_bit_shift_wide_n(size_t length, DIGIT in[], size_t amount) {
|
||||
left_DIGIT_shift_n(length, in, amount / DIGIT_SIZE_b);
|
||||
PQCLEAN_LEDAKEMLT12_LEAKTIME_left_bit_shift_n(length, in, amount % DIGIT_SIZE_b);
|
||||
}
|
||||
@ -123,19 +122,21 @@ void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_transpose_in_place(DIGIT A[]) {
|
||||
|
||||
DIGIT mask = (DIGIT)0x1;
|
||||
DIGIT rev1, rev2, a00;
|
||||
int i, slack_bits_amount = NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - P;
|
||||
int slack_bits_amount = NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - P;
|
||||
|
||||
a00 = A[NUM_DIGITS_GF2X_ELEMENT - 1] & mask;
|
||||
right_bit_shift(NUM_DIGITS_GF2X_ELEMENT, A);
|
||||
|
||||
for (i = NUM_DIGITS_GF2X_ELEMENT - 1; i >= (NUM_DIGITS_GF2X_ELEMENT + 1) / 2; i--) {
|
||||
for (size_t i = NUM_DIGITS_GF2X_ELEMENT - 1; i >= (NUM_DIGITS_GF2X_ELEMENT + 1) / 2; i--) {
|
||||
rev1 = reverse_digit(A[i]);
|
||||
rev2 = reverse_digit(A[NUM_DIGITS_GF2X_ELEMENT - 1 - i]);
|
||||
A[i] = rev2;
|
||||
A[NUM_DIGITS_GF2X_ELEMENT - 1 - i] = rev1;
|
||||
}
|
||||
|
||||
if (NUM_DIGITS_GF2X_ELEMENT % 2 == 1) {
|
||||
A[NUM_DIGITS_GF2X_ELEMENT / 2] = reverse_digit(A[NUM_DIGITS_GF2X_ELEMENT / 2]);
|
||||
}
|
||||
|
||||
if (slack_bits_amount) {
|
||||
PQCLEAN_LEDAKEMLT12_LEAKTIME_right_bit_shift_n(NUM_DIGITS_GF2X_ELEMENT, A, slack_bits_amount);
|
||||
@ -153,10 +154,9 @@ static void rotate_bit_right(DIGIT in[]) { /* x^{-1} * in(x) mod x^P+1 */
|
||||
}
|
||||
|
||||
/* cond swap: swaps digits A and B if swap_mask == -1 */
|
||||
static void gf2x_cswap(DIGIT *a, DIGIT *b, int swap_mask) {
|
||||
int i;
|
||||
static void gf2x_cswap(DIGIT *a, DIGIT *b, int32_t swap_mask) {
|
||||
DIGIT t;
|
||||
for (i = 0; i < NUM_DIGITS_GF2X_ELEMENT; i++) {
|
||||
for (size_t i = 0; i < NUM_DIGITS_GF2X_ELEMENT; i++) {
|
||||
t = swap_mask & (a[i] ^ b[i]);
|
||||
a[i] ^= t;
|
||||
b[i] ^= t;
|
||||
@ -164,18 +164,18 @@ static void gf2x_cswap(DIGIT *a, DIGIT *b, int swap_mask) {
|
||||
}
|
||||
|
||||
/* returns -1 mask if x != 0, otherwise 0 */
|
||||
static inline int nonzero(DIGIT x) {
|
||||
static inline int32_t nonzero(DIGIT x) {
|
||||
DIGIT t = x;
|
||||
t = (~t) + 1;
|
||||
t >>= DIGIT_SIZE_b - 1;
|
||||
return -((int)t);
|
||||
return -((int32_t)t);
|
||||
}
|
||||
|
||||
/* returns -1 mask if x < 0 else 0 */
|
||||
static inline int negative(int x) {
|
||||
static inline int32_t negative(int x) {
|
||||
uint32_t u = x;
|
||||
u >>= 31;
|
||||
return -((int)u);
|
||||
return -((int32_t)u);
|
||||
}
|
||||
|
||||
/* return f(0) as digit */
|
||||
@ -193,7 +193,7 @@ static void gf2x_mult_scalar_acc(DIGIT *f, const DIGIT *g, const DIGIT s) {
|
||||
|
||||
/* constant-time inverse, source: gcd.cr.yp.to */
|
||||
int PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_inverse(DIGIT out[], const DIGIT in[]) {
|
||||
int i, loop, swap, delta = 1;
|
||||
int32_t swap, delta = 1;
|
||||
DIGIT g0_mask;
|
||||
|
||||
DIGIT f[NUM_DIGITS_GF2X_MODULUS] = {0}; // f = x^P + 1
|
||||
@ -204,17 +204,17 @@ int PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_inverse(DIGIT out[], const DIGIT in[])
|
||||
f[NUM_DIGITS_GF2X_MODULUS - 1] = 1;
|
||||
f[0] |= ((DIGIT)1 << MSb_POSITION_IN_MSB_DIGIT_OF_MODULUS);
|
||||
|
||||
for (i = 0; i < NUM_DIGITS_GF2X_ELEMENT; i++) {
|
||||
for (size_t i = 0; i < NUM_DIGITS_GF2X_ELEMENT; i++) {
|
||||
g[i] = in[i];
|
||||
}
|
||||
|
||||
for (i = 0; i < NUM_DIGITS_GF2X_ELEMENT; i++) {
|
||||
for (size_t i = 0; i < NUM_DIGITS_GF2X_ELEMENT; i++) {
|
||||
v[i] = 0;
|
||||
}
|
||||
|
||||
r[NUM_DIGITS_GF2X_ELEMENT - 1] = 1;
|
||||
|
||||
for (loop = 0; loop < 2 * P - 1; ++loop) {
|
||||
for (int loop = 0; loop < 2 * P - 1; ++loop) {
|
||||
|
||||
swap = negative(-delta) & nonzero(lsb(g)); // swap = -1 if -delta < 0 AND g(0) != 0
|
||||
delta ^= swap & (delta ^ -delta); // cond swap delta with -delta if swap
|
||||
@ -249,7 +249,7 @@ void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_mul(DIGIT Res[], const DIGIT A[], con
|
||||
/*PRE: the representation of the sparse coefficients is sorted in increasing
|
||||
order of the coefficients themselves */
|
||||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_mul_dense_to_sparse(DIGIT Res[], const DIGIT dense[],
|
||||
POSITION_T sparse[], unsigned int nPos) {
|
||||
POSITION_T sparse[], size_t nPos) {
|
||||
|
||||
DIGIT aux[2 * NUM_DIGITS_GF2X_ELEMENT] = {0x00};
|
||||
DIGIT resDouble[2 * NUM_DIGITS_GF2X_ELEMENT] = {0x00};
|
||||
@ -260,7 +260,7 @@ void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_mul_dense_to_sparse(DIGIT Res[], cons
|
||||
left_bit_shift_wide_n(2 * NUM_DIGITS_GF2X_ELEMENT, resDouble, sparse[0]);
|
||||
left_bit_shift_wide_n(2 * NUM_DIGITS_GF2X_ELEMENT, aux, sparse[0]);
|
||||
|
||||
for (unsigned int i = 1; i < nPos; i++) {
|
||||
for (size_t i = 1; i < nPos; i++) {
|
||||
if (sparse[i] != INVALID_POS_VALUE) {
|
||||
left_bit_shift_wide_n(2 * NUM_DIGITS_GF2X_ELEMENT, aux, (sparse[i] - sparse[i - 1]) );
|
||||
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_add(resDouble, aux, resDouble, 2 * NUM_DIGITS_GF2X_ELEMENT);
|
||||
@ -272,10 +272,9 @@ void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_mul_dense_to_sparse(DIGIT Res[], cons
|
||||
|
||||
}
|
||||
|
||||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_transpose_in_place_sparse(int sizeA, POSITION_T A[]) {
|
||||
|
||||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_transpose_in_place_sparse(size_t sizeA, POSITION_T A[]) {
|
||||
POSITION_T t;
|
||||
int i = 0, j;
|
||||
size_t i = 0, j;
|
||||
|
||||
if (A[i] == 0) {
|
||||
i = 1;
|
||||
@ -299,6 +298,9 @@ void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_mul_sparse(size_t sizeR, POSITION_T R
|
||||
size_t sizeB, const POSITION_T B[]) {
|
||||
|
||||
POSITION_T prod;
|
||||
POSITION_T lastReadPos;
|
||||
size_t duplicateCount;
|
||||
size_t write_idx, read_idx;
|
||||
|
||||
/* compute all the coefficients, filling invalid positions with P*/
|
||||
size_t lastFilledPos = 0;
|
||||
@ -319,12 +321,11 @@ void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_mul_sparse(size_t sizeR, POSITION_T R
|
||||
Res[lastFilledPos] = INVALID_POS_VALUE;
|
||||
lastFilledPos++;
|
||||
}
|
||||
|
||||
PQCLEAN_LEDAKEMLT12_LEAKTIME_uint32_sort(Res, sizeR);
|
||||
|
||||
/* eliminate duplicates */
|
||||
POSITION_T lastReadPos = Res[0];
|
||||
size_t duplicateCount;
|
||||
size_t write_idx = 0;
|
||||
size_t read_idx = 0;
|
||||
write_idx = read_idx = 0;
|
||||
while (read_idx < sizeR && Res[read_idx] != INVALID_POS_VALUE) {
|
||||
lastReadPos = Res[read_idx];
|
||||
read_idx++;
|
||||
@ -346,13 +347,12 @@ void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_mul_sparse(size_t sizeR, POSITION_T R
|
||||
|
||||
/* the implementation is safe even in case A or B alias with the result
|
||||
* PRE: A and B should be sorted, disjunct arrays ending with INVALID_POS_VALUE */
|
||||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_add_sparse(
|
||||
int sizeR, POSITION_T Res[],
|
||||
int sizeA, const POSITION_T A[],
|
||||
int sizeB, const POSITION_T B[]) {
|
||||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_add_sparse(size_t sizeR, POSITION_T Res[],
|
||||
size_t sizeA, const POSITION_T A[],
|
||||
size_t sizeB, const POSITION_T B[]) {
|
||||
|
||||
POSITION_T tmpRes[DV * M];
|
||||
int idxA = 0, idxB = 0, idxR = 0;
|
||||
size_t idxA = 0, idxB = 0, idxR = 0;
|
||||
while ( idxA < sizeA &&
|
||||
idxB < sizeB &&
|
||||
A[idxA] != INVALID_POS_VALUE &&
|
||||
@ -421,18 +421,18 @@ static uint32_t rand_range(const unsigned int n, const int logn, AES_XOF_struct
|
||||
/* Obtains fresh randomness and seed-expands it until all the required positions
|
||||
* for the '1's in the circulant block are obtained */
|
||||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_rand_circulant_sparse_block(POSITION_T *pos_ones,
|
||||
int countOnes,
|
||||
size_t countOnes,
|
||||
AES_XOF_struct *seed_expander_ctx) {
|
||||
|
||||
int duplicated, placedOnes = 0;
|
||||
uint32_t p;
|
||||
size_t duplicated, placedOnes = 0;
|
||||
POSITION_T p;
|
||||
|
||||
while (placedOnes < countOnes) {
|
||||
p = rand_range(NUM_BITS_GF2X_ELEMENT,
|
||||
P_BITS,
|
||||
seed_expander_ctx);
|
||||
duplicated = 0;
|
||||
for (int j = 0; j < placedOnes; j++) {
|
||||
for (size_t j = 0; j < placedOnes; j++) {
|
||||
if (pos_ones[j] == p) {
|
||||
duplicated = 1;
|
||||
}
|
||||
|
@ -16,22 +16,22 @@
|
||||
#define P_BITS (16) // log_2(p) = 15.6703
|
||||
|
||||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_copy(DIGIT dest[], const DIGIT in[]);
|
||||
DIGIT PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_get_coeff(const DIGIT poly[], unsigned int exponent);
|
||||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_set_coeff(DIGIT poly[], unsigned int exponent, DIGIT value);
|
||||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_toggle_coeff(DIGIT poly[], unsigned int exponent);
|
||||
int PQCLEAN_LEDAKEMLT12_LEAKTIME_population_count(DIGIT *poly);
|
||||
DIGIT PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_get_coeff(const DIGIT poly[], size_t exponent);
|
||||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_set_coeff(DIGIT poly[], size_t exponent, DIGIT value);
|
||||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_toggle_coeff(DIGIT poly[], size_t exponent);
|
||||
int PQCLEAN_LEDAKEMLT12_LEAKTIME_population_count(const DIGIT *poly);
|
||||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_add(DIGIT Res[], const DIGIT A[], const DIGIT B[]);
|
||||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_mul(DIGIT Res[], const DIGIT A[], const DIGIT B[]);
|
||||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_transpose_in_place(DIGIT A[]);
|
||||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_rand_circulant_sparse_block(POSITION_T *pos_ones, int countOnes, AES_XOF_struct *seed_expander_ctx);
|
||||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_rand_circulant_sparse_block(POSITION_T *pos_ones, size_t countOnes, AES_XOF_struct *seed_expander_ctx);
|
||||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_rand_circulant_blocks_sequence(DIGIT *sequence, AES_XOF_struct *seed_expander_ctx);
|
||||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_rand_error_pos(POSITION_T errorPos[NUM_ERRORS_T], AES_XOF_struct *seed_expander_ctx);
|
||||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_expand_error(DIGIT sequence[N0 * NUM_DIGITS_GF2X_ELEMENT], const POSITION_T errorPos[NUM_ERRORS_T]);
|
||||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_add_sparse(int sizeR, POSITION_T Res[], int sizeA, const POSITION_T A[], int sizeB, const POSITION_T B[]);
|
||||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_transpose_in_place_sparse(int sizeA, POSITION_T A[]);
|
||||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_add_sparse(size_t sizeR, POSITION_T Res[], size_t sizeA, const POSITION_T A[], size_t sizeB, const POSITION_T B[]);
|
||||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_transpose_in_place_sparse(size_t sizeA, POSITION_T A[]);
|
||||
int PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_inverse(DIGIT out[], const DIGIT in[]);
|
||||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_mul_sparse(size_t sizeR, POSITION_T Res[], size_t sizeA, const POSITION_T A[], size_t sizeB, const POSITION_T B[]);
|
||||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_mul_dense_to_sparse(DIGIT Res[], const DIGIT dense[], POSITION_T sparse[], unsigned int nPos);
|
||||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_mul_dense_to_sparse(DIGIT Res[], const DIGIT dense[], POSITION_T sparse[], size_t nPos);
|
||||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_tobytes(uint8_t *bytes, const DIGIT *poly);
|
||||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_frombytes(DIGIT *poly, const uint8_t *poly_bytes);
|
||||
|
||||
|
@ -107,10 +107,11 @@ int PQCLEAN_LEDAKEMLT12_LEAKTIME_crypto_kem_dec(uint8_t *ss, const uint8_t *ct,
|
||||
uint8_t hashed_decoded_seed[HASH_BYTE_LENGTH];
|
||||
uint8_t hashedAndTruncated_decoded_seed[TRNG_BYTE_LENGTH] = {0};
|
||||
uint8_t ss_input[2 * TRNG_BYTE_LENGTH], tail[TRNG_BYTE_LENGTH] = {0};
|
||||
int decode_ok, decrypt_ok, equal;
|
||||
|
||||
unpack_ct(syndrome, ct);
|
||||
|
||||
int decode_ok = PQCLEAN_LEDAKEMLT12_LEAKTIME_niederreiter_decrypt(decoded_error_vector,
|
||||
decode_ok = PQCLEAN_LEDAKEMLT12_LEAKTIME_niederreiter_decrypt(decoded_error_vector,
|
||||
(const privateKeyNiederreiter_t *)sk, syndrome);
|
||||
|
||||
pack_error(decoded_error_bytes, decoded_error_vector);
|
||||
@ -118,7 +119,7 @@ int PQCLEAN_LEDAKEMLT12_LEAKTIME_crypto_kem_dec(uint8_t *ss, const uint8_t *ct,
|
||||
|
||||
memcpy(hashedAndTruncatedErrorVector, hashedErrorVector, TRNG_BYTE_LENGTH);
|
||||
|
||||
for (int i = 0; i < TRNG_BYTE_LENGTH; ++i) {
|
||||
for (size_t i = 0; i < TRNG_BYTE_LENGTH; ++i) {
|
||||
decoded_seed[i] = ct[(NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B) + i] ^
|
||||
hashedAndTruncatedErrorVector[i];
|
||||
}
|
||||
@ -135,11 +136,11 @@ int PQCLEAN_LEDAKEMLT12_LEAKTIME_crypto_kem_dec(uint8_t *ss, const uint8_t *ct,
|
||||
|
||||
PQCLEAN_LEDAKEMLT12_LEAKTIME_expand_error(reconstructed_error_vector, reconstructed_errorPos);
|
||||
|
||||
int equal = PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_verify(decoded_error_vector,
|
||||
equal = PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_verify(decoded_error_vector,
|
||||
reconstructed_error_vector, N0 * NUM_DIGITS_GF2X_ELEMENT);
|
||||
// equal == 0, if the reconstructed error vector match !!!
|
||||
|
||||
int decryptOk = (decode_ok == 1 && equal == 0);
|
||||
decrypt_ok = (decode_ok == 1 && equal == 0);
|
||||
|
||||
memcpy(ss_input, decoded_seed, TRNG_BYTE_LENGTH);
|
||||
memcpy(ss_input + sizeof(decoded_seed), tail, TRNG_BYTE_LENGTH);
|
||||
@ -148,7 +149,7 @@ int PQCLEAN_LEDAKEMLT12_LEAKTIME_crypto_kem_dec(uint8_t *ss, const uint8_t *ct,
|
||||
PQCLEAN_LEDAKEMLT12_LEAKTIME_cmov(ss_input + sizeof(decoded_seed),
|
||||
((const privateKeyNiederreiter_t *) sk)->decryption_failure_secret,
|
||||
TRNG_BYTE_LENGTH,
|
||||
!decryptOk);
|
||||
!decrypt_ok);
|
||||
|
||||
HASH_FUNCTION(ss, ss_input, 2 * TRNG_BYTE_LENGTH);
|
||||
|
||||
|
@ -49,7 +49,7 @@ void PQCLEAN_LEDAKEMLT12_LEAKTIME_niederreiter_keygen(publicKeyNiederreiter_t *p
|
||||
}
|
||||
}
|
||||
is_L_full = 1;
|
||||
for (int i = 0; i < N0; i++) {
|
||||
for (size_t i = 0; i < N0; i++) {
|
||||
is_L_full = is_L_full && (LPosOnes[i][DV * M - 1] != INVALID_POS_VALUE);
|
||||
}
|
||||
sk->rejections = sk->rejections + 1;
|
||||
@ -63,21 +63,21 @@ void PQCLEAN_LEDAKEMLT12_LEAKTIME_niederreiter_keygen(publicKeyNiederreiter_t *p
|
||||
sk->decryption_failure_secret,
|
||||
(unsigned long)TRNG_BYTE_LENGTH);
|
||||
|
||||
for (int j = 0; j < DV * M; j++) {
|
||||
for (size_t j = 0; j < DV * M; j++) {
|
||||
if (LPosOnes[N0 - 1][j] != INVALID_POS_VALUE) {
|
||||
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_set_coeff(Ln0dense, LPosOnes[N0 - 1][j], 1);
|
||||
}
|
||||
}
|
||||
|
||||
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_inverse(Ln0Inv, Ln0dense);
|
||||
for (int i = 0; i < N0 - 1; i++) {
|
||||
for (size_t i = 0; i < N0 - 1; i++) {
|
||||
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_mul_dense_to_sparse(pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT,
|
||||
Ln0Inv,
|
||||
LPosOnes[i],
|
||||
DV * M);
|
||||
}
|
||||
|
||||
for (int i = 0; i < N0 - 1; i++) {
|
||||
for (size_t i = 0; i < N0 - 1; i++) {
|
||||
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_transpose_in_place(pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT);
|
||||
}
|
||||
}
|
||||
@ -110,24 +110,27 @@ int PQCLEAN_LEDAKEMLT12_LEAKTIME_niederreiter_decrypt(DIGIT *err, const privateK
|
||||
POSITION_T auxSparse[DV * M];
|
||||
POSITION_T Ln0trSparse[DV * M];
|
||||
DIGIT err_computed[N0 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B] = {0};
|
||||
DIGIT err_mockup[N0 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B];
|
||||
DIGIT privateSyndrome[NUM_DIGITS_GF2X_ELEMENT];
|
||||
unsigned char processedQOnes[N0];
|
||||
uint8_t processedQOnes[N0];
|
||||
int rejections = sk->rejections;
|
||||
int decrypt_ok = 0;
|
||||
int err_weight;
|
||||
|
||||
PQCLEAN_LEDAKEMLT12_LEAKTIME_seedexpander_from_trng(&niederreiter_decrypt_expander, sk->prng_seed);
|
||||
do {
|
||||
PQCLEAN_LEDAKEMLT12_LEAKTIME_generateHPosOnes(HPosOnes, &niederreiter_decrypt_expander);
|
||||
PQCLEAN_LEDAKEMLT12_LEAKTIME_generateQPosOnes(QPosOnes, &niederreiter_decrypt_expander);
|
||||
|
||||
for (int i = 0; i < N0; i++) {
|
||||
for (int j = 0; j < DV * M; j++) {
|
||||
for (size_t i = 0; i < N0; i++) {
|
||||
for (size_t j = 0; j < DV * M; j++) {
|
||||
LPosOnes[i][j] = INVALID_POS_VALUE;
|
||||
}
|
||||
}
|
||||
|
||||
memset(processedQOnes, 0x00, sizeof(processedQOnes));
|
||||
for (int colQ = 0; colQ < N0; colQ++) {
|
||||
for (int i = 0; i < N0; i++) {
|
||||
for (size_t colQ = 0; colQ < N0; colQ++) {
|
||||
for (size_t i = 0; i < N0; i++) {
|
||||
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_mul_sparse(DV * M, auxPosOnes,
|
||||
DV, HPosOnes[i],
|
||||
qBlockWeights[i][colQ], QPosOnes[i] + processedQOnes[i]);
|
||||
@ -143,15 +146,15 @@ int PQCLEAN_LEDAKEMLT12_LEAKTIME_niederreiter_decrypt(DIGIT *err, const privateK
|
||||
PQCLEAN_LEDAKEMLT12_LEAKTIME_transposeHPosOnes(HtrPosOnes, HPosOnes);
|
||||
PQCLEAN_LEDAKEMLT12_LEAKTIME_transposeQPosOnes(QtrPosOnes, QPosOnes);
|
||||
|
||||
for (int i = 0; i < DV * M; i++) {
|
||||
for (size_t i = 0; i < DV * M; i++) {
|
||||
Ln0trSparse[i] = INVALID_POS_VALUE;
|
||||
auxSparse[i] = INVALID_POS_VALUE;
|
||||
}
|
||||
|
||||
for (int i = 0; i < N0; i++) {
|
||||
for (size_t i = 0; i < N0; i++) {
|
||||
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_mul_sparse(DV * M, auxSparse,
|
||||
DV, HPosOnes[i],
|
||||
qBlockWeights[i][N0 - 1], &QPosOnes[i][ M - qBlockWeights[i][N0 - 1] ] );
|
||||
qBlockWeights[i][N0 - 1], &QPosOnes[i][M - qBlockWeights[i][N0 - 1]]);
|
||||
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_add_sparse(DV * M, Ln0trSparse,
|
||||
DV * M, Ln0trSparse,
|
||||
DV * M, auxSparse);
|
||||
@ -163,28 +166,27 @@ int PQCLEAN_LEDAKEMLT12_LEAKTIME_niederreiter_decrypt(DIGIT *err, const privateK
|
||||
Ln0trSparse,
|
||||
DV * M);
|
||||
|
||||
int decryptOk = 0;
|
||||
decryptOk = PQCLEAN_LEDAKEMLT12_LEAKTIME_bf_decoding(err_computed,
|
||||
decrypt_ok = PQCLEAN_LEDAKEMLT12_LEAKTIME_bf_decoding(err_computed,
|
||||
(const POSITION_T (*)[DV]) HtrPosOnes,
|
||||
(const POSITION_T (*)[M]) QtrPosOnes,
|
||||
privateSyndrome, sk->secondIterThreshold);
|
||||
|
||||
int err_weight = 0;
|
||||
for (int i = 0 ; i < N0; i++) {
|
||||
err_weight = 0;
|
||||
for (size_t i = 0 ; i < N0; i++) {
|
||||
err_weight += PQCLEAN_LEDAKEMLT12_LEAKTIME_population_count(err_computed + (NUM_DIGITS_GF2X_ELEMENT * i));
|
||||
}
|
||||
decryptOk = decryptOk && (err_weight == NUM_ERRORS_T);
|
||||
decrypt_ok = decrypt_ok && (err_weight == NUM_ERRORS_T);
|
||||
|
||||
/* prepare mockup error vector in case a decoding failure occurs */
|
||||
DIGIT err_mockup[N0 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B];
|
||||
memcpy(err_mockup, syndrome, NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B);
|
||||
memcpy(err_mockup + NUM_DIGITS_GF2X_ELEMENT, sk->decryption_failure_secret, TRNG_BYTE_LENGTH);
|
||||
memset(((unsigned char *) err_mockup) + (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B) + TRNG_BYTE_LENGTH, 0x00,
|
||||
(N0 - 1)*NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B - TRNG_BYTE_LENGTH);
|
||||
|
||||
memcpy(err, err_computed, N0 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B);
|
||||
// Overwrite on decryption failure
|
||||
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_cmov(err, err_mockup, N0 * NUM_DIGITS_GF2X_ELEMENT, !decryptOk);
|
||||
|
||||
return decryptOk;
|
||||
// Overwrite on decryption failure
|
||||
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_cmov(err, err_mockup, N0 * NUM_DIGITS_GF2X_ELEMENT, !decrypt_ok);
|
||||
|
||||
return decrypt_ok;
|
||||
}
|
||||
|
@ -13,8 +13,8 @@
|
||||
maxlen - maximum number of bytes (less than 2**32) generated under this seed and diversifier
|
||||
*/
|
||||
static void seedexpander_init(AES_XOF_struct *ctx,
|
||||
unsigned char *seed,
|
||||
unsigned char *diversifier,
|
||||
uint8_t *seed,
|
||||
uint8_t *diversifier,
|
||||
size_t maxlen) {
|
||||
|
||||
ctx->length_remaining = maxlen;
|
||||
@ -38,13 +38,13 @@ static void seedexpander_init(AES_XOF_struct *ctx,
|
||||
}
|
||||
|
||||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_seedexpander_from_trng(AES_XOF_struct *ctx,
|
||||
const unsigned char *trng_entropy
|
||||
const uint8_t *trng_entropy
|
||||
/* TRNG_BYTE_LENGTH wide buffer */) {
|
||||
|
||||
/*the NIST seedexpander will however access 32B from this buffer */
|
||||
unsigned int prng_buffer_size = TRNG_BYTE_LENGTH < 32 ? 32 : TRNG_BYTE_LENGTH;
|
||||
unsigned char prng_buffer[TRNG_BYTE_LENGTH < 32 ? 32 : TRNG_BYTE_LENGTH] = { 0x00 };
|
||||
unsigned char diversifier[8] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
|
||||
uint8_t prng_buffer[TRNG_BYTE_LENGTH < 32 ? 32 : TRNG_BYTE_LENGTH] = {0x00};
|
||||
uint8_t diversifier[8] = {0};
|
||||
|
||||
memcpy(prng_buffer,
|
||||
trng_entropy,
|
||||
@ -61,7 +61,7 @@ void PQCLEAN_LEDAKEMLT12_LEAKTIME_seedexpander_from_trng(AES_XOF_struct *ctx,
|
||||
x - returns the XOF data
|
||||
xlen - number of bytes to return
|
||||
*/
|
||||
int PQCLEAN_LEDAKEMLT12_LEAKTIME_seedexpander(AES_XOF_struct *ctx, unsigned char *x, size_t xlen) {
|
||||
int PQCLEAN_LEDAKEMLT12_LEAKTIME_seedexpander(AES_XOF_struct *ctx, uint8_t *x, size_t xlen) {
|
||||
size_t offset;
|
||||
aes256ctx ctx256;
|
||||
|
||||
|
@ -5,6 +5,17 @@
|
||||
Source: https://sorting.cr.yp.to
|
||||
*/
|
||||
|
||||
#define int32_MINMAX(a,b) \
|
||||
do { \
|
||||
int32 ab = (b) ^ (a); \
|
||||
int32 c = (b) - (a); \
|
||||
c ^= ab & (c ^ (b)); \
|
||||
c >>= 31; \
|
||||
c &= ab; \
|
||||
(a) ^= c; \
|
||||
(b) ^= c; \
|
||||
} while(0)
|
||||
|
||||
static void int32_sort(int32 *x, size_t n) {
|
||||
size_t top, p, q, r, i, j;
|
||||
|
||||
|
@ -6,17 +6,6 @@
|
||||
|
||||
#define int32 int32_t
|
||||
|
||||
#define int32_MINMAX(a,b) \
|
||||
do { \
|
||||
int32 ab = (b) ^ (a); \
|
||||
int32 c = (b) - (a); \
|
||||
c ^= ab & (c ^ (b)); \
|
||||
c >>= 31; \
|
||||
c &= ab; \
|
||||
(a) ^= c; \
|
||||
(b) ^= c; \
|
||||
} while(0)
|
||||
|
||||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_uint32_sort(uint32_t *x, size_t n);
|
||||
|
||||
#endif
|
||||
|
@ -1,23 +1,19 @@
|
||||
#include "H_Q_matrices_generation.h"
|
||||
#include "gf2x_arith_mod_xPplusOne.h"
|
||||
|
||||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_generateHPosOnes(POSITION_T HPosOnes[N0][DV],
|
||||
AES_XOF_struct *keys_expander) {
|
||||
|
||||
for (int i = 0; i < N0; i++) {
|
||||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_generateHPosOnes(POSITION_T HPosOnes[N0][DV], AES_XOF_struct *keys_expander) {
|
||||
for (size_t i = 0; i < N0; i++) {
|
||||
/* Generate a random block of Htr */
|
||||
PQCLEAN_LEDAKEMLT32_LEAKTIME_rand_circulant_sparse_block(&HPosOnes[i][0],
|
||||
DV,
|
||||
keys_expander);
|
||||
PQCLEAN_LEDAKEMLT32_LEAKTIME_rand_circulant_sparse_block(&HPosOnes[i][0], DV, keys_expander);
|
||||
}
|
||||
}
|
||||
|
||||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_generateQPosOnes(POSITION_T QPosOnes[N0][M],
|
||||
AES_XOF_struct *keys_expander) {
|
||||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_generateQPosOnes(POSITION_T QPosOnes[N0][M], AES_XOF_struct *keys_expander) {
|
||||
size_t placed_ones;
|
||||
|
||||
for (int i = 0; i < N0; i++) {
|
||||
int placed_ones = 0;
|
||||
for (int j = 0; j < N0; j++) {
|
||||
for (size_t i = 0; i < N0; i++) {
|
||||
placed_ones = 0;
|
||||
for (size_t j = 0; j < N0; j++) {
|
||||
PQCLEAN_LEDAKEMLT32_LEAKTIME_rand_circulant_sparse_block(&QPosOnes[i][placed_ones],
|
||||
qBlockWeights[i][j],
|
||||
keys_expander);
|
||||
@ -26,29 +22,27 @@ void PQCLEAN_LEDAKEMLT32_LEAKTIME_generateQPosOnes(POSITION_T QPosOnes[N0][M],
|
||||
}
|
||||
}
|
||||
|
||||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_transposeHPosOnes(POSITION_T HtrPosOnes[N0][DV], /* output*/
|
||||
POSITION_T HPosOnes[N0][DV]) {
|
||||
|
||||
for (int i = 0; i < N0; i++) {
|
||||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_transposeHPosOnes(POSITION_T HtrPosOnes[N0][DV], POSITION_T HPosOnes[N0][DV]) {
|
||||
for (size_t i = 0; i < N0; i++) {
|
||||
/* Obtain directly the sparse representation of the block of H */
|
||||
for (int k = 0; k < DV; k++) {
|
||||
for (size_t k = 0; k < DV; k++) {
|
||||
HtrPosOnes[i][k] = (P - HPosOnes[i][k]) % P; /* transposes indexes */
|
||||
}// end for k
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_transposeQPosOnes(POSITION_T QtrPosOnes[N0][M], /* output*/
|
||||
POSITION_T QPosOnes[N0][M]) {
|
||||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_transposeQPosOnes(POSITION_T QtrPosOnes[N0][M], POSITION_T QPosOnes[N0][M]) {
|
||||
POSITION_T transposed_ones_idx[N0] = {0x00};
|
||||
size_t currQoneIdx, endQblockIdx;
|
||||
|
||||
unsigned transposed_ones_idx[N0] = {0x00};
|
||||
for (unsigned source_row_idx = 0; source_row_idx < N0 ; source_row_idx++) {
|
||||
int currQoneIdx = 0; // position in the column of QtrPosOnes[][...]
|
||||
int endQblockIdx = 0;
|
||||
for (size_t source_row_idx = 0; source_row_idx < N0 ; source_row_idx++) {
|
||||
currQoneIdx = 0; // position in the column of QtrPosOnes[][...]
|
||||
endQblockIdx = 0;
|
||||
for (int blockIdx = 0; blockIdx < N0; blockIdx++) {
|
||||
endQblockIdx += qBlockWeights[source_row_idx][blockIdx];
|
||||
for (; currQoneIdx < endQblockIdx; currQoneIdx++) {
|
||||
QtrPosOnes[blockIdx][transposed_ones_idx[blockIdx]] = (P -
|
||||
QPosOnes[source_row_idx][currQoneIdx]) % P;
|
||||
QtrPosOnes[blockIdx][transposed_ones_idx[blockIdx]] =
|
||||
(P - QPosOnes[source_row_idx][currQoneIdx]) % P;
|
||||
transposed_ones_idx[blockIdx]++;
|
||||
}
|
||||
}
|
||||
|
@ -7,22 +7,26 @@ int PQCLEAN_LEDAKEMLT32_LEAKTIME_bf_decoding(DIGIT err[],
|
||||
const POSITION_T HtrPosOnes[N0][DV],
|
||||
const POSITION_T QtrPosOnes[N0][M],
|
||||
DIGIT privateSyndrome[],
|
||||
uint8_t threshold) {
|
||||
uint8_t secondIterThreshold) {
|
||||
|
||||
DIGIT currSyndrome[NUM_DIGITS_GF2X_ELEMENT];
|
||||
uint8_t unsatParityChecks[N0 * P];
|
||||
POSITION_T currQBlkPos[M], currQBitPos[M];
|
||||
DIGIT currSyndrome[NUM_DIGITS_GF2X_ELEMENT];
|
||||
POSITION_T syndromePosToFlip, tmp;
|
||||
unsigned int correlation, corrt_syndrome_based;
|
||||
size_t currQoneIdx, endQblockIdx, currblockoffset;
|
||||
int check;
|
||||
int iteration = 0;
|
||||
unsigned int corrt_syndrome_based;
|
||||
|
||||
do {
|
||||
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_copy(currSyndrome, privateSyndrome);
|
||||
memset(unsatParityChecks, 0x00, N0 * P * sizeof(uint8_t));
|
||||
for (int i = 0; i < N0; i++) {
|
||||
for (int valueIdx = 0; valueIdx < P; valueIdx++) {
|
||||
for (int HtrOneIdx = 0; HtrOneIdx < DV; HtrOneIdx++) {
|
||||
POSITION_T tmp = (HtrPosOnes[i][HtrOneIdx] + valueIdx) >= P ? (HtrPosOnes[i][HtrOneIdx] + valueIdx) - P : (HtrPosOnes[i][HtrOneIdx] + valueIdx);
|
||||
for (size_t i = 0; i < N0; i++) {
|
||||
for (size_t valueIdx = 0; valueIdx < P; valueIdx++) {
|
||||
for (size_t HtrOneIdx = 0; HtrOneIdx < DV; HtrOneIdx++) {
|
||||
tmp = (HtrPosOnes[i][HtrOneIdx] + valueIdx) >= P ?
|
||||
(HtrPosOnes[i][HtrOneIdx] + valueIdx) - P :
|
||||
(HtrPosOnes[i][HtrOneIdx] + valueIdx);
|
||||
if (PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_get_coeff(currSyndrome, tmp)) {
|
||||
unsatParityChecks[i * P + valueIdx]++;
|
||||
}
|
||||
@ -31,33 +35,32 @@ int PQCLEAN_LEDAKEMLT32_LEAKTIME_bf_decoding(DIGIT err[],
|
||||
}
|
||||
|
||||
/* iteration based threshold determination*/
|
||||
corrt_syndrome_based = iteration ? (unsigned int) threshold : B0;
|
||||
corrt_syndrome_based = iteration * secondIterThreshold + (1 - iteration) * B0;
|
||||
|
||||
//Computation of correlation with a full Q matrix
|
||||
for (int i = 0; i < N0; i++) {
|
||||
for (int j = 0; j < P; j++) {
|
||||
int currQoneIdx = 0; // position in the column of QtrPosOnes[][...]
|
||||
int endQblockIdx = 0;
|
||||
unsigned int correlation = 0;
|
||||
// Computation of correlation with a full Q matrix
|
||||
for (size_t i = 0; i < N0; i++) {
|
||||
for (size_t j = 0; j < P; j++) {
|
||||
currQoneIdx = endQblockIdx = 0;
|
||||
correlation = 0;
|
||||
|
||||
for (int blockIdx = 0; blockIdx < N0; blockIdx++) {
|
||||
for (size_t blockIdx = 0; blockIdx < N0; blockIdx++) {
|
||||
endQblockIdx += qBlockWeights[blockIdx][i];
|
||||
int currblockoffset = blockIdx * P;
|
||||
currblockoffset = blockIdx * P;
|
||||
for (; currQoneIdx < endQblockIdx; currQoneIdx++) {
|
||||
POSITION_T tmp = QtrPosOnes[i][currQoneIdx] + j;
|
||||
tmp = QtrPosOnes[i][currQoneIdx] + j;
|
||||
tmp = tmp >= P ? tmp - P : tmp;
|
||||
currQBitPos[currQoneIdx] = tmp;
|
||||
currQBlkPos[currQoneIdx] = blockIdx;
|
||||
correlation += unsatParityChecks[tmp + currblockoffset];
|
||||
}
|
||||
}
|
||||
|
||||
/* Correlation based flipping */
|
||||
if (correlation >= corrt_syndrome_based) {
|
||||
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_toggle_coeff(err + NUM_DIGITS_GF2X_ELEMENT * i, j);
|
||||
for (int v = 0; v < M; v++) {
|
||||
POSITION_T syndromePosToFlip;
|
||||
for (int HtrOneIdx = 0; HtrOneIdx < DV; HtrOneIdx++) {
|
||||
syndromePosToFlip = (HtrPosOnes[currQBlkPos[v]][HtrOneIdx] + currQBitPos[v] );
|
||||
for (size_t v = 0; v < M; v++) {
|
||||
for (size_t HtrOneIdx = 0; HtrOneIdx < DV; HtrOneIdx++) {
|
||||
syndromePosToFlip = (HtrPosOnes[currQBlkPos[v]][HtrOneIdx] + currQBitPos[v]);
|
||||
syndromePosToFlip = syndromePosToFlip >= P ? syndromePosToFlip - P : syndromePosToFlip;
|
||||
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_toggle_coeff(privateSyndrome, syndromePosToFlip);
|
||||
}
|
||||
|
@ -14,47 +14,49 @@ int PQCLEAN_LEDAKEMLT32_LEAKTIME_DFR_test(POSITION_T LSparse[N0][DV * M], uint8_
|
||||
unsigned int maxMut[N0], maxMutMinusOne[N0];
|
||||
unsigned int allBlockMaxSumst, allBlockMaxSumstMinusOne;
|
||||
unsigned int gammaHist[N0][DV * M + 1] = {{0}};
|
||||
unsigned int toAdd;
|
||||
size_t histIdx;
|
||||
|
||||
for (int i = 0; i < N0; i++) {
|
||||
for (int j = 0; j < DV * M; j++) {
|
||||
for (size_t i = 0; i < N0; i++) {
|
||||
for (size_t j = 0; j < DV * M; j++) {
|
||||
if (LSparse[i][j] != 0) {
|
||||
LSparse_loc[i][j] = (P - LSparse[i][j]) ;
|
||||
LSparse_loc[i][j] = (P - LSparse[i][j]);
|
||||
}
|
||||
}
|
||||
PQCLEAN_LEDAKEMLT32_LEAKTIME_uint32_sort(LSparse_loc[i], DV * M);
|
||||
}
|
||||
|
||||
|
||||
for (int i = 0; i < N0; i++ ) {
|
||||
for (int j = 0; j < N0; j++ ) {
|
||||
for (int k = 0; k < (DV * M); k++) {
|
||||
for (int l = 0; l < (DV * M); l++) {
|
||||
gamma[i][j][ (P + LSparse_loc[i][k] - LSparse_loc[j][l]) % P ]++;
|
||||
for (size_t i = 0; i < N0; i++ ) {
|
||||
for (size_t j = 0; j < N0; j++) {
|
||||
for (size_t k = 0; k < (DV * M); k++) {
|
||||
for (size_t l = 0; l < (DV * M); l++) {
|
||||
gamma[i][j][(P + LSparse_loc[i][k] - LSparse_loc[j][l]) % P]++;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
for (int i = 0; i < N0; i++ ) {
|
||||
for (int j = 0; j < N0; j++ ) {
|
||||
for (size_t i = 0; i < N0; i++ ) {
|
||||
for (size_t j = 0; j < N0; j++ ) {
|
||||
gamma[i][j][0] = 0;
|
||||
}
|
||||
}
|
||||
|
||||
/* build histogram of values in gamma */
|
||||
for (int i = 0; i < N0; i++ ) {
|
||||
for (int j = 0; j < N0; j++ ) {
|
||||
for (int k = 0; k < P; k++) {
|
||||
for (size_t i = 0; i < N0; i++ ) {
|
||||
for (size_t j = 0; j < N0; j++ ) {
|
||||
for (size_t k = 0; k < P; k++) {
|
||||
gammaHist[i][gamma[i][j][k]]++;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
for (int gammaBlockRowIdx = 0; gammaBlockRowIdx < N0; gammaBlockRowIdx++) {
|
||||
unsigned int toAdd = T_BAR - 1;
|
||||
for (size_t gammaBlockRowIdx = 0; gammaBlockRowIdx < N0; gammaBlockRowIdx++) {
|
||||
maxMutMinusOne[gammaBlockRowIdx] = 0;
|
||||
unsigned int histIdx = DV * M;
|
||||
histIdx = DV * M;
|
||||
toAdd = T_BAR - 1;
|
||||
while ( (histIdx > 0) && (toAdd > 0)) {
|
||||
if (gammaHist[gammaBlockRowIdx][histIdx] > toAdd ) {
|
||||
maxMutMinusOne[gammaBlockRowIdx] += histIdx * toAdd;
|
||||
@ -71,7 +73,7 @@ int PQCLEAN_LEDAKEMLT32_LEAKTIME_DFR_test(POSITION_T LSparse[N0][DV * M], uint8_
|
||||
/*seek max values across all gamma blocks */
|
||||
allBlockMaxSumst = maxMut[0];
|
||||
allBlockMaxSumstMinusOne = maxMutMinusOne[0];
|
||||
for (int gammaBlockRowIdx = 0; gammaBlockRowIdx < N0 ; gammaBlockRowIdx++) {
|
||||
for (size_t gammaBlockRowIdx = 0; gammaBlockRowIdx < N0 ; gammaBlockRowIdx++) {
|
||||
allBlockMaxSumst = allBlockMaxSumst < maxMut[gammaBlockRowIdx] ?
|
||||
maxMut[gammaBlockRowIdx] :
|
||||
allBlockMaxSumst;
|
||||
|
@ -52,7 +52,7 @@ static void gf2x_mul1(DIGIT *R, const DIGIT A, const DIGIT B) {
|
||||
|
||||
R[0] = 0;
|
||||
R[1] = (A & 1) * B;
|
||||
for (unsigned i = 1; i < DIGIT_SIZE_b; i++) {
|
||||
for (uint8_t i = 1; i < DIGIT_SIZE_b; i++) {
|
||||
tmp = ((A >> i) & 1) * B;
|
||||
R[1] ^= tmp << i;
|
||||
R[0] ^= tmp >> (DIGIT_SIZE_b - i);
|
||||
|
@ -5,39 +5,39 @@
|
||||
#include <string.h> // memcpy(...), memset(...)
|
||||
|
||||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_copy(DIGIT dest[], const DIGIT in[]) {
|
||||
for (int i = NUM_DIGITS_GF2X_ELEMENT - 1; i >= 0; i--) {
|
||||
for (size_t i = 0; i < NUM_DIGITS_GF2X_ELEMENT; i++) {
|
||||
dest[i] = in[i];
|
||||
}
|
||||
}
|
||||
|
||||
/* returns the coefficient of the x^exponent term as the LSB of a digit */
|
||||
DIGIT PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_get_coeff(const DIGIT poly[], unsigned int exponent) {
|
||||
unsigned int straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent;
|
||||
unsigned int digitIdx = straightIdx / DIGIT_SIZE_b;
|
||||
unsigned int inDigitIdx = straightIdx % DIGIT_SIZE_b;
|
||||
DIGIT PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_get_coeff(const DIGIT poly[], size_t exponent) {
|
||||
size_t straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent;
|
||||
size_t digitIdx = straightIdx / DIGIT_SIZE_b;
|
||||
size_t inDigitIdx = straightIdx % DIGIT_SIZE_b;
|
||||
return (poly[digitIdx] >> (DIGIT_SIZE_b - 1 - inDigitIdx)) & ((DIGIT) 1) ;
|
||||
}
|
||||
|
||||
/* sets the coefficient of the x^exponent term as the LSB of a digit */
|
||||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_set_coeff(DIGIT poly[], unsigned int exponent, DIGIT value) {
|
||||
unsigned int straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent;
|
||||
unsigned int digitIdx = straightIdx / DIGIT_SIZE_b;
|
||||
unsigned int inDigitIdx = straightIdx % DIGIT_SIZE_b;
|
||||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_set_coeff(DIGIT poly[], size_t exponent, DIGIT value) {
|
||||
size_t straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent;
|
||||
size_t digitIdx = straightIdx / DIGIT_SIZE_b;
|
||||
size_t inDigitIdx = straightIdx % DIGIT_SIZE_b;
|
||||
|
||||
/* clear given coefficient */
|
||||
DIGIT mask = ~( ((DIGIT) 1) << (DIGIT_SIZE_b - 1 - inDigitIdx));
|
||||
DIGIT mask = ~(((DIGIT) 1) << (DIGIT_SIZE_b - 1 - inDigitIdx));
|
||||
poly[digitIdx] = poly[digitIdx] & mask;
|
||||
poly[digitIdx] = poly[digitIdx] | (( value & ((DIGIT) 1)) << (DIGIT_SIZE_b - 1 - inDigitIdx));
|
||||
poly[digitIdx] = poly[digitIdx] | ((value & ((DIGIT) 1)) << (DIGIT_SIZE_b - 1 - inDigitIdx));
|
||||
}
|
||||
|
||||
/* toggles (flips) the coefficient of the x^exponent term as the LSB of a digit */
|
||||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_toggle_coeff(DIGIT poly[], unsigned int exponent) {
|
||||
unsigned int straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent;
|
||||
unsigned int digitIdx = straightIdx / DIGIT_SIZE_b;
|
||||
unsigned int inDigitIdx = straightIdx % DIGIT_SIZE_b;
|
||||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_toggle_coeff(DIGIT poly[], size_t exponent) {
|
||||
size_t straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent;
|
||||
size_t digitIdx = straightIdx / DIGIT_SIZE_b;
|
||||
size_t inDigitIdx = straightIdx % DIGIT_SIZE_b;
|
||||
|
||||
/* clear given coefficient */
|
||||
DIGIT mask = ( ((DIGIT) 1) << (DIGIT_SIZE_b - 1 - inDigitIdx));
|
||||
DIGIT mask = (((DIGIT) 1) << (DIGIT_SIZE_b - 1 - inDigitIdx));
|
||||
poly[digitIdx] = poly[digitIdx] ^ mask;
|
||||
}
|
||||
|
||||
@ -51,7 +51,7 @@ static int popcount_uint64t(uint64_t x) {
|
||||
}
|
||||
|
||||
/* population count for a single polynomial */
|
||||
int PQCLEAN_LEDAKEMLT32_LEAKTIME_population_count(DIGIT *poly) {
|
||||
int PQCLEAN_LEDAKEMLT32_LEAKTIME_population_count(const DIGIT *poly) {
|
||||
int ret = 0;
|
||||
for (int i = NUM_DIGITS_GF2X_ELEMENT - 1; i >= 0; i--) {
|
||||
ret += popcount_uint64t(poly[i]);
|
||||
@ -74,10 +74,9 @@ static void gf2x_mod(DIGIT out[], const DIGIT in[]) {
|
||||
out[0] &= ((DIGIT)1 << MSb_POSITION_IN_MSB_DIGIT_OF_MODULUS) - 1;
|
||||
}
|
||||
|
||||
static void right_bit_shift(unsigned int length, DIGIT in[]) {
|
||||
|
||||
unsigned int j;
|
||||
for (j = length - 1; j > 0 ; j--) {
|
||||
static void right_bit_shift(size_t length, DIGIT in[]) {
|
||||
size_t j;
|
||||
for (j = length - 1; j > 0; j--) {
|
||||
in[j] >>= 1;
|
||||
in[j] |= (in[j - 1] & (DIGIT)0x01) << (DIGIT_SIZE_b - 1);
|
||||
}
|
||||
@ -86,8 +85,8 @@ static void right_bit_shift(unsigned int length, DIGIT in[]) {
|
||||
|
||||
|
||||
/* shifts by whole digits */
|
||||
static void left_DIGIT_shift_n(unsigned int length, DIGIT in[], unsigned int amount) {
|
||||
unsigned int j;
|
||||
static void left_DIGIT_shift_n(size_t length, DIGIT in[], size_t amount) {
|
||||
size_t j;
|
||||
for (j = 0; (j + amount) < length; j++) {
|
||||
in[j] = in[j + amount];
|
||||
}
|
||||
@ -97,7 +96,7 @@ static void left_DIGIT_shift_n(unsigned int length, DIGIT in[], unsigned int amo
|
||||
}
|
||||
|
||||
/* may shift by an arbitrary amount*/
|
||||
static void left_bit_shift_wide_n(const int length, DIGIT in[], unsigned int amount) {
|
||||
static void left_bit_shift_wide_n(size_t length, DIGIT in[], size_t amount) {
|
||||
left_DIGIT_shift_n(length, in, amount / DIGIT_SIZE_b);
|
||||
PQCLEAN_LEDAKEMLT32_LEAKTIME_left_bit_shift_n(length, in, amount % DIGIT_SIZE_b);
|
||||
}
|
||||
@ -123,18 +122,22 @@ void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_transpose_in_place(DIGIT A[]) {
|
||||
|
||||
DIGIT mask = (DIGIT)0x1;
|
||||
DIGIT rev1, rev2, a00;
|
||||
int i, slack_bits_amount = NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - P;
|
||||
int slack_bits_amount = NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - P;
|
||||
|
||||
a00 = A[NUM_DIGITS_GF2X_ELEMENT - 1] & mask;
|
||||
right_bit_shift(NUM_DIGITS_GF2X_ELEMENT, A);
|
||||
|
||||
for (i = NUM_DIGITS_GF2X_ELEMENT - 1; i >= (NUM_DIGITS_GF2X_ELEMENT + 1) / 2; i--) {
|
||||
for (size_t i = NUM_DIGITS_GF2X_ELEMENT - 1; i >= (NUM_DIGITS_GF2X_ELEMENT + 1) / 2; i--) {
|
||||
rev1 = reverse_digit(A[i]);
|
||||
rev2 = reverse_digit(A[NUM_DIGITS_GF2X_ELEMENT - 1 - i]);
|
||||
A[i] = rev2;
|
||||
A[NUM_DIGITS_GF2X_ELEMENT - 1 - i] = rev1;
|
||||
}
|
||||
|
||||
if (NUM_DIGITS_GF2X_ELEMENT % 2 == 1) {
|
||||
A[NUM_DIGITS_GF2X_ELEMENT / 2] = reverse_digit(A[NUM_DIGITS_GF2X_ELEMENT / 2]);
|
||||
}
|
||||
|
||||
if (slack_bits_amount) {
|
||||
PQCLEAN_LEDAKEMLT32_LEAKTIME_right_bit_shift_n(NUM_DIGITS_GF2X_ELEMENT, A, slack_bits_amount);
|
||||
}
|
||||
@ -151,10 +154,9 @@ static void rotate_bit_right(DIGIT in[]) { /* x^{-1} * in(x) mod x^P+1 */
|
||||
}
|
||||
|
||||
/* cond swap: swaps digits A and B if swap_mask == -1 */
|
||||
static void gf2x_cswap(DIGIT *a, DIGIT *b, int swap_mask) {
|
||||
int i;
|
||||
static void gf2x_cswap(DIGIT *a, DIGIT *b, int32_t swap_mask) {
|
||||
DIGIT t;
|
||||
for (i = 0; i < NUM_DIGITS_GF2X_ELEMENT; i++) {
|
||||
for (size_t i = 0; i < NUM_DIGITS_GF2X_ELEMENT; i++) {
|
||||
t = swap_mask & (a[i] ^ b[i]);
|
||||
a[i] ^= t;
|
||||
b[i] ^= t;
|
||||
@ -162,18 +164,18 @@ static void gf2x_cswap(DIGIT *a, DIGIT *b, int swap_mask) {
|
||||
}
|
||||
|
||||
/* returns -1 mask if x != 0, otherwise 0 */
|
||||
static inline int nonzero(DIGIT x) {
|
||||
static inline int32_t nonzero(DIGIT x) {
|
||||
DIGIT t = x;
|
||||
t = (~t) + 1;
|
||||
t >>= DIGIT_SIZE_b - 1;
|
||||
return -((int)t);
|
||||
return -((int32_t)t);
|
||||
}
|
||||
|
||||
/* returns -1 mask if x < 0 else 0 */
|
||||
static inline int negative(int x) {
|
||||
static inline int32_t negative(int x) {
|
||||
uint32_t u = x;
|
||||
u >>= 31;
|
||||
return -((int)u);
|
||||
return -((int32_t)u);
|
||||
}
|
||||
|
||||
/* return f(0) as digit */
|
||||
@ -191,7 +193,7 @@ static void gf2x_mult_scalar_acc(DIGIT *f, const DIGIT *g, const DIGIT s) {
|
||||
|
||||
/* constant-time inverse, source: gcd.cr.yp.to */
|
||||
int PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_inverse(DIGIT out[], const DIGIT in[]) {
|
||||
int i, loop, swap, delta = 1;
|
||||
int32_t swap, delta = 1;
|
||||
DIGIT g0_mask;
|
||||
|
||||
DIGIT f[NUM_DIGITS_GF2X_MODULUS] = {0}; // f = x^P + 1
|
||||
@ -202,17 +204,17 @@ int PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_inverse(DIGIT out[], const DIGIT in[])
|
||||
f[NUM_DIGITS_GF2X_MODULUS - 1] = 1;
|
||||
f[0] |= ((DIGIT)1 << MSb_POSITION_IN_MSB_DIGIT_OF_MODULUS);
|
||||
|
||||
for (i = 0; i < NUM_DIGITS_GF2X_ELEMENT; i++) {
|
||||
for (size_t i = 0; i < NUM_DIGITS_GF2X_ELEMENT; i++) {
|
||||
g[i] = in[i];
|
||||
}
|
||||
|
||||
for (i = 0; i < NUM_DIGITS_GF2X_ELEMENT; i++) {
|
||||
for (size_t i = 0; i < NUM_DIGITS_GF2X_ELEMENT; i++) {
|
||||
v[i] = 0;
|
||||
}
|
||||
|
||||
r[NUM_DIGITS_GF2X_ELEMENT - 1] = 1;
|
||||
|
||||
for (loop = 0; loop < 2 * P - 1; ++loop) {
|
||||
for (int loop = 0; loop < 2 * P - 1; ++loop) {
|
||||
|
||||
swap = negative(-delta) & nonzero(lsb(g)); // swap = -1 if -delta < 0 AND g(0) != 0
|
||||
delta ^= swap & (delta ^ -delta); // cond swap delta with -delta if swap
|
||||
@ -247,7 +249,7 @@ void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_mul(DIGIT Res[], const DIGIT A[], con
|
||||
/*PRE: the representation of the sparse coefficients is sorted in increasing
|
||||
order of the coefficients themselves */
|
||||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_mul_dense_to_sparse(DIGIT Res[], const DIGIT dense[],
|
||||
POSITION_T sparse[], unsigned int nPos) {
|
||||
POSITION_T sparse[], size_t nPos) {
|
||||
|
||||
DIGIT aux[2 * NUM_DIGITS_GF2X_ELEMENT] = {0x00};
|
||||
DIGIT resDouble[2 * NUM_DIGITS_GF2X_ELEMENT] = {0x00};
|
||||
@ -258,7 +260,7 @@ void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_mul_dense_to_sparse(DIGIT Res[], cons
|
||||
left_bit_shift_wide_n(2 * NUM_DIGITS_GF2X_ELEMENT, resDouble, sparse[0]);
|
||||
left_bit_shift_wide_n(2 * NUM_DIGITS_GF2X_ELEMENT, aux, sparse[0]);
|
||||
|
||||
for (unsigned int i = 1; i < nPos; i++) {
|
||||
for (size_t i = 1; i < nPos; i++) {
|
||||
if (sparse[i] != INVALID_POS_VALUE) {
|
||||
left_bit_shift_wide_n(2 * NUM_DIGITS_GF2X_ELEMENT, aux, (sparse[i] - sparse[i - 1]) );
|
||||
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_add(resDouble, aux, resDouble, 2 * NUM_DIGITS_GF2X_ELEMENT);
|
||||
@ -270,10 +272,9 @@ void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_mul_dense_to_sparse(DIGIT Res[], cons
|
||||
|
||||
}
|
||||
|
||||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_transpose_in_place_sparse(int sizeA, POSITION_T A[]) {
|
||||
|
||||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_transpose_in_place_sparse(size_t sizeA, POSITION_T A[]) {
|
||||
POSITION_T t;
|
||||
int i = 0, j;
|
||||
size_t i = 0, j;
|
||||
|
||||
if (A[i] == 0) {
|
||||
i = 1;
|
||||
@ -297,6 +298,9 @@ void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_mul_sparse(size_t sizeR, POSITION_T R
|
||||
size_t sizeB, const POSITION_T B[]) {
|
||||
|
||||
POSITION_T prod;
|
||||
POSITION_T lastReadPos;
|
||||
size_t duplicateCount;
|
||||
size_t write_idx, read_idx;
|
||||
|
||||
/* compute all the coefficients, filling invalid positions with P*/
|
||||
size_t lastFilledPos = 0;
|
||||
@ -317,12 +321,11 @@ void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_mul_sparse(size_t sizeR, POSITION_T R
|
||||
Res[lastFilledPos] = INVALID_POS_VALUE;
|
||||
lastFilledPos++;
|
||||
}
|
||||
|
||||
PQCLEAN_LEDAKEMLT32_LEAKTIME_uint32_sort(Res, sizeR);
|
||||
|
||||
/* eliminate duplicates */
|
||||
POSITION_T lastReadPos = Res[0];
|
||||
size_t duplicateCount;
|
||||
size_t write_idx = 0;
|
||||
size_t read_idx = 0;
|
||||
write_idx = read_idx = 0;
|
||||
while (read_idx < sizeR && Res[read_idx] != INVALID_POS_VALUE) {
|
||||
lastReadPos = Res[read_idx];
|
||||
read_idx++;
|
||||
@ -344,13 +347,12 @@ void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_mul_sparse(size_t sizeR, POSITION_T R
|
||||
|
||||
/* the implementation is safe even in case A or B alias with the result
|
||||
* PRE: A and B should be sorted, disjunct arrays ending with INVALID_POS_VALUE */
|
||||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_add_sparse(
|
||||
int sizeR, POSITION_T Res[],
|
||||
int sizeA, const POSITION_T A[],
|
||||
int sizeB, const POSITION_T B[]) {
|
||||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_add_sparse(size_t sizeR, POSITION_T Res[],
|
||||
size_t sizeA, const POSITION_T A[],
|
||||
size_t sizeB, const POSITION_T B[]) {
|
||||
|
||||
POSITION_T tmpRes[DV * M];
|
||||
int idxA = 0, idxB = 0, idxR = 0;
|
||||
size_t idxA = 0, idxB = 0, idxR = 0;
|
||||
while ( idxA < sizeA &&
|
||||
idxB < sizeB &&
|
||||
A[idxA] != INVALID_POS_VALUE &&
|
||||
@ -419,18 +421,18 @@ static uint32_t rand_range(const unsigned int n, const int logn, AES_XOF_struct
|
||||
/* Obtains fresh randomness and seed-expands it until all the required positions
|
||||
* for the '1's in the circulant block are obtained */
|
||||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_rand_circulant_sparse_block(POSITION_T *pos_ones,
|
||||
int countOnes,
|
||||
size_t countOnes,
|
||||
AES_XOF_struct *seed_expander_ctx) {
|
||||
|
||||
int duplicated, placedOnes = 0;
|
||||
uint32_t p;
|
||||
size_t duplicated, placedOnes = 0;
|
||||
POSITION_T p;
|
||||
|
||||
while (placedOnes < countOnes) {
|
||||
p = rand_range(NUM_BITS_GF2X_ELEMENT,
|
||||
P_BITS,
|
||||
seed_expander_ctx);
|
||||
duplicated = 0;
|
||||
for (int j = 0; j < placedOnes; j++) {
|
||||
for (size_t j = 0; j < placedOnes; j++) {
|
||||
if (pos_ones[j] == p) {
|
||||
duplicated = 1;
|
||||
}
|
||||
|
@ -16,22 +16,22 @@
|
||||
#define P_BITS (17)
|
||||
|
||||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_copy(DIGIT dest[], const DIGIT in[]);
|
||||
DIGIT PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_get_coeff(const DIGIT poly[], unsigned int exponent);
|
||||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_set_coeff(DIGIT poly[], unsigned int exponent, DIGIT value);
|
||||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_toggle_coeff(DIGIT poly[], unsigned int exponent);
|
||||
int PQCLEAN_LEDAKEMLT32_LEAKTIME_population_count(DIGIT *poly);
|
||||
DIGIT PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_get_coeff(const DIGIT poly[], size_t exponent);
|
||||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_set_coeff(DIGIT poly[], size_t exponent, DIGIT value);
|
||||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_toggle_coeff(DIGIT poly[], size_t exponent);
|
||||
int PQCLEAN_LEDAKEMLT32_LEAKTIME_population_count(const DIGIT *poly);
|
||||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_add(DIGIT Res[], const DIGIT A[], const DIGIT B[]);
|
||||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_mul(DIGIT Res[], const DIGIT A[], const DIGIT B[]);
|
||||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_transpose_in_place(DIGIT A[]);
|
||||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_rand_circulant_sparse_block(POSITION_T *pos_ones, int countOnes, AES_XOF_struct *seed_expander_ctx);
|
||||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_rand_circulant_sparse_block(POSITION_T *pos_ones, size_t countOnes, AES_XOF_struct *seed_expander_ctx);
|
||||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_rand_circulant_blocks_sequence(DIGIT *sequence, AES_XOF_struct *seed_expander_ctx);
|
||||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_rand_error_pos(POSITION_T errorPos[NUM_ERRORS_T], AES_XOF_struct *seed_expander_ctx);
|
||||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_expand_error(DIGIT sequence[N0 * NUM_DIGITS_GF2X_ELEMENT], const POSITION_T errorPos[NUM_ERRORS_T]);
|
||||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_add_sparse(int sizeR, POSITION_T Res[], int sizeA, const POSITION_T A[], int sizeB, const POSITION_T B[]);
|
||||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_transpose_in_place_sparse(int sizeA, POSITION_T A[]);
|
||||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_add_sparse(size_t sizeR, POSITION_T Res[], size_t sizeA, const POSITION_T A[], size_t sizeB, const POSITION_T B[]);
|
||||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_transpose_in_place_sparse(size_t sizeA, POSITION_T A[]);
|
||||
int PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_inverse(DIGIT out[], const DIGIT in[]);
|
||||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_mul_sparse(size_t sizeR, POSITION_T Res[], size_t sizeA, const POSITION_T A[], size_t sizeB, const POSITION_T B[]);
|
||||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_mul_dense_to_sparse(DIGIT Res[], const DIGIT dense[], POSITION_T sparse[], unsigned int nPos);
|
||||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_mul_dense_to_sparse(DIGIT Res[], const DIGIT dense[], POSITION_T sparse[], size_t nPos);
|
||||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_tobytes(uint8_t *bytes, const DIGIT *poly);
|
||||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_frombytes(DIGIT *poly, const uint8_t *poly_bytes);
|
||||
|
||||
|
@ -107,10 +107,11 @@ int PQCLEAN_LEDAKEMLT32_LEAKTIME_crypto_kem_dec(uint8_t *ss, const uint8_t *ct,
|
||||
uint8_t hashed_decoded_seed[HASH_BYTE_LENGTH];
|
||||
uint8_t hashedAndTruncated_decoded_seed[TRNG_BYTE_LENGTH] = {0};
|
||||
uint8_t ss_input[2 * TRNG_BYTE_LENGTH], tail[TRNG_BYTE_LENGTH] = {0};
|
||||
int decode_ok, decrypt_ok, equal;
|
||||
|
||||
unpack_ct(syndrome, ct);
|
||||
|
||||
int decode_ok = PQCLEAN_LEDAKEMLT32_LEAKTIME_niederreiter_decrypt(decoded_error_vector,
|
||||
decode_ok = PQCLEAN_LEDAKEMLT32_LEAKTIME_niederreiter_decrypt(decoded_error_vector,
|
||||
(const privateKeyNiederreiter_t *)sk, syndrome);
|
||||
|
||||
pack_error(decoded_error_bytes, decoded_error_vector);
|
||||
@ -118,7 +119,7 @@ int PQCLEAN_LEDAKEMLT32_LEAKTIME_crypto_kem_dec(uint8_t *ss, const uint8_t *ct,
|
||||
|
||||
memcpy(hashedAndTruncatedErrorVector, hashedErrorVector, TRNG_BYTE_LENGTH);
|
||||
|
||||
for (int i = 0; i < TRNG_BYTE_LENGTH; ++i) {
|
||||
for (size_t i = 0; i < TRNG_BYTE_LENGTH; ++i) {
|
||||
decoded_seed[i] = ct[(NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B) + i] ^
|
||||
hashedAndTruncatedErrorVector[i];
|
||||
}
|
||||
@ -135,11 +136,11 @@ int PQCLEAN_LEDAKEMLT32_LEAKTIME_crypto_kem_dec(uint8_t *ss, const uint8_t *ct,
|
||||
|
||||
PQCLEAN_LEDAKEMLT32_LEAKTIME_expand_error(reconstructed_error_vector, reconstructed_errorPos);
|
||||
|
||||
int equal = PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_verify(decoded_error_vector,
|
||||
equal = PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_verify(decoded_error_vector,
|
||||
reconstructed_error_vector, N0 * NUM_DIGITS_GF2X_ELEMENT);
|
||||
// equal == 0, if the reconstructed error vector match !!!
|
||||
|
||||
int decryptOk = (decode_ok == 1 && equal == 0);
|
||||
decrypt_ok = (decode_ok == 1 && equal == 0);
|
||||
|
||||
memcpy(ss_input, decoded_seed, TRNG_BYTE_LENGTH);
|
||||
memcpy(ss_input + sizeof(decoded_seed), tail, TRNG_BYTE_LENGTH);
|
||||
@ -148,7 +149,7 @@ int PQCLEAN_LEDAKEMLT32_LEAKTIME_crypto_kem_dec(uint8_t *ss, const uint8_t *ct,
|
||||
PQCLEAN_LEDAKEMLT32_LEAKTIME_cmov(ss_input + sizeof(decoded_seed),
|
||||
((const privateKeyNiederreiter_t *) sk)->decryption_failure_secret,
|
||||
TRNG_BYTE_LENGTH,
|
||||
!decryptOk);
|
||||
!decrypt_ok);
|
||||
|
||||
HASH_FUNCTION(ss, ss_input, 2 * TRNG_BYTE_LENGTH);
|
||||
|
||||
|
@ -49,7 +49,7 @@ void PQCLEAN_LEDAKEMLT32_LEAKTIME_niederreiter_keygen(publicKeyNiederreiter_t *p
|
||||
}
|
||||
}
|
||||
is_L_full = 1;
|
||||
for (int i = 0; i < N0; i++) {
|
||||
for (size_t i = 0; i < N0; i++) {
|
||||
is_L_full = is_L_full && (LPosOnes[i][DV * M - 1] != INVALID_POS_VALUE);
|
||||
}
|
||||
sk->rejections = sk->rejections + 1;
|
||||
@ -63,21 +63,21 @@ void PQCLEAN_LEDAKEMLT32_LEAKTIME_niederreiter_keygen(publicKeyNiederreiter_t *p
|
||||
sk->decryption_failure_secret,
|
||||
(unsigned long)TRNG_BYTE_LENGTH);
|
||||
|
||||
for (int j = 0; j < DV * M; j++) {
|
||||
for (size_t j = 0; j < DV * M; j++) {
|
||||
if (LPosOnes[N0 - 1][j] != INVALID_POS_VALUE) {
|
||||
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_set_coeff(Ln0dense, LPosOnes[N0 - 1][j], 1);
|
||||
}
|
||||
}
|
||||
|
||||
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_inverse(Ln0Inv, Ln0dense);
|
||||
for (int i = 0; i < N0 - 1; i++) {
|
||||
for (size_t i = 0; i < N0 - 1; i++) {
|
||||
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_mul_dense_to_sparse(pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT,
|
||||
Ln0Inv,
|
||||
LPosOnes[i],
|
||||
DV * M);
|
||||
}
|
||||
|
||||
for (int i = 0; i < N0 - 1; i++) {
|
||||
for (size_t i = 0; i < N0 - 1; i++) {
|
||||
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_transpose_in_place(pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT);
|
||||
}
|
||||
}
|
||||
@ -110,24 +110,27 @@ int PQCLEAN_LEDAKEMLT32_LEAKTIME_niederreiter_decrypt(DIGIT *err, const privateK
|
||||
POSITION_T auxSparse[DV * M];
|
||||
POSITION_T Ln0trSparse[DV * M];
|
||||
DIGIT err_computed[N0 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B] = {0};
|
||||
DIGIT err_mockup[N0 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B];
|
||||
DIGIT privateSyndrome[NUM_DIGITS_GF2X_ELEMENT];
|
||||
unsigned char processedQOnes[N0];
|
||||
uint8_t processedQOnes[N0];
|
||||
int rejections = sk->rejections;
|
||||
int decrypt_ok = 0;
|
||||
int err_weight;
|
||||
|
||||
PQCLEAN_LEDAKEMLT32_LEAKTIME_seedexpander_from_trng(&niederreiter_decrypt_expander, sk->prng_seed);
|
||||
do {
|
||||
PQCLEAN_LEDAKEMLT32_LEAKTIME_generateHPosOnes(HPosOnes, &niederreiter_decrypt_expander);
|
||||
PQCLEAN_LEDAKEMLT32_LEAKTIME_generateQPosOnes(QPosOnes, &niederreiter_decrypt_expander);
|
||||
|
||||
for (int i = 0; i < N0; i++) {
|
||||
for (int j = 0; j < DV * M; j++) {
|
||||
for (size_t i = 0; i < N0; i++) {
|
||||
for (size_t j = 0; j < DV * M; j++) {
|
||||
LPosOnes[i][j] = INVALID_POS_VALUE;
|
||||
}
|
||||
}
|
||||
|
||||
memset(processedQOnes, 0x00, sizeof(processedQOnes));
|
||||
for (int colQ = 0; colQ < N0; colQ++) {
|
||||
for (int i = 0; i < N0; i++) {
|
||||
for (size_t colQ = 0; colQ < N0; colQ++) {
|
||||
for (size_t i = 0; i < N0; i++) {
|
||||
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_mul_sparse(DV * M, auxPosOnes,
|
||||
DV, HPosOnes[i],
|
||||
qBlockWeights[i][colQ], QPosOnes[i] + processedQOnes[i]);
|
||||
@ -143,15 +146,15 @@ int PQCLEAN_LEDAKEMLT32_LEAKTIME_niederreiter_decrypt(DIGIT *err, const privateK
|
||||
PQCLEAN_LEDAKEMLT32_LEAKTIME_transposeHPosOnes(HtrPosOnes, HPosOnes);
|
||||
PQCLEAN_LEDAKEMLT32_LEAKTIME_transposeQPosOnes(QtrPosOnes, QPosOnes);
|
||||
|
||||
for (int i = 0; i < DV * M; i++) {
|
||||
for (size_t i = 0; i < DV * M; i++) {
|
||||
Ln0trSparse[i] = INVALID_POS_VALUE;
|
||||
auxSparse[i] = INVALID_POS_VALUE;
|
||||
}
|
||||
|
||||
for (int i = 0; i < N0; i++) {
|
||||
for (size_t i = 0; i < N0; i++) {
|
||||
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_mul_sparse(DV * M, auxSparse,
|
||||
DV, HPosOnes[i],
|
||||
qBlockWeights[i][N0 - 1], &QPosOnes[i][ M - qBlockWeights[i][N0 - 1] ] );
|
||||
qBlockWeights[i][N0 - 1], &QPosOnes[i][M - qBlockWeights[i][N0 - 1]]);
|
||||
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_add_sparse(DV * M, Ln0trSparse,
|
||||
DV * M, Ln0trSparse,
|
||||
DV * M, auxSparse);
|
||||
@ -163,28 +166,27 @@ int PQCLEAN_LEDAKEMLT32_LEAKTIME_niederreiter_decrypt(DIGIT *err, const privateK
|
||||
Ln0trSparse,
|
||||
DV * M);
|
||||
|
||||
int decryptOk = 0;
|
||||
decryptOk = PQCLEAN_LEDAKEMLT32_LEAKTIME_bf_decoding(err_computed,
|
||||
decrypt_ok = PQCLEAN_LEDAKEMLT32_LEAKTIME_bf_decoding(err_computed,
|
||||
(const POSITION_T (*)[DV]) HtrPosOnes,
|
||||
(const POSITION_T (*)[M]) QtrPosOnes,
|
||||
privateSyndrome, sk->secondIterThreshold);
|
||||
|
||||
int err_weight = 0;
|
||||
for (int i = 0 ; i < N0; i++) {
|
||||
err_weight = 0;
|
||||
for (size_t i = 0 ; i < N0; i++) {
|
||||
err_weight += PQCLEAN_LEDAKEMLT32_LEAKTIME_population_count(err_computed + (NUM_DIGITS_GF2X_ELEMENT * i));
|
||||
}
|
||||
decryptOk = decryptOk && (err_weight == NUM_ERRORS_T);
|
||||
decrypt_ok = decrypt_ok && (err_weight == NUM_ERRORS_T);
|
||||
|
||||
/* prepare mockup error vector in case a decoding failure occurs */
|
||||
DIGIT err_mockup[N0 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B];
|
||||
memcpy(err_mockup, syndrome, NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B);
|
||||
memcpy(err_mockup + NUM_DIGITS_GF2X_ELEMENT, sk->decryption_failure_secret, TRNG_BYTE_LENGTH);
|
||||
memset(((unsigned char *) err_mockup) + (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B) + TRNG_BYTE_LENGTH, 0x00,
|
||||
(N0 - 1)*NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B - TRNG_BYTE_LENGTH);
|
||||
|
||||
memcpy(err, err_computed, N0 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B);
|
||||
// Overwrite on decryption failure
|
||||
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_cmov(err, err_mockup, N0 * NUM_DIGITS_GF2X_ELEMENT, !decryptOk);
|
||||
|
||||
return decryptOk;
|
||||
// Overwrite on decryption failure
|
||||
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_cmov(err, err_mockup, N0 * NUM_DIGITS_GF2X_ELEMENT, !decrypt_ok);
|
||||
|
||||
return decrypt_ok;
|
||||
}
|
||||
|
@ -13,8 +13,8 @@
|
||||
maxlen - maximum number of bytes (less than 2**32) generated under this seed and diversifier
|
||||
*/
|
||||
static void seedexpander_init(AES_XOF_struct *ctx,
|
||||
unsigned char *seed,
|
||||
unsigned char *diversifier,
|
||||
uint8_t *seed,
|
||||
uint8_t *diversifier,
|
||||
size_t maxlen) {
|
||||
|
||||
ctx->length_remaining = maxlen;
|
||||
@ -38,13 +38,13 @@ static void seedexpander_init(AES_XOF_struct *ctx,
|
||||
}
|
||||
|
||||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_seedexpander_from_trng(AES_XOF_struct *ctx,
|
||||
const unsigned char *trng_entropy
|
||||
const uint8_t *trng_entropy
|
||||
/* TRNG_BYTE_LENGTH wide buffer */) {
|
||||
|
||||
/*the NIST seedexpander will however access 32B from this buffer */
|
||||
unsigned int prng_buffer_size = TRNG_BYTE_LENGTH < 32 ? 32 : TRNG_BYTE_LENGTH;
|
||||
unsigned char prng_buffer[TRNG_BYTE_LENGTH < 32 ? 32 : TRNG_BYTE_LENGTH] = { 0x00 };
|
||||
unsigned char diversifier[8] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
|
||||
uint8_t prng_buffer[TRNG_BYTE_LENGTH < 32 ? 32 : TRNG_BYTE_LENGTH] = {0x00};
|
||||
uint8_t diversifier[8] = {0};
|
||||
|
||||
memcpy(prng_buffer,
|
||||
trng_entropy,
|
||||
@ -61,7 +61,7 @@ void PQCLEAN_LEDAKEMLT32_LEAKTIME_seedexpander_from_trng(AES_XOF_struct *ctx,
|
||||
x - returns the XOF data
|
||||
xlen - number of bytes to return
|
||||
*/
|
||||
int PQCLEAN_LEDAKEMLT32_LEAKTIME_seedexpander(AES_XOF_struct *ctx, unsigned char *x, size_t xlen) {
|
||||
int PQCLEAN_LEDAKEMLT32_LEAKTIME_seedexpander(AES_XOF_struct *ctx, uint8_t *x, size_t xlen) {
|
||||
size_t offset;
|
||||
aes256ctx ctx256;
|
||||
|
||||
|
@ -5,6 +5,17 @@
|
||||
Source: https://sorting.cr.yp.to
|
||||
*/
|
||||
|
||||
#define int32_MINMAX(a,b) \
|
||||
do { \
|
||||
int32 ab = (b) ^ (a); \
|
||||
int32 c = (b) - (a); \
|
||||
c ^= ab & (c ^ (b)); \
|
||||
c >>= 31; \
|
||||
c &= ab; \
|
||||
(a) ^= c; \
|
||||
(b) ^= c; \
|
||||
} while(0)
|
||||
|
||||
static void int32_sort(int32 *x, size_t n) {
|
||||
size_t top, p, q, r, i, j;
|
||||
|
||||
|
@ -6,17 +6,6 @@
|
||||
|
||||
#define int32 int32_t
|
||||
|
||||
#define int32_MINMAX(a,b) \
|
||||
do { \
|
||||
int32 ab = (b) ^ (a); \
|
||||
int32 c = (b) - (a); \
|
||||
c ^= ab & (c ^ (b)); \
|
||||
c >>= 31; \
|
||||
c &= ab; \
|
||||
(a) ^= c; \
|
||||
(b) ^= c; \
|
||||
} while(0)
|
||||
|
||||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_uint32_sort(uint32_t *x, size_t n);
|
||||
|
||||
#endif
|
||||
|
@ -1,23 +1,19 @@
|
||||
#include "H_Q_matrices_generation.h"
|
||||
#include "gf2x_arith_mod_xPplusOne.h"
|
||||
|
||||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_generateHPosOnes(POSITION_T HPosOnes[N0][DV],
|
||||
AES_XOF_struct *keys_expander) {
|
||||
|
||||
for (int i = 0; i < N0; i++) {
|
||||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_generateHPosOnes(POSITION_T HPosOnes[N0][DV], AES_XOF_struct *keys_expander) {
|
||||
for (size_t i = 0; i < N0; i++) {
|
||||
/* Generate a random block of Htr */
|
||||
PQCLEAN_LEDAKEMLT52_LEAKTIME_rand_circulant_sparse_block(&HPosOnes[i][0],
|
||||
DV,
|
||||
keys_expander);
|
||||
PQCLEAN_LEDAKEMLT52_LEAKTIME_rand_circulant_sparse_block(&HPosOnes[i][0], DV, keys_expander);
|
||||
}
|
||||
}
|
||||
|
||||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_generateQPosOnes(POSITION_T QPosOnes[N0][M],
|
||||
AES_XOF_struct *keys_expander) {
|
||||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_generateQPosOnes(POSITION_T QPosOnes[N0][M], AES_XOF_struct *keys_expander) {
|
||||
size_t placed_ones;
|
||||
|
||||
for (int i = 0; i < N0; i++) {
|
||||
int placed_ones = 0;
|
||||
for (int j = 0; j < N0; j++) {
|
||||
for (size_t i = 0; i < N0; i++) {
|
||||
placed_ones = 0;
|
||||
for (size_t j = 0; j < N0; j++) {
|
||||
PQCLEAN_LEDAKEMLT52_LEAKTIME_rand_circulant_sparse_block(&QPosOnes[i][placed_ones],
|
||||
qBlockWeights[i][j],
|
||||
keys_expander);
|
||||
@ -26,29 +22,27 @@ void PQCLEAN_LEDAKEMLT52_LEAKTIME_generateQPosOnes(POSITION_T QPosOnes[N0][M],
|
||||
}
|
||||
}
|
||||
|
||||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_transposeHPosOnes(POSITION_T HtrPosOnes[N0][DV], /* output*/
|
||||
POSITION_T HPosOnes[N0][DV]) {
|
||||
|
||||
for (int i = 0; i < N0; i++) {
|
||||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_transposeHPosOnes(POSITION_T HtrPosOnes[N0][DV], POSITION_T HPosOnes[N0][DV]) {
|
||||
for (size_t i = 0; i < N0; i++) {
|
||||
/* Obtain directly the sparse representation of the block of H */
|
||||
for (int k = 0; k < DV; k++) {
|
||||
for (size_t k = 0; k < DV; k++) {
|
||||
HtrPosOnes[i][k] = (P - HPosOnes[i][k]) % P; /* transposes indexes */
|
||||
}// end for k
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_transposeQPosOnes(POSITION_T QtrPosOnes[N0][M], /* output*/
|
||||
POSITION_T QPosOnes[N0][M]) {
|
||||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_transposeQPosOnes(POSITION_T QtrPosOnes[N0][M], POSITION_T QPosOnes[N0][M]) {
|
||||
POSITION_T transposed_ones_idx[N0] = {0x00};
|
||||
size_t currQoneIdx, endQblockIdx;
|
||||
|
||||
unsigned transposed_ones_idx[N0] = {0x00};
|
||||
for (unsigned source_row_idx = 0; source_row_idx < N0 ; source_row_idx++) {
|
||||
int currQoneIdx = 0; // position in the column of QtrPosOnes[][...]
|
||||
int endQblockIdx = 0;
|
||||
for (size_t source_row_idx = 0; source_row_idx < N0 ; source_row_idx++) {
|
||||
currQoneIdx = 0; // position in the column of QtrPosOnes[][...]
|
||||
endQblockIdx = 0;
|
||||
for (int blockIdx = 0; blockIdx < N0; blockIdx++) {
|
||||
endQblockIdx += qBlockWeights[source_row_idx][blockIdx];
|
||||
for (; currQoneIdx < endQblockIdx; currQoneIdx++) {
|
||||
QtrPosOnes[blockIdx][transposed_ones_idx[blockIdx]] = (P -
|
||||
QPosOnes[source_row_idx][currQoneIdx]) % P;
|
||||
QtrPosOnes[blockIdx][transposed_ones_idx[blockIdx]] =
|
||||
(P - QPosOnes[source_row_idx][currQoneIdx]) % P;
|
||||
transposed_ones_idx[blockIdx]++;
|
||||
}
|
||||
}
|
||||
|
@ -7,22 +7,26 @@ int PQCLEAN_LEDAKEMLT52_LEAKTIME_bf_decoding(DIGIT err[],
|
||||
const POSITION_T HtrPosOnes[N0][DV],
|
||||
const POSITION_T QtrPosOnes[N0][M],
|
||||
DIGIT privateSyndrome[],
|
||||
uint8_t threshold) {
|
||||
uint8_t secondIterThreshold) {
|
||||
|
||||
DIGIT currSyndrome[NUM_DIGITS_GF2X_ELEMENT];
|
||||
uint8_t unsatParityChecks[N0 * P];
|
||||
POSITION_T currQBlkPos[M], currQBitPos[M];
|
||||
DIGIT currSyndrome[NUM_DIGITS_GF2X_ELEMENT];
|
||||
POSITION_T syndromePosToFlip, tmp;
|
||||
unsigned int correlation, corrt_syndrome_based;
|
||||
size_t currQoneIdx, endQblockIdx, currblockoffset;
|
||||
int check;
|
||||
int iteration = 0;
|
||||
unsigned int corrt_syndrome_based;
|
||||
|
||||
do {
|
||||
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_copy(currSyndrome, privateSyndrome);
|
||||
memset(unsatParityChecks, 0x00, N0 * P * sizeof(uint8_t));
|
||||
for (int i = 0; i < N0; i++) {
|
||||
for (int valueIdx = 0; valueIdx < P; valueIdx++) {
|
||||
for (int HtrOneIdx = 0; HtrOneIdx < DV; HtrOneIdx++) {
|
||||
POSITION_T tmp = (HtrPosOnes[i][HtrOneIdx] + valueIdx) >= P ? (HtrPosOnes[i][HtrOneIdx] + valueIdx) - P : (HtrPosOnes[i][HtrOneIdx] + valueIdx);
|
||||
for (size_t i = 0; i < N0; i++) {
|
||||
for (size_t valueIdx = 0; valueIdx < P; valueIdx++) {
|
||||
for (size_t HtrOneIdx = 0; HtrOneIdx < DV; HtrOneIdx++) {
|
||||
tmp = (HtrPosOnes[i][HtrOneIdx] + valueIdx) >= P ?
|
||||
(HtrPosOnes[i][HtrOneIdx] + valueIdx) - P :
|
||||
(HtrPosOnes[i][HtrOneIdx] + valueIdx);
|
||||
if (PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_get_coeff(currSyndrome, tmp)) {
|
||||
unsatParityChecks[i * P + valueIdx]++;
|
||||
}
|
||||
@ -31,33 +35,32 @@ int PQCLEAN_LEDAKEMLT52_LEAKTIME_bf_decoding(DIGIT err[],
|
||||
}
|
||||
|
||||
/* iteration based threshold determination*/
|
||||
corrt_syndrome_based = iteration ? (unsigned int) threshold : B0;
|
||||
corrt_syndrome_based = iteration * secondIterThreshold + (1 - iteration) * B0;
|
||||
|
||||
//Computation of correlation with a full Q matrix
|
||||
for (int i = 0; i < N0; i++) {
|
||||
for (int j = 0; j < P; j++) {
|
||||
int currQoneIdx = 0; // position in the column of QtrPosOnes[][...]
|
||||
int endQblockIdx = 0;
|
||||
unsigned int correlation = 0;
|
||||
// Computation of correlation with a full Q matrix
|
||||
for (size_t i = 0; i < N0; i++) {
|
||||
for (size_t j = 0; j < P; j++) {
|
||||
currQoneIdx = endQblockIdx = 0;
|
||||
correlation = 0;
|
||||
|
||||
for (int blockIdx = 0; blockIdx < N0; blockIdx++) {
|
||||
for (size_t blockIdx = 0; blockIdx < N0; blockIdx++) {
|
||||
endQblockIdx += qBlockWeights[blockIdx][i];
|
||||
int currblockoffset = blockIdx * P;
|
||||
currblockoffset = blockIdx * P;
|
||||
for (; currQoneIdx < endQblockIdx; currQoneIdx++) {
|
||||
POSITION_T tmp = QtrPosOnes[i][currQoneIdx] + j;
|
||||
tmp = QtrPosOnes[i][currQoneIdx] + j;
|
||||
tmp = tmp >= P ? tmp - P : tmp;
|
||||
currQBitPos[currQoneIdx] = tmp;
|
||||
currQBlkPos[currQoneIdx] = blockIdx;
|
||||
correlation += unsatParityChecks[tmp + currblockoffset];
|
||||
}
|
||||
}
|
||||
|
||||
/* Correlation based flipping */
|
||||
if (correlation >= corrt_syndrome_based) {
|
||||
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_toggle_coeff(err + NUM_DIGITS_GF2X_ELEMENT * i, j);
|
||||
for (int v = 0; v < M; v++) {
|
||||
POSITION_T syndromePosToFlip;
|
||||
for (int HtrOneIdx = 0; HtrOneIdx < DV; HtrOneIdx++) {
|
||||
syndromePosToFlip = (HtrPosOnes[currQBlkPos[v]][HtrOneIdx] + currQBitPos[v] );
|
||||
for (size_t v = 0; v < M; v++) {
|
||||
for (size_t HtrOneIdx = 0; HtrOneIdx < DV; HtrOneIdx++) {
|
||||
syndromePosToFlip = (HtrPosOnes[currQBlkPos[v]][HtrOneIdx] + currQBitPos[v]);
|
||||
syndromePosToFlip = syndromePosToFlip >= P ? syndromePosToFlip - P : syndromePosToFlip;
|
||||
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_toggle_coeff(privateSyndrome, syndromePosToFlip);
|
||||
}
|
||||
|
@ -14,47 +14,49 @@ int PQCLEAN_LEDAKEMLT52_LEAKTIME_DFR_test(POSITION_T LSparse[N0][DV * M], uint8_
|
||||
unsigned int maxMut[N0], maxMutMinusOne[N0];
|
||||
unsigned int allBlockMaxSumst, allBlockMaxSumstMinusOne;
|
||||
unsigned int gammaHist[N0][DV * M + 1] = {{0}};
|
||||
unsigned int toAdd;
|
||||
size_t histIdx;
|
||||
|
||||
for (int i = 0; i < N0; i++) {
|
||||
for (int j = 0; j < DV * M; j++) {
|
||||
for (size_t i = 0; i < N0; i++) {
|
||||
for (size_t j = 0; j < DV * M; j++) {
|
||||
if (LSparse[i][j] != 0) {
|
||||
LSparse_loc[i][j] = (P - LSparse[i][j]) ;
|
||||
LSparse_loc[i][j] = (P - LSparse[i][j]);
|
||||
}
|
||||
}
|
||||
PQCLEAN_LEDAKEMLT52_LEAKTIME_uint32_sort(LSparse_loc[i], DV * M);
|
||||
}
|
||||
|
||||
|
||||
for (int i = 0; i < N0; i++ ) {
|
||||
for (int j = 0; j < N0; j++ ) {
|
||||
for (int k = 0; k < (DV * M); k++) {
|
||||
for (int l = 0; l < (DV * M); l++) {
|
||||
gamma[i][j][ (P + LSparse_loc[i][k] - LSparse_loc[j][l]) % P ]++;
|
||||
for (size_t i = 0; i < N0; i++ ) {
|
||||
for (size_t j = 0; j < N0; j++) {
|
||||
for (size_t k = 0; k < (DV * M); k++) {
|
||||
for (size_t l = 0; l < (DV * M); l++) {
|
||||
gamma[i][j][(P + LSparse_loc[i][k] - LSparse_loc[j][l]) % P]++;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
for (int i = 0; i < N0; i++ ) {
|
||||
for (int j = 0; j < N0; j++ ) {
|
||||
for (size_t i = 0; i < N0; i++ ) {
|
||||
for (size_t j = 0; j < N0; j++ ) {
|
||||
gamma[i][j][0] = 0;
|
||||
}
|
||||
}
|
||||
|
||||
/* build histogram of values in gamma */
|
||||
for (int i = 0; i < N0; i++ ) {
|
||||
for (int j = 0; j < N0; j++ ) {
|
||||
for (int k = 0; k < P; k++) {
|
||||
for (size_t i = 0; i < N0; i++ ) {
|
||||
for (size_t j = 0; j < N0; j++ ) {
|
||||
for (size_t k = 0; k < P; k++) {
|
||||
gammaHist[i][gamma[i][j][k]]++;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
for (int gammaBlockRowIdx = 0; gammaBlockRowIdx < N0; gammaBlockRowIdx++) {
|
||||
unsigned int toAdd = T_BAR - 1;
|
||||
for (size_t gammaBlockRowIdx = 0; gammaBlockRowIdx < N0; gammaBlockRowIdx++) {
|
||||
maxMutMinusOne[gammaBlockRowIdx] = 0;
|
||||
unsigned int histIdx = DV * M;
|
||||
histIdx = DV * M;
|
||||
toAdd = T_BAR - 1;
|
||||
while ( (histIdx > 0) && (toAdd > 0)) {
|
||||
if (gammaHist[gammaBlockRowIdx][histIdx] > toAdd ) {
|
||||
maxMutMinusOne[gammaBlockRowIdx] += histIdx * toAdd;
|
||||
@ -71,7 +73,7 @@ int PQCLEAN_LEDAKEMLT52_LEAKTIME_DFR_test(POSITION_T LSparse[N0][DV * M], uint8_
|
||||
/*seek max values across all gamma blocks */
|
||||
allBlockMaxSumst = maxMut[0];
|
||||
allBlockMaxSumstMinusOne = maxMutMinusOne[0];
|
||||
for (int gammaBlockRowIdx = 0; gammaBlockRowIdx < N0 ; gammaBlockRowIdx++) {
|
||||
for (size_t gammaBlockRowIdx = 0; gammaBlockRowIdx < N0 ; gammaBlockRowIdx++) {
|
||||
allBlockMaxSumst = allBlockMaxSumst < maxMut[gammaBlockRowIdx] ?
|
||||
maxMut[gammaBlockRowIdx] :
|
||||
allBlockMaxSumst;
|
||||
|
@ -52,7 +52,7 @@ static void gf2x_mul1(DIGIT *R, const DIGIT A, const DIGIT B) {
|
||||
|
||||
R[0] = 0;
|
||||
R[1] = (A & 1) * B;
|
||||
for (unsigned i = 1; i < DIGIT_SIZE_b; i++) {
|
||||
for (uint8_t i = 1; i < DIGIT_SIZE_b; i++) {
|
||||
tmp = ((A >> i) & 1) * B;
|
||||
R[1] ^= tmp << i;
|
||||
R[0] ^= tmp >> (DIGIT_SIZE_b - i);
|
||||
|
@ -5,39 +5,39 @@
|
||||
#include <string.h> // memcpy(...), memset(...)
|
||||
|
||||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_copy(DIGIT dest[], const DIGIT in[]) {
|
||||
for (int i = NUM_DIGITS_GF2X_ELEMENT - 1; i >= 0; i--) {
|
||||
for (size_t i = 0; i < NUM_DIGITS_GF2X_ELEMENT; i++) {
|
||||
dest[i] = in[i];
|
||||
}
|
||||
}
|
||||
|
||||
/* returns the coefficient of the x^exponent term as the LSB of a digit */
|
||||
DIGIT PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_get_coeff(const DIGIT poly[], unsigned int exponent) {
|
||||
unsigned int straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent;
|
||||
unsigned int digitIdx = straightIdx / DIGIT_SIZE_b;
|
||||
unsigned int inDigitIdx = straightIdx % DIGIT_SIZE_b;
|
||||
DIGIT PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_get_coeff(const DIGIT poly[], size_t exponent) {
|
||||
size_t straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent;
|
||||
size_t digitIdx = straightIdx / DIGIT_SIZE_b;
|
||||
size_t inDigitIdx = straightIdx % DIGIT_SIZE_b;
|
||||
return (poly[digitIdx] >> (DIGIT_SIZE_b - 1 - inDigitIdx)) & ((DIGIT) 1) ;
|
||||
}
|
||||
|
||||
/* sets the coefficient of the x^exponent term as the LSB of a digit */
|
||||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_set_coeff(DIGIT poly[], unsigned int exponent, DIGIT value) {
|
||||
unsigned int straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent;
|
||||
unsigned int digitIdx = straightIdx / DIGIT_SIZE_b;
|
||||
unsigned int inDigitIdx = straightIdx % DIGIT_SIZE_b;
|
||||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_set_coeff(DIGIT poly[], size_t exponent, DIGIT value) {
|
||||
size_t straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent;
|
||||
size_t digitIdx = straightIdx / DIGIT_SIZE_b;
|
||||
size_t inDigitIdx = straightIdx % DIGIT_SIZE_b;
|
||||
|
||||
/* clear given coefficient */
|
||||
DIGIT mask = ~( ((DIGIT) 1) << (DIGIT_SIZE_b - 1 - inDigitIdx));
|
||||
DIGIT mask = ~(((DIGIT) 1) << (DIGIT_SIZE_b - 1 - inDigitIdx));
|
||||
poly[digitIdx] = poly[digitIdx] & mask;
|
||||
poly[digitIdx] = poly[digitIdx] | (( value & ((DIGIT) 1)) << (DIGIT_SIZE_b - 1 - inDigitIdx));
|
||||
poly[digitIdx] = poly[digitIdx] | ((value & ((DIGIT) 1)) << (DIGIT_SIZE_b - 1 - inDigitIdx));
|
||||
}
|
||||
|
||||
/* toggles (flips) the coefficient of the x^exponent term as the LSB of a digit */
|
||||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_toggle_coeff(DIGIT poly[], unsigned int exponent) {
|
||||
unsigned int straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent;
|
||||
unsigned int digitIdx = straightIdx / DIGIT_SIZE_b;
|
||||
unsigned int inDigitIdx = straightIdx % DIGIT_SIZE_b;
|
||||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_toggle_coeff(DIGIT poly[], size_t exponent) {
|
||||
size_t straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent;
|
||||
size_t digitIdx = straightIdx / DIGIT_SIZE_b;
|
||||
size_t inDigitIdx = straightIdx % DIGIT_SIZE_b;
|
||||
|
||||
/* clear given coefficient */
|
||||
DIGIT mask = ( ((DIGIT) 1) << (DIGIT_SIZE_b - 1 - inDigitIdx));
|
||||
DIGIT mask = (((DIGIT) 1) << (DIGIT_SIZE_b - 1 - inDigitIdx));
|
||||
poly[digitIdx] = poly[digitIdx] ^ mask;
|
||||
}
|
||||
|
||||
@ -51,7 +51,7 @@ static int popcount_uint64t(uint64_t x) {
|
||||
}
|
||||
|
||||
/* population count for a single polynomial */
|
||||
int PQCLEAN_LEDAKEMLT52_LEAKTIME_population_count(DIGIT *poly) {
|
||||
int PQCLEAN_LEDAKEMLT52_LEAKTIME_population_count(const DIGIT *poly) {
|
||||
int ret = 0;
|
||||
for (int i = NUM_DIGITS_GF2X_ELEMENT - 1; i >= 0; i--) {
|
||||
ret += popcount_uint64t(poly[i]);
|
||||
@ -74,10 +74,9 @@ static void gf2x_mod(DIGIT out[], const DIGIT in[]) {
|
||||
out[0] &= ((DIGIT)1 << MSb_POSITION_IN_MSB_DIGIT_OF_MODULUS) - 1;
|
||||
}
|
||||
|
||||
static void right_bit_shift(unsigned int length, DIGIT in[]) {
|
||||
|
||||
unsigned int j;
|
||||
for (j = length - 1; j > 0 ; j--) {
|
||||
static void right_bit_shift(size_t length, DIGIT in[]) {
|
||||
size_t j;
|
||||
for (j = length - 1; j > 0; j--) {
|
||||
in[j] >>= 1;
|
||||
in[j] |= (in[j - 1] & (DIGIT)0x01) << (DIGIT_SIZE_b - 1);
|
||||
}
|
||||
@ -86,8 +85,8 @@ static void right_bit_shift(unsigned int length, DIGIT in[]) {
|
||||
|
||||
|
||||
/* shifts by whole digits */
|
||||
static void left_DIGIT_shift_n(unsigned int length, DIGIT in[], unsigned int amount) {
|
||||
unsigned int j;
|
||||
static void left_DIGIT_shift_n(size_t length, DIGIT in[], size_t amount) {
|
||||
size_t j;
|
||||
for (j = 0; (j + amount) < length; j++) {
|
||||
in[j] = in[j + amount];
|
||||
}
|
||||
@ -97,7 +96,7 @@ static void left_DIGIT_shift_n(unsigned int length, DIGIT in[], unsigned int amo
|
||||
}
|
||||
|
||||
/* may shift by an arbitrary amount*/
|
||||
static void left_bit_shift_wide_n(const int length, DIGIT in[], unsigned int amount) {
|
||||
static void left_bit_shift_wide_n(size_t length, DIGIT in[], size_t amount) {
|
||||
left_DIGIT_shift_n(length, in, amount / DIGIT_SIZE_b);
|
||||
PQCLEAN_LEDAKEMLT52_LEAKTIME_left_bit_shift_n(length, in, amount % DIGIT_SIZE_b);
|
||||
}
|
||||
@ -123,18 +122,22 @@ void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_transpose_in_place(DIGIT A[]) {
|
||||
|
||||
DIGIT mask = (DIGIT)0x1;
|
||||
DIGIT rev1, rev2, a00;
|
||||
int i, slack_bits_amount = NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - P;
|
||||
int slack_bits_amount = NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - P;
|
||||
|
||||
a00 = A[NUM_DIGITS_GF2X_ELEMENT - 1] & mask;
|
||||
right_bit_shift(NUM_DIGITS_GF2X_ELEMENT, A);
|
||||
|
||||
for (i = NUM_DIGITS_GF2X_ELEMENT - 1; i >= (NUM_DIGITS_GF2X_ELEMENT + 1) / 2; i--) {
|
||||
for (size_t i = NUM_DIGITS_GF2X_ELEMENT - 1; i >= (NUM_DIGITS_GF2X_ELEMENT + 1) / 2; i--) {
|
||||
rev1 = reverse_digit(A[i]);
|
||||
rev2 = reverse_digit(A[NUM_DIGITS_GF2X_ELEMENT - 1 - i]);
|
||||
A[i] = rev2;
|
||||
A[NUM_DIGITS_GF2X_ELEMENT - 1 - i] = rev1;
|
||||
}
|
||||
|
||||
if (NUM_DIGITS_GF2X_ELEMENT % 2 == 1) {
|
||||
A[NUM_DIGITS_GF2X_ELEMENT / 2] = reverse_digit(A[NUM_DIGITS_GF2X_ELEMENT / 2]);
|
||||
}
|
||||
|
||||
if (slack_bits_amount) {
|
||||
PQCLEAN_LEDAKEMLT52_LEAKTIME_right_bit_shift_n(NUM_DIGITS_GF2X_ELEMENT, A, slack_bits_amount);
|
||||
}
|
||||
@ -151,10 +154,9 @@ static void rotate_bit_right(DIGIT in[]) { /* x^{-1} * in(x) mod x^P+1 */
|
||||
}
|
||||
|
||||
/* cond swap: swaps digits A and B if swap_mask == -1 */
|
||||
static void gf2x_cswap(DIGIT *a, DIGIT *b, int swap_mask) {
|
||||
int i;
|
||||
static void gf2x_cswap(DIGIT *a, DIGIT *b, int32_t swap_mask) {
|
||||
DIGIT t;
|
||||
for (i = 0; i < NUM_DIGITS_GF2X_ELEMENT; i++) {
|
||||
for (size_t i = 0; i < NUM_DIGITS_GF2X_ELEMENT; i++) {
|
||||
t = swap_mask & (a[i] ^ b[i]);
|
||||
a[i] ^= t;
|
||||
b[i] ^= t;
|
||||
@ -162,18 +164,18 @@ static void gf2x_cswap(DIGIT *a, DIGIT *b, int swap_mask) {
|
||||
}
|
||||
|
||||
/* returns -1 mask if x != 0, otherwise 0 */
|
||||
static inline int nonzero(DIGIT x) {
|
||||
static inline int32_t nonzero(DIGIT x) {
|
||||
DIGIT t = x;
|
||||
t = (~t) + 1;
|
||||
t >>= DIGIT_SIZE_b - 1;
|
||||
return -((int)t);
|
||||
return -((int32_t)t);
|
||||
}
|
||||
|
||||
/* returns -1 mask if x < 0 else 0 */
|
||||
static inline int negative(int x) {
|
||||
static inline int32_t negative(int x) {
|
||||
uint32_t u = x;
|
||||
u >>= 31;
|
||||
return -((int)u);
|
||||
return -((int32_t)u);
|
||||
}
|
||||
|
||||
/* return f(0) as digit */
|
||||
@ -191,7 +193,7 @@ static void gf2x_mult_scalar_acc(DIGIT *f, const DIGIT *g, const DIGIT s) {
|
||||
|
||||
/* constant-time inverse, source: gcd.cr.yp.to */
|
||||
int PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_inverse(DIGIT out[], const DIGIT in[]) {
|
||||
int i, loop, swap, delta = 1;
|
||||
int32_t swap, delta = 1;
|
||||
DIGIT g0_mask;
|
||||
|
||||
DIGIT f[NUM_DIGITS_GF2X_MODULUS] = {0}; // f = x^P + 1
|
||||
@ -202,17 +204,17 @@ int PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_inverse(DIGIT out[], const DIGIT in[])
|
||||
f[NUM_DIGITS_GF2X_MODULUS - 1] = 1;
|
||||
f[0] |= ((DIGIT)1 << MSb_POSITION_IN_MSB_DIGIT_OF_MODULUS);
|
||||
|
||||
for (i = 0; i < NUM_DIGITS_GF2X_ELEMENT; i++) {
|
||||
for (size_t i = 0; i < NUM_DIGITS_GF2X_ELEMENT; i++) {
|
||||
g[i] = in[i];
|
||||
}
|
||||
|
||||
for (i = 0; i < NUM_DIGITS_GF2X_ELEMENT; i++) {
|
||||
for (size_t i = 0; i < NUM_DIGITS_GF2X_ELEMENT; i++) {
|
||||
v[i] = 0;
|
||||
}
|
||||
|
||||
r[NUM_DIGITS_GF2X_ELEMENT - 1] = 1;
|
||||
|
||||
for (loop = 0; loop < 2 * P - 1; ++loop) {
|
||||
for (int loop = 0; loop < 2 * P - 1; ++loop) {
|
||||
|
||||
swap = negative(-delta) & nonzero(lsb(g)); // swap = -1 if -delta < 0 AND g(0) != 0
|
||||
delta ^= swap & (delta ^ -delta); // cond swap delta with -delta if swap
|
||||
@ -247,7 +249,7 @@ void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_mul(DIGIT Res[], const DIGIT A[], con
|
||||
/*PRE: the representation of the sparse coefficients is sorted in increasing
|
||||
order of the coefficients themselves */
|
||||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_mul_dense_to_sparse(DIGIT Res[], const DIGIT dense[],
|
||||
POSITION_T sparse[], unsigned int nPos) {
|
||||
POSITION_T sparse[], size_t nPos) {
|
||||
|
||||
DIGIT aux[2 * NUM_DIGITS_GF2X_ELEMENT] = {0x00};
|
||||
DIGIT resDouble[2 * NUM_DIGITS_GF2X_ELEMENT] = {0x00};
|
||||
@ -258,7 +260,7 @@ void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_mul_dense_to_sparse(DIGIT Res[], cons
|
||||
left_bit_shift_wide_n(2 * NUM_DIGITS_GF2X_ELEMENT, resDouble, sparse[0]);
|
||||
left_bit_shift_wide_n(2 * NUM_DIGITS_GF2X_ELEMENT, aux, sparse[0]);
|
||||
|
||||
for (unsigned int i = 1; i < nPos; i++) {
|
||||
for (size_t i = 1; i < nPos; i++) {
|
||||
if (sparse[i] != INVALID_POS_VALUE) {
|
||||
left_bit_shift_wide_n(2 * NUM_DIGITS_GF2X_ELEMENT, aux, (sparse[i] - sparse[i - 1]) );
|
||||
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_add(resDouble, aux, resDouble, 2 * NUM_DIGITS_GF2X_ELEMENT);
|
||||
@ -270,10 +272,9 @@ void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_mul_dense_to_sparse(DIGIT Res[], cons
|
||||
|
||||
}
|
||||
|
||||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_transpose_in_place_sparse(int sizeA, POSITION_T A[]) {
|
||||
|
||||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_transpose_in_place_sparse(size_t sizeA, POSITION_T A[]) {
|
||||
POSITION_T t;
|
||||
int i = 0, j;
|
||||
size_t i = 0, j;
|
||||
|
||||
if (A[i] == 0) {
|
||||
i = 1;
|
||||
@ -297,6 +298,9 @@ void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_mul_sparse(size_t sizeR, POSITION_T R
|
||||
size_t sizeB, const POSITION_T B[]) {
|
||||
|
||||
POSITION_T prod;
|
||||
POSITION_T lastReadPos;
|
||||
size_t duplicateCount;
|
||||
size_t write_idx, read_idx;
|
||||
|
||||
/* compute all the coefficients, filling invalid positions with P*/
|
||||
size_t lastFilledPos = 0;
|
||||
@ -317,12 +321,11 @@ void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_mul_sparse(size_t sizeR, POSITION_T R
|
||||
Res[lastFilledPos] = INVALID_POS_VALUE;
|
||||
lastFilledPos++;
|
||||
}
|
||||
|
||||
PQCLEAN_LEDAKEMLT52_LEAKTIME_uint32_sort(Res, sizeR);
|
||||
|
||||
/* eliminate duplicates */
|
||||
POSITION_T lastReadPos = Res[0];
|
||||
size_t duplicateCount;
|
||||
size_t write_idx = 0;
|
||||
size_t read_idx = 0;
|
||||
write_idx = read_idx = 0;
|
||||
while (read_idx < sizeR && Res[read_idx] != INVALID_POS_VALUE) {
|
||||
lastReadPos = Res[read_idx];
|
||||
read_idx++;
|
||||
@ -344,13 +347,12 @@ void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_mul_sparse(size_t sizeR, POSITION_T R
|
||||
|
||||
/* the implementation is safe even in case A or B alias with the result
|
||||
* PRE: A and B should be sorted, disjunct arrays ending with INVALID_POS_VALUE */
|
||||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_add_sparse(
|
||||
int sizeR, POSITION_T Res[],
|
||||
int sizeA, const POSITION_T A[],
|
||||
int sizeB, const POSITION_T B[]) {
|
||||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_add_sparse(size_t sizeR, POSITION_T Res[],
|
||||
size_t sizeA, const POSITION_T A[],
|
||||
size_t sizeB, const POSITION_T B[]) {
|
||||
|
||||
POSITION_T tmpRes[DV * M];
|
||||
int idxA = 0, idxB = 0, idxR = 0;
|
||||
size_t idxA = 0, idxB = 0, idxR = 0;
|
||||
while ( idxA < sizeA &&
|
||||
idxB < sizeB &&
|
||||
A[idxA] != INVALID_POS_VALUE &&
|
||||
@ -419,18 +421,18 @@ static uint32_t rand_range(const unsigned int n, const int logn, AES_XOF_struct
|
||||
/* Obtains fresh randomness and seed-expands it until all the required positions
|
||||
* for the '1's in the circulant block are obtained */
|
||||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_rand_circulant_sparse_block(POSITION_T *pos_ones,
|
||||
int countOnes,
|
||||
size_t countOnes,
|
||||
AES_XOF_struct *seed_expander_ctx) {
|
||||
|
||||
int duplicated, placedOnes = 0;
|
||||
uint32_t p;
|
||||
size_t duplicated, placedOnes = 0;
|
||||
POSITION_T p;
|
||||
|
||||
while (placedOnes < countOnes) {
|
||||
p = rand_range(NUM_BITS_GF2X_ELEMENT,
|
||||
P_BITS,
|
||||
seed_expander_ctx);
|
||||
duplicated = 0;
|
||||
for (int j = 0; j < placedOnes; j++) {
|
||||
for (size_t j = 0; j < placedOnes; j++) {
|
||||
if (pos_ones[j] == p) {
|
||||
duplicated = 1;
|
||||
}
|
||||
|
@ -16,22 +16,22 @@
|
||||
#define P_BITS (18)
|
||||
|
||||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_copy(DIGIT dest[], const DIGIT in[]);
|
||||
DIGIT PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_get_coeff(const DIGIT poly[], unsigned int exponent);
|
||||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_set_coeff(DIGIT poly[], unsigned int exponent, DIGIT value);
|
||||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_toggle_coeff(DIGIT poly[], unsigned int exponent);
|
||||
int PQCLEAN_LEDAKEMLT52_LEAKTIME_population_count(DIGIT *poly);
|
||||
DIGIT PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_get_coeff(const DIGIT poly[], size_t exponent);
|
||||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_set_coeff(DIGIT poly[], size_t exponent, DIGIT value);
|
||||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_toggle_coeff(DIGIT poly[], size_t exponent);
|
||||
int PQCLEAN_LEDAKEMLT52_LEAKTIME_population_count(const DIGIT *poly);
|
||||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_add(DIGIT Res[], const DIGIT A[], const DIGIT B[]);
|
||||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_mul(DIGIT Res[], const DIGIT A[], const DIGIT B[]);
|
||||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_transpose_in_place(DIGIT A[]);
|
||||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_rand_circulant_sparse_block(POSITION_T *pos_ones, int countOnes, AES_XOF_struct *seed_expander_ctx);
|
||||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_rand_circulant_sparse_block(POSITION_T *pos_ones, size_t countOnes, AES_XOF_struct *seed_expander_ctx);
|
||||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_rand_circulant_blocks_sequence(DIGIT *sequence, AES_XOF_struct *seed_expander_ctx);
|
||||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_rand_error_pos(POSITION_T errorPos[NUM_ERRORS_T], AES_XOF_struct *seed_expander_ctx);
|
||||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_expand_error(DIGIT sequence[N0 * NUM_DIGITS_GF2X_ELEMENT], const POSITION_T errorPos[NUM_ERRORS_T]);
|
||||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_add_sparse(int sizeR, POSITION_T Res[], int sizeA, const POSITION_T A[], int sizeB, const POSITION_T B[]);
|
||||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_transpose_in_place_sparse(int sizeA, POSITION_T A[]);
|
||||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_add_sparse(size_t sizeR, POSITION_T Res[], size_t sizeA, const POSITION_T A[], size_t sizeB, const POSITION_T B[]);
|
||||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_transpose_in_place_sparse(size_t sizeA, POSITION_T A[]);
|
||||
int PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_inverse(DIGIT out[], const DIGIT in[]);
|
||||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_mul_sparse(size_t sizeR, POSITION_T Res[], size_t sizeA, const POSITION_T A[], size_t sizeB, const POSITION_T B[]);
|
||||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_mul_dense_to_sparse(DIGIT Res[], const DIGIT dense[], POSITION_T sparse[], unsigned int nPos);
|
||||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_mul_dense_to_sparse(DIGIT Res[], const DIGIT dense[], POSITION_T sparse[], size_t nPos);
|
||||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_tobytes(uint8_t *bytes, const DIGIT *poly);
|
||||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_frombytes(DIGIT *poly, const uint8_t *poly_bytes);
|
||||
|
||||
|
@ -107,10 +107,11 @@ int PQCLEAN_LEDAKEMLT52_LEAKTIME_crypto_kem_dec(uint8_t *ss, const uint8_t *ct,
|
||||
uint8_t hashed_decoded_seed[HASH_BYTE_LENGTH];
|
||||
uint8_t hashedAndTruncated_decoded_seed[TRNG_BYTE_LENGTH] = {0};
|
||||
uint8_t ss_input[2 * TRNG_BYTE_LENGTH], tail[TRNG_BYTE_LENGTH] = {0};
|
||||
int decode_ok, decrypt_ok, equal;
|
||||
|
||||
unpack_ct(syndrome, ct);
|
||||
|
||||
int decode_ok = PQCLEAN_LEDAKEMLT52_LEAKTIME_niederreiter_decrypt(decoded_error_vector,
|
||||
decode_ok = PQCLEAN_LEDAKEMLT52_LEAKTIME_niederreiter_decrypt(decoded_error_vector,
|
||||
(const privateKeyNiederreiter_t *)sk, syndrome);
|
||||
|
||||
pack_error(decoded_error_bytes, decoded_error_vector);
|
||||
@ -118,7 +119,7 @@ int PQCLEAN_LEDAKEMLT52_LEAKTIME_crypto_kem_dec(uint8_t *ss, const uint8_t *ct,
|
||||
|
||||
memcpy(hashedAndTruncatedErrorVector, hashedErrorVector, TRNG_BYTE_LENGTH);
|
||||
|
||||
for (int i = 0; i < TRNG_BYTE_LENGTH; ++i) {
|
||||
for (size_t i = 0; i < TRNG_BYTE_LENGTH; ++i) {
|
||||
decoded_seed[i] = ct[(NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B) + i] ^
|
||||
hashedAndTruncatedErrorVector[i];
|
||||
}
|
||||
@ -135,11 +136,11 @@ int PQCLEAN_LEDAKEMLT52_LEAKTIME_crypto_kem_dec(uint8_t *ss, const uint8_t *ct,
|
||||
|
||||
PQCLEAN_LEDAKEMLT52_LEAKTIME_expand_error(reconstructed_error_vector, reconstructed_errorPos);
|
||||
|
||||
int equal = PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_verify(decoded_error_vector,
|
||||
equal = PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_verify(decoded_error_vector,
|
||||
reconstructed_error_vector, N0 * NUM_DIGITS_GF2X_ELEMENT);
|
||||
// equal == 0, if the reconstructed error vector match !!!
|
||||
|
||||
int decryptOk = (decode_ok == 1 && equal == 0);
|
||||
decrypt_ok = (decode_ok == 1 && equal == 0);
|
||||
|
||||
memcpy(ss_input, decoded_seed, TRNG_BYTE_LENGTH);
|
||||
memcpy(ss_input + sizeof(decoded_seed), tail, TRNG_BYTE_LENGTH);
|
||||
@ -148,7 +149,7 @@ int PQCLEAN_LEDAKEMLT52_LEAKTIME_crypto_kem_dec(uint8_t *ss, const uint8_t *ct,
|
||||
PQCLEAN_LEDAKEMLT52_LEAKTIME_cmov(ss_input + sizeof(decoded_seed),
|
||||
((const privateKeyNiederreiter_t *) sk)->decryption_failure_secret,
|
||||
TRNG_BYTE_LENGTH,
|
||||
!decryptOk);
|
||||
!decrypt_ok);
|
||||
|
||||
HASH_FUNCTION(ss, ss_input, 2 * TRNG_BYTE_LENGTH);
|
||||
|
||||
|
@ -49,7 +49,7 @@ void PQCLEAN_LEDAKEMLT52_LEAKTIME_niederreiter_keygen(publicKeyNiederreiter_t *p
|
||||
}
|
||||
}
|
||||
is_L_full = 1;
|
||||
for (int i = 0; i < N0; i++) {
|
||||
for (size_t i = 0; i < N0; i++) {
|
||||
is_L_full = is_L_full && (LPosOnes[i][DV * M - 1] != INVALID_POS_VALUE);
|
||||
}
|
||||
sk->rejections = sk->rejections + 1;
|
||||
@ -63,21 +63,21 @@ void PQCLEAN_LEDAKEMLT52_LEAKTIME_niederreiter_keygen(publicKeyNiederreiter_t *p
|
||||
sk->decryption_failure_secret,
|
||||
(unsigned long)TRNG_BYTE_LENGTH);
|
||||
|
||||
for (int j = 0; j < DV * M; j++) {
|
||||
for (size_t j = 0; j < DV * M; j++) {
|
||||
if (LPosOnes[N0 - 1][j] != INVALID_POS_VALUE) {
|
||||
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_set_coeff(Ln0dense, LPosOnes[N0 - 1][j], 1);
|
||||
}
|
||||
}
|
||||
|
||||
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_inverse(Ln0Inv, Ln0dense);
|
||||
for (int i = 0; i < N0 - 1; i++) {
|
||||
for (size_t i = 0; i < N0 - 1; i++) {
|
||||
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_mul_dense_to_sparse(pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT,
|
||||
Ln0Inv,
|
||||
LPosOnes[i],
|
||||
DV * M);
|
||||
}
|
||||
|
||||
for (int i = 0; i < N0 - 1; i++) {
|
||||
for (size_t i = 0; i < N0 - 1; i++) {
|
||||
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_transpose_in_place(pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT);
|
||||
}
|
||||
}
|
||||
@ -110,24 +110,27 @@ int PQCLEAN_LEDAKEMLT52_LEAKTIME_niederreiter_decrypt(DIGIT *err, const privateK
|
||||
POSITION_T auxSparse[DV * M];
|
||||
POSITION_T Ln0trSparse[DV * M];
|
||||
DIGIT err_computed[N0 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B] = {0};
|
||||
DIGIT err_mockup[N0 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B];
|
||||
DIGIT privateSyndrome[NUM_DIGITS_GF2X_ELEMENT];
|
||||
unsigned char processedQOnes[N0];
|
||||
uint8_t processedQOnes[N0];
|
||||
int rejections = sk->rejections;
|
||||
int decrypt_ok = 0;
|
||||
int err_weight;
|
||||
|
||||
PQCLEAN_LEDAKEMLT52_LEAKTIME_seedexpander_from_trng(&niederreiter_decrypt_expander, sk->prng_seed);
|
||||
do {
|
||||
PQCLEAN_LEDAKEMLT52_LEAKTIME_generateHPosOnes(HPosOnes, &niederreiter_decrypt_expander);
|
||||
PQCLEAN_LEDAKEMLT52_LEAKTIME_generateQPosOnes(QPosOnes, &niederreiter_decrypt_expander);
|
||||
|
||||
for (int i = 0; i < N0; i++) {
|
||||
for (int j = 0; j < DV * M; j++) {
|
||||
for (size_t i = 0; i < N0; i++) {
|
||||
for (size_t j = 0; j < DV * M; j++) {
|
||||
LPosOnes[i][j] = INVALID_POS_VALUE;
|
||||
}
|
||||
}
|
||||
|
||||
memset(processedQOnes, 0x00, sizeof(processedQOnes));
|
||||
for (int colQ = 0; colQ < N0; colQ++) {
|
||||
for (int i = 0; i < N0; i++) {
|
||||
for (size_t colQ = 0; colQ < N0; colQ++) {
|
||||
for (size_t i = 0; i < N0; i++) {
|
||||
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_mul_sparse(DV * M, auxPosOnes,
|
||||
DV, HPosOnes[i],
|
||||
qBlockWeights[i][colQ], QPosOnes[i] + processedQOnes[i]);
|
||||
@ -143,15 +146,15 @@ int PQCLEAN_LEDAKEMLT52_LEAKTIME_niederreiter_decrypt(DIGIT *err, const privateK
|
||||
PQCLEAN_LEDAKEMLT52_LEAKTIME_transposeHPosOnes(HtrPosOnes, HPosOnes);
|
||||
PQCLEAN_LEDAKEMLT52_LEAKTIME_transposeQPosOnes(QtrPosOnes, QPosOnes);
|
||||
|
||||
for (int i = 0; i < DV * M; i++) {
|
||||
for (size_t i = 0; i < DV * M; i++) {
|
||||
Ln0trSparse[i] = INVALID_POS_VALUE;
|
||||
auxSparse[i] = INVALID_POS_VALUE;
|
||||
}
|
||||
|
||||
for (int i = 0; i < N0; i++) {
|
||||
for (size_t i = 0; i < N0; i++) {
|
||||
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_mul_sparse(DV * M, auxSparse,
|
||||
DV, HPosOnes[i],
|
||||
qBlockWeights[i][N0 - 1], &QPosOnes[i][ M - qBlockWeights[i][N0 - 1] ] );
|
||||
qBlockWeights[i][N0 - 1], &QPosOnes[i][M - qBlockWeights[i][N0 - 1]]);
|
||||
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_add_sparse(DV * M, Ln0trSparse,
|
||||
DV * M, Ln0trSparse,
|
||||
DV * M, auxSparse);
|
||||
@ -163,28 +166,27 @@ int PQCLEAN_LEDAKEMLT52_LEAKTIME_niederreiter_decrypt(DIGIT *err, const privateK
|
||||
Ln0trSparse,
|
||||
DV * M);
|
||||
|
||||
int decryptOk = 0;
|
||||
decryptOk = PQCLEAN_LEDAKEMLT52_LEAKTIME_bf_decoding(err_computed,
|
||||
decrypt_ok = PQCLEAN_LEDAKEMLT52_LEAKTIME_bf_decoding(err_computed,
|
||||
(const POSITION_T (*)[DV]) HtrPosOnes,
|
||||
(const POSITION_T (*)[M]) QtrPosOnes,
|
||||
privateSyndrome, sk->secondIterThreshold);
|
||||
|
||||
int err_weight = 0;
|
||||
for (int i = 0 ; i < N0; i++) {
|
||||
err_weight = 0;
|
||||
for (size_t i = 0 ; i < N0; i++) {
|
||||
err_weight += PQCLEAN_LEDAKEMLT52_LEAKTIME_population_count(err_computed + (NUM_DIGITS_GF2X_ELEMENT * i));
|
||||
}
|
||||
decryptOk = decryptOk && (err_weight == NUM_ERRORS_T);
|
||||
decrypt_ok = decrypt_ok && (err_weight == NUM_ERRORS_T);
|
||||
|
||||
/* prepare mockup error vector in case a decoding failure occurs */
|
||||
DIGIT err_mockup[N0 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B];
|
||||
memcpy(err_mockup, syndrome, NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B);
|
||||
memcpy(err_mockup + NUM_DIGITS_GF2X_ELEMENT, sk->decryption_failure_secret, TRNG_BYTE_LENGTH);
|
||||
memset(((unsigned char *) err_mockup) + (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B) + TRNG_BYTE_LENGTH, 0x00,
|
||||
(N0 - 1)*NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B - TRNG_BYTE_LENGTH);
|
||||
|
||||
memcpy(err, err_computed, N0 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B);
|
||||
// Overwrite on decryption failure
|
||||
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_cmov(err, err_mockup, N0 * NUM_DIGITS_GF2X_ELEMENT, !decryptOk);
|
||||
|
||||
return decryptOk;
|
||||
// Overwrite on decryption failure
|
||||
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_cmov(err, err_mockup, N0 * NUM_DIGITS_GF2X_ELEMENT, !decrypt_ok);
|
||||
|
||||
return decrypt_ok;
|
||||
}
|
||||
|
@ -13,8 +13,8 @@
|
||||
maxlen - maximum number of bytes (less than 2**32) generated under this seed and diversifier
|
||||
*/
|
||||
static void seedexpander_init(AES_XOF_struct *ctx,
|
||||
unsigned char *seed,
|
||||
unsigned char *diversifier,
|
||||
uint8_t *seed,
|
||||
uint8_t *diversifier,
|
||||
size_t maxlen) {
|
||||
|
||||
ctx->length_remaining = maxlen;
|
||||
@ -38,13 +38,13 @@ static void seedexpander_init(AES_XOF_struct *ctx,
|
||||
}
|
||||
|
||||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_seedexpander_from_trng(AES_XOF_struct *ctx,
|
||||
const unsigned char *trng_entropy
|
||||
const uint8_t *trng_entropy
|
||||
/* TRNG_BYTE_LENGTH wide buffer */) {
|
||||
|
||||
/*the NIST seedexpander will however access 32B from this buffer */
|
||||
unsigned int prng_buffer_size = TRNG_BYTE_LENGTH < 32 ? 32 : TRNG_BYTE_LENGTH;
|
||||
unsigned char prng_buffer[TRNG_BYTE_LENGTH < 32 ? 32 : TRNG_BYTE_LENGTH] = { 0x00 };
|
||||
unsigned char *diversifier = ((unsigned char *)trng_entropy) + 32;
|
||||
uint8_t prng_buffer[TRNG_BYTE_LENGTH < 32 ? 32 : TRNG_BYTE_LENGTH] = {0x00};
|
||||
uint8_t *diversifier = (uint8_t *)trng_entropy + 32;
|
||||
|
||||
memcpy(prng_buffer,
|
||||
trng_entropy,
|
||||
@ -61,7 +61,7 @@ void PQCLEAN_LEDAKEMLT52_LEAKTIME_seedexpander_from_trng(AES_XOF_struct *ctx,
|
||||
x - returns the XOF data
|
||||
xlen - number of bytes to return
|
||||
*/
|
||||
int PQCLEAN_LEDAKEMLT52_LEAKTIME_seedexpander(AES_XOF_struct *ctx, unsigned char *x, size_t xlen) {
|
||||
int PQCLEAN_LEDAKEMLT52_LEAKTIME_seedexpander(AES_XOF_struct *ctx, uint8_t *x, size_t xlen) {
|
||||
size_t offset;
|
||||
aes256ctx ctx256;
|
||||
|
||||
|
@ -5,6 +5,17 @@
|
||||
Source: https://sorting.cr.yp.to
|
||||
*/
|
||||
|
||||
#define int32_MINMAX(a,b) \
|
||||
do { \
|
||||
int32 ab = (b) ^ (a); \
|
||||
int32 c = (b) - (a); \
|
||||
c ^= ab & (c ^ (b)); \
|
||||
c >>= 31; \
|
||||
c &= ab; \
|
||||
(a) ^= c; \
|
||||
(b) ^= c; \
|
||||
} while(0)
|
||||
|
||||
static void int32_sort(int32 *x, size_t n) {
|
||||
size_t top, p, q, r, i, j;
|
||||
|
||||
|
@ -6,17 +6,6 @@
|
||||
|
||||
#define int32 int32_t
|
||||
|
||||
#define int32_MINMAX(a,b) \
|
||||
do { \
|
||||
int32 ab = (b) ^ (a); \
|
||||
int32 c = (b) - (a); \
|
||||
c ^= ab & (c ^ (b)); \
|
||||
c >>= 31; \
|
||||
c &= ab; \
|
||||
(a) ^= c; \
|
||||
(b) ^= c; \
|
||||
} while(0)
|
||||
|
||||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_uint32_sort(uint32_t *x, size_t n);
|
||||
|
||||
#endif
|
||||
|
@ -7,6 +7,7 @@ consistency_checks:
|
||||
- dfr_test.c
|
||||
- dfr_test.h
|
||||
- gf2x_arith.c
|
||||
- gf2x_arith_mod_xPplusOne.c
|
||||
- H_Q_matrices_generation.c
|
||||
- H_Q_matrices_generation.h
|
||||
- kem.c
|
||||
@ -24,6 +25,7 @@ consistency_checks:
|
||||
- dfr_test.c
|
||||
- dfr_test.h
|
||||
- gf2x_arith.c
|
||||
- gf2x_arith_mod_xPplusOne.c
|
||||
- H_Q_matrices_generation.c
|
||||
- H_Q_matrices_generation.h
|
||||
- kem.c
|
||||
@ -32,4 +34,3 @@ consistency_checks:
|
||||
- rng.h
|
||||
- utils.c
|
||||
- utils.h
|
||||
|
||||
|
@ -7,6 +7,7 @@ consistency_checks:
|
||||
- dfr_test.c
|
||||
- dfr_test.h
|
||||
- gf2x_arith.c
|
||||
- gf2x_arith_mod_xPplusOne.c
|
||||
- H_Q_matrices_generation.c
|
||||
- H_Q_matrices_generation.h
|
||||
- kem.c
|
||||
@ -24,6 +25,7 @@ consistency_checks:
|
||||
- dfr_test.c
|
||||
- dfr_test.h
|
||||
- gf2x_arith.c
|
||||
- gf2x_arith_mod_xPplusOne.c
|
||||
- H_Q_matrices_generation.c
|
||||
- H_Q_matrices_generation.h
|
||||
- kem.c
|
||||
@ -32,4 +34,3 @@ consistency_checks:
|
||||
- rng.h
|
||||
- utils.c
|
||||
- utils.h
|
||||
|
||||
|
@ -7,6 +7,7 @@ consistency_checks:
|
||||
- dfr_test.c
|
||||
- dfr_test.h
|
||||
- gf2x_arith.c
|
||||
- gf2x_arith_mod_xPplusOne.c
|
||||
- H_Q_matrices_generation.c
|
||||
- H_Q_matrices_generation.h
|
||||
- kem.c
|
||||
@ -32,4 +33,3 @@ consistency_checks:
|
||||
- rng.h
|
||||
- utils.c
|
||||
- utils.h
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user