Browse Source

New HQC and HQC-RMRS from upstream

kyber
John M. Schanck 4 years ago
committed by Kris Kwiatkowski
parent
commit
b0afb62c0e
100 changed files with 10205 additions and 0 deletions
  1. +34
    -0
      crypto_kem/hqc-128/META.yml
  2. +1
    -0
      crypto_kem/hqc-128/avx2/LICENSE
  3. +22
    -0
      crypto_kem/hqc-128/avx2/Makefile
  4. +18
    -0
      crypto_kem/hqc-128/avx2/alpha_table.h
  5. +25
    -0
      crypto_kem/hqc-128/avx2/api.h
  6. +367
    -0
      crypto_kem/hqc-128/avx2/bch.c
  7. +23
    -0
      crypto_kem/hqc-128/avx2/bch.h
  8. +104
    -0
      crypto_kem/hqc-128/avx2/code.c
  9. +20
    -0
      crypto_kem/hqc-128/avx2/code.h
  10. +333
    -0
      crypto_kem/hqc-128/avx2/fft.c
  11. +20
    -0
      crypto_kem/hqc-128/avx2/fft.h
  12. +16
    -0
      crypto_kem/hqc-128/avx2/gen_matrix.h
  13. +167
    -0
      crypto_kem/hqc-128/avx2/gf.c
  14. +29
    -0
      crypto_kem/hqc-128/avx2/gf.h
  15. +558
    -0
      crypto_kem/hqc-128/avx2/gf2x.c
  16. +17
    -0
      crypto_kem/hqc-128/avx2/gf2x.h
  17. +138
    -0
      crypto_kem/hqc-128/avx2/hqc.c
  18. +21
    -0
      crypto_kem/hqc-128/avx2/hqc.h
  19. +138
    -0
      crypto_kem/hqc-128/avx2/kem.c
  20. +127
    -0
      crypto_kem/hqc-128/avx2/parameters.h
  21. +121
    -0
      crypto_kem/hqc-128/avx2/parsing.c
  22. +29
    -0
      crypto_kem/hqc-128/avx2/parsing.h
  23. +41
    -0
      crypto_kem/hqc-128/avx2/repetition.c
  24. +17
    -0
      crypto_kem/hqc-128/avx2/repetition.h
  25. +200
    -0
      crypto_kem/hqc-128/avx2/vector.c
  26. +29
    -0
      crypto_kem/hqc-128/avx2/vector.h
  27. +1
    -0
      crypto_kem/hqc-128/clean/LICENSE
  28. +19
    -0
      crypto_kem/hqc-128/clean/Makefile
  29. +19
    -0
      crypto_kem/hqc-128/clean/Makefile.Microsoft_nmake
  30. +25
    -0
      crypto_kem/hqc-128/clean/api.h
  31. +383
    -0
      crypto_kem/hqc-128/clean/bch.c
  32. +23
    -0
      crypto_kem/hqc-128/clean/bch.h
  33. +49
    -0
      crypto_kem/hqc-128/clean/code.c
  34. +20
    -0
      crypto_kem/hqc-128/clean/code.h
  35. +627
    -0
      crypto_kem/hqc-128/clean/fft.c
  36. +25
    -0
      crypto_kem/hqc-128/clean/fft.h
  37. +132
    -0
      crypto_kem/hqc-128/clean/gf.c
  38. +29
    -0
      crypto_kem/hqc-128/clean/gf.h
  39. +155
    -0
      crypto_kem/hqc-128/clean/gf2x.c
  40. +18
    -0
      crypto_kem/hqc-128/clean/gf2x.h
  41. +143
    -0
      crypto_kem/hqc-128/clean/hqc.c
  42. +21
    -0
      crypto_kem/hqc-128/clean/hqc.h
  43. +138
    -0
      crypto_kem/hqc-128/clean/kem.c
  44. +123
    -0
      crypto_kem/hqc-128/clean/parameters.h
  45. +121
    -0
      crypto_kem/hqc-128/clean/parsing.c
  46. +29
    -0
      crypto_kem/hqc-128/clean/parsing.h
  47. +92
    -0
      crypto_kem/hqc-128/clean/repetition.c
  48. +19
    -0
      crypto_kem/hqc-128/clean/repetition.h
  49. +226
    -0
      crypto_kem/hqc-128/clean/vector.c
  50. +31
    -0
      crypto_kem/hqc-128/clean/vector.h
  51. +34
    -0
      crypto_kem/hqc-192/META.yml
  52. +1
    -0
      crypto_kem/hqc-192/avx2/LICENSE
  53. +22
    -0
      crypto_kem/hqc-192/avx2/Makefile
  54. +18
    -0
      crypto_kem/hqc-192/avx2/alpha_table.h
  55. +25
    -0
      crypto_kem/hqc-192/avx2/api.h
  56. +367
    -0
      crypto_kem/hqc-192/avx2/bch.c
  57. +23
    -0
      crypto_kem/hqc-192/avx2/bch.h
  58. +104
    -0
      crypto_kem/hqc-192/avx2/code.c
  59. +20
    -0
      crypto_kem/hqc-192/avx2/code.h
  60. +333
    -0
      crypto_kem/hqc-192/avx2/fft.c
  61. +20
    -0
      crypto_kem/hqc-192/avx2/fft.h
  62. +16
    -0
      crypto_kem/hqc-192/avx2/gen_matrix.h
  63. +167
    -0
      crypto_kem/hqc-192/avx2/gf.c
  64. +29
    -0
      crypto_kem/hqc-192/avx2/gf.h
  65. +598
    -0
      crypto_kem/hqc-192/avx2/gf2x.c
  66. +17
    -0
      crypto_kem/hqc-192/avx2/gf2x.h
  67. +138
    -0
      crypto_kem/hqc-192/avx2/hqc.c
  68. +21
    -0
      crypto_kem/hqc-192/avx2/hqc.h
  69. +138
    -0
      crypto_kem/hqc-192/avx2/kem.c
  70. +127
    -0
      crypto_kem/hqc-192/avx2/parameters.h
  71. +121
    -0
      crypto_kem/hqc-192/avx2/parsing.c
  72. +29
    -0
      crypto_kem/hqc-192/avx2/parsing.h
  73. +41
    -0
      crypto_kem/hqc-192/avx2/repetition.c
  74. +17
    -0
      crypto_kem/hqc-192/avx2/repetition.h
  75. +200
    -0
      crypto_kem/hqc-192/avx2/vector.c
  76. +29
    -0
      crypto_kem/hqc-192/avx2/vector.h
  77. +1
    -0
      crypto_kem/hqc-192/clean/LICENSE
  78. +19
    -0
      crypto_kem/hqc-192/clean/Makefile
  79. +19
    -0
      crypto_kem/hqc-192/clean/Makefile.Microsoft_nmake
  80. +25
    -0
      crypto_kem/hqc-192/clean/api.h
  81. +383
    -0
      crypto_kem/hqc-192/clean/bch.c
  82. +23
    -0
      crypto_kem/hqc-192/clean/bch.h
  83. +49
    -0
      crypto_kem/hqc-192/clean/code.c
  84. +20
    -0
      crypto_kem/hqc-192/clean/code.h
  85. +627
    -0
      crypto_kem/hqc-192/clean/fft.c
  86. +25
    -0
      crypto_kem/hqc-192/clean/fft.h
  87. +132
    -0
      crypto_kem/hqc-192/clean/gf.c
  88. +29
    -0
      crypto_kem/hqc-192/clean/gf.h
  89. +155
    -0
      crypto_kem/hqc-192/clean/gf2x.c
  90. +18
    -0
      crypto_kem/hqc-192/clean/gf2x.h
  91. +143
    -0
      crypto_kem/hqc-192/clean/hqc.c
  92. +21
    -0
      crypto_kem/hqc-192/clean/hqc.h
  93. +138
    -0
      crypto_kem/hqc-192/clean/kem.c
  94. +123
    -0
      crypto_kem/hqc-192/clean/parameters.h
  95. +121
    -0
      crypto_kem/hqc-192/clean/parsing.c
  96. +29
    -0
      crypto_kem/hqc-192/clean/parsing.h
  97. +91
    -0
      crypto_kem/hqc-192/clean/repetition.c
  98. +19
    -0
      crypto_kem/hqc-192/clean/repetition.h
  99. +226
    -0
      crypto_kem/hqc-192/clean/vector.c
  100. +31
    -0
      crypto_kem/hqc-192/clean/vector.h

+ 34
- 0
crypto_kem/hqc-128/META.yml View File

@@ -0,0 +1,34 @@
name: HQC-128
type: kem
claimed-nist-level: 1
claimed-security: IND-CCA2
length-ciphertext: 6017
length-public-key: 3024
length-secret-key: 3064
length-shared-secret: 64
nistkat-sha256: 32702949431d8a869abb530a2fda87d5c81c63c698673b135e59ad7e8b5a4f5f
principal-submitters:
- Carlos Aguilar Melchor
- Nicolas Aragon
- Slim Bettaieb
- Olivier Blazy
- Jurjen Bos
- Jean-Christophe Deneuville
- Philippe Gaborit
- Edoardo Persichetti
- Jean-Marc Robert
- Pascal Véron
- Gilles Zémor
- Loïc Bidoux
implementations:
- name: clean
version: 2020-05-29
- name: avx2
version: 2020-05-29
supported_platforms:
- architecture: x86_64
operating_systems:
- Linux
- Darwin
required_flags:
- avx2

+ 1
- 0
crypto_kem/hqc-128/avx2/LICENSE View File

@@ -0,0 +1 @@
Public Domain

+ 22
- 0
crypto_kem/hqc-128/avx2/Makefile View File

@@ -0,0 +1,22 @@
# This Makefile can be used with GNU Make or BSD Make

LIB=libhqc-128_avx2.a
HEADERS=alpha_table.h api.h bch.h code.h fft.h gen_matrix.h gf2x.h gf.h hqc.h parameters.h parsing.h repetition.h vector.h
OBJECTS=bch.o code.o fft.o gf2x.o gf.o hqc.o kem.o parsing.o repetition.o vector.o

CFLAGS=-O3 -mavx2 -mbmi -mpclmul -Wall -Wextra -Wpedantic -Wvla -Werror -Wredundant-decls -Wmissing-prototypes -std=c99 -I../../../common $(EXTRAFLAGS)

all: $(LIB)

%.o: %.s $(HEADERS)
$(AS) -o $@ $<

%.o: %.c $(HEADERS)
$(CC) $(CFLAGS) -c -o $@ $<

$(LIB): $(OBJECTS)
$(AR) -r $@ $(OBJECTS)

clean:
$(RM) $(OBJECTS)
$(RM) $(LIB)

+ 18
- 0
crypto_kem/hqc-128/avx2/alpha_table.h
File diff suppressed because it is too large
View File


+ 25
- 0
crypto_kem/hqc-128/avx2/api.h View File

@@ -0,0 +1,25 @@
#ifndef PQCLEAN_HQC128_AVX2_API_H
#define PQCLEAN_HQC128_AVX2_API_H
/**
* @file api.h
* @brief NIST KEM API used by the HQC_KEM IND-CCA2 scheme
*/

#define PQCLEAN_HQC128_AVX2_CRYPTO_ALGNAME "HQC-128"

#define PQCLEAN_HQC128_AVX2_CRYPTO_SECRETKEYBYTES 3064
#define PQCLEAN_HQC128_AVX2_CRYPTO_PUBLICKEYBYTES 3024
#define PQCLEAN_HQC128_AVX2_CRYPTO_BYTES 64
#define PQCLEAN_HQC128_AVX2_CRYPTO_CIPHERTEXTBYTES 6017

// As a technicality, the public key is appended to the secret key in order to respect the NIST API.
// Without this constraint, PQCLEAN_HQC128_AVX2_CRYPTO_SECRETKEYBYTES would be defined as 32

int PQCLEAN_HQC128_AVX2_crypto_kem_keypair(unsigned char *pk, unsigned char *sk);

int PQCLEAN_HQC128_AVX2_crypto_kem_enc(unsigned char *ct, unsigned char *ss, const unsigned char *pk);

int PQCLEAN_HQC128_AVX2_crypto_kem_dec(unsigned char *ss, const unsigned char *ct, const unsigned char *sk);


#endif

+ 367
- 0
crypto_kem/hqc-128/avx2/bch.c View File

@@ -0,0 +1,367 @@
#include "alpha_table.h"
#include "bch.h"
#include "fft.h"
#include "gf.h"
#include "parameters.h"
#include "vector.h"
#include <immintrin.h>
#include <stdint.h>
#include <string.h>
/**
* @file bch.c
* Constant time implementation of BCH codes
*/


static uint16_t mod(uint16_t i, uint16_t modulus);
static void compute_cyclotomic_cosets(uint16_t *cosets, uint16_t upper_bound);
static size_t compute_elp(uint16_t *sigma, const uint16_t *syndromes);
static void message_from_codeword(uint64_t *message, const uint64_t *codeword);
static void compute_syndromes(__m256i *syndromes, const uint64_t *rcv);
static void compute_roots(uint64_t *error, const uint16_t *sigma);

/**
* @brief Returns i modulo the given modulus.
*
* i must be less than 2*modulus.
* Therefore, the return value is either i or i-modulus.
* @returns i mod (modulus)
* @param[in] i The integer whose modulo is taken
* @param[in] modulus The modulus
*/
static uint16_t mod(uint16_t i, uint16_t modulus) {
uint16_t tmp = i - modulus;

// mask = 0xffff if(i < PARAM_GF_MUL_ORDER)
int16_t mask = -(tmp >> 15);

return tmp + (mask & modulus);
}



/**
* @brief Computes the odd binary cyclotomic cosets modulo 2^m-1 for integers less than upper_bound.
*
* The array cosets of size 2^m-1 is filled by placing at index i the coset representative of i.
* @param[out] cosets Array receiving the coset representatives
* @param[in] upper_bound The upper bound
*/
static void compute_cyclotomic_cosets(uint16_t *cosets, uint16_t upper_bound) {
// Compute the odd cyclotomic classes
for (uint16_t i = 1 ; i < upper_bound ; i += 2) {
if (cosets[i] == 0) { // If i does not already belong to a class
uint16_t tmp = i;
size_t j = PARAM_M;
cosets[i] = i;
while (--j) { // Complete i's class
tmp = mod(2 * tmp, PARAM_GF_MUL_ORDER);
cosets[tmp] = i;
}
}
}
}



/**
* @brief Computes the generator polynomial of the primitive BCH code with given parameters.
*
* Code length is 2^m-1. <br>
* Parameter t is the targeted correction capacity of the code
* and receives the real correction capacity (which is at least equal to the target). <br>
* exp and log are arrays giving antilog and log of GF(2^m) elements.
* @returns the degree of the generator polynomial
* @param[out] bch_poly Array of size (m*t + 1) receiving the coefficients of the generator polynomial
* @param[in,out] t Targeted correction capacity; receives the real correction capacity
* @param[in] exp Antilog table of GF(2^m)
* @param[in] log Log table of GF(2^m)
*/
size_t PQCLEAN_HQC128_AVX2_compute_bch_poly(uint16_t *bch_poly, size_t *t, const uint16_t *exp, const uint16_t *log) {
uint16_t cosets[PARAM_GF_MUL_ORDER];
size_t deg_bch_poly = 0;

memset(cosets, 0, 2 * PARAM_GF_MUL_ORDER);
compute_cyclotomic_cosets(cosets, 2 * *t);

// Start with bch_poly(X) = 1
bch_poly[0] = 1;

for (uint16_t i = 1 ; i < PARAM_GF_MUL_ORDER ; ++i) {
if (cosets[i] == 0) {
continue;
}

// Multiply bch_poly(X) by X-a^i
for (size_t j = deg_bch_poly ; j ; --j) {
int16_t mask = -((uint16_t) - bch_poly[j] >> 15);
bch_poly[j] = (mask & exp[mod(log[bch_poly[j]] + i, PARAM_GF_MUL_ORDER)]) ^ bch_poly[j - 1];
}
bch_poly[0] = exp[mod(log[bch_poly[0]] + i, PARAM_GF_MUL_ORDER)];
bch_poly[++deg_bch_poly] = 1;
}

// Determine the real correction capacity
while (cosets[2 * *t + 1] != 0) {
++*t;
}

return deg_bch_poly;
}



/**
* @brief Computes the values alpha^ij for decoding syndromes
*
* function to initialize a table which contains values alpha^ij for i in [0,N1[ and j in [1,2*PARAM_DELTA]
* these values are used in order to compute the syndromes of the received word v(x)=v_0+v_1x+...+v_{n1-1}x^{n1-1}
* value alpha^ij is stored in alpha_ij_table[2*PARAM_DELTA*i+j-1]
* The syndromes are equal to v(alpha^k) for k in [1,2*PARAM_DELTA]
* Size of the table is fixed to match 256 bit representation
* Useless values are filled with 0.
*
* @param[in] exp Exp look-up-table of GF
*/
void PQCLEAN_HQC128_AVX2_table_alphaij_generation(const uint16_t *exp) {
int32_t tmp_value;
int16_t *alpha_tmp;

// pre-computation of alpha^ij for i in [0, N1[ and j in [1, 2*PARAM_DELTA]
// see comment of alpha_ij_table_init() function.
for (uint16_t i = 0; i < PARAM_N1 ; ++i) {
tmp_value = 0;
alpha_tmp = table_alpha_ij + i * (PARAM_DELTA << 1);
for (uint16_t j = 0 ; j < (PARAM_DELTA << 1) ; j++) {
tmp_value = PQCLEAN_HQC128_AVX2_gf_mod(tmp_value + i);
alpha_tmp[j] = exp[tmp_value];
}
}
}



/**
* @brief Computes the error locator polynomial (ELP) sigma
*
* This is a constant time implementation of Berlekamp's simplified algorithm (see @cite joiner1995decoding). <br>
* We use the letter p for rho which is initialized at -1/2. <br>
* The array X_sigma_p represents the polynomial X^(2(mu-rho))*sigma_p(X). <br>
* Instead of maintaining a list of sigmas, we update in place both sigma and X_sigma_p. <br>
* sigma_copy serves as a temporary save of sigma in case X_sigma_p needs to be updated. <br>
* We can properly correct only if the degree of sigma does not exceed PARAM_DELTA.
* This means only the first PARAM_DELTA + 1 coefficients of sigma are of value
* and we only need to save its first PARAM_DELTA - 1 coefficients.
*
* @returns the degree of the ELP sigma
* @param[out] sigma Array of size (at least) PARAM_DELTA receiving the ELP
* @param[in] syndromes Array of size (at least) 2*PARAM_DELTA storing the syndromes
*/
static size_t compute_elp(uint16_t *sigma, const uint16_t *syndromes) {
sigma[0] = 1;
size_t deg_sigma = 0;
size_t deg_sigma_p = 0;
uint16_t sigma_copy[PARAM_DELTA - 1] = {0};
size_t deg_sigma_copy = 0;
uint16_t X_sigma_p[PARAM_DELTA + 1] = {0, 1};
int32_t pp = -1; // 2*rho
uint16_t d_p = 1;
uint16_t d = syndromes[0];

for (size_t mu = 0 ; mu < PARAM_DELTA ; ++mu) {
// Save sigma in case we need it to update X_sigma_p
memcpy(sigma_copy, sigma, 2 * (PARAM_DELTA - 1));
deg_sigma_copy = deg_sigma;

uint16_t dd = PQCLEAN_HQC128_AVX2_gf_mul(d, PQCLEAN_HQC128_AVX2_gf_inverse(d_p)); // 0 if(d == 0)
for (size_t i = 1 ; (i <= 2 * mu + 1) && (i <= PARAM_DELTA) ; ++i) {
sigma[i] ^= PQCLEAN_HQC128_AVX2_gf_mul(dd, X_sigma_p[i]);
}

size_t deg_X = 2 * mu - pp; // 2*(mu-rho)
size_t deg_X_sigma_p = deg_X + deg_sigma_p;

// mask1 = 0xffff if(d != 0) and 0 otherwise
int16_t mask1 = -((uint16_t) - d >> 15);

// mask2 = 0xffff if(deg_X_sigma_p > deg_sigma) and 0 otherwise
int16_t mask2 = -((uint16_t) (deg_sigma - deg_X_sigma_p) >> 15);

// mask12 = 0xffff if the deg_sigma increased and 0 otherwise
int16_t mask12 = mask1 & mask2;
deg_sigma = (mask12 & deg_X_sigma_p) ^ (~mask12 & deg_sigma);

if (mu == PARAM_DELTA - 1) {
break;
}

// Update pp, d_p and X_sigma_p if needed
pp = (mask12 & (2 * mu)) ^ (~mask12 & pp);
d_p = (mask12 & d) ^ (~mask12 & d_p);
for (size_t i = PARAM_DELTA - 1 ; i ; --i) {
X_sigma_p[i + 1] = (mask12 & sigma_copy[i - 1]) ^ (~mask12 & X_sigma_p[i - 1]);
}
X_sigma_p[1] = 0;
X_sigma_p[0] = 0;
deg_sigma_p = (mask12 & deg_sigma_copy) ^ (~mask12 & deg_sigma_p);

// Compute the next discrepancy
d = syndromes[2 * mu + 2];
for (size_t i = 1 ; (i <= 2 * mu + 1) && (i <= PARAM_DELTA) ; ++i) {
d ^= PQCLEAN_HQC128_AVX2_gf_mul(sigma[i], syndromes[2 * mu + 2 - i]);
}
}

return deg_sigma;
}



/**
* @brief Retrieves the message message from the codeword codeword
*
* Since we performed a systematic encoding, the message is the last PARAM_K bits of the codeword.
*
* @param[out] message Array of size VEC_K_SIZE_BYTES receiving the message
* @param[in] codeword Array of size VEC_N1_SIZE_BYTES storing the codeword
*/
static void message_from_codeword(uint64_t *message, const uint64_t *codeword) {
int32_t val = PARAM_N1 - PARAM_K;

uint64_t mask1 = (uint64_t) (0xffffffffffffffff << val % 64);
uint64_t mask2 = (uint64_t) (0xffffffffffffffff >> (64 - val % 64));
size_t index = val / 64;

for (size_t i = 0 ; i < VEC_K_SIZE_64 - 1 ; ++i) {
uint64_t message1 = (codeword[index] & mask1) >> val % 64;
uint64_t message2 = (codeword[++index] & mask2) << (64 - val % 64);
message[i] = message1 | message2;
}

// Last byte (8-val % 8 is the number of bits given by message1)
if ((PARAM_K % 64 == 0) || (64 - val % 64 < PARAM_K % 64)) {
uint64_t message1 = (codeword[index] & mask1) >> val % 64;
uint64_t message2 = (codeword[++index] & mask2) << (64 - val % 64);
message[VEC_K_SIZE_64 - 1] = message1 | message2;
} else {
uint64_t message1 = (codeword[index] & mask1) >> val % 64;
message[VEC_K_SIZE_64 - 1] = message1;
}
}



/**
* @brief Computes the 2^PARAM_DELTA syndromes from the received vector vector
*
* Syndromes are the sum of powers of alpha weighted by vector's coefficients.
* These powers have been pre-computed in table_alphaPARAM_DELTA.h
* Syndromes are 16-bits long , hence we can simultaneously compute 16 syndromes
* in a 256-bit register
*
* @param[out] syndromes Array of size 2^(PARAM_FFT_T) receiving the 2*PARAM_DELTA syndromes
* @param[in] rcv Array of size VEC_N1_SIZE_BYTES storing the received word
*/
void compute_syndromes(__m256i *syndromes, const uint64_t *rcv) {
const __m256i zero_256 = _mm256_set1_epi64x(0);
const __m256i mask_one = _mm256_set_epi64x(0x0303030303030303, 0x0202020202020202, 0x0101010101010101, 0x0);
const __m256i mask_two = _mm256_set1_epi64x(-0x7FBFDFEFF7FBFDFF);
const __m256i un_256 = _mm256_set1_epi64x(1);

__m256i y;
__m256i S;
__m256i L;
__m256i tmp_repeat;
uint32_t *aux;
int16_t *alpha_tmp;
uint32_t i;
// static variable so that it is stored in the DATA segment
// not in the STACK segment
static uint8_t tmp_array[PARAM_N1 + 4]; // +4 to control overflow due to management of 256 bits
__m256i *z = (__m256i *) tmp_array;
// vectorized version of the separation of the coordinates of the vector v in order to put each coordinate in an unsigned char
// aux is used to consider 4 elements in v at each step of the loop
aux = (uint32_t *) rcv;
for (i = 0 ; i < ((VEC_N1_SIZE_BYTES >> 2) << 2) ; i += 4) {
// duplicate aux 8 times in y , i.e y= (aux aux aux .... aux)
y = _mm256_set1_epi32(*aux);
// shuffle the bytes of y so that if aux=(a0 a1 a2 a3)
// then y = (a0 a0 a0 a0 a0 a0 a0 a0 a1 a1 a1 a1 a1 a1 a1 a1 .... a3)
y = _mm256_shuffle_epi8(y, mask_one);
// apply a mask on each byte of y to determine if jth bit of a_k is 0 or 1
z[i >> 2] = _mm256_and_si256(y, mask_two);
aux ++;
}

// Evaluation of the polynomial corresponding to the vector v in alpha^i for i in {1, ..., 2 * PARAM_DELTA}
for (size_t j = 0 ; j < SYND_SIZE_256 ; ++j) {
S = zero_256;
alpha_tmp = table_alpha_ij + (j << 4);

for (size_t i = 0 ; i < PARAM_N1 ; ++i) {
tmp_repeat = _mm256_set1_epi64x((long long)(tmp_array[i] != 0));
L = _mm256_cmpeq_epi64(tmp_repeat, un_256);
tmp_repeat = _mm256_lddqu_si256((__m256i *)(alpha_tmp + i * (PARAM_DELTA << 1)));
L = _mm256_and_si256(L, tmp_repeat);
S = _mm256_xor_si256(L, S);
}
_mm256_storeu_si256(syndromes + j, S);
}
}


/**
* @brief Computes the error polynomial error from the error locator polynomial sigma
*
* See function PQCLEAN_HQC128_AVX2_fft for more details.
*
* @param[out] error Array of VEC_N1_SIZE_BYTES elements receiving the error polynomial
* @param[in] sigma Array of 2^PARAM_FFT elements storing the error locator polynomial
*/
static void compute_roots(uint64_t *error, const uint16_t *sigma) {
uint16_t w[1 << PARAM_M] = {0}; // w will receive the evaluation of sigma in all field elements

PQCLEAN_HQC128_AVX2_fft(w, sigma, PARAM_DELTA + 1);
PQCLEAN_HQC128_AVX2_fft_retrieve_bch_error_poly(error, w);
}



/**
* @brief Decodes the received word
*
* This function relies on four steps:
* <ol>
* <li> The first step, done by additive FFT transpose, is the computation of the 2*PARAM_DELTA syndromes.
* <li> The second step is the computation of the error-locator polynomial sigma.
* <li> The third step, done by additive FFT, is finding the error-locator numbers by calculating the roots of the polynomial sigma and takings their inverses.
* <li> The fourth step is the correction of the errors in the received polynomial.
* </ol>
* For a more complete picture on BCH decoding, see Shu. Lin and Daniel J. Costello in Error Control Coding: Fundamentals and Applications @cite lin1983error
*
* @param[out] message Array of size VEC_K_SIZE_BYTES receiving the decoded message
* @param[in] vector Array of size VEC_N1_SIZE_BYTES storing the received word
*/

void PQCLEAN_HQC128_AVX2_bch_code_decode(uint64_t *message, uint64_t *vector) {
uint16_t sigma[1 << PARAM_FFT] = {0};
uint64_t error[(1 << PARAM_M) / 8] = {0};
static __m256i syndromes_256[SYND_SIZE_256];

// Calculate the 2*PARAM_DELTA syndromes
compute_syndromes(syndromes_256, vector);

// Compute the error locator polynomial sigma
// Sigma's degree is at most PARAM_DELTA but the FFT requires the extra room
compute_elp(sigma, (uint16_t *)syndromes_256);

// Compute the error polynomial error
compute_roots(error, sigma);

// Add the error polynomial to the received polynomial
PQCLEAN_HQC128_AVX2_vect_add(vector, vector, error, VEC_N1_SIZE_64);

// Retrieve the message from the decoded codeword
message_from_codeword(message, vector);

}

+ 23
- 0
crypto_kem/hqc-128/avx2/bch.h View File

@@ -0,0 +1,23 @@
#ifndef BCH_H
#define BCH_H


/**
* @file bch.h
* Header file of bch.c
*/

#include "parameters.h"
#include "parameters.h"
#include <stddef.h>
#include <stdint.h>

void PQCLEAN_HQC128_AVX2_bch_code_decode(uint64_t *message, uint64_t *vector);


size_t PQCLEAN_HQC128_AVX2_compute_bch_poly(uint16_t *bch_poly, size_t *t, const uint16_t *exp, const uint16_t *log);

void PQCLEAN_HQC128_AVX2_table_alphaij_generation(const uint16_t *exp);


#endif

+ 104
- 0
crypto_kem/hqc-128/avx2/code.c View File

@@ -0,0 +1,104 @@
#include "bch.h"
#include "code.h"
#include "gen_matrix.h"
#include "parameters.h"
#include "repetition.h"
#include <immintrin.h>
#include <stdint.h>
#include <string.h>
/**
* @file code.c
* @brief Implementation of tensor code
*/


static inline uint64_t mux(uint64_t a, uint64_t b, int64_t bit);

static inline uint64_t mux(uint64_t a, uint64_t b, int64_t bit) {
uint64_t ret = a ^ b;
return (ret & (-bit >> 63)) ^ a;
}



/**
*
* @brief Encoding the message m to a code word em using the tensor code
*
* We encode the message using the BCH code. For each bit obtained,
* we duplicate the bit PARAM_N2 times to apply repetition code.
* BCH encoding is done using the classical mG operation,
* columns of the matrix are stored in 256-bit registers
*
* @param[out] em Pointer to an array that is the tensor code word
* @param[in] m Pointer to an array that is the message
*/
void PQCLEAN_HQC128_AVX2_code_encode(uint64_t *em, const uint64_t *m) {
uint64_t res;
uint32_t i;
static const uint64_t mask[2][2] = {{0x0UL, 0x0UL}, {0x7FFFFFFFUL, 0x3FFFFFFFUL}};


__m256i *colonne, y, aux0;
__m256i msg = _mm256_lddqu_si256((const __m256i *) m);
colonne = ((__m256i *) gen_matrix);

for (i = 0 ; i < PARAM_N1 - PARAM_K ; i++) {
// y is the and operation between m and ith column of G
y = _mm256_and_si256(colonne[i], msg);
// aux0 = (y2 y3 y0 y1)
aux0 = _mm256_permute2x128_si256(y, y, 1);
// y = (y0^y2 y1^y3 y2^y0 y3^y1)
y = _mm256_xor_si256(y, aux0);
// aux0 = (y1^y3 y0^y2 y1^y3 y0^y2)
aux0 = _mm256_shuffle_epi32(y, 0x4e);
// y = (y0^y1^y2^y3 repeated 4 times)
y = _mm256_xor_si256(aux0, y);
res = _mm_popcnt_u64(_mm256_extract_epi64(y, 0)) & 1;


uint16_t pos_r = PARAM_N2 * i;
uint16_t idx_r = (pos_r & 0x3f);
uint64_t *p64 = em;
p64 += pos_r >> 6;
uint64_t select = mux(mask[0][0], mask[1][0], res);
*p64 ^= select << idx_r;
select = mux(mask[0][1], mask[1][1], res);
*(p64 + 1) ^= select >> ((63 - idx_r));
}

/* now we add the message m */
/* systematic encoding */
for (int32_t i = 0 ; i < 4 ; i++) {
for (int32_t j = 0 ; j < 64 ; j++) {
uint8_t bit = (m[i] >> j) & 0x1;
uint32_t pos_r = PARAM_N2 * ((PARAM_N1 - PARAM_K) + ((i << 6) + j));
uint16_t idx_r = (pos_r & 0x3f);
uint64_t *p64 = em;


p64 += pos_r >> 6;
uint64_t select = mux(mask[0][0], mask[1][0], bit);
*p64 ^= select << idx_r;
select = mux(mask[0][1], mask[1][1], bit);
*(p64 + 1) ^= select >> ((63 - idx_r));
}
}

}


/**
* @brief Decoding the code word em to a message m using the tensor code
*
* @param[out] m Pointer to an array that is the message
* @param[in] em Pointer to an array that is the code word
*/
void PQCLEAN_HQC128_AVX2_code_decode(uint64_t *m, const uint64_t *em) {

uint64_t tmp[VEC_N1_SIZE_64] = {0};

PQCLEAN_HQC128_AVX2_repetition_code_decode(tmp, em);
PQCLEAN_HQC128_AVX2_bch_code_decode(m, tmp);

}

+ 20
- 0
crypto_kem/hqc-128/avx2/code.h View File

@@ -0,0 +1,20 @@
#ifndef CODE_H
#define CODE_H


/**
* @file code.h
* Header file of code.c
*/

#include "parameters.h"
#include "parameters.h"
#include <stddef.h>
#include <stdint.h>

void PQCLEAN_HQC128_AVX2_code_encode(uint64_t *em, const uint64_t *message);

void PQCLEAN_HQC128_AVX2_code_decode(uint64_t *m, const uint64_t *em);


#endif

+ 333
- 0
crypto_kem/hqc-128/avx2/fft.c View File

@@ -0,0 +1,333 @@
#include "fft.h"
#include "gf.h"
#include "parameters.h"
#include <stdint.h>
#include <stdio.h>
#include <string.h>
/**
* @file fft.c
* Implementation of the additive FFT and its transpose.
* This implementation is based on the paper from Gao and Mateer: <br>
* Shuhong Gao and Todd Mateer, Additive Fast Fourier Transforms over Finite Fields,
* IEEE Transactions on Information Theory 56 (2010), 6265--6272.
* http://www.math.clemson.edu/~sgao/papers/GM10.pdf <br>
* and includes improvements proposed by Bernstein, Chou and Schwabe here:
* https://binary.cr.yp.to/mcbits-20130616.pdf
*/


static void compute_fft_betas(uint16_t *betas);
static void compute_subset_sums(uint16_t *subset_sums, const uint16_t *set, size_t set_size);
static void radix(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f);
static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32_t m_f, const uint16_t *betas);


/**
* @brief Computes the basis of betas (omitting 1) used in the additive FFT and its transpose
*
* @param[out] betas Array of size PARAM_M-1
*/
static void compute_fft_betas(uint16_t *betas) {
for (size_t i = 0 ; i < PARAM_M - 1 ; ++i) {
betas[i] = 1 << (PARAM_M - 1 - i);
}
}



/**
* @brief Computes the subset sums of the given set
*
* The array subset_sums is such that its ith element is
* the subset sum of the set elements given by the binary form of i.
*
* @param[out] subset_sums Array of size 2^set_size receiving the subset sums
* @param[in] set Array of set_size elements
* @param[in] set_size Size of the array set
*/
static void compute_subset_sums(uint16_t *subset_sums, const uint16_t *set, size_t set_size) {
subset_sums[0] = 0;

for (size_t i = 0 ; i < set_size ; ++i) {
for (size_t j = 0 ; j < (1U << i) ; ++j) {
subset_sums[(1 << i) + j] = set[i] ^ subset_sums[j];
}
}
}



/**
* @brief Computes the radix conversion of a polynomial f in GF(2^m)[x]
*
* Computes f0 and f1 such that f(x) = f0(x^2-x) + x.f1(x^2-x)
* as proposed by Bernstein, Chou and Schwabe:
* https://binary.cr.yp.to/mcbits-20130616.pdf
*
* @param[out] f0 Array half the size of f
* @param[out] f1 Array half the size of f
* @param[in] f Array of size a power of 2
* @param[in] m_f 2^{m_f} is the smallest power of 2 greater or equal to the number of coefficients of f
*/
static void radix(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f) {
switch (m_f) {
case 4:
f0[4] = f[8] ^ f[12];
f0[6] = f[12] ^ f[14];
f0[7] = f[14] ^ f[15];
f1[5] = f[11] ^ f[13];
f1[6] = f[13] ^ f[14];
f1[7] = f[15];
f0[5] = f[10] ^ f[12] ^ f1[5];
f1[4] = f[9] ^ f[13] ^ f0[5];

f0[0] = f[0];
f1[3] = f[7] ^ f[11] ^ f[15];
f0[3] = f[6] ^ f[10] ^ f[14] ^ f1[3];
f0[2] = f[4] ^ f0[4] ^ f0[3] ^ f1[3];
f1[1] = f[3] ^ f[5] ^ f[9] ^ f[13] ^ f1[3];
f1[2] = f[3] ^ f1[1] ^ f0[3];
f0[1] = f[2] ^ f0[2] ^ f1[1];
f1[0] = f[1] ^ f0[1];
return;

case 3:
f0[0] = f[0];
f0[2] = f[4] ^ f[6];
f0[3] = f[6] ^ f[7];
f1[1] = f[3] ^ f[5] ^ f[7];
f1[2] = f[5] ^ f[6];
f1[3] = f[7];
f0[1] = f[2] ^ f0[2] ^ f1[1];
f1[0] = f[1] ^ f0[1];
return;

case 2:
f0[0] = f[0];
f0[1] = f[2] ^ f[3];
f1[0] = f[1] ^ f0[1];
f1[1] = f[3];
return;

case 1:
f0[0] = f[0];
f1[0] = f[1];
return;

default:
;
size_t n = 1 << (m_f - 2);

uint16_t Q[2 * (1 << (PARAM_FFT - 2))];
uint16_t R[2 * (1 << (PARAM_FFT - 2))];

uint16_t Q0[1 << (PARAM_FFT - 2)];
uint16_t Q1[1 << (PARAM_FFT - 2)];
uint16_t R0[1 << (PARAM_FFT - 2)];
uint16_t R1[1 << (PARAM_FFT - 2)];

memcpy(Q, f + 3 * n, 2 * n);
memcpy(Q + n, f + 3 * n, 2 * n);
memcpy(R, f, 4 * n);

for (size_t i = 0 ; i < n ; ++i) {
Q[i] ^= f[2 * n + i];
R[n + i] ^= Q[i];
}

radix(Q0, Q1, Q, m_f - 1);
radix(R0, R1, R, m_f - 1);

memcpy(f0, R0, 2 * n);
memcpy(f0 + n, Q0, 2 * n);
memcpy(f1, R1, 2 * n);
memcpy(f1 + n, Q1, 2 * n);
}
}



/**
* @brief Evaluates f at all subset sums of a given set
*
* This function is a subroutine of the function fft.
*
* @param[out] w Array
* @param[in] f Array
* @param[in] f_coeffs Number of coefficients of f
* @param[in] m Number of betas
* @param[in] m_f Number of coefficients of f (one more than its degree)
* @param[in] betas FFT constants
*/
static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32_t m_f, const uint16_t *betas) {
uint16_t f0[1 << (PARAM_FFT - 2)];
uint16_t f1[1 << (PARAM_FFT - 2)];
uint16_t gammas[PARAM_M - 2];
uint16_t deltas[PARAM_M - 2];
size_t k = 1 << (m - 1);
uint16_t gammas_sums[1 << (PARAM_M - 2)];
uint16_t u[1 << (PARAM_M - 2)] = {0};
uint16_t v[1 << (PARAM_M - 2)] = {0};

// Step 1
if (m_f == 1) {
uint16_t tmp[PARAM_M - (PARAM_FFT - 1)];
for (size_t i = 0 ; i < m ; ++i) {
tmp[i] = PQCLEAN_HQC128_AVX2_gf_mul(betas[i], f[1]);
}

w[0] = f[0];
for (size_t j = 0 ; j < m ; ++j) {
for (size_t k = 0 ; k < (1U << j) ; ++k) {
w[(1 << j) + k] = w[k] ^ tmp[j];
}
}

return;
}

// Step 2: compute g
if (betas[m - 1] != 1) {
uint16_t beta_m_pow = 1;
for (size_t i = 1 ; i < (1U << m_f) ; ++i) {
beta_m_pow = PQCLEAN_HQC128_AVX2_gf_mul(beta_m_pow, betas[m - 1]);
f[i] = PQCLEAN_HQC128_AVX2_gf_mul(beta_m_pow, f[i]);
}
}

// Step 3
radix(f0, f1, f, m_f);

// Step 4: compute gammas and deltas
for (uint8_t i = 0 ; i < m - 1 ; ++i) {
gammas[i] = PQCLEAN_HQC128_AVX2_gf_mul(betas[i], PQCLEAN_HQC128_AVX2_gf_inverse(betas[m - 1]));
deltas[i] = PQCLEAN_HQC128_AVX2_gf_square(gammas[i]) ^ gammas[i];
}

// Compute gammas sums
compute_subset_sums(gammas_sums, gammas, m - 1);

// Step 5
fft_rec(u, f0, (f_coeffs + 1) / 2, m - 1, m_f - 1, deltas);

if (f_coeffs <= 3) { // 3-coefficient polynomial f case: f1 is constant
w[0] = u[0];
w[k] = u[0] ^ f1[0];
for (size_t i = 1 ; i < k ; ++i) {
w[i] = u[i] ^ PQCLEAN_HQC128_AVX2_gf_mul(gammas_sums[i], f1[0]);
w[k + i] = w[i] ^ f1[0];
}
} else {
fft_rec(v, f1, f_coeffs / 2, m - 1, m_f - 1, deltas);

// Step 6
memcpy(w + k, v, 2 * k);
w[0] = u[0];
w[k] ^= u[0];
for (size_t i = 1 ; i < k ; ++i) {
w[i] = u[i] ^ PQCLEAN_HQC128_AVX2_gf_mul(gammas_sums[i], v[i]);
w[k + i] ^= w[i];
}
}
}



/**
* @brief Evaluates f on all fields elements using an additive FFT algorithm
*
* f_coeffs is the number of coefficients of f (one less than its degree). <br>
* The FFT proceeds recursively to evaluate f at all subset sums of a basis B. <br>
* This implementation is based on the paper from Gao and Mateer: <br>
* Shuhong Gao and Todd Mateer, Additive Fast Fourier Transforms over Finite Fields,
* IEEE Transactions on Information Theory 56 (2010), 6265--6272.
* http://www.math.clemson.edu/~sgao/papers/GM10.pdf <br>
* and includes improvements proposed by Bernstein, Chou and Schwabe here:
* https://binary.cr.yp.to/mcbits-20130616.pdf <br>
* Note that on this first call (as opposed to the recursive calls to fft_rec), gammas are equal to betas,
* meaning the first gammas subset sums are actually the subset sums of betas (except 1). <br>
* Also note that f is altered during computation (twisted at each level).
*
* @param[out] w Array
* @param[in] f Array of 2^PARAM_FFT elements
* @param[in] f_coeffs Number coefficients of f (i.e. deg(f)+1)
*/
void PQCLEAN_HQC128_AVX2_fft(uint16_t *w, const uint16_t *f, size_t f_coeffs) {
uint16_t betas[PARAM_M - 1];
uint16_t betas_sums[1 << (PARAM_M - 1)];
uint16_t f0[1 << (PARAM_FFT - 1)];
uint16_t f1[1 << (PARAM_FFT - 1)];
uint16_t deltas[PARAM_M - 1];
size_t k = 1 << (PARAM_M - 1);
uint16_t u[1 << (PARAM_M - 1)];
uint16_t v[1 << (PARAM_M - 1)];

// Follows Gao and Mateer algorithm
compute_fft_betas(betas);

// Step 1: PARAM_FFT > 1, nothing to do

// Compute gammas sums
compute_subset_sums(betas_sums, betas, PARAM_M - 1);

// Step 2: beta_m = 1, nothing to do

// Step 3
radix(f0, f1, f, PARAM_FFT);

// Step 4: Compute deltas
for (size_t i = 0 ; i < PARAM_M - 1 ; ++i) {
deltas[i] = PQCLEAN_HQC128_AVX2_gf_square(betas[i]) ^ betas[i];
}

// Step 5
fft_rec(u, f0, (f_coeffs + 1) / 2, PARAM_M - 1, PARAM_FFT - 1, deltas);
fft_rec(v, f1, f_coeffs / 2, PARAM_M - 1, PARAM_FFT - 1, deltas);

// Step 6, 7 and error polynomial computation
memcpy(w + k, v, 2 * k);

// Check if 0 is root
w[0] = u[0];

// Check if 1 is root
w[k] ^= u[0];

// Find other roots
for (size_t i = 1 ; i < k ; ++i) {
w[i] = u[i] ^ PQCLEAN_HQC128_AVX2_gf_mul(betas_sums[i], v[i]);
w[k + i] ^= w[i];
}
}



/**
* @brief Retrieves the error polynomial error from the evaluations w of the ELP (Error Locator Polynomial) on all field elements.
*
* @param[out] error Array of size VEC_N1_SIZE_BYTES
* @param[in] w Array of size 2^PARAM_M
*/
void PQCLEAN_HQC128_AVX2_fft_retrieve_bch_error_poly(uint64_t *error, const uint16_t *w) {
uint16_t gammas[PARAM_M - 1];
uint16_t gammas_sums[1 << (PARAM_M - 1)];
size_t k = 1 << (PARAM_M - 1);
size_t index = PARAM_GF_MUL_ORDER;

compute_fft_betas(gammas);
compute_subset_sums(gammas_sums, gammas, PARAM_M - 1);

error[0] ^= ((uint64_t) 1) ^ ((uint16_t) - w[0] >> 15);
uint64_t bit = ((uint64_t) 1) ^ ((uint16_t) - w[k] >> 15);
error[index / 8] ^= bit << (index % 64);

for (size_t i = 1 ; i < k ; ++i) {
index = PARAM_GF_MUL_ORDER - PQCLEAN_HQC128_AVX2_gf_log(gammas_sums[i]);
bit = ((uint64_t) 1) ^ ((uint16_t) - w[i] >> 15);
error[index / 64] ^= bit << (index % 64);

index = PARAM_GF_MUL_ORDER - PQCLEAN_HQC128_AVX2_gf_log(gammas_sums[i] ^ 1);
bit = ((uint64_t) 1) ^ ((uint16_t) - w[k + i] >> 15);
error[index / 64] ^= bit << (index % 64);
}
}

+ 20
- 0
crypto_kem/hqc-128/avx2/fft.h View File

@@ -0,0 +1,20 @@
#ifndef FFT_H
#define FFT_H


/**
* @file fft.h
* Header file of fft.c
*/

#include <stddef.h>

#include <stddef.h>
#include <stdint.h>

void PQCLEAN_HQC128_AVX2_fft(uint16_t *w, const uint16_t *f, size_t f_coeffs);

void PQCLEAN_HQC128_AVX2_fft_retrieve_bch_error_poly(uint64_t *error, const uint16_t *w);


#endif

+ 16
- 0
crypto_kem/hqc-128/avx2/gen_matrix.h
File diff suppressed because it is too large
View File


+ 167
- 0
crypto_kem/hqc-128/avx2/gf.c
File diff suppressed because it is too large
View File


+ 29
- 0
crypto_kem/hqc-128/avx2/gf.h View File

@@ -0,0 +1,29 @@
#ifndef GF_H
#define GF_H


/**
* @file gf.h
* Header file of gf.c
*/

#include <stddef.h>

#include <stddef.h>
#include <stdint.h>

void PQCLEAN_HQC128_AVX2_gf_generate(uint16_t *exp, uint16_t *log, int16_t m);


uint16_t PQCLEAN_HQC128_AVX2_gf_log(uint16_t elt);

uint16_t PQCLEAN_HQC128_AVX2_gf_mul(uint16_t a, uint16_t b);

uint16_t PQCLEAN_HQC128_AVX2_gf_square(uint16_t a);

uint16_t PQCLEAN_HQC128_AVX2_gf_inverse(uint16_t a);

uint16_t PQCLEAN_HQC128_AVX2_gf_mod(uint16_t i);


#endif

+ 558
- 0
crypto_kem/hqc-128/avx2/gf2x.c View File

@@ -0,0 +1,558 @@
#include "gf2x.h"
#include "parameters.h"
#include <immintrin.h>
#include <stdint.h>
#include <string.h>

/**
* \file gf2x.c
* \brief AVX2 implementation of multiplication of two polynomials
*/


// sizes for Toom-Cook
#define T_TM3_3W_256 32
#define T_TM3_3W_64 128

#define VEC_N_ARRAY_SIZE_VEC CEIL_DIVIDE(PARAM_N, 256) /*!< The number of needed vectors to store PARAM_N bits*/
#define WORD 64
#define LAST64 (PARAM_N >> 6)
uint64_t a1_times_a2[2 * VEC_N_256_SIZE_64 + 1];
uint64_t tmp_reduce[VEC_N_ARRAY_SIZE_VEC << 2];
__m256i *o256 = (__m256i *) tmp_reduce;
uint64_t bloc64[PARAM_OMEGA_R]; // Allocation with the biggest possible weight
uint64_t bit64[PARAM_OMEGA_R]; // Allocation with the biggest possible weight


static inline void reduce(uint64_t *o, const uint64_t *a);
inline static void karat_mult_1(__m128i *C, __m128i *A, __m128i *B);
inline static void karat_mult_2(__m256i *C, __m256i *A, __m256i *B);
inline static void karat_mult_4(__m256i *C, __m256i *A, __m256i *B);
inline static void karat_mult_8(__m256i *C, __m256i *A, __m256i *B);
inline static void karat_mult_16(__m256i *C, __m256i *A, __m256i *B);
inline static void karat_mult_32(__m256i *C, __m256i *A, __m256i *B);
static inline void divByXplus1(__m256i *out, __m256i *in, int size);
static void TOOM3Mult(uint64_t *Out, const uint64_t *A, const uint64_t *B);



/**
* @brief Compute o(x) = a(x) mod \f$ X^n - 1\f$
*
* This function computes the modular reduction of the polynomial a(x)
*
* @param[out] o Pointer to the result
* @param[in] a Pointer to the polynomial a(x)
*/
static inline void reduce(uint64_t *o, const uint64_t *a) {
__m256i r256, carry256;
__m256i *a256 = (__m256i *) a;
static const int32_t dec64 = PARAM_N & 0x3f;
static const int32_t d0 = WORD - dec64;
int32_t i, i2;

for (i = LAST64 ; i < (PARAM_N >> 5) - 4 ; i += 4) {
r256 = _mm256_lddqu_si256((__m256i const *) (& a[i]));
r256 = _mm256_srli_epi64(r256, dec64);
carry256 = _mm256_lddqu_si256((__m256i const *) (& a[i + 1]));
carry256 = _mm256_slli_epi64(carry256, d0);
r256 ^= carry256;
i2 = (i - LAST64) >> 2;
o256[i2] = a256[i2] ^ r256;
}

r256 = (__m256i) {
a[i], a[i + 1], 0x0UL, 0x0UL
};
carry256 = _mm256_lddqu_si256((__m256i const *) (& a[i + 1]));
r256 = _mm256_srli_epi64(r256, dec64);
carry256 = _mm256_slli_epi64(carry256, d0);
r256 ^= carry256;
i2 = (i - LAST64) >> 2;
o256[i2] = (a256[i2] ^ r256);
tmp_reduce[LAST64] &= RED_MASK;
memcpy(o, tmp_reduce, VEC_N_SIZE_BYTES);
}

/**
* @brief Compute C(x) = A(x)*B(x)
* A(x) and B(x) are stored in 128-bit registers
* This function computes A(x)*B(x) using Karatsuba
*
* @param[out] C Pointer to the result
* @param[in] A Pointer to the polynomial A(x)
* @param[in] B Pointer to the polynomial B(x)
*/
inline static void karat_mult_1(__m128i *C, __m128i *A, __m128i *B) {
__m128i D1[2];
__m128i D0[2], D2[2];
__m128i Al = _mm_loadu_si128(A);
__m128i Ah = _mm_loadu_si128(A + 1);
__m128i Bl = _mm_loadu_si128(B);
__m128i Bh = _mm_loadu_si128(B + 1);

// Compute Al.Bl=D0
__m128i DD0 = _mm_clmulepi64_si128(Al, Bl, 0);
__m128i DD2 = _mm_clmulepi64_si128(Al, Bl, 0x11);
__m128i AAlpAAh = _mm_xor_si128(Al, _mm_shuffle_epi32(Al, 0x4e));
__m128i BBlpBBh = _mm_xor_si128(Bl, _mm_shuffle_epi32(Bl, 0x4e));
__m128i DD1 = _mm_xor_si128(_mm_xor_si128(DD0, DD2), _mm_clmulepi64_si128(AAlpAAh, BBlpBBh, 0));
D0[0] = _mm_xor_si128(DD0, _mm_unpacklo_epi64(_mm_setzero_si128(), DD1));
D0[1] = _mm_xor_si128(DD2, _mm_unpackhi_epi64(DD1, _mm_setzero_si128()));

// Compute Ah.Bh=D2
DD0 = _mm_clmulepi64_si128(Ah, Bh, 0);
DD2 = _mm_clmulepi64_si128(Ah, Bh, 0x11);
AAlpAAh = _mm_xor_si128(Ah, _mm_shuffle_epi32(Ah, 0x4e));
BBlpBBh = _mm_xor_si128(Bh, _mm_shuffle_epi32(Bh, 0x4e));
DD1 = _mm_xor_si128(_mm_xor_si128(DD0, DD2), _mm_clmulepi64_si128(AAlpAAh, BBlpBBh, 0));
D2[0] = _mm_xor_si128(DD0, _mm_unpacklo_epi64(_mm_setzero_si128(), DD1));
D2[1] = _mm_xor_si128(DD2, _mm_unpackhi_epi64(DD1, _mm_setzero_si128()));

// Compute AlpAh.BlpBh=D1
// Initialisation of AlpAh and BlpBh
__m128i AlpAh = _mm_xor_si128(Al, Ah);
__m128i BlpBh = _mm_xor_si128(Bl, Bh);
DD0 = _mm_clmulepi64_si128(AlpAh, BlpBh, 0);
DD2 = _mm_clmulepi64_si128(AlpAh, BlpBh, 0x11);
AAlpAAh = _mm_xor_si128(AlpAh, _mm_shuffle_epi32(AlpAh, 0x4e));
BBlpBBh = _mm_xor_si128(BlpBh, _mm_shuffle_epi32(BlpBh, 0x4e));
DD1 = _mm_xor_si128(_mm_xor_si128(DD0, DD2), _mm_clmulepi64_si128(AAlpAAh, BBlpBBh, 0));
D1[0] = _mm_xor_si128(DD0, _mm_unpacklo_epi64(_mm_setzero_si128(), DD1));
D1[1] = _mm_xor_si128(DD2, _mm_unpackhi_epi64(DD1, _mm_setzero_si128()));

// Final comutation of C
__m128i middle = _mm_xor_si128(D0[1], D2[0]);
C[0] = D0[0];
C[1] = middle ^ D0[0] ^ D1[0];
C[2] = middle ^ D1[1] ^ D2[1];
C[3] = D2[1];
}



/**
* @brief Compute C(x) = A(x)*B(x)
*
* This function computes A(x)*B(x) using Karatsuba
* A(x) and B(x) are stored in 256-bit registers
* @param[out] C Pointer to the result
* @param[in] A Pointer to the polynomial A(x)
* @param[in] B Pointer to the polynomial B(x)
*/
inline static void karat_mult_2(__m256i *C, __m256i *A, __m256i *B) {
__m256i D0[2], D1[2], D2[2], SAA, SBB;
__m128i *A128 = (__m128i *)A, *B128 = (__m128i *)B;

karat_mult_1((__m128i *) D0, A128, B128);
karat_mult_1((__m128i *) D2, A128 + 2, B128 + 2);

SAA = A[0] ^ A[1];
SBB = B[0] ^ B[1];

karat_mult_1((__m128i *) D1, (__m128i *) &SAA, (__m128i *) &SBB);
__m256i middle = _mm256_xor_si256(D0[1], D2[0]);

C[0] = D0[0];
C[1] = middle ^ D0[0] ^ D1[0];
C[2] = middle ^ D1[1] ^ D2[1];
C[3] = D2[1];
}



/**
* @brief Compute C(x) = A(x)*B(x)
*
* This function computes A(x)*B(x) using Karatsuba
* A(x) and B(x) are stored in 256-bit registers
* @param[out] C Pointer to the result
* @param[in] A Pointer to the polynomial A(x)
* @param[in] B Pointer to the polynomial B(x)
*/
inline static void karat_mult_4(__m256i *C, __m256i *A, __m256i *B) {
__m256i D0[4], D1[4], D2[4], SAA[2], SBB[2];

karat_mult_2( D0, A, B);
karat_mult_2(D2, A + 2, B + 2);

SAA[0] = A[0] ^ A[2];
SBB[0] = B[0] ^ B[2];
SAA[1] = A[1] ^ A[3];
SBB[1] = B[1] ^ B[3];

karat_mult_2( D1, SAA, SBB);

__m256i middle0 = _mm256_xor_si256(D0[2], D2[0]);
__m256i middle1 = _mm256_xor_si256(D0[3], D2[1]);

C[0] = D0[0];
C[1] = D0[1];
C[2] = middle0 ^ D0[0] ^ D1[0];
C[3] = middle1 ^ D0[1] ^ D1[1];
C[4] = middle0 ^ D1[2] ^ D2[2];
C[5] = middle1 ^ D1[3] ^ D2[3];
C[6] = D2[2];
C[7] = D2[3];
}



/**
* @brief Compute C(x) = A(x)*B(x)
*
* This function computes A(x)*B(x) using Karatsuba
* A(x) and B(x) are stored in 256-bit registers
* @param[out] C Pointer to the result
* @param[in] A Pointer to the polynomial A(x)
* @param[in] B Pointer to the polynomial B(x)
*/
inline static void karat_mult_8(__m256i *C, __m256i *A, __m256i *B) {
__m256i D0[8], D1[8], D2[8], SAA[4], SBB[4];

karat_mult_4( D0, A, B);
karat_mult_4(D2, A + 4, B + 4);

for (int32_t i = 0 ; i < 4 ; i++) {
int is = i + 4;
SAA[i] = A[i] ^ A[is];
SBB[i] = B[i] ^ B[is];
}

karat_mult_4(D1, SAA, SBB);

for (int32_t i = 0 ; i < 4 ; i++) {
int32_t is = i + 4;
int32_t is2 = is + 4;
int32_t is3 = is2 + 4;

__m256i middle = _mm256_xor_si256(D0[is], D2[i]);

C[i] = D0[i];
C[is] = middle ^ D0[i] ^ D1[i];
C[is2] = middle ^ D1[is] ^ D2[is];
C[is3] = D2[is];
}
}



/**
* @brief Compute C(x) = A(x)*B(x)
*
* This function computes A(x)*B(x) using Karatsuba
* A(x) and B(x) are stored in 256-bit registers
* @param[out] C Pointer to the result
* @param[in] A Pointer to the polynomial A(x)
* @param[in] B Pointer to the polynomial B(x)
*/
inline static void karat_mult_16(__m256i *C, __m256i *A, __m256i *B) {
__m256i D0[16], D1[16], D2[16], SAA[8], SBB[8];

karat_mult_8( D0, A, B);
karat_mult_8(D2, A + 8, B + 8);

for (int32_t i = 0 ; i < 8 ; i++) {
int32_t is = i + 8;
SAA[i] = A[i] ^ A[is];
SBB[i] = B[i] ^ B[is];
}

karat_mult_8( D1, SAA, SBB);

for (int32_t i = 0 ; i < 8 ; i++) {
int32_t is = i + 8;
int32_t is2 = is + 8;
int32_t is3 = is2 + 8;

__m256i middle = _mm256_xor_si256(D0[is], D2[i]);

C[i] = D0[i];
C[is] = middle ^ D0[i] ^ D1[i];
C[is2] = middle ^ D1[is] ^ D2[is];
C[is3] = D2[is];
}
}



/**
* @brief Compute C(x) = A(x)*B(x)
*
* This function computes A(x)*B(x) using Karatsuba
* A(x) and B(x) are stored in 256-bit registers
* @param[out] C Pointer to the result
* @param[in] A Pointer to the polynomial A(x)
* @param[in] B Pointer to the polynomial B(x)
*/
inline static void karat_mult_32(__m256i *C, __m256i *A, __m256i *B) {
__m256i D0[32], D1[32], D2[32], SAA[16], SBB[16];

karat_mult_16( D0, A, B);
karat_mult_16(D2, A + 16, B + 16);

for (int32_t i = 0 ; i < 16 ; i++) {
int is = i + 16;
SAA[i] = A[i] ^ A[is];
SBB[i] = B[i] ^ B[is];
}

karat_mult_16( D1, SAA, SBB);

for (int32_t i = 0 ; i < 16 ; i++) {
int32_t is = i + 16;
int32_t is2 = is + 16;
int32_t is3 = is2 + 16;

__m256i middle = _mm256_xor_si256(D0[is], D2[i]);

C[i] = D0[i];
C[is] = middle ^ D0[i] ^ D1[i];
C[is2] = middle ^ D1[is] ^ D2[is];
C[is3] = D2[is];
}
}


/**
* @brief Compute B(x) = A(x)/(x+1)
*
* This function computes A(x)/(x+1) using a Quercia like algorithm
* @param[out] out Pointer to the result
* @param[in] in Pointer to the polynomial A(x)
* @param[in] size used to define the number of coeeficients of A
*/
static inline void divByXplus1(__m256i *out, __m256i *in, int size) {
uint64_t *A = (uint64_t *) in;
uint64_t *B = (uint64_t *) out;

B[0] = A[0];

for (int32_t i = 1 ; i < 2 * (size << 2) ; i++) {
B[i] = B[i - 1] ^ A[i];
}
}



/**
* @brief Compute C(x) = A(x)*B(x) using TOOM3Mult
*
* This function computes A(x)*B(x) using TOOM-COOK3 Multiplication
* last multiplication are done using Karatsuba
* @param[out] Out Pointer to the result
* @param[in] A Pointer to the polynomial A(x)
* @param[in] B Pointer to the polynomial B(x)
*/
static void TOOM3Mult(uint64_t *Out, const uint64_t *A, const uint64_t *B) {
static __m256i U0[T_TM3_3W_256], V0[T_TM3_3W_256], U1[T_TM3_3W_256], V1[T_TM3_3W_256], U2[T_TM3_3W_256], V2[T_TM3_3W_256];
static __m256i W0[2 * (T_TM3_3W_256)], W1[2 * (T_TM3_3W_256)], W2[2 * (T_TM3_3W_256)], W3[2 * (T_TM3_3W_256)], W4[2 * (T_TM3_3W_256)];
static __m256i tmp[2 * (T_TM3_3W_256)];
static __m256i ro256[6 * (T_TM3_3W_256)];
const __m256i zero = (__m256i) {
0ul, 0ul, 0ul, 0ul
};
int32_t T2 = T_TM3_3W_64 << 1;

for (int32_t i = 0 ; i < T_TM3_3W_256 - 1 ; i++) {
int32_t i4 = i << 2;
int32_t i42 = i4 - 2;
U0[i] = _mm256_lddqu_si256((__m256i const *)(& A[i4]));
V0[i] = _mm256_lddqu_si256((__m256i const *)(& B[i4]));
U1[i] = _mm256_lddqu_si256((__m256i const *)(& A[i42 + T_TM3_3W_64]));
V1[i] = _mm256_lddqu_si256((__m256i const *)(& B[i42 + T_TM3_3W_64]));
U2[i] = _mm256_lddqu_si256((__m256i const *)(& A[i4 + T2 - 4]));
V2[i] = _mm256_lddqu_si256((__m256i const *)(& B[i4 + T2 - 4]));
}

for (int32_t i = T_TM3_3W_256 - 1 ; i < T_TM3_3W_256 ; i++) {
int32_t i4 = i << 2;
int32_t i41 = i4 + 1;
U0[i] = (__m256i) {
A[i4], A[i41], 0x0ul, 0x0ul
};
V0[i] = (__m256i) {
B[i4], B[i41], 0x0ul, 0x0ul
};
U1[i] = (__m256i) {
A[i4 + T_TM3_3W_64 - 2], A[i41 + T_TM3_3W_64 - 2], 0x0ul, 0x0ul
};
V1[i] = (__m256i) {
B[i4 + T_TM3_3W_64 - 2], B[i41 + T_TM3_3W_64 - 2], 0x0ul, 0x0ul
};
U2[i] = (__m256i) {
A[i4 - 4 + T2], A[i4 - 3 + T2], 0x0ul, 0x0ul
};
V2[i] = (__m256i) {
B[i4 - 4 + T2], B[i4 - 3 + T2], 0x0ul, 0x0ul
};
}

// Evaluation phase : x= X^64
// P(X): P0=(0); P1=(1); P2=(x); P3=(1+x); P4=(\infty)
// Evaluation: 5*2 add, 2*2 shift; 5 mul (n)
//W3 = U2 + U1 + U0 ; W2 = V2 + V1 + V0
for (int32_t i = 0 ; i < T_TM3_3W_256 ; i++) {
W3[i] = U0[i] ^ U1[i] ^ U2[i];
W2[i] = V0[i] ^ V1[i] ^ V2[i];
}

//W1 = W2 * W3
karat_mult_32( W1, W2, W3);

//W0 =(U1 + U2*x)*x ; W4 =(V1 + V2*x)*x (SIZE = T_TM3_3W_256 !)
int64_t *U1_64 = ((int64_t *) U1);
int64_t *U2_64 = ((int64_t *) U2);

int64_t *V1_64 = ((int64_t *) V1);
int64_t *V2_64 = ((int64_t *) V2);

W0[0] = _mm256_set_epi64x(U1_64[2] ^ U2_64[1], U1_64[1] ^ U2_64[0], U1_64[0], 0);
W4[0] = _mm256_set_epi64x(V1_64[2] ^ V2_64[1], V1_64[1] ^ V2_64[0], V1_64[0], 0);

U1_64 = ((int64_t *) U1);
U2_64 = ((int64_t *) U2);

V1_64 = ((int64_t *) V1);
V2_64 = ((int64_t *) V2);

for (int32_t i = 1 ; i < T_TM3_3W_256 ; i++) {
int i4 = i << 2;
W0[i] = _mm256_lddqu_si256((__m256i const *)(& U1_64[i4 - 1]));
W0[i] ^= _mm256_lddqu_si256((__m256i const *)(& U2_64[i4 - 2]));

W4[i] = _mm256_lddqu_si256((__m256i const *)(& V1_64[i4 - 1]));
W4[i] ^= _mm256_lddqu_si256((__m256i const *)(& V2_64[i4 - 2]));
}

//W3 = W3 + W0 ; W2 = W2 + W4
for (int32_t i = 0 ; i < T_TM3_3W_256 ; i++) {
W3[i] ^= W0[i];
W2[i] ^= W4[i];
}

//W0 = W0 + U0 ; W4 = W4 + V0
for (int32_t i = 0 ; i < T_TM3_3W_256 ; i++) {
W0[i] ^= U0[i];
W4[i] ^= V0[i];
}

//W3 = W3 * W2 ; W2 = W0 * W4
karat_mult_32(tmp, W3, W2);

for (int32_t i = 0 ; i < 2 * (T_TM3_3W_256) ; i++) {
W3[i] = tmp[i];
}

karat_mult_32(W2, W0, W4);
//W4 = U2 * V2 ; W0 = U0 * V0
karat_mult_32(W4, U2, V2);
karat_mult_32(W0, U0, V0);

// Interpolation phase
// 9 add, 1 shift, 1 Smul, 2 Sdiv (2n)
//W3 = W3 + W2
for (int32_t i = 0 ; i < 2 * (T_TM3_3W_256) ; i++) {
W3[i] ^= W2[i];
}

//W1 = W1 + W0
for (int32_t i = 0 ; i < 2 * (T_TM3_3W_256) ; i++) {
W1[i] ^= W0[i];
}

//W2 =(W2 + W0)/x -> x = X^64
U1_64 = ((int64_t *) W2);
U2_64 = ((int64_t *) W0);
for (int32_t i = 0 ; i < (T_TM3_3W_256 << 1) ; i++) {
int32_t i4 = i << 2;
W2[i] = _mm256_lddqu_si256((__m256i const *)(& U1_64[i4 + 1]));
W2[i] ^= _mm256_lddqu_si256((__m256i const *)(& U2_64[i4 + 1]));
}

//W2 =(W2 + W3 + W4*(x^3+1))/(x+1)
U1_64 = ((int64_t *) W4);
__m256i *U1_256 = (__m256i *) (U1_64 + 1);
tmp[0] = W2[0] ^ W3[0] ^ W4[0] ^ (__m256i) {
0x0ul, 0x0ul, 0x0ul, U1_64[0]
};

for (int32_t i = 1 ; i < (T_TM3_3W_256 << 1) - 1 ; i++) {
tmp[i] = W2[i] ^ W3[i] ^ W4[i] ^ _mm256_lddqu_si256(&U1_256[i - 1]);
}

divByXplus1(W2, tmp, T_TM3_3W_256);
W2[2 * (T_TM3_3W_256) - 1] = zero;

//W3 =(W3 + W1)/(x*(x+1))
U1_64 = (int64_t *) W3;
U1_256 = (__m256i *) (U1_64 + 1);

U2_64 = (int64_t *) W1;
__m256i *U2_256 = (__m256i *) (U2_64 + 1);

for (int32_t i = 0 ; i < 2 * (T_TM3_3W_256) - 1 ; i++) {
tmp[i] = _mm256_lddqu_si256(&U1_256[i]) ^ _mm256_lddqu_si256(&U2_256[i]);
}

divByXplus1(W3, tmp, T_TM3_3W_256);
W3[2 * (T_TM3_3W_256) - 1] = zero;

//W1 = W1 + W4 + W2
for (int32_t i = 0 ; i < 2 * (T_TM3_3W_256) ; i++) {
W1[i] ^= W2[i] ^ W4[i];
}

//W2 = W2 + W3
for (int32_t i = 0 ; i < 2 * (T_TM3_3W_256) ; i++) {
W2[i] ^= W3[i];
}

// Recomposition
//W = W0+ W1*x+ W2*x^2+ W3*x^3 + W4*x^4
//W0, W1, W4 of size 2*T_TM3_3W_256, W2 and W3 of size 2*(T_TM3_3W_256)
for (int32_t i = 0 ; i < (T_TM3_3W_256 << 1) - 1 ; i++) {
ro256[i] = W0[i];
ro256[i + 2 * T_TM3_3W_256 - 1] = W2[i];
ro256[i + 4 * T_TM3_3W_256 - 2] = W4[i];
}

ro256[(T_TM3_3W_256 << 1) - 1] = W0[(T_TM3_3W_256 << 1) - 1] ^ W2[0];
ro256[(T_TM3_3W_256 << 2) - 2] = W2[(T_TM3_3W_256 << 1) - 1] ^ W4[0];
ro256[(T_TM3_3W_256 * 6) - 3] = W4[(T_TM3_3W_256 << 1) - 1];

U1_64 = ((int64_t *) &ro256[T_TM3_3W_256]);
U1_256 = (__m256i *) (U1_64 - 2);

U2_64 = ((int64_t *) &ro256[3 * T_TM3_3W_256 - 1]);
U2_256 = (__m256i *) (U2_64 - 2);

for (int32_t i = 0 ; i < T_TM3_3W_256 << 1 ; i++) {
_mm256_storeu_si256(&U1_256[i], W1[i] ^ _mm256_lddqu_si256(&U1_256[i]));
_mm256_storeu_si256(&U2_256[i], W3[i] ^ _mm256_loadu_si256(&U2_256[i]));
}

for (int32_t i = 0 ; i < 6 * T_TM3_3W_256 - 2 ; i++) {
uint64_t *out64 = Out + (i << 2);
_mm256_storeu_si256((__m256i *)out64, ro256[i]);
}
}


/**
* @brief Multiply two polynomials modulo \f$ X^n - 1\f$.
*
* This functions multiplies a sparse polynomial <b>a1</b> (of Hamming weight equal to <b>weight</b>)
* and a dense polynomial <b>a2</b>. The multiplication is done modulo \f$ X^n - 1\f$.
*
* @param[out] o Pointer to the result
* @param[in] a1 Pointer to a polynomial
* @param[in] a2 Pointer to a polynomial
*/
void PQCLEAN_HQC128_AVX2_vect_mul(uint64_t *o, const uint64_t *a1, const uint64_t *a2) {
TOOM3Mult(a1_times_a2, a1, a2);
reduce(o, a1_times_a2);

// clear all
memset(a1_times_a2, 0, (VEC_N_SIZE_64 << 1) * sizeof(uint64_t));
}

+ 17
- 0
crypto_kem/hqc-128/avx2/gf2x.h View File

@@ -0,0 +1,17 @@
#ifndef GF2X_H
#define GF2X_H


/**
* @file gf2x.h
* @brief Header file for gf2x.c
*/

#include <stdint.h>

#include <stdint.h>

void PQCLEAN_HQC128_AVX2_vect_mul(uint64_t *o, const uint64_t *a1, const uint64_t *a2);


#endif

+ 138
- 0
crypto_kem/hqc-128/avx2/hqc.c View File

@@ -0,0 +1,138 @@
#include "code.h"
#include "gf2x.h"
#include "hqc.h"
#include "nistseedexpander.h"
#include "parameters.h"
#include "parsing.h"
#include "randombytes.h"
#include "vector.h"
#include <stdint.h>
/**
* @file hqc.c
* @brief Implementation of hqc.h
*/



/**
* @brief Keygen of the HQC_PKE IND_CPA scheme
*
* The public key is composed of the syndrome <b>s</b> as well as the <b>seed</b> used to generate the vector <b>h</b>.
*
* The secret key is composed of the <b>seed</b> used to generate vectors <b>x</b> and <b>y</b>.
* As a technicality, the public key is appended to the secret key in order to respect NIST API.
*
* @param[out] pk String containing the public key
* @param[out] sk String containing the secret key
*/
void PQCLEAN_HQC128_AVX2_hqc_pke_keygen(unsigned char *pk, unsigned char *sk) {
AES_XOF_struct sk_seedexpander;
AES_XOF_struct pk_seedexpander;
uint8_t sk_seed[SEED_BYTES] = {0};
uint8_t pk_seed[SEED_BYTES] = {0};
uint64_t x[VEC_N_256_SIZE_64] = {0};
uint64_t y[VEC_N_256_SIZE_64] = {0};
uint64_t h[VEC_N_256_SIZE_64] = {0};
uint64_t s[VEC_N_256_SIZE_64] = {0};

// Create seed_expanders for public key and secret key
randombytes(sk_seed, SEED_BYTES);
seedexpander_init(&sk_seedexpander, sk_seed, sk_seed + 32, SEEDEXPANDER_MAX_LENGTH);

randombytes(pk_seed, SEED_BYTES);
seedexpander_init(&pk_seedexpander, pk_seed, pk_seed + 32, SEEDEXPANDER_MAX_LENGTH);

// Compute secret key
PQCLEAN_HQC128_AVX2_vect_set_random_fixed_weight(&sk_seedexpander, x, PARAM_OMEGA);
PQCLEAN_HQC128_AVX2_vect_set_random_fixed_weight(&sk_seedexpander, y, PARAM_OMEGA);

// Compute public key
PQCLEAN_HQC128_AVX2_vect_set_random(&pk_seedexpander, h);
PQCLEAN_HQC128_AVX2_vect_mul(s, y, h);
PQCLEAN_HQC128_AVX2_vect_add(s, x, s, VEC_N_256_SIZE_64);

// Parse keys to string
PQCLEAN_HQC128_AVX2_hqc_public_key_to_string(pk, pk_seed, s);
PQCLEAN_HQC128_AVX2_hqc_secret_key_to_string(sk, sk_seed, pk);

}



/**
* @brief Encryption of the HQC_PKE IND_CPA scheme
*
* The cihertext is composed of vectors <b>u</b> and <b>v</b>.
*
* @param[out] u Vector u (first part of the ciphertext)
* @param[out] v Vector v (second part of the ciphertext)
* @param[in] m Vector representing the message to encrypt
* @param[in] theta Seed used to derive randomness required for encryption
* @param[in] pk String containing the public key
*/
void PQCLEAN_HQC128_AVX2_hqc_pke_encrypt(uint64_t *u, uint64_t *v, uint64_t *m, unsigned char *theta, const unsigned char *pk) {
AES_XOF_struct seedexpander;
uint64_t h[VEC_N_256_SIZE_64] = {0};
uint64_t s[VEC_N_256_SIZE_64] = {0};
uint64_t r1[VEC_N_256_SIZE_64] = {0};
uint64_t r2[VEC_N_256_SIZE_64] = {0};
uint64_t e[VEC_N_256_SIZE_64] = {0};
uint64_t tmp1[VEC_N_256_SIZE_64] = {0};
uint64_t tmp2[VEC_N_256_SIZE_64] = {0};

// Create seed_expander from theta
seedexpander_init(&seedexpander, theta, theta + 32, SEEDEXPANDER_MAX_LENGTH);

// Retrieve h and s from public key
PQCLEAN_HQC128_AVX2_hqc_public_key_from_string(h, s, pk);

// Generate r1, r2 and e
PQCLEAN_HQC128_AVX2_vect_set_random_fixed_weight(&seedexpander, r1, PARAM_OMEGA_R);
PQCLEAN_HQC128_AVX2_vect_set_random_fixed_weight(&seedexpander, r2, PARAM_OMEGA_R);
PQCLEAN_HQC128_AVX2_vect_set_random_fixed_weight(&seedexpander, e, PARAM_OMEGA_E);

// Compute u = r1 + r2.h
PQCLEAN_HQC128_AVX2_vect_mul(u, r2, h);
PQCLEAN_HQC128_AVX2_vect_add(u, r1, u, VEC_N_256_SIZE_64);

// Compute v = m.G by encoding the message
PQCLEAN_HQC128_AVX2_code_encode(v, m);
PQCLEAN_HQC128_AVX2_vect_resize(tmp1, PARAM_N, v, PARAM_N1N2);

// Compute v = m.G + s.r2 + e
PQCLEAN_HQC128_AVX2_vect_mul(tmp2, r2, s);
PQCLEAN_HQC128_AVX2_vect_add(tmp2, e, tmp2, VEC_N_256_SIZE_64);
PQCLEAN_HQC128_AVX2_vect_add(tmp2, tmp1, tmp2, VEC_N_256_SIZE_64);
PQCLEAN_HQC128_AVX2_vect_resize(v, PARAM_N1N2, tmp2, PARAM_N);

}



/**
* @brief Decryption of the HQC_PKE IND_CPA scheme
*
* @param[out] m Vector representing the decrypted message
* @param[in] u Vector u (first part of the ciphertext)
* @param[in] v Vector v (second part of the ciphertext)
* @param[in] sk String containing the secret key
*/
void PQCLEAN_HQC128_AVX2_hqc_pke_decrypt(uint64_t *m, const uint64_t *u, const uint64_t *v, const unsigned char *sk) {
uint64_t x[VEC_N_256_SIZE_64] = {0};
uint64_t y[VEC_N_256_SIZE_64] = {0};
uint8_t pk[PUBLIC_KEY_BYTES] = {0};
uint64_t tmp1[VEC_N_256_SIZE_64] = {0};
uint64_t tmp2[VEC_N_256_SIZE_64] = {0};

// Retrieve x, y, pk from secret key
PQCLEAN_HQC128_AVX2_hqc_secret_key_from_string(x, y, pk, sk);

// Compute v - u.y
PQCLEAN_HQC128_AVX2_vect_resize(tmp1, PARAM_N, v, PARAM_N1N2);
PQCLEAN_HQC128_AVX2_vect_mul(tmp2, y, u);
PQCLEAN_HQC128_AVX2_vect_add(tmp2, tmp1, tmp2, VEC_N_256_SIZE_64);


// Compute m by decoding v - u.y
PQCLEAN_HQC128_AVX2_code_decode(m, tmp2);
}

+ 21
- 0
crypto_kem/hqc-128/avx2/hqc.h View File

@@ -0,0 +1,21 @@
#ifndef HQC_H
#define HQC_H


/**
* @file hqc.h
* @brief Functions of the HQC_PKE IND_CPA scheme
*/

#include <stdint.h>

#include <stdint.h>

void PQCLEAN_HQC128_AVX2_hqc_pke_keygen(unsigned char *pk, unsigned char *sk);

void PQCLEAN_HQC128_AVX2_hqc_pke_encrypt(uint64_t *u, uint64_t *v, uint64_t *m, unsigned char *theta, const unsigned char *pk);

void PQCLEAN_HQC128_AVX2_hqc_pke_decrypt(uint64_t *m, const uint64_t *u, const uint64_t *v, const unsigned char *sk);


#endif

+ 138
- 0
crypto_kem/hqc-128/avx2/kem.c View File

@@ -0,0 +1,138 @@
#include "api.h"
#include "fips202.h"
#include "hqc.h"
#include "nistseedexpander.h"
#include "parameters.h"
#include "parsing.h"
#include "randombytes.h"
#include "sha2.h"
#include "vector.h"
#include <stdint.h>
#include <string.h>
/**
* @file kem.c
* @brief Implementation of api.h
*/



/**
* @brief Keygen of the HQC_KEM IND_CAA2 scheme
*
* The public key is composed of the syndrome <b>s</b> as well as the seed used to generate the vector <b>h</b>.
*
* The secret key is composed of the seed used to generate vectors <b>x</b> and <b>y</b>.
* As a technicality, the public key is appended to the secret key in order to respect NIST API.
*
* @param[out] pk String containing the public key
* @param[out] sk String containing the secret key
* @returns 0 if keygen is successful
*/
int PQCLEAN_HQC128_AVX2_crypto_kem_keypair(unsigned char *pk, unsigned char *sk) {

PQCLEAN_HQC128_AVX2_hqc_pke_keygen(pk, sk);
return 0;
}



/**
* @brief Encapsulation of the HQC_KEM IND_CAA2 scheme
*
* @param[out] ct String containing the ciphertext
* @param[out] ss String containing the shared secret
* @param[in] pk String containing the public key
* @returns 0 if encapsulation is successful
*/
int PQCLEAN_HQC128_AVX2_crypto_kem_enc(unsigned char *ct, unsigned char *ss, const unsigned char *pk) {

uint8_t theta[SHA512_BYTES] = {0};
uint64_t m[VEC_K_SIZE_64] = {0};
uint64_t u[VEC_N_256_SIZE_64] = {0};
uint64_t v[VEC_N1N2_256_SIZE_64] = {0};
unsigned char d[SHA512_BYTES] = {0};
unsigned char mc[VEC_K_SIZE_BYTES + VEC_N_SIZE_BYTES + VEC_N1N2_SIZE_BYTES] = {0};

// Computing m
PQCLEAN_HQC128_AVX2_vect_set_random_from_randombytes(m);

// Computing theta
sha3_512(theta, (uint8_t *) m, VEC_K_SIZE_BYTES);

// Encrypting m
PQCLEAN_HQC128_AVX2_hqc_pke_encrypt(u, v, m, theta, pk);

// Computing d
sha512(d, (unsigned char *) m, VEC_K_SIZE_BYTES);

// Computing shared secret
memcpy(mc, m, VEC_K_SIZE_BYTES);
memcpy(mc + VEC_K_SIZE_BYTES, u, VEC_N_SIZE_BYTES);
memcpy(mc + VEC_K_SIZE_BYTES + VEC_N_SIZE_BYTES, v, VEC_N1N2_SIZE_BYTES);
sha512(ss, mc, VEC_K_SIZE_BYTES + VEC_N_SIZE_BYTES + VEC_N1N2_SIZE_BYTES);

// Computing ciphertext
PQCLEAN_HQC128_AVX2_hqc_ciphertext_to_string(ct, u, v, d);


return 0;
}



/**
* @brief Decapsulation of the HQC_KEM IND_CAA2 scheme
*
* @param[out] ss String containing the shared secret
* @param[in] ct String containing the cipĥertext
* @param[in] sk String containing the secret key
* @returns 0 if decapsulation is successful, -1 otherwise
*/
int PQCLEAN_HQC128_AVX2_crypto_kem_dec(unsigned char *ss, const unsigned char *ct, const unsigned char *sk) {

int8_t result = -1;
uint64_t u[VEC_N_256_SIZE_64] = {0};
uint64_t v[VEC_N1N2_256_SIZE_64] = {0};
unsigned char d[SHA512_BYTES] = {0};
unsigned char pk[PUBLIC_KEY_BYTES] = {0};
uint64_t m[VEC_K_SIZE_64] = {0};
uint8_t theta[SHA512_BYTES] = {0};
uint64_t u2[VEC_N_256_SIZE_64] = {0};
uint64_t v2[VEC_N1N2_256_SIZE_64] = {0};
unsigned char d2[SHA512_BYTES] = {0};
unsigned char mc[VEC_K_SIZE_BYTES + VEC_N_SIZE_BYTES + VEC_N1N2_SIZE_BYTES] = {0};

// Retrieving u, v and d from ciphertext
PQCLEAN_HQC128_AVX2_hqc_ciphertext_from_string(u, v, d, ct);

// Retrieving pk from sk
memcpy(pk, sk + SEED_BYTES, PUBLIC_KEY_BYTES);

// Decryting
PQCLEAN_HQC128_AVX2_hqc_pke_decrypt(m, u, v, sk);

// Computing theta
sha3_512(theta, (uint8_t *) m, VEC_K_SIZE_BYTES);

// Encrypting m'
PQCLEAN_HQC128_AVX2_hqc_pke_encrypt(u2, v2, m, theta, pk);

// Computing d'
sha512(d2, (unsigned char *) m, VEC_K_SIZE_BYTES);

// Computing shared secret
memcpy(mc, m, VEC_K_SIZE_BYTES);
memcpy(mc + VEC_K_SIZE_BYTES, u, VEC_N_SIZE_BYTES);
memcpy(mc + VEC_K_SIZE_BYTES + VEC_N_SIZE_BYTES, v, VEC_N1N2_SIZE_BYTES);
sha512(ss, mc, VEC_K_SIZE_BYTES + VEC_N_SIZE_BYTES + VEC_N1N2_SIZE_BYTES);

// Abort if c != c' or d != d'
result = (PQCLEAN_HQC128_AVX2_vect_compare(u, u2, VEC_N_SIZE_BYTES) == 0 && PQCLEAN_HQC128_AVX2_vect_compare(v, v2, VEC_N1N2_SIZE_BYTES) == 0 && PQCLEAN_HQC128_AVX2_vect_compare((uint64_t *)d, (uint64_t *)d2, SHA512_BYTES) == 0);
for (size_t i = 0 ; i < SHARED_SECRET_BYTES ; i++) {
ss[i] = result * ss[i];
}
result--;


return result;
}

+ 127
- 0
crypto_kem/hqc-128/avx2/parameters.h View File

@@ -0,0 +1,127 @@
#ifndef HQC_PARAMETERS_H
#define HQC_PARAMETERS_H
/**
* @file parameters.h
* @brief Parameters of the HQC_KEM IND-CCA2 scheme
*/

#include "api.h"
#include "api.h"
#include "vector.h"


#define CEIL_DIVIDE(a, b) (((a)/(b)) + ((a) % (b) == 0 ? 0 : 1)) /*!< Divide a by b and ceil the result*/
#define BITMASK(a, size) ((1UL << ((a) % (size))) - 1) /*!< Create a mask*/

/*
#define PARAM_N Define the parameter n of the scheme
#define PARAM_N1 Define the parameter n1 of the scheme (length of BCH code)
#define PARAM_N2 Define the parameter n2 of the scheme (length of the repetition code)
#define PARAM_N1N2 Define the parameter n1 * n2 of the scheme (length of the tensor code)
#define PARAM_OMEGA Define the parameter omega of the scheme
#define PARAM_OMEGA_E Define the parameter omega_e of the scheme
#define PARAM_OMEGA_R Define the parameter omega_r of the scheme
#define PARAM_SECURITY Define the security level corresponding to the chosen parameters
#define PARAM_DFR_EXP Define the decryption failure rate corresponding to the chosen parameters

#define SECRET_KEY_BYTES Define the size of the secret key in bytes
#define PUBLIC_KEY_BYTES Define the size of the public key in bytes
#define SHARED_SECRET_BYTES Define the size of the shared secret in bytes
#define CIPHERTEXT_BYTES Define the size of the ciphertext in bytes

#define UTILS_REJECTION_THRESHOLD Define the rejection threshold used to generate given weight vectors (see vector_set_random_fixed_weight function)
#define VEC_N_SIZE_BYTES Define the size of the array used to store a PARAM_N sized vector in bytes
#define VEC_K_SIZE_BYTES Define the size of the array used to store a PARAM_K sized vector in bytes
#define VEC_N1_SIZE_BYTES Define the size of the array used to store a PARAM_N1 sized vector in bytes
#define VEC_N1N2_SIZE_BYTES Define the size of the array used to store a PARAM_N1N2 sized vector in bytes

#define VEC_N_SIZE_64 Define the size of the array used to store a PARAM_N_MULT sized vector in 64 bits
#define VEC_K_SIZE_64 Define the size of the array used to store a PARAM_K sized vector in 64 bits
#define VEC_N1_SIZE_64 Define the size of the array used to store a PARAM_N1 sized vector in 64 bits
#define VEC_N1N2_SIZE_64 Define the size of the array used to store a PARAM_N1N2 sized vector in 64 bits

#define VEC_N_256_SIZE_64 Define the size of the array of 64 bits elements used to store an array of size PARAM_N considered as elements of 256 bits
#define VEC_N1N2_256_SIZE_64 Define the size of the array of 64 bits elements used to store an array of size PARAM_N1N2 considered as elements of 256 bits

#define PARAM_T Define a threshold for decoding repetition code word (PARAM_T = (PARAM_N2 - 1) / 2)

#define PARAM_DELTA Define the parameter delta of the scheme (correcting capacity of the BCH code)
#define PARAM_M Define a positive integer
#define PARAM_GF_POLY Generator polynomial of galois field GF(2^PARAM_M), represented in hexadecimial form
#define PARAM_GF_MUL_ORDER Define the size of the multiplicative group of GF(2^PARAM_M), i.e 2^PARAM_M -1
#define PARAM_K Define the size of the information bits of the BCH code
#define PARAM_G Define the size of the generator polynomial of BCH code
#define PARAM_FFT The additive FFT takes a 2^PARAM_FFT polynomial as input
We use the FFT to compute the roots of sigma, whose degree if PARAM_DELTA=60
The smallest power of 2 greater than 60+1 is 64=2^6
#define PARAM_BCH_POLY Generator polynomial of the BCH code

#define RED_MASK A mask fot the higher bits of a vector
#define SHA512_BYTES Define the size of SHA512 output in bytes
#define SEED_BYTES Define the size of the seed in bytes
#define SEEDEXPANDER_MAX_LENGTH Define the seed expander max length
*/

#define PARAM_N 23869
#define PARAM_N1 766
#define PARAM_N2 31
#define PARAM_N1N2 23746
#define PARAM_OMEGA 67
#define PARAM_OMEGA_E 77
#define PARAM_OMEGA_R 77
#define PARAM_SECURITY 128
#define PARAM_DFR_EXP 128

#define SECRET_KEY_BYTES PQCLEAN_HQC128_AVX2_CRYPTO_SECRETKEYBYTES
#define PUBLIC_KEY_BYTES PQCLEAN_HQC128_AVX2_CRYPTO_PUBLICKEYBYTES
#define SHARED_SECRET_BYTES PQCLEAN_HQC128_AVX2_CRYPTO_BYTES
#define CIPHERTEXT_BYTES PQCLEAN_HQC128_AVX2_CRYPTO_CIPHERTEXTBYTES

#define UTILS_REJECTION_THRESHOLD 16756038
#define VEC_N_SIZE_BYTES CEIL_DIVIDE(PARAM_N, 8)
#define VEC_K_SIZE_BYTES CEIL_DIVIDE(PARAM_K, 8)
#define VEC_N1_SIZE_BYTES CEIL_DIVIDE(PARAM_N1, 8)
#define VEC_N1N2_SIZE_BYTES CEIL_DIVIDE(PARAM_N1N2, 8)

#define VEC_N_SIZE_64 CEIL_DIVIDE(PARAM_N, 64)
#define VEC_K_SIZE_64 CEIL_DIVIDE(PARAM_K, 64)
#define VEC_N1_SIZE_64 CEIL_DIVIDE(PARAM_N1, 64)
#define VEC_N1N2_SIZE_64 CEIL_DIVIDE(PARAM_N1N2, 64)

#define PARAM_N_MULT 24192
#define VEC_N_256_SIZE_64 (CEIL_DIVIDE(PARAM_N_MULT, 256) << 2)
#define VEC_N1N2_256_SIZE_64 (CEIL_DIVIDE(PARAM_N1N2, 256) << 2)

#define PARAM_T 15

#define PARAM_DELTA 57
#define PARAM_M 10
#define PARAM_GF_POLY 0x409
#define PARAM_GF_MUL_ORDER 1023
#define PARAM_K 256
#define PARAM_G 511
#define PARAM_FFT 6
#define PARAM_FFT_T 7
#define PARAM_BCH_POLY { \
1,1,0,0,0,0,1,0,0,1,1,0,1,1,0,1,0,1,1,0,0,1,0,0,1,1,1,1,1,1,0,0,1,1,0,1,1, \
1,1,0,1,1,1,1,0,1,0,0,0,1,0,0,1,1,1,0,1,1,0,1,0,1,1,1,0,1,0,1,0,0,1,0,0,0, \
0,1,1,1,1,0,1,1,1,1,1,0,0,0,0,1,0,0,1,0,0,1,1,1,0,0,0,1,1,0,0,1,0,1,0,0,0, \
1,0,0,0,0,1,0,0,0,1,0,1,1,0,0,0,0,1,1,0,0,1,1,0,1,0,1,0,1,0,1,1,1,1,0,1,0, \
0,1,1,0,1,0,1,1,0,0,1,1,0,1,1,1,1,1,0,1,0,1,1,1,0,1,0,0,0,1,1,0,1,1,1,1,0, \
1,1,1,1,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,1,1,1,1,0,0,1,1,0,1,0,0,0,0,1,0, \
0,1,0,0,1,0,1,0,0,1,1,0,1,0,1,1,1,1,1,0,1,1,0,1,0,1,1,1,1,1,1,0,0,0,1,0,1, \
1,1,1,1,1,0,1,0,1,0,1,1,0,0,0,1,1,0,0,1,1,0,1,1,1,1,1,1,1,0,0,0,1,1,1,1,0, \
1,0,0,0,1,0,0,1,1,0,1,1,0,0,1,0,1,1,0,1,0,1,0,1,1,0,0,0,0,0,1,1,1,1,1,1,1, \
1,1,1,0,1,1,0,1,0,1,1,1,1,1,1,1,0,1,1,0,1,1,0,0,0,1,0,0,1,1,1,1,1,0,1,0,1, \
0,0,0,0,1,0,1,1,1,1,0,1,0,0,0,0,0,1,0,0,1,0,1,1,1,1,1,0,0,0,0,0,0,1,1,1,1, \
1,0,1,0,0,1,0,0,1,1,0,1,0,0,0,0,0,0,0,0,1,1,0,0,0,1,1,1,0,0,1,1,0,0,0,1,1, \
0,1,0,0,1,0,0,0,1,0,1,0,1,0,0,0,1,1,1,1,1,0,0,0,1,0,0,1,1,0,1,1,0,0,1,0,1, \
1,0,1,1,1,0,0,0,0,1,1,0,1,1,1,0,1,0,0,0,0,1,0,0,0,1,0,0,1,1 \
};

#define RED_MASK 0x1fffffffffffffffUL
#define SHA512_BYTES 64
#define SEED_BYTES 40
#define SEEDEXPANDER_MAX_LENGTH 4294967295

#endif

+ 121
- 0
crypto_kem/hqc-128/avx2/parsing.c View File

@@ -0,0 +1,121 @@
#include "nistseedexpander.h"
#include "parameters.h"
#include "parsing.h"
#include "randombytes.h"
#include "vector.h"
#include <stdint.h>
#include <string.h>
/**
* @file parsing.c
* @brief Functions to parse secret key, public key and ciphertext of the HQC scheme
*/



/**
* @brief Parse a secret key into a string
*
* The secret key is composed of the seed used to generate vectors <b>x</b> and <b>y</b>.
* As technicality, the public key is appended to the secret key in order to respect NIST API.
*
* @param[out] sk String containing the secret key
* @param[in] sk_seed Seed used to generate the secret key
* @param[in] pk String containing the public key
*/
void PQCLEAN_HQC128_AVX2_hqc_secret_key_to_string(uint8_t *sk, const uint8_t *sk_seed, const uint8_t *pk) {
memcpy(sk, sk_seed, SEED_BYTES);
memcpy(sk + SEED_BYTES, pk, PUBLIC_KEY_BYTES);
}

/**
* @brief Parse a secret key from a string
*
* The secret key is composed of the seed used to generate vectors <b>x</b> and <b>y</b>.
* As technicality, the public key is appended to the secret key in order to respect NIST API.
*
* @param[out] x uint64_t representation of vector x
* @param[out] y uint64_t representation of vector y
* @param[out] pk String containing the public key
* @param[in] sk String containing the secret key
*/
void PQCLEAN_HQC128_AVX2_hqc_secret_key_from_string(uint64_t *x, uint64_t *y, uint8_t *pk, const uint8_t *sk) {
AES_XOF_struct sk_seedexpander;
uint8_t sk_seed[SEED_BYTES] = {0};

memcpy(sk_seed, sk, SEED_BYTES);
seedexpander_init(&sk_seedexpander, sk_seed, sk_seed + 32, SEEDEXPANDER_MAX_LENGTH);

PQCLEAN_HQC128_AVX2_vect_set_random_fixed_weight(&sk_seedexpander, x, PARAM_OMEGA);
PQCLEAN_HQC128_AVX2_vect_set_random_fixed_weight(&sk_seedexpander, y, PARAM_OMEGA);
memcpy(pk, sk + SEED_BYTES, PUBLIC_KEY_BYTES);
}

/**
* @brief Parse a public key into a string
*
* The public key is composed of the syndrome <b>s</b> as well as the seed used to generate the vector <b>h</b>
*
* @param[out] pk String containing the public key
* @param[in] pk_seed Seed used to generate the public key
* @param[in] s uint8_t representation of vector s
*/
void PQCLEAN_HQC128_AVX2_hqc_public_key_to_string(uint8_t *pk, const uint8_t *pk_seed, const uint64_t *s) {
memcpy(pk, pk_seed, SEED_BYTES);
memcpy(pk + SEED_BYTES, s, VEC_N_SIZE_BYTES);
}



/**
* @brief Parse a public key from a string
*
* The public key is composed of the syndrome <b>s</b> as well as the seed used to generate the vector <b>h</b>
*
* @param[out] h uint8_t representation of vector h
* @param[out] s uint8_t representation of vector s
* @param[in] pk String containing the public key
*/
void PQCLEAN_HQC128_AVX2_hqc_public_key_from_string(uint64_t *h, uint64_t *s, const uint8_t *pk) {
AES_XOF_struct pk_seedexpander;
uint8_t pk_seed[SEED_BYTES] = {0};

memcpy(pk_seed, pk, SEED_BYTES);
seedexpander_init(&pk_seedexpander, pk_seed, pk_seed + 32, SEEDEXPANDER_MAX_LENGTH);
PQCLEAN_HQC128_AVX2_vect_set_random(&pk_seedexpander, h);

memcpy(s, pk + SEED_BYTES, VEC_N_SIZE_BYTES);
}


/**
* @brief Parse a ciphertext into a string
*
* The ciphertext is composed of vectors <b>u</b>, <b>v</b> and hash <b>d</b>.
*
* @param[out] ct String containing the ciphertext
* @param[in] u uint8_t representation of vector u
* @param[in] v uint8_t representation of vector v
* @param[in] d String containing the hash d
*/
void PQCLEAN_HQC128_AVX2_hqc_ciphertext_to_string(uint8_t *ct, const uint64_t *u, const uint64_t *v, const uint8_t *d) {
memcpy(ct, u, VEC_N_SIZE_BYTES);
memcpy(ct + VEC_N_SIZE_BYTES, v, VEC_N1N2_SIZE_BYTES);
memcpy(ct + VEC_N_SIZE_BYTES + VEC_N1N2_SIZE_BYTES, d, SHA512_BYTES);
}


/**
* @brief Parse a ciphertext from a string
*
* The ciphertext is composed of vectors <b>u</b>, <b>v</b> and hash <b>d</b>.
*
* @param[out] u uint8_t representation of vector u
* @param[out] v uint8_t representation of vector v
* @param[out] d String containing the hash d
* @param[in] ct String containing the ciphertext
*/
void PQCLEAN_HQC128_AVX2_hqc_ciphertext_from_string(uint64_t *u, uint64_t *v, uint8_t *d, const uint8_t *ct) {
memcpy(u, ct, VEC_N_SIZE_BYTES);
memcpy(v, ct + VEC_N_SIZE_BYTES, VEC_N1N2_SIZE_BYTES);
memcpy(d, ct + VEC_N_SIZE_BYTES + VEC_N1N2_SIZE_BYTES, SHA512_BYTES);
}

+ 29
- 0
crypto_kem/hqc-128/avx2/parsing.h View File

@@ -0,0 +1,29 @@
#ifndef PARSING_H
#define PARSING_H


/**
* @file parsing.h
* @brief Header file for parsing.c
*/

#include <stdint.h>

#include <stdint.h>

void PQCLEAN_HQC128_AVX2_hqc_secret_key_to_string(uint8_t *sk, const uint8_t *sk_seed, const uint8_t *pk);

void PQCLEAN_HQC128_AVX2_hqc_secret_key_from_string(uint64_t *x, uint64_t *y, uint8_t *pk, const uint8_t *sk);


void PQCLEAN_HQC128_AVX2_hqc_public_key_to_string(uint8_t *pk, const uint8_t *pk_seed, const uint64_t *s);

void PQCLEAN_HQC128_AVX2_hqc_public_key_from_string(uint64_t *h, uint64_t *s, const uint8_t *pk);


void PQCLEAN_HQC128_AVX2_hqc_ciphertext_to_string(uint8_t *ct, const uint64_t *u, const uint64_t *v, const uint8_t *d);

void PQCLEAN_HQC128_AVX2_hqc_ciphertext_from_string(uint64_t *u, uint64_t *v, uint8_t *d, const uint8_t *ct);


#endif

+ 41
- 0
crypto_kem/hqc-128/avx2/repetition.c View File

@@ -0,0 +1,41 @@
#include "parameters.h"
#include "repetition.h"
#include <immintrin.h>
#include <stddef.h>
#include <stdint.h>
#include <stdio.h>
/**
* @file repetition.c
* @brief Implementation of repetition codes
*/


#define MASK_N2 ((1UL << PARAM_N2) - 1)

/**
* @brief Decoding the code words to a message using the repetition code
*
* We use a majority decoding. In fact we have that PARAM_N2 = 2 * PARAM_T + 1, thus,
* if the Hamming weight of the vector is greater than PARAM_T, the code word is decoded
* to 1 and 0 otherwise.
*
* @param[out] m Pointer to an array that is the message
* @param[in] em Pointer to an array that is the code word
*/
void PQCLEAN_HQC128_AVX2_repetition_code_decode(uint64_t *m, const uint64_t *em) {
size_t t = 0, b, bn, bi, c, cn, ci;
uint64_t cx, ones;

for (b = 0 ; b < PARAM_N1N2 - PARAM_N2 + 1 ; b += PARAM_N2) {
bn = b >> 6;
bi = b & 63;
c = b + PARAM_N2 - 1;
cn = c >> 6;
ci = c & 63;
cx = em[cn] << (63 - ci);
int64_t verif = (cn == (bn + 1));
ones = _mm_popcnt_u64(((em[bn] >> bi) & MASK_N2) | (cx * verif));
m[t >> 6] |= ((uint64_t)(ones > PARAM_T)) << (t & 63);
t++;
}
}

+ 17
- 0
crypto_kem/hqc-128/avx2/repetition.h View File

@@ -0,0 +1,17 @@
#ifndef REPETITION_H
#define REPETITION_H


/**
* @file repetition.h
* @brief Header file for repetition.c
*/

#include <stdint.h>

#include <stdint.h>

void PQCLEAN_HQC128_AVX2_repetition_code_decode(uint64_t *m, const uint64_t *em);


#endif

+ 200
- 0
crypto_kem/hqc-128/avx2/vector.c View File

@@ -0,0 +1,200 @@
#include "nistseedexpander.h"
#include "parameters.h"
#include "randombytes.h"
#include "vector.h"
#include <immintrin.h>
#include <stdint.h>
#include <string.h>
/**
* @file vector.c
* @brief Implementation of vectors sampling and some utilities for the HQC scheme
*/



/**
* @brief Generates a vector of a given Hamming weight
*
* This function generates uniformly at random a binary vector of a Hamming weight equal to the parameter <b>weight</b>.
* To generate the vector we have to sample uniformly at random values in the interval [0, PARAM_N -1]. Suppose the PARAM_N is equal to \f$ 70853 \f$, to select a position \f$ r\f$ the function works as follow:
* 1. It makes a call to the seedexpander function to obtain a random number \f$ x\f$ in \f$ [0, 2^{24}[ \f$.
* 2. Let \f$ t = \lfloor {2^{24} \over 70853} \rfloor \times 70853\f$
* 3. If \f$ x \geq t\f$, go to 1
* 4. It return \f$ r = x \mod 70853\f$
*
* The parameter \f$ t \f$ is precomputed and it's denoted by UTILS_REJECTION_THRESHOLD (see the file parameters.h).
*
* @param[in] v Pointer to an array
* @param[in] weight Integer that is the Hamming weight
* @param[in] ctx Pointer to the context of the seed expander
*/
void PQCLEAN_HQC128_AVX2_vect_set_random_fixed_weight(AES_XOF_struct *ctx, uint64_t *v, uint16_t weight) {
size_t random_bytes_size = 3 * weight;
uint8_t rand_bytes[3 * PARAM_OMEGA_R] = {0};
uint32_t random_data = 0;
uint32_t tmp[PARAM_OMEGA_R] = {0};
uint8_t exist = 0;
size_t j = 0;
__m256i bit256[PARAM_OMEGA_R];
__m256i bloc256[PARAM_OMEGA_R];
static __m256i posCmp256 = (__m256i) {
0UL, 1UL, 2UL, 3UL
};
#define LOOP_SIZE CEIL_DIVIDE(PARAM_N, 256)

seedexpander(ctx, rand_bytes, random_bytes_size);

for (uint32_t i = 0 ; i < weight ; ++i) {
exist = 0;
do {
if (j == random_bytes_size) {
seedexpander(ctx, rand_bytes, random_bytes_size);
j = 0;
}

random_data = ((uint32_t) rand_bytes[j++]) << 16;
random_data |= ((uint32_t) rand_bytes[j++]) << 8;
random_data |= rand_bytes[j++];

} while (random_data >= UTILS_REJECTION_THRESHOLD);

random_data = random_data % PARAM_N;

for (uint32_t k = 0 ; k < i ; k++) {
if (tmp[k] == random_data) {
exist = 1;
}
}

if (exist == 1) {
i--;
} else {
tmp[i] = random_data;
}
}

for (uint32_t i = 0 ; i < weight ; i++) {
// we store the bloc number and bit position of each vb[i]
uint64_t bloc = tmp[i] >> 6;
bloc256[i] = _mm256_set1_epi64x(bloc >> 2);
uint64_t pos = (bloc & 0x3UL);
__m256i pos256 = _mm256_set1_epi64x(pos);
__m256i mask256 = _mm256_cmpeq_epi64(pos256, posCmp256);
uint64_t bit64 = 1ULL << (tmp[i] & 0x3f);
__m256i bloc256 = _mm256_set1_epi64x(bit64);
bit256[i] = bloc256 & mask256;
}

for (uint32_t i = 0 ; i < LOOP_SIZE ; i++) {
__m256i aux = _mm256_loadu_si256(((__m256i *)v) + i);
__m256i i256 = _mm256_set1_epi64x(i);

for (uint32_t j = 0 ; j < weight ; j++) {
__m256i mask256 = _mm256_cmpeq_epi64(bloc256[j], i256);
aux ^= bit256[j] & mask256;
}
_mm256_storeu_si256(((__m256i *)v) + i, aux);
}

#undef LOOP_SIZE
}



/**
* @brief Generates a random vector of dimension <b>PARAM_N</b>
*
* This function generates a random binary vector of dimension <b>PARAM_N</b>. It generates a random
* array of bytes using the seedexpander function, and drop the extra bits using a mask.
*
* @param[in] v Pointer to an array
* @param[in] ctx Pointer to the context of the seed expander
*/
void PQCLEAN_HQC128_AVX2_vect_set_random(AES_XOF_struct *ctx, uint64_t *v) {
uint8_t rand_bytes[VEC_N_SIZE_BYTES] = {0};

seedexpander(ctx, rand_bytes, VEC_N_SIZE_BYTES);

memcpy(v, rand_bytes, VEC_N_SIZE_BYTES);
v[VEC_N_SIZE_64 - 1] &= BITMASK(PARAM_N, 64);
}



/**
* @brief Generates a random vector
*
* This function generates a random binary vector. It uses the the randombytes function.
*
* @param[in] v Pointer to an array
*/
void PQCLEAN_HQC128_AVX2_vect_set_random_from_randombytes(uint64_t *v) {
uint8_t rand_bytes [VEC_K_SIZE_BYTES] = {0};

randombytes(rand_bytes, VEC_K_SIZE_BYTES);
memcpy(v, rand_bytes, VEC_K_SIZE_BYTES);
}



/**
* @brief Adds two vectors
*
* @param[out] o Pointer to an array that is the result
* @param[in] v1 Pointer to an array that is the first vector
* @param[in] v2 Pointer to an array that is the second vector
* @param[in] size Integer that is the size of the vectors
*/
void PQCLEAN_HQC128_AVX2_vect_add(uint64_t *o, const uint64_t *v1, const uint64_t *v2, uint32_t size) {
for (uint32_t i = 0 ; i < size ; ++i) {
o[i] = v1[i] ^ v2[i];
}
}



/**
* @brief Compares two vectors
*
* @param[in] v1 Pointer to an array that is first vector
* @param[in] v2 Pointer to an array that is second vector
* @param[in] size Integer that is the size of the vectors
* @returns 0 if the vectors are equals and a negative/psotive value otherwise
*/
int PQCLEAN_HQC128_AVX2_vect_compare(const uint64_t *v1, const uint64_t *v2, uint32_t size) {
unsigned char diff = 0;

for (uint32_t i = 0 ; i < size ; i++) {
diff |= ((uint8_t *) v1)[i] ^ ((uint8_t *) v2)[i];
}
return diff != 0;
}



/**
* @brief Resize a vector so that it contains <b>size_o</b> bits
*
* @param[out] o Pointer to the output vector
* @param[in] size_o Integer that is the size of the output vector in bits
* @param[in] v Pointer to the input vector
* @param[in] size_v Integer that is the size of the input vector in bits
*/
void PQCLEAN_HQC128_AVX2_vect_resize(uint64_t *o, uint32_t size_o, const uint64_t *v, uint32_t size_v) {
if (size_o < size_v) {
uint64_t mask = 0x7FFFFFFFFFFFFFFF;
int8_t val = 0;

if (size_o % 64) {
val = 64 - (size_o % 64);
}

memcpy(o, v, VEC_N1N2_SIZE_BYTES);

for (int8_t i = 0 ; i < val ; ++i) {
o[VEC_N1N2_SIZE_64 - 1] &= (mask >> i);
}
} else {
memcpy(o, v, CEIL_DIVIDE(size_v, 8));
}
}

+ 29
- 0
crypto_kem/hqc-128/avx2/vector.h View File

@@ -0,0 +1,29 @@
#ifndef VECTOR_H
#define VECTOR_H


/**
* @file vector.h
* @brief Header file for vector.c
*/

#include "nistseedexpander.h"
#include "nistseedexpander.h"
#include "randombytes.h"
#include <stdint.h>

void PQCLEAN_HQC128_AVX2_vect_set_random_fixed_weight(AES_XOF_struct *ctx, uint64_t *v, uint16_t weight);

void PQCLEAN_HQC128_AVX2_vect_set_random(AES_XOF_struct *ctx, uint64_t *v);

void PQCLEAN_HQC128_AVX2_vect_set_random_from_randombytes(uint64_t *v);


void PQCLEAN_HQC128_AVX2_vect_add(uint64_t *o, const uint64_t *v1, const uint64_t *v2, uint32_t size);

int PQCLEAN_HQC128_AVX2_vect_compare(const uint64_t *v1, const uint64_t *v2, uint32_t size);

void PQCLEAN_HQC128_AVX2_vect_resize(uint64_t *o, uint32_t size_o, const uint64_t *v, uint32_t size_v);


#endif

+ 1
- 0
crypto_kem/hqc-128/clean/LICENSE View File

@@ -0,0 +1 @@
Public Domain

+ 19
- 0
crypto_kem/hqc-128/clean/Makefile View File

@@ -0,0 +1,19 @@
# This Makefile can be used with GNU Make or BSD Make

LIB=libhqc-128_clean.a
HEADERS=api.h bch.h code.h fft.h gf2x.h gf.h hqc.h parameters.h parsing.h repetition.h vector.h
OBJECTS=bch.o code.o fft.o gf2x.o gf.o hqc.o kem.o parsing.o repetition.o vector.o

CFLAGS=-O3 -Wall -Wextra -Wpedantic -Wvla -Werror -Wredundant-decls -Wmissing-prototypes -std=c99 -I../../../common $(EXTRAFLAGS)

all: $(LIB)

%.o: %.c $(HEADERS)
$(CC) $(CFLAGS) -c -o $@ $<

$(LIB): $(OBJECTS)
$(AR) -r $@ $(OBJECTS)

clean:
$(RM) $(OBJECTS)
$(RM) $(LIB)

+ 19
- 0
crypto_kem/hqc-128/clean/Makefile.Microsoft_nmake View File

@@ -0,0 +1,19 @@
# This Makefile can be used with Microsoft Visual Studio's nmake using the command:
# nmake /f Makefile.Microsoft_nmake

LIBRARY=libhqc-128_clean.lib
OBJECTS=bch.obj code.obj fft.obj gf2x.obj gf.obj hqc.obj kem.obj parsing.obj repetition.obj vector.obj

CFLAGS=/nologo /O2 /I ..\..\..\common /W4 /WX

all: $(LIBRARY)

# Make sure objects are recompiled if headers change.
$(OBJECTS): *.h

$(LIBRARY): $(OBJECTS)
LIB.EXE /NOLOGO /WX /OUT:$@ $**

clean:
-DEL $(OBJECTS)
-DEL $(LIBRARY)

+ 25
- 0
crypto_kem/hqc-128/clean/api.h View File

@@ -0,0 +1,25 @@
#ifndef PQCLEAN_HQC128_CLEAN_API_H
#define PQCLEAN_HQC128_CLEAN_API_H
/**
* @file api.h
* @brief NIST KEM API used by the HQC_KEM IND-CCA2 scheme
*/

#define PQCLEAN_HQC128_CLEAN_CRYPTO_ALGNAME "HQC-128"

#define PQCLEAN_HQC128_CLEAN_CRYPTO_SECRETKEYBYTES 3064
#define PQCLEAN_HQC128_CLEAN_CRYPTO_PUBLICKEYBYTES 3024
#define PQCLEAN_HQC128_CLEAN_CRYPTO_BYTES 64
#define PQCLEAN_HQC128_CLEAN_CRYPTO_CIPHERTEXTBYTES 6017

// As a technicality, the public key is appended to the secret key in order to respect the NIST API.
// Without this constraint, PQCLEAN_HQC128_CLEAN_CRYPTO_SECRETKEYBYTES would be defined as 32

int PQCLEAN_HQC128_CLEAN_crypto_kem_keypair(unsigned char *pk, unsigned char *sk);

int PQCLEAN_HQC128_CLEAN_crypto_kem_enc(unsigned char *ct, unsigned char *ss, const unsigned char *pk);

int PQCLEAN_HQC128_CLEAN_crypto_kem_dec(unsigned char *ss, const unsigned char *ct, const unsigned char *sk);


#endif

+ 383
- 0
crypto_kem/hqc-128/clean/bch.c View File

@@ -0,0 +1,383 @@
#include "bch.h"
#include "fft.h"
#include "gf.h"
#include "parameters.h"
#include "vector.h"
#include <stdint.h>
#include <string.h>
/**
* @file bch.c
* Constant time implementation of BCH codes
*/


static uint16_t mod(uint16_t i, uint16_t modulus);
static void compute_cyclotomic_cosets(uint16_t *cosets, uint16_t upper_bound);
static void unpack_message(uint8_t *message_unpacked, const uint64_t *message);
static void lfsr_encode(uint8_t *codeword, const uint8_t *message);
static void pack_codeword(uint64_t *codeword, const uint8_t *codeword_unpacked);
static size_t compute_elp(uint16_t *sigma, const uint16_t *syndromes);
static void message_from_codeword(uint64_t *message, const uint64_t *codeword);
static void compute_syndromes(uint16_t *syndromes, const uint64_t *vector);
static void compute_roots(uint64_t *error, const uint16_t *sigma);

/**
* @brief Returns i modulo the given modulus.
*
* i must be less than 2*modulus.
* Therefore, the return value is either i or i-modulus.
* @returns i mod (modulus)
* @param[in] i The integer whose modulo is taken
* @param[in] modulus The modulus
*/
static uint16_t mod(uint16_t i, uint16_t modulus) {
uint16_t tmp = i - modulus;

// mask = 0xffff if(i < PARAM_GF_MUL_ORDER)
int16_t mask = -(tmp >> 15);

return tmp + (mask & modulus);
}



/**
* @brief Computes the odd binary cyclotomic cosets modulo 2^m-1 for integers less than upper_bound.
*
* The array cosets of size 2^m-1 is filled by placing at index i the coset representative of i.
* @param[out] cosets Array receiving the coset representatives
* @param[in] upper_bound The upper bound
*/
static void compute_cyclotomic_cosets(uint16_t *cosets, uint16_t upper_bound) {
// Compute the odd cyclotomic classes
for (uint16_t i = 1 ; i < upper_bound ; i += 2) {
if (cosets[i] == 0) { // If i does not already belong to a class
uint16_t tmp = i;
size_t j = PARAM_M;
cosets[i] = i;
while (--j) { // Complete i's class
tmp = mod(2 * tmp, PARAM_GF_MUL_ORDER);
cosets[tmp] = i;
}
}
}
}



/**
* @brief Computes the generator polynomial of the primitive BCH code with given parameters.
*
* Code length is 2^m-1. <br>
* Parameter t is the targeted correction capacity of the code
* and receives the real correction capacity (which is at least equal to the target). <br>
* exp and log are arrays giving antilog and log of GF(2^m) elements.
* @returns the degree of the generator polynomial
* @param[out] bch_poly Array of size (m*t + 1) receiving the coefficients of the generator polynomial
* @param[in,out] t Targeted correction capacity; receives the real correction capacity
* @param[in] exp Antilog table of GF(2^m)
* @param[in] log Log table of GF(2^m)
*/
size_t PQCLEAN_HQC128_CLEAN_compute_bch_poly(uint16_t *bch_poly, size_t *t, const uint16_t *exp, const uint16_t *log) {
uint16_t cosets[PARAM_GF_MUL_ORDER];
size_t deg_bch_poly = 0;

memset(cosets, 0, 2 * PARAM_GF_MUL_ORDER);
compute_cyclotomic_cosets(cosets, 2 * *t);

// Start with bch_poly(X) = 1
bch_poly[0] = 1;

for (uint16_t i = 1 ; i < PARAM_GF_MUL_ORDER ; ++i) {
if (cosets[i] == 0) {
continue;
}

// Multiply bch_poly(X) by X-a^i
for (size_t j = deg_bch_poly ; j ; --j) {
int16_t mask = -((uint16_t) - bch_poly[j] >> 15);
bch_poly[j] = (mask & exp[mod(log[bch_poly[j]] + i, PARAM_GF_MUL_ORDER)]) ^ bch_poly[j - 1];
}
bch_poly[0] = exp[mod(log[bch_poly[0]] + i, PARAM_GF_MUL_ORDER)];
bch_poly[++deg_bch_poly] = 1;
}

// Determine the real correction capacity
while (cosets[2 * *t + 1] != 0) {
++*t;
}

return deg_bch_poly;
}



/**
* @brief Unpacks the message message to the array message_unpacked where each byte stores a bit of the message
*
* @param[out] message_unpacked Array of VEC_K_SIZE_BYTES bytes receiving the unpacked message
* @param[in] message Array of PARAM_K bytes storing the packed message
*/
static void unpack_message(uint8_t *message_unpacked, const uint64_t *message) {
for (size_t i = 0 ; i < (VEC_K_SIZE_64 - (PARAM_K % 64 != 0)) ; ++i) {
for (size_t j = 0 ; j < 64 ; ++j) {
message_unpacked[j + 64 * i] = (message[i] >> j) & 0x0000000000000001;
}
}

for (int8_t j = 0 ; j < PARAM_K % 64 ; ++j) {
message_unpacked[j + 64 * (VEC_K_SIZE_64 - 1)] = (message[VEC_K_SIZE_64 - 1] >> j) & 0x0000000000000001;
}
}


/**
* @brief Encodes the message message to a codeword codeword using the generator polynomial bch_poly of the code
*
* @param[out] codeword Array of PARAM_N1 bytes receiving the codeword
* @param[in] message Array of PARAM_K bytes storing the message to encode
*/
static void lfsr_encode(uint8_t *codeword, const uint8_t *message) {
uint8_t gate_value = 0;
uint8_t bch_poly[PARAM_G] = PARAM_BCH_POLY;

// Compute the Parity-check digits
for (int16_t i = PARAM_K - 1 ; i >= 0 ; --i) {
gate_value = message[i] ^ codeword[PARAM_N1 - PARAM_K - 1];

for (size_t j = PARAM_N1 - PARAM_K - 1 ; j ; --j) {
codeword[j] = codeword[j - 1] ^ (-gate_value & bch_poly[j]);
}

codeword[0] = gate_value;
}

// Add the message
memcpy(codeword + PARAM_N1 - PARAM_K, message, PARAM_K);
}



/**
* @brief Packs the codeword from an array codeword_unpacked where each byte stores a bit to a compact array codeword
*
* @param[out] codeword Array of VEC_N1_SIZE_BYTES bytes receiving the packed codeword
* @param[in] codeword_unpacked Array of PARAM_N1 bytes storing the unpacked codeword
*/
static void pack_codeword(uint64_t *codeword, const uint8_t *codeword_unpacked) {
for (size_t i = 0 ; i < (VEC_N1_SIZE_64 - (PARAM_N1 % 64 != 0)) ; ++i) {
for (size_t j = 0 ; j < 64 ; ++j) {
codeword[i] |= ((uint64_t) codeword_unpacked[j + 64 * i]) << j;
}
}

for (size_t j = 0 ; j < PARAM_N1 % 64 ; ++j) {
codeword[VEC_N1_SIZE_64 - 1] |= ((uint64_t) codeword_unpacked[j + 64 * (VEC_N1_SIZE_64 - 1)]) << j;
}
}


/**
* @brief Encodes a message message of PARAM_K bits to a BCH codeword codeword of PARAM_N1 bits
*
* Following @cite lin1983error (Chapter 4 - Cyclic Codes),
* We perform a systematic encoding using a linear (PARAM_N1 - PARAM_K)-stage shift register
* with feedback connections based on the generator polynomial bch_poly of the BCH code.
*
* @param[out] codeword Array of size VEC_N1_SIZE_BYTES receiving the encoded message
* @param[in] message Array of size VEC_K_SIZE_BYTES storing the message
*/
void PQCLEAN_HQC128_CLEAN_bch_code_encode(uint64_t *codeword, const uint64_t *message) {
uint8_t message_unpacked[PARAM_K];
uint8_t codeword_unpacked[PARAM_N1] = {0};

unpack_message(message_unpacked, message);
lfsr_encode(codeword_unpacked, message_unpacked);
pack_codeword(codeword, codeword_unpacked);
}


/**
* @brief Computes the error locator polynomial (ELP) sigma
*
* This is a constant time implementation of Berlekamp's simplified algorithm (see @cite joiner1995decoding). <br>
* We use the letter p for rho which is initialized at -1/2. <br>
* The array X_sigma_p represents the polynomial X^(2(mu-rho))*sigma_p(X). <br>
* Instead of maintaining a list of sigmas, we update in place both sigma and X_sigma_p. <br>
* sigma_copy serves as a temporary save of sigma in case X_sigma_p needs to be updated. <br>
* We can properly correct only if the degree of sigma does not exceed PARAM_DELTA.
* This means only the first PARAM_DELTA + 1 coefficients of sigma are of value
* and we only need to save its first PARAM_DELTA - 1 coefficients.
*
* @returns the degree of the ELP sigma
* @param[out] sigma Array of size (at least) PARAM_DELTA receiving the ELP
* @param[in] syndromes Array of size (at least) 2*PARAM_DELTA storing the syndromes
*/
static size_t compute_elp(uint16_t *sigma, const uint16_t *syndromes) {
sigma[0] = 1;
size_t deg_sigma = 0;
size_t deg_sigma_p = 0;
uint16_t sigma_copy[PARAM_DELTA - 1] = {0};
size_t deg_sigma_copy = 0;
uint16_t X_sigma_p[PARAM_DELTA + 1] = {0, 1};
int32_t pp = -1; // 2*rho
uint16_t d_p = 1;
uint16_t d = syndromes[0];

for (size_t mu = 0 ; mu < PARAM_DELTA ; ++mu) {
// Save sigma in case we need it to update X_sigma_p
memcpy(sigma_copy, sigma, 2 * (PARAM_DELTA - 1));
deg_sigma_copy = deg_sigma;

uint16_t dd = PQCLEAN_HQC128_CLEAN_gf_mul(d, PQCLEAN_HQC128_CLEAN_gf_inverse(d_p)); // 0 if(d == 0)
for (size_t i = 1 ; (i <= 2 * mu + 1) && (i <= PARAM_DELTA) ; ++i) {
sigma[i] ^= PQCLEAN_HQC128_CLEAN_gf_mul(dd, X_sigma_p[i]);
}

size_t deg_X = 2 * mu - pp; // 2*(mu-rho)
size_t deg_X_sigma_p = deg_X + deg_sigma_p;

// mask1 = 0xffff if(d != 0) and 0 otherwise
int16_t mask1 = -((uint16_t) - d >> 15);

// mask2 = 0xffff if(deg_X_sigma_p > deg_sigma) and 0 otherwise
int16_t mask2 = -((uint16_t) (deg_sigma - deg_X_sigma_p) >> 15);

// mask12 = 0xffff if the deg_sigma increased and 0 otherwise
int16_t mask12 = mask1 & mask2;
deg_sigma = (mask12 & deg_X_sigma_p) ^ (~mask12 & deg_sigma);

if (mu == PARAM_DELTA - 1) {
break;
}

// Update pp, d_p and X_sigma_p if needed
pp = (mask12 & (2 * mu)) ^ (~mask12 & pp);
d_p = (mask12 & d) ^ (~mask12 & d_p);
for (size_t i = PARAM_DELTA - 1 ; i ; --i) {
X_sigma_p[i + 1] = (mask12 & sigma_copy[i - 1]) ^ (~mask12 & X_sigma_p[i - 1]);
}
X_sigma_p[1] = 0;
X_sigma_p[0] = 0;
deg_sigma_p = (mask12 & deg_sigma_copy) ^ (~mask12 & deg_sigma_p);

// Compute the next discrepancy
d = syndromes[2 * mu + 2];
for (size_t i = 1 ; (i <= 2 * mu + 1) && (i <= PARAM_DELTA) ; ++i) {
d ^= PQCLEAN_HQC128_CLEAN_gf_mul(sigma[i], syndromes[2 * mu + 2 - i]);
}
}

return deg_sigma;
}



/**
* @brief Retrieves the message message from the codeword codeword
*
* Since we performed a systematic encoding, the message is the last PARAM_K bits of the codeword.
*
* @param[out] message Array of size VEC_K_SIZE_BYTES receiving the message
* @param[in] codeword Array of size VEC_N1_SIZE_BYTES storing the codeword
*/
static void message_from_codeword(uint64_t *message, const uint64_t *codeword) {
int32_t val = PARAM_N1 - PARAM_K;

uint64_t mask1 = (uint64_t) (0xffffffffffffffff << val % 64);
uint64_t mask2 = (uint64_t) (0xffffffffffffffff >> (64 - val % 64));
size_t index = val / 64;

for (size_t i = 0 ; i < VEC_K_SIZE_64 - 1 ; ++i) {
uint64_t message1 = (codeword[index] & mask1) >> val % 64;
uint64_t message2 = (codeword[++index] & mask2) << (64 - val % 64);
message[i] = message1 | message2;
}

// Last byte (8-val % 8 is the number of bits given by message1)
if ((PARAM_K % 64 == 0) || (64 - val % 64 < PARAM_K % 64)) {
uint64_t message1 = (codeword[index] & mask1) >> val % 64;
uint64_t message2 = (codeword[++index] & mask2) << (64 - val % 64);
message[VEC_K_SIZE_64 - 1] = message1 | message2;
} else {
uint64_t message1 = (codeword[index] & mask1) >> val % 64;
message[VEC_K_SIZE_64 - 1] = message1;
}
}


/**
* @brief Computes the 2^PARAM_DELTA syndromes from the received vector vector
*
* Syndromes are the sum of powers of alpha weighted by vector's coefficients.
* To do so, we use the additive FFT transpose, which takes as input a family w of GF(2^PARAM_M) elements
* and outputs the weighted power sums of these w. <br>
* Therefore, this requires twisting and applying a permutation before feeding vector to the PQCLEAN_HQC128_CLEAN_fft transpose. <br>
* For more details see Berstein, Chou and Schawbe's explanations:
* https://binary.cr.yp.to/mcbits-20130616.pdf
*
* @param[out] syndromes Array of size 2^(PARAM_FFT_T) receiving the 2*PARAM_DELTA syndromes
* @param[in] vector Array of size VEC_N1_SIZE_BYTES storing the received word
*/
static void compute_syndromes(uint16_t *syndromes, const uint64_t *vector) {
uint16_t w[1 << PARAM_M];

PQCLEAN_HQC128_CLEAN_fft_t_preprocess_bch_codeword(w, vector);
PQCLEAN_HQC128_CLEAN_fft_t(syndromes, w, 2 * PARAM_DELTA);
}


/**
* @brief Computes the error polynomial error from the error locator polynomial sigma
*
* See function PQCLEAN_HQC128_CLEAN_fft for more details.
*
* @param[out] error Array of VEC_N1_SIZE_BYTES elements receiving the error polynomial
* @param[in] sigma Array of 2^PARAM_FFT elements storing the error locator polynomial
*/
static void compute_roots(uint64_t *error, const uint16_t *sigma) {
uint16_t w[1 << PARAM_M] = {0}; // w will receive the evaluation of sigma in all field elements

PQCLEAN_HQC128_CLEAN_fft(w, sigma, PARAM_DELTA + 1);
PQCLEAN_HQC128_CLEAN_fft_retrieve_bch_error_poly(error, w);
}



/**
* @brief Decodes the received word
*
* This function relies on four steps:
* <ol>
* <li> The first step, done by additive FFT transpose, is the computation of the 2*PARAM_DELTA syndromes.
* <li> The second step is the computation of the error-locator polynomial sigma.
* <li> The third step, done by additive FFT, is finding the error-locator numbers by calculating the roots of the polynomial sigma and takings their inverses.
* <li> The fourth step is the correction of the errors in the received polynomial.
* </ol>
* For a more complete picture on BCH decoding, see Shu. Lin and Daniel J. Costello in Error Control Coding: Fundamentals and Applications @cite lin1983error
*
* @param[out] message Array of size VEC_K_SIZE_BYTES receiving the decoded message
* @param[in] vector Array of size VEC_N1_SIZE_BYTES storing the received word
*/
void PQCLEAN_HQC128_CLEAN_bch_code_decode(uint64_t *message, uint64_t *vector) {
uint16_t syndromes[1 << PARAM_FFT_T] = {0};
uint16_t sigma[1 << PARAM_FFT] = {0};
uint64_t error[(1 << PARAM_M) / 8] = {0};

// Calculate the 2*PARAM_DELTA syndromes
compute_syndromes(syndromes, vector);

// Compute the error locator polynomial sigma
// Sigma's degree is at most PARAM_DELTA but the FFT requires the extra room
compute_elp(sigma, syndromes);

// Compute the error polynomial error
compute_roots(error, sigma);

// Add the error polynomial to the received polynomial
PQCLEAN_HQC128_CLEAN_vect_add(vector, vector, error, VEC_N1_SIZE_64);

// Retrieve the message from the decoded codeword
message_from_codeword(message, vector);

}

+ 23
- 0
crypto_kem/hqc-128/clean/bch.h View File

@@ -0,0 +1,23 @@
#ifndef BCH_H
#define BCH_H


/**
* @file bch.h
* Header file of bch.c
*/

#include "parameters.h"
#include "parameters.h"
#include <stddef.h>
#include <stdint.h>

void PQCLEAN_HQC128_CLEAN_bch_code_encode(uint64_t *codeword, const uint64_t *message);

void PQCLEAN_HQC128_CLEAN_bch_code_decode(uint64_t *message, uint64_t *vector);


size_t PQCLEAN_HQC128_CLEAN_compute_bch_poly(uint16_t *bch_poly, size_t *t, const uint16_t *exp, const uint16_t *log);


#endif

+ 49
- 0
crypto_kem/hqc-128/clean/code.c View File

@@ -0,0 +1,49 @@
#include "bch.h"
#include "code.h"
#include "parameters.h"
#include "repetition.h"
#include <stdint.h>
#include <string.h>
/**
* @file code.c
* @brief Implementation of tensor code
*/



/**
*
* @brief Encoding the message m to a code word em using the tensor code
*
* First we encode the message using the BCH code, then with the repetition code to obtain
* a tensor code word.
*
* @param[out] em Pointer to an array that is the tensor code word
* @param[in] m Pointer to an array that is the message
*/
void PQCLEAN_HQC128_CLEAN_code_encode(uint64_t *em, const uint64_t *m) {

uint64_t tmp[VEC_N1_SIZE_64] = {0};

PQCLEAN_HQC128_CLEAN_bch_code_encode(tmp, m);
PQCLEAN_HQC128_CLEAN_repetition_code_encode(em, tmp);

}



/**
* @brief Decoding the code word em to a message m using the tensor code
*
* @param[out] m Pointer to an array that is the message
* @param[in] em Pointer to an array that is the code word
*/
void PQCLEAN_HQC128_CLEAN_code_decode(uint64_t *m, const uint64_t *em) {

uint64_t tmp[VEC_N1_SIZE_64] = {0};

PQCLEAN_HQC128_CLEAN_repetition_code_decode(tmp, em);
PQCLEAN_HQC128_CLEAN_bch_code_decode(m, tmp);


}

+ 20
- 0
crypto_kem/hqc-128/clean/code.h View File

@@ -0,0 +1,20 @@
#ifndef CODE_H
#define CODE_H


/**
* @file code.h
* Header file of code.c
*/

#include "parameters.h"
#include "parameters.h"
#include <stddef.h>
#include <stdint.h>

void PQCLEAN_HQC128_CLEAN_code_encode(uint64_t *em, const uint64_t *message);

void PQCLEAN_HQC128_CLEAN_code_decode(uint64_t *m, const uint64_t *em);


#endif

+ 627
- 0
crypto_kem/hqc-128/clean/fft.c View File

@@ -0,0 +1,627 @@
#include "fft.h"
#include "gf.h"
#include "parameters.h"
#include <stdint.h>
#include <stdio.h>
#include <string.h>
/**
* @file fft.c
* Implementation of the additive FFT and its transpose.
* This implementation is based on the paper from Gao and Mateer: <br>
* Shuhong Gao and Todd Mateer, Additive Fast Fourier Transforms over Finite Fields,
* IEEE Transactions on Information Theory 56 (2010), 6265--6272.
* http://www.math.clemson.edu/~sgao/papers/GM10.pdf <br>
* and includes improvements proposed by Bernstein, Chou and Schwabe here:
* https://binary.cr.yp.to/mcbits-20130616.pdf
*/


static void compute_fft_betas(uint16_t *betas);
static void compute_subset_sums(uint16_t *subset_sums, const uint16_t *set, size_t set_size);
static void radix_t(uint16_t *f, const uint16_t *f0, const uint16_t *f1, uint32_t m_f);
static void fft_t_rec(uint16_t *f, const uint16_t *w, size_t f_coeffs, uint8_t m, uint32_t m_f, const uint16_t *betas);
static void radix(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f);
static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32_t m_f, const uint16_t *betas);


/**
* @brief Computes the basis of betas (omitting 1) used in the additive FFT and its transpose
*
* @param[out] betas Array of size PARAM_M-1
*/
static void compute_fft_betas(uint16_t *betas) {
for (size_t i = 0 ; i < PARAM_M - 1 ; ++i) {
betas[i] = 1 << (PARAM_M - 1 - i);
}
}



/**
* @brief Computes the subset sums of the given set
*
* The array subset_sums is such that its ith element is
* the subset sum of the set elements given by the binary form of i.
*
* @param[out] subset_sums Array of size 2^set_size receiving the subset sums
* @param[in] set Array of set_size elements
* @param[in] set_size Size of the array set
*/
static void compute_subset_sums(uint16_t *subset_sums, const uint16_t *set, size_t set_size) {
subset_sums[0] = 0;

for (size_t i = 0 ; i < set_size ; ++i) {
for (size_t j = 0 ; j < (1U << i) ; ++j) {
subset_sums[(1 << i) + j] = set[i] ^ subset_sums[j];
}
}
}



/**
* @brief Transpose of the linear radix conversion
*
* This is a direct transposition of the radix function
* implemented following the process of transposing a linear function as exposed by Bernstein, Chou and Schwabe here:
* https://binary.cr.yp.to/mcbits-20130616.pdf
*
* @param[out] f Array of size a power of 2
* @param[in] f0 Array half the size of f
* @param[in] f1 Array half the size of f
* @param[in] m_f 2^{m_f} is the smallest power of 2 greater or equal to the number of coefficients of f
*/
static void radix_t(uint16_t *f, const uint16_t *f0, const uint16_t *f1, uint32_t m_f) {
switch (m_f) {
case 4:
f[0] = f0[0];
f[1] = f1[0];
f[2] = f0[1] ^ f1[0];
f[3] = f[2] ^ f1[1];
f[4] = f[2] ^ f0[2];
f[5] = f[3] ^ f1[2];
f[6] = f[4] ^ f0[3] ^ f1[2];
f[7] = f[3] ^ f0[3] ^ f1[3];
f[8] = f[4] ^ f0[4];
f[9] = f[5] ^ f1[4];
f[10] = f[6] ^ f0[5] ^ f1[4];
f[11] = f[7] ^ f0[5] ^ f1[4] ^ f1[5];
f[12] = f[8] ^ f0[5] ^ f0[6] ^ f1[4];
f[13] = f[7] ^ f[9] ^ f[11] ^ f1[6];
f[14] = f[6] ^ f0[6] ^ f0[7] ^ f1[6];
f[15] = f[7] ^ f0[7] ^ f1[7];
return;

case 3:
f[0] = f0[0];
f[1] = f1[0];
f[2] = f0[1] ^ f1[0];
f[3] = f[2] ^ f1[1];
f[4] = f[2] ^ f0[2];
f[5] = f[3] ^ f1[2];
f[6] = f[4] ^ f0[3] ^ f1[2];
f[7] = f[3] ^ f0[3] ^ f1[3];
return;

case 2:
f[0] = f0[0];
f[1] = f1[0];
f[2] = f0[1] ^ f1[0];
f[3] = f[2] ^ f1[1];
return;

case 1:
f[0] = f0[0];
f[1] = f1[0];
return;

default:
;

size_t n = 1 << (m_f - 2);

uint16_t Q0[1 << (PARAM_FFT_T - 2)];
uint16_t Q1[1 << (PARAM_FFT_T - 2)];
uint16_t R0[1 << (PARAM_FFT_T - 2)];
uint16_t R1[1 << (PARAM_FFT_T - 2)];

uint16_t Q[1 << 2 * (PARAM_FFT_T - 2)];
uint16_t R[1 << 2 * (PARAM_FFT_T - 2)];

memcpy(Q0, f0 + n, 2 * n);
memcpy(Q1, f1 + n, 2 * n);
memcpy(R0, f0, 2 * n);
memcpy(R1, f1, 2 * n);

radix_t (Q, Q0, Q1, m_f - 1);
radix_t (R, R0, R1, m_f - 1);

memcpy(f, R, 4 * n);
memcpy(f + 2 * n, R + n, 2 * n);
memcpy(f + 3 * n, Q + n, 2 * n);

for (size_t i = 0 ; i < n ; ++i) {
f[2 * n + i] ^= Q[i];
f[3 * n + i] ^= f[2 * n + i];
}
}
}



/**
* @brief Recursively computes syndromes of family w
*
* This function is a subroutine of the function fft_t
*
* @param[out] f Array receiving the syndromes
* @param[in] w Array storing the family
* @param[in] f_coeffs Length of syndromes vector
* @param[in] m 2^m is the smallest power of 2 greater or equal to the length of family w
* @param[in] m_f 2^{m_f} is the smallest power of 2 greater or equal to the length of f
* @param[in] betas FFT constants
*/
static void fft_t_rec(uint16_t *f, const uint16_t *w, size_t f_coeffs, uint8_t m, uint32_t m_f, const uint16_t *betas) {
size_t k = 1 << (m - 1);
uint16_t gammas[PARAM_M - 2];
uint16_t deltas[PARAM_M - 2];
uint16_t gammas_sums[1 << (PARAM_M - 1)];
uint16_t u[1 << (PARAM_M - 2)] = {0};
uint16_t f0[1 << (PARAM_FFT_T - 2)] = {0};
uint16_t f1[1 << (PARAM_FFT_T - 2)] = {0};

// Step 1
if (m_f == 1) {
f[0] = 0;
for (size_t i = 0 ; i < (1U << m) ; ++i) {
f[0] ^= w[i];
}
f[1] = 0;

uint16_t betas_sums[1 << (PARAM_M - 1)];
betas_sums[0] = 0;
for (size_t j = 0 ; j < m ; ++j) {
for (size_t k = 0 ; k < (1U << j) ; ++k) {
size_t index = (1 << j) + k;
betas_sums[index] = betas_sums[k] ^ betas[j];
f[1] ^= PQCLEAN_HQC128_CLEAN_gf_mul(betas_sums[index], w[index]);
}
}

return;
}

// Compute gammas and deltas
for (uint8_t i = 0 ; i < m - 1 ; ++i) {
gammas[i] = PQCLEAN_HQC128_CLEAN_gf_mul(betas[i], PQCLEAN_HQC128_CLEAN_gf_inverse(betas[m - 1]));
deltas[i] = PQCLEAN_HQC128_CLEAN_gf_square(gammas[i]) ^ gammas[i];
}

// Compute gammas subset sums
compute_subset_sums(gammas_sums, gammas, m - 1);

/* Step 6: Compute u and v from w (aka w)
* w[i] = u[i] + G[i].v[i]
* w[k+i] = w[i] + v[i] = u[i] + (G[i]+1).v[i]
* Transpose:
* u[i] = w[i] + w[k+i]
* v[i] = G[i].w[i] + (G[i]+1).w[k+i] = G[i].u[i] + w[k+i] */
if (f_coeffs <= 3) { // 3-coefficient polynomial f case
// Step 5: Compute f0 from u and f1 from v
f1[1] = 0;
u[0] = w[0] ^ w[k];
f1[0] = w[k];
for (size_t i = 1 ; i < k ; ++i) {
u[i] = w[i] ^ w[k + i];
f1[0] ^= PQCLEAN_HQC128_CLEAN_gf_mul(gammas_sums[i], u[i]) ^ w[k + i];
}
fft_t_rec(f0, u, (f_coeffs + 1) / 2, m - 1, m_f - 1, deltas);
} else {
uint16_t v[1 << (PARAM_M - 2)] = {0};

u[0] = w[0] ^ w[k];
v[0] = w[k];

for (size_t i = 1 ; i < k ; ++i) {
u[i] = w[i] ^ w[k + i];
v[i] = PQCLEAN_HQC128_CLEAN_gf_mul(gammas_sums[i], u[i]) ^ w[k + i];
}

// Step 5: Compute f0 from u and f1 from v
fft_t_rec(f0, u, (f_coeffs + 1) / 2, m - 1, m_f - 1, deltas);
fft_t_rec(f1, v, f_coeffs / 2, m - 1, m_f - 1, deltas);
}

// Step 3: Compute g from g0 and g1
radix_t(f, f0, f1, m_f);

// Step 2: compute f from g
if (betas[m - 1] != 1) {
uint16_t beta_m_pow = 1;
for (size_t i = 1 ; i < (1U << m_f) ; ++i) {
beta_m_pow = PQCLEAN_HQC128_CLEAN_gf_mul(beta_m_pow, betas[m - 1]);
f[i] = PQCLEAN_HQC128_CLEAN_gf_mul(beta_m_pow, f[i]);
}
}
}



/**
* @brief Computes the syndromes f of the family w
*
* Since the syndromes linear map is the transpose of multipoint evaluation,
* it uses exactly the same constants, either hardcoded or precomputed by compute_fft_lut(...). <br>
* This follows directives from Bernstein, Chou and Schwabe given here:
* https://binary.cr.yp.to/mcbits-20130616.pdf
*
* @param[out] f Array of size 2*(PARAM_FFT_T) elements receiving the syndromes
* @param[in] w Array of PARAM_GF_MUL_ORDER+1 elements
* @param[in] f_coeffs Length of syndromes vector f
*/
void PQCLEAN_HQC128_CLEAN_fft_t(uint16_t *f, const uint16_t *w, size_t f_coeffs) {
// Transposed from Gao and Mateer algorithm
uint16_t betas[PARAM_M - 1];
uint16_t betas_sums[1 << (PARAM_M - 1)];
size_t k = 1 << (PARAM_M - 1);
uint16_t u[1 << (PARAM_M - 1)] = {0};
uint16_t v[1 << (PARAM_M - 1)] = {0};
uint16_t deltas[PARAM_M - 1];
uint16_t f0[1 << (PARAM_FFT_T - 1)];
uint16_t f1[1 << (PARAM_FFT_T - 1)];

compute_fft_betas(betas);
compute_subset_sums(betas_sums, betas, PARAM_M - 1);

/* Step 6: Compute u and v from w (aka w)
*
* We had:
* w[i] = u[i] + G[i].v[i]
* w[k+i] = w[i] + v[i] = u[i] + (G[i]+1).v[i]
* Transpose:
* u[i] = w[i] + w[k+i]
* v[i] = G[i].w[i] + (G[i]+1).w[k+i] = G[i].u[i] + w[k+i] */
u[0] = w[0] ^ w[k];
v[0] = w[k];
for (size_t i = 1 ; i < k ; ++i) {
u[i] = w[i] ^ w[k + i];
v[i] = PQCLEAN_HQC128_CLEAN_gf_mul(betas_sums[i], u[i]) ^ w[k + i];
}

// Compute deltas
for (size_t i = 0 ; i < PARAM_M - 1 ; ++i) {
deltas[i] = PQCLEAN_HQC128_CLEAN_gf_square(betas[i]) ^ betas[i];
}

// Step 5: Compute f0 from u and f1 from v
fft_t_rec(f0, u, (f_coeffs + 1) / 2, PARAM_M - 1, PARAM_FFT_T - 1, deltas);
fft_t_rec(f1, v, f_coeffs / 2, PARAM_M - 1, PARAM_FFT_T - 1, deltas);

// Step 3: Compute g from g0 and g1
radix_t(f, f0, f1, PARAM_FFT_T);

// Step 2: beta_m = 1 so f = g
}



/**
* @brief Computes the radix conversion of a polynomial f in GF(2^m)[x]
*
* Computes f0 and f1 such that f(x) = f0(x^2-x) + x.f1(x^2-x)
* as proposed by Bernstein, Chou and Schwabe:
* https://binary.cr.yp.to/mcbits-20130616.pdf
*
* @param[out] f0 Array half the size of f
* @param[out] f1 Array half the size of f
* @param[in] f Array of size a power of 2
* @param[in] m_f 2^{m_f} is the smallest power of 2 greater or equal to the number of coefficients of f
*/
static void radix(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f) {
switch (m_f) {
case 4:
f0[4] = f[8] ^ f[12];
f0[6] = f[12] ^ f[14];
f0[7] = f[14] ^ f[15];
f1[5] = f[11] ^ f[13];
f1[6] = f[13] ^ f[14];
f1[7] = f[15];
f0[5] = f[10] ^ f[12] ^ f1[5];
f1[4] = f[9] ^ f[13] ^ f0[5];

f0[0] = f[0];
f1[3] = f[7] ^ f[11] ^ f[15];
f0[3] = f[6] ^ f[10] ^ f[14] ^ f1[3];
f0[2] = f[4] ^ f0[4] ^ f0[3] ^ f1[3];
f1[1] = f[3] ^ f[5] ^ f[9] ^ f[13] ^ f1[3];
f1[2] = f[3] ^ f1[1] ^ f0[3];
f0[1] = f[2] ^ f0[2] ^ f1[1];
f1[0] = f[1] ^ f0[1];
return;

case 3:
f0[0] = f[0];
f0[2] = f[4] ^ f[6];
f0[3] = f[6] ^ f[7];
f1[1] = f[3] ^ f[5] ^ f[7];
f1[2] = f[5] ^ f[6];
f1[3] = f[7];
f0[1] = f[2] ^ f0[2] ^ f1[1];
f1[0] = f[1] ^ f0[1];
return;

case 2:
f0[0] = f[0];
f0[1] = f[2] ^ f[3];
f1[0] = f[1] ^ f0[1];
f1[1] = f[3];
return;

case 1:
f0[0] = f[0];
f1[0] = f[1];
return;

default:
;
size_t n = 1 << (m_f - 2);

uint16_t Q[2 * (1 << (PARAM_FFT - 2))];
uint16_t R[2 * (1 << (PARAM_FFT - 2))];

uint16_t Q0[1 << (PARAM_FFT - 2)];
uint16_t Q1[1 << (PARAM_FFT - 2)];
uint16_t R0[1 << (PARAM_FFT - 2)];
uint16_t R1[1 << (PARAM_FFT - 2)];

memcpy(Q, f + 3 * n, 2 * n);
memcpy(Q + n, f + 3 * n, 2 * n);
memcpy(R, f, 4 * n);

for (size_t i = 0 ; i < n ; ++i) {
Q[i] ^= f[2 * n + i];
R[n + i] ^= Q[i];
}

radix(Q0, Q1, Q, m_f - 1);
radix(R0, R1, R, m_f - 1);

memcpy(f0, R0, 2 * n);
memcpy(f0 + n, Q0, 2 * n);
memcpy(f1, R1, 2 * n);
memcpy(f1 + n, Q1, 2 * n);
}
}



/**
* @brief Evaluates f at all subset sums of a given set
*
* This function is a subroutine of the function fft.
*
* @param[out] w Array
* @param[in] f Array
* @param[in] f_coeffs Number of coefficients of f
* @param[in] m Number of betas
* @param[in] m_f Number of coefficients of f (one more than its degree)
* @param[in] betas FFT constants
*/
static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32_t m_f, const uint16_t *betas) {
uint16_t f0[1 << (PARAM_FFT - 2)];
uint16_t f1[1 << (PARAM_FFT - 2)];
uint16_t gammas[PARAM_M - 2];
uint16_t deltas[PARAM_M - 2];
size_t k = 1 << (m - 1);
uint16_t gammas_sums[1 << (PARAM_M - 2)];
uint16_t u[1 << (PARAM_M - 2)] = {0};
uint16_t v[1 << (PARAM_M - 2)] = {0};

// Step 1
if (m_f == 1) {
uint16_t tmp[PARAM_M - (PARAM_FFT - 1)];
for (size_t i = 0 ; i < m ; ++i) {
tmp[i] = PQCLEAN_HQC128_CLEAN_gf_mul(betas[i], f[1]);
}

w[0] = f[0];
for (size_t j = 0 ; j < m ; ++j) {
for (size_t k = 0 ; k < (1U << j) ; ++k) {
w[(1 << j) + k] = w[k] ^ tmp[j];
}
}

return;
}

// Step 2: compute g
if (betas[m - 1] != 1) {
uint16_t beta_m_pow = 1;
for (size_t i = 1 ; i < (1U << m_f) ; ++i) {
beta_m_pow = PQCLEAN_HQC128_CLEAN_gf_mul(beta_m_pow, betas[m - 1]);
f[i] = PQCLEAN_HQC128_CLEAN_gf_mul(beta_m_pow, f[i]);
}
}

// Step 3
radix(f0, f1, f, m_f);

// Step 4: compute gammas and deltas
for (uint8_t i = 0 ; i < m - 1 ; ++i) {
gammas[i] = PQCLEAN_HQC128_CLEAN_gf_mul(betas[i], PQCLEAN_HQC128_CLEAN_gf_inverse(betas[m - 1]));
deltas[i] = PQCLEAN_HQC128_CLEAN_gf_square(gammas[i]) ^ gammas[i];
}

// Compute gammas sums
compute_subset_sums(gammas_sums, gammas, m - 1);

// Step 5
fft_rec(u, f0, (f_coeffs + 1) / 2, m - 1, m_f - 1, deltas);

if (f_coeffs <= 3) { // 3-coefficient polynomial f case: f1 is constant
w[0] = u[0];
w[k] = u[0] ^ f1[0];
for (size_t i = 1 ; i < k ; ++i) {
w[i] = u[i] ^ PQCLEAN_HQC128_CLEAN_gf_mul(gammas_sums[i], f1[0]);
w[k + i] = w[i] ^ f1[0];
}
} else {
fft_rec(v, f1, f_coeffs / 2, m - 1, m_f - 1, deltas);

// Step 6
memcpy(w + k, v, 2 * k);
w[0] = u[0];
w[k] ^= u[0];
for (size_t i = 1 ; i < k ; ++i) {
w[i] = u[i] ^ PQCLEAN_HQC128_CLEAN_gf_mul(gammas_sums[i], v[i]);
w[k + i] ^= w[i];
}
}
}



/**
* @brief Evaluates f on all fields elements using an additive FFT algorithm
*
* f_coeffs is the number of coefficients of f (one less than its degree). <br>
* The FFT proceeds recursively to evaluate f at all subset sums of a basis B. <br>
* This implementation is based on the paper from Gao and Mateer: <br>
* Shuhong Gao and Todd Mateer, Additive Fast Fourier Transforms over Finite Fields,
* IEEE Transactions on Information Theory 56 (2010), 6265--6272.
* http://www.math.clemson.edu/~sgao/papers/GM10.pdf <br>
* and includes improvements proposed by Bernstein, Chou and Schwabe here:
* https://binary.cr.yp.to/mcbits-20130616.pdf <br>
* Note that on this first call (as opposed to the recursive calls to fft_rec), gammas are equal to betas,
* meaning the first gammas subset sums are actually the subset sums of betas (except 1). <br>
* Also note that f is altered during computation (twisted at each level).
*
* @param[out] w Array
* @param[in] f Array of 2^PARAM_FFT elements
* @param[in] f_coeffs Number coefficients of f (i.e. deg(f)+1)
*/
void PQCLEAN_HQC128_CLEAN_fft(uint16_t *w, const uint16_t *f, size_t f_coeffs) {
uint16_t betas[PARAM_M - 1];
uint16_t betas_sums[1 << (PARAM_M - 1)];
uint16_t f0[1 << (PARAM_FFT - 1)];
uint16_t f1[1 << (PARAM_FFT - 1)];
uint16_t deltas[PARAM_M - 1];
size_t k = 1 << (PARAM_M - 1);
uint16_t u[1 << (PARAM_M - 1)];
uint16_t v[1 << (PARAM_M - 1)];

// Follows Gao and Mateer algorithm
compute_fft_betas(betas);

// Step 1: PARAM_FFT > 1, nothing to do

// Compute gammas sums
compute_subset_sums(betas_sums, betas, PARAM_M - 1);

// Step 2: beta_m = 1, nothing to do

// Step 3
radix(f0, f1, f, PARAM_FFT);

// Step 4: Compute deltas
for (size_t i = 0 ; i < PARAM_M - 1 ; ++i) {
deltas[i] = PQCLEAN_HQC128_CLEAN_gf_square(betas[i]) ^ betas[i];
}

// Step 5
fft_rec(u, f0, (f_coeffs + 1) / 2, PARAM_M - 1, PARAM_FFT - 1, deltas);
fft_rec(v, f1, f_coeffs / 2, PARAM_M - 1, PARAM_FFT - 1, deltas);

// Step 6, 7 and error polynomial computation
memcpy(w + k, v, 2 * k);

// Check if 0 is root
w[0] = u[0];

// Check if 1 is root
w[k] ^= u[0];

// Find other roots
for (size_t i = 1 ; i < k ; ++i) {
w[i] = u[i] ^ PQCLEAN_HQC128_CLEAN_gf_mul(betas_sums[i], v[i]);
w[k + i] ^= w[i];
}
}



/**
* @brief Arranges the received word vector in a form w such that applying the additive FFT transpose to w yields the BCH syndromes of the received word vector.
*
* Since the received word vector gives coefficients of the primitive element alpha, we twist accordingly. <br>
* Furthermore, the additive FFT transpose needs elements indexed by their decomposition on the chosen basis,
* so we apply the adequate permutation.
*
* @param[out] w Array of size 2^PARAM_M
* @param[in] vector Array of size VEC_N1_SIZE_BYTES
*/
void PQCLEAN_HQC128_CLEAN_fft_t_preprocess_bch_codeword(uint16_t *w, const uint64_t *vector) {
uint16_t r[1 << PARAM_M];
uint16_t gammas[PARAM_M - 1];
uint16_t gammas_sums[1 << (PARAM_M - 1)];
size_t k = 1 << (PARAM_M - 1);

// Unpack the received word vector into array r
size_t i;
for (i = 0 ; i < VEC_N1_SIZE_64 - (PARAM_N1 % 64 != 0) ; ++i) {
for (size_t j = 0 ; j < 64 ; ++j) {
r[64 * i + j] = (uint8_t) ((vector[i] >> j) & 1);
}
}

// Last byte
for (size_t j = 0 ; j < PARAM_N1 % 64 ; ++j) {
r[64 * i + j] = (uint8_t) ((vector[i] >> j) & 1);
}

// Complete r with zeros
memset(r + PARAM_N1, 0, 2 * ((1 << PARAM_M) - PARAM_N1));

compute_fft_betas(gammas);
compute_subset_sums(gammas_sums, gammas, PARAM_M - 1);

// Twist and permute r adequately to obtain w
w[0] = 0;
w[k] = -r[0] & 1;
for (size_t i = 1 ; i < k ; ++i) {
w[i] = -r[PQCLEAN_HQC128_CLEAN_gf_log(gammas_sums[i])] & gammas_sums[i];
w[k + i] = -r[PQCLEAN_HQC128_CLEAN_gf_log(gammas_sums[i] ^ 1)] & (gammas_sums[i] ^ 1);
}
}



/**
* @brief Retrieves the error polynomial error from the evaluations w of the ELP (Error Locator Polynomial) on all field elements.
*
* @param[out] error Array of size VEC_N1_SIZE_BYTES
* @param[in] w Array of size 2^PARAM_M
*/
void PQCLEAN_HQC128_CLEAN_fft_retrieve_bch_error_poly(uint64_t *error, const uint16_t *w) {
uint16_t gammas[PARAM_M - 1];
uint16_t gammas_sums[1 << (PARAM_M - 1)];
size_t k = 1 << (PARAM_M - 1);
size_t index = PARAM_GF_MUL_ORDER;

compute_fft_betas(gammas);
compute_subset_sums(gammas_sums, gammas, PARAM_M - 1);

error[0] ^= ((uint64_t) 1) ^ ((uint16_t) - w[0] >> 15);
uint64_t bit = ((uint64_t) 1) ^ ((uint16_t) - w[k] >> 15);
error[index / 8] ^= bit << (index % 64);

for (size_t i = 1 ; i < k ; ++i) {
index = PARAM_GF_MUL_ORDER - PQCLEAN_HQC128_CLEAN_gf_log(gammas_sums[i]);
bit = ((uint64_t) 1) ^ ((uint16_t) - w[i] >> 15);
error[index / 64] ^= bit << (index % 64);

index = PARAM_GF_MUL_ORDER - PQCLEAN_HQC128_CLEAN_gf_log(gammas_sums[i] ^ 1);
bit = ((uint64_t) 1) ^ ((uint16_t) - w[k + i] >> 15);
error[index / 64] ^= bit << (index % 64);
}
}

+ 25
- 0
crypto_kem/hqc-128/clean/fft.h View File

@@ -0,0 +1,25 @@
#ifndef FFT_H
#define FFT_H


/**
* @file fft.h
* Header file of fft.c
*/

#include <stddef.h>

#include <stddef.h>
#include <stdint.h>

void PQCLEAN_HQC128_CLEAN_fft_t(uint16_t *f, const uint16_t *w, size_t f_coeffs);

void PQCLEAN_HQC128_CLEAN_fft_t_preprocess_bch_codeword(uint16_t *w, const uint64_t *vector);


void PQCLEAN_HQC128_CLEAN_fft(uint16_t *w, const uint16_t *f, size_t f_coeffs);

void PQCLEAN_HQC128_CLEAN_fft_retrieve_bch_error_poly(uint64_t *error, const uint16_t *w);


#endif

+ 132
- 0
crypto_kem/hqc-128/clean/gf.c
File diff suppressed because it is too large
View File


+ 29
- 0
crypto_kem/hqc-128/clean/gf.h View File

@@ -0,0 +1,29 @@
#ifndef GF_H
#define GF_H


/**
* @file gf.h
* Header file of gf.c
*/

#include <stddef.h>

#include <stddef.h>
#include <stdint.h>

void PQCLEAN_HQC128_CLEAN_gf_generate(uint16_t *exp, uint16_t *log, int16_t m);


uint16_t PQCLEAN_HQC128_CLEAN_gf_log(uint16_t elt);

uint16_t PQCLEAN_HQC128_CLEAN_gf_mul(uint16_t a, uint16_t b);

uint16_t PQCLEAN_HQC128_CLEAN_gf_square(uint16_t a);

uint16_t PQCLEAN_HQC128_CLEAN_gf_inverse(uint16_t a);

uint16_t PQCLEAN_HQC128_CLEAN_gf_mod(uint16_t i);


#endif

+ 155
- 0
crypto_kem/hqc-128/clean/gf2x.c View File

@@ -0,0 +1,155 @@
#include "gf2x.h"
#include "nistseedexpander.h"
#include "parameters.h"
#include "randombytes.h"
#include <stdint.h>
#include <stdio.h>
#include <string.h>
/**
* \file gf2x.c
* \brief Implementation of multiplication of two polynomials
*/


static inline void swap(uint16_t *tab, uint16_t elt1, uint16_t elt2);
static void reduce(uint64_t *o, const uint64_t *a);
static void fast_convolution_mult(uint64_t *o, const uint32_t *a1, const uint64_t *a2, uint16_t weight, AES_XOF_struct *ctx);

/**
* @brief swap two elements in a table
*
* This function exchanges tab[elt1] with tab[elt2]
*
* @param[in] tab Pointer to the table
* @param[in] elt1 Index of the first element
* @param[in] elt2 Index of the second element
*/
static inline void swap(uint16_t *tab, uint16_t elt1, uint16_t elt2) {
uint16_t tmp = tab[elt1];

tab[elt1] = tab[elt2];
tab[elt2] = tmp;
}



/**
* @brief Compute o(x) = a(x) mod \f$ X^n - 1\f$
*
* This function computes the modular reduction of the polynomial a(x)
*
* @param[in] a Pointer to the polynomial a(x)
* @param[out] o Pointer to the result
*/
static void reduce(uint64_t *o, const uint64_t *a) {
uint64_t r;
uint64_t carry;

for (uint32_t i = 0 ; i < VEC_N_SIZE_64 ; i++) {
r = a[i + VEC_N_SIZE_64 - 1] >> (PARAM_N & 63);
carry = (uint64_t) (a[i + VEC_N_SIZE_64] << (64 - (PARAM_N & 63)));
o[i] = a[i] ^ r ^ carry;
}

o[VEC_N_SIZE_64 - 1] &= RED_MASK;
}



/**
* @brief computes product of the polynomial a1(x) with the sparse polynomial a2
*
* o(x) = a1(x)a2(x)
*
* @param[out] o Pointer to the result
* @param[in] a1 Pointer to the sparse polynomial a2 (list of degrees of the monomials which appear in a2)
* @param[in] a2 Pointer to the polynomial a1(x)
* @param[in] weight Hamming wifht of the sparse polynomial a2
* @param[in] ctx Pointer to a seed expander used to randomize the multiplication process
*/
static void fast_convolution_mult(uint64_t *o, const uint32_t *a1, const uint64_t *a2, uint16_t weight, AES_XOF_struct *ctx) {
//static uint32_t fast_convolution_mult(const uint64_t *A, const uint32_t *vB, uint64_t *C, const uint16_t w, AES_XOF_struct *ctx)
uint64_t carry;
uint32_t dec, s;
uint64_t table[16 * (VEC_N_SIZE_64 + 1)];
uint16_t permuted_table[16];
uint16_t permutation_table[16];
uint16_t permuted_sparse_vect[PARAM_OMEGA_E];
uint16_t permutation_sparse_vect[PARAM_OMEGA_E];
uint64_t *pt;
uint16_t *res_16;

for (uint32_t i = 0 ; i < 16; i++) {
permuted_table[i] = i;
}

seedexpander(ctx, (uint8_t *) permutation_table, 16 * sizeof(uint16_t));

for (uint32_t i = 0 ; i < 15 ; i++) {
swap(permuted_table + i, 0, permutation_table[i] % (16 - i));
}

pt = table + (permuted_table[0] * (VEC_N_SIZE_64 + 1));
for (int32_t j = 0 ; j < VEC_N_SIZE_64 ; j++) {
pt[j] = a2[j];
}
pt[VEC_N_SIZE_64] = 0x0;

for (uint32_t i = 1 ; i < 16 ; i++) {
carry = 0;
pt = table + (permuted_table[i] * (VEC_N_SIZE_64 + 1));
for (uint32_t j = 0 ; j < VEC_N_SIZE_64 ; j++) {
pt[j] = (a2[j] << i) ^ carry;
carry = (a2[j] >> ((64 - i)));
}
pt[VEC_N_SIZE_64] = carry;
}

for (uint32_t i = 0 ; i < weight ; i++) {
permuted_sparse_vect[i] = i;
}

seedexpander(ctx, (uint8_t *) permutation_sparse_vect, weight * sizeof(uint16_t));

for (uint32_t i = 0 ; i + 1 < weight ; i++) {
swap(permuted_sparse_vect + i, 0, permutation_sparse_vect[i] % (weight - i));
}

for (uint32_t i = 0 ; i < weight ; i++) {
dec = a1[permuted_sparse_vect[i]] & 0xf;
s = a1[permuted_sparse_vect[i]] >> 4;
res_16 = ((uint16_t *) o) + s;
pt = table + (permuted_table[dec] * (VEC_N_SIZE_64 + 1));

for (uint32_t j = 0 ; j < VEC_N_SIZE_64 + 1 ; j++) {
*res_16++ ^= (uint16_t) pt[j];
*res_16++ ^= (uint16_t) (pt[j] >> 16);
*res_16++ ^= (uint16_t) (pt[j] >> 32);
*res_16++ ^= (uint16_t) (pt[j] >> 48);
}
}
}



/**
* @brief Multiply two polynomials modulo \f$ X^n - 1\f$.
*
* This functions multiplies a sparse polynomial <b>a1</b> (of Hamming weight equal to <b>weight</b>)
* and a dense polynomial <b>a2</b>. The multiplication is done modulo \f$ X^n - 1\f$.
*
* @param[out] o Pointer to the result
* @param[in] a1 Pointer to the sparse polynomial
* @param[in] a2 Pointer to the dense polynomial
* @param[in] weight Integer that is the weigt of the sparse polynomial
* @param[in] ctx Pointer to the randomness context
*/
void PQCLEAN_HQC128_CLEAN_vect_mul(uint64_t *o, const uint32_t *a1, const uint64_t *a2, uint16_t weight, AES_XOF_struct *ctx) {
uint64_t tmp[2 * VEC_N_SIZE_64 + 1];
for (uint32_t j = 0 ; j < 2 * VEC_N_SIZE_64 + 1 ; j++) {
tmp[j] = 0;
}

fast_convolution_mult(tmp, a1, a2, weight, ctx);
reduce(o, tmp);
}

+ 18
- 0
crypto_kem/hqc-128/clean/gf2x.h View File

@@ -0,0 +1,18 @@
#ifndef GF2X_H
#define GF2X_H


/**
* @file gf2x.h
* @brief Header file for gf2x.c
*/

#include "nistseedexpander.h"
#include "nistseedexpander.h"
#include "randombytes.h"
#include <stdint.h>

void PQCLEAN_HQC128_CLEAN_vect_mul(uint64_t *o, const uint32_t *a1, const uint64_t *a2, uint16_t weight, AES_XOF_struct *ctx);


#endif

+ 143
- 0
crypto_kem/hqc-128/clean/hqc.c View File

@@ -0,0 +1,143 @@
#include "code.h"
#include "gf2x.h"
#include "hqc.h"
#include "nistseedexpander.h"
#include "parameters.h"
#include "parsing.h"
#include "randombytes.h"
#include "vector.h"
#include <stdint.h>
/**
* @file hqc.c
* @brief Implementation of hqc.h
*/



/**
* @brief Keygen of the HQC_PKE IND_CPA scheme
*
* The public key is composed of the syndrome <b>s</b> as well as the <b>seed</b> used to generate the vector <b>h</b>.
*
* The secret key is composed of the <b>seed</b> used to generate vectors <b>x</b> and <b>y</b>.
* As a technicality, the public key is appended to the secret key in order to respect NIST API.
*
* @param[out] pk String containing the public key
* @param[out] sk String containing the secret key
*/
void PQCLEAN_HQC128_CLEAN_hqc_pke_keygen(unsigned char *pk, unsigned char *sk) {
AES_XOF_struct sk_seedexpander;
AES_XOF_struct pk_seedexpander;
uint8_t sk_seed[SEED_BYTES] = {0};
uint8_t pk_seed[SEED_BYTES] = {0};
uint64_t x[VEC_N_SIZE_64] = {0};
uint32_t y[PARAM_OMEGA] = {0};
uint64_t h[VEC_N_SIZE_64] = {0};
uint64_t s[VEC_N_SIZE_64] = {0};

// Create seed_expanders for public key and secret key
randombytes(sk_seed, SEED_BYTES);
seedexpander_init(&sk_seedexpander, sk_seed, sk_seed + 32, SEEDEXPANDER_MAX_LENGTH);

randombytes(pk_seed, SEED_BYTES);
seedexpander_init(&pk_seedexpander, pk_seed, pk_seed + 32, SEEDEXPANDER_MAX_LENGTH);

// Compute secret key
PQCLEAN_HQC128_CLEAN_vect_set_random_fixed_weight(&sk_seedexpander, x, PARAM_OMEGA);
PQCLEAN_HQC128_CLEAN_vect_set_random_fixed_weight_by_coordinates(&sk_seedexpander, y, PARAM_OMEGA);

// Compute public key
PQCLEAN_HQC128_CLEAN_vect_set_random(&pk_seedexpander, h);
PQCLEAN_HQC128_CLEAN_vect_mul(s, y, h, PARAM_OMEGA, &sk_seedexpander);
PQCLEAN_HQC128_CLEAN_vect_add(s, x, s, VEC_N_SIZE_64);

// Parse keys to string
PQCLEAN_HQC128_CLEAN_hqc_public_key_to_string(pk, pk_seed, s);
PQCLEAN_HQC128_CLEAN_hqc_secret_key_to_string(sk, sk_seed, pk);

}



/**
* @brief Encryption of the HQC_PKE IND_CPA scheme
*
* The cihertext is composed of vectors <b>u</b> and <b>v</b>.
*
* @param[out] u Vector u (first part of the ciphertext)
* @param[out] v Vector v (second part of the ciphertext)
* @param[in] m Vector representing the message to encrypt
* @param[in] theta Seed used to derive randomness required for encryption
* @param[in] pk String containing the public key
*/
void PQCLEAN_HQC128_CLEAN_hqc_pke_encrypt(uint64_t *u, uint64_t *v, uint64_t *m, unsigned char *theta, const unsigned char *pk) {
AES_XOF_struct seedexpander;
uint64_t h[VEC_N_SIZE_64] = {0};
uint64_t s[VEC_N_SIZE_64] = {0};
uint64_t r1[VEC_N_SIZE_64] = {0};
uint32_t r2[PARAM_OMEGA_R] = {0};
uint64_t e[VEC_N_SIZE_64] = {0};
uint64_t tmp1[VEC_N_SIZE_64] = {0};
uint64_t tmp2[VEC_N_SIZE_64] = {0};

// Create seed_expander from theta
seedexpander_init(&seedexpander, theta, theta + 32, SEEDEXPANDER_MAX_LENGTH);

// Retrieve h and s from public key
PQCLEAN_HQC128_CLEAN_hqc_public_key_from_string(h, s, pk);

// Generate r1, r2 and e
PQCLEAN_HQC128_CLEAN_vect_set_random_fixed_weight(&seedexpander, r1, PARAM_OMEGA_R);
PQCLEAN_HQC128_CLEAN_vect_set_random_fixed_weight_by_coordinates(&seedexpander, r2, PARAM_OMEGA_R);
PQCLEAN_HQC128_CLEAN_vect_set_random_fixed_weight(&seedexpander, e, PARAM_OMEGA_E);

// Compute u = r1 + r2.h
PQCLEAN_HQC128_CLEAN_vect_mul(u, r2, h, PARAM_OMEGA_R, &seedexpander);
PQCLEAN_HQC128_CLEAN_vect_add(u, r1, u, VEC_N_SIZE_64);

// Compute v = m.G by encoding the message
PQCLEAN_HQC128_CLEAN_code_encode(v, m);
PQCLEAN_HQC128_CLEAN_vect_resize(tmp1, PARAM_N, v, PARAM_N1N2);

// Compute v = m.G + s.r2 + e
PQCLEAN_HQC128_CLEAN_vect_mul(tmp2, r2, s, PARAM_OMEGA_R, &seedexpander);
PQCLEAN_HQC128_CLEAN_vect_add(tmp2, e, tmp2, VEC_N_SIZE_64);
PQCLEAN_HQC128_CLEAN_vect_add(tmp2, tmp1, tmp2, VEC_N_SIZE_64);
PQCLEAN_HQC128_CLEAN_vect_resize(v, PARAM_N1N2, tmp2, PARAM_N);

}



/**
* @brief Decryption of the HQC_PKE IND_CPA scheme
*
* @param[out] m Vector representing the decrypted message
* @param[in] u Vector u (first part of the ciphertext)
* @param[in] v Vector v (second part of the ciphertext)
* @param[in] sk String containing the secret key
*/
void PQCLEAN_HQC128_CLEAN_hqc_pke_decrypt(uint64_t *m, const uint64_t *u, const uint64_t *v, const unsigned char *sk) {
uint64_t x[VEC_N_SIZE_64] = {0};
uint32_t y[PARAM_OMEGA] = {0};
uint8_t pk[PUBLIC_KEY_BYTES] = {0};
uint64_t tmp1[VEC_N_SIZE_64] = {0};
uint64_t tmp2[VEC_N_SIZE_64] = {0};
AES_XOF_struct perm_seedexpander;
uint8_t perm_seed[SEED_BYTES] = {0};

// Retrieve x, y, pk from secret key
PQCLEAN_HQC128_CLEAN_hqc_secret_key_from_string(x, y, pk, sk);

randombytes(perm_seed, SEED_BYTES);
seedexpander_init(&perm_seedexpander, perm_seed, perm_seed + 32, SEEDEXPANDER_MAX_LENGTH);

// Compute v - u.y
PQCLEAN_HQC128_CLEAN_vect_resize(tmp1, PARAM_N, v, PARAM_N1N2);
PQCLEAN_HQC128_CLEAN_vect_mul(tmp2, y, u, PARAM_OMEGA, &perm_seedexpander);
PQCLEAN_HQC128_CLEAN_vect_add(tmp2, tmp1, tmp2, VEC_N_SIZE_64);


// Compute m by decoding v - u.y
PQCLEAN_HQC128_CLEAN_code_decode(m, tmp2);
}

+ 21
- 0
crypto_kem/hqc-128/clean/hqc.h View File

@@ -0,0 +1,21 @@
#ifndef HQC_H
#define HQC_H


/**
* @file hqc.h
* @brief Functions of the HQC_PKE IND_CPA scheme
*/

#include <stdint.h>

#include <stdint.h>

void PQCLEAN_HQC128_CLEAN_hqc_pke_keygen(unsigned char *pk, unsigned char *sk);

void PQCLEAN_HQC128_CLEAN_hqc_pke_encrypt(uint64_t *u, uint64_t *v, uint64_t *m, unsigned char *theta, const unsigned char *pk);

void PQCLEAN_HQC128_CLEAN_hqc_pke_decrypt(uint64_t *m, const uint64_t *u, const uint64_t *v, const unsigned char *sk);


#endif

+ 138
- 0
crypto_kem/hqc-128/clean/kem.c View File

@@ -0,0 +1,138 @@
#include "api.h"
#include "fips202.h"
#include "hqc.h"
#include "nistseedexpander.h"
#include "parameters.h"
#include "parsing.h"
#include "randombytes.h"
#include "sha2.h"
#include "vector.h"
#include <stdint.h>
#include <string.h>
/**
* @file kem.c
* @brief Implementation of api.h
*/



/**
* @brief Keygen of the HQC_KEM IND_CAA2 scheme
*
* The public key is composed of the syndrome <b>s</b> as well as the seed used to generate the vector <b>h</b>.
*
* The secret key is composed of the seed used to generate vectors <b>x</b> and <b>y</b>.
* As a technicality, the public key is appended to the secret key in order to respect NIST API.
*
* @param[out] pk String containing the public key
* @param[out] sk String containing the secret key
* @returns 0 if keygen is successful
*/
int PQCLEAN_HQC128_CLEAN_crypto_kem_keypair(unsigned char *pk, unsigned char *sk) {

PQCLEAN_HQC128_CLEAN_hqc_pke_keygen(pk, sk);
return 0;
}



/**
* @brief Encapsulation of the HQC_KEM IND_CAA2 scheme
*
* @param[out] ct String containing the ciphertext
* @param[out] ss String containing the shared secret
* @param[in] pk String containing the public key
* @returns 0 if encapsulation is successful
*/
int PQCLEAN_HQC128_CLEAN_crypto_kem_enc(unsigned char *ct, unsigned char *ss, const unsigned char *pk) {

uint8_t theta[SHA512_BYTES] = {0};
uint64_t m[VEC_K_SIZE_64] = {0};
uint64_t u[VEC_N_SIZE_64] = {0};
uint64_t v[VEC_N1N2_SIZE_64] = {0};
unsigned char d[SHA512_BYTES] = {0};
unsigned char mc[VEC_K_SIZE_BYTES + VEC_N_SIZE_BYTES + VEC_N1N2_SIZE_BYTES] = {0};

// Computing m
PQCLEAN_HQC128_CLEAN_vect_set_random_from_randombytes(m);

// Computing theta
sha3_512(theta, (uint8_t *) m, VEC_K_SIZE_BYTES);

// Encrypting m
PQCLEAN_HQC128_CLEAN_hqc_pke_encrypt(u, v, m, theta, pk);

// Computing d
sha512(d, (unsigned char *) m, VEC_K_SIZE_BYTES);

// Computing shared secret
memcpy(mc, m, VEC_K_SIZE_BYTES);
memcpy(mc + VEC_K_SIZE_BYTES, u, VEC_N_SIZE_BYTES);
memcpy(mc + VEC_K_SIZE_BYTES + VEC_N_SIZE_BYTES, v, VEC_N1N2_SIZE_BYTES);
sha512(ss, mc, VEC_K_SIZE_BYTES + VEC_N_SIZE_BYTES + VEC_N1N2_SIZE_BYTES);

// Computing ciphertext
PQCLEAN_HQC128_CLEAN_hqc_ciphertext_to_string(ct, u, v, d);


return 0;
}



/**
* @brief Decapsulation of the HQC_KEM IND_CAA2 scheme
*
* @param[out] ss String containing the shared secret
* @param[in] ct String containing the cipĥertext
* @param[in] sk String containing the secret key
* @returns 0 if decapsulation is successful, -1 otherwise
*/
int PQCLEAN_HQC128_CLEAN_crypto_kem_dec(unsigned char *ss, const unsigned char *ct, const unsigned char *sk) {

int8_t result = -1;
uint64_t u[VEC_N_SIZE_64] = {0};
uint64_t v[VEC_N1N2_SIZE_64] = {0};
unsigned char d[SHA512_BYTES] = {0};
unsigned char pk[PUBLIC_KEY_BYTES] = {0};
uint64_t m[VEC_K_SIZE_64] = {0};
uint8_t theta[SHA512_BYTES] = {0};
uint64_t u2[VEC_N_SIZE_64] = {0};
uint64_t v2[VEC_N1N2_SIZE_64] = {0};
unsigned char d2[SHA512_BYTES] = {0};
unsigned char mc[VEC_K_SIZE_BYTES + VEC_N_SIZE_BYTES + VEC_N1N2_SIZE_BYTES] = {0};

// Retrieving u, v and d from ciphertext
PQCLEAN_HQC128_CLEAN_hqc_ciphertext_from_string(u, v, d, ct);

// Retrieving pk from sk
memcpy(pk, sk + SEED_BYTES, PUBLIC_KEY_BYTES);

// Decryting
PQCLEAN_HQC128_CLEAN_hqc_pke_decrypt(m, u, v, sk);

// Computing theta
sha3_512(theta, (uint8_t *) m, VEC_K_SIZE_BYTES);

// Encrypting m'
PQCLEAN_HQC128_CLEAN_hqc_pke_encrypt(u2, v2, m, theta, pk);

// Computing d'
sha512(d2, (unsigned char *) m, VEC_K_SIZE_BYTES);

// Computing shared secret
memcpy(mc, m, VEC_K_SIZE_BYTES);
memcpy(mc + VEC_K_SIZE_BYTES, u, VEC_N_SIZE_BYTES);
memcpy(mc + VEC_K_SIZE_BYTES + VEC_N_SIZE_BYTES, v, VEC_N1N2_SIZE_BYTES);
sha512(ss, mc, VEC_K_SIZE_BYTES + VEC_N_SIZE_BYTES + VEC_N1N2_SIZE_BYTES);

// Abort if c != c' or d != d'
result = (PQCLEAN_HQC128_CLEAN_vect_compare(u, u2, VEC_N_SIZE_BYTES) == 0 && PQCLEAN_HQC128_CLEAN_vect_compare(v, v2, VEC_N1N2_SIZE_BYTES) == 0 && memcmp(d, d2, SHA512_BYTES) == 0);
for (size_t i = 0 ; i < SHARED_SECRET_BYTES ; i++) {
ss[i] = result * ss[i];
}
result--;


return result;
}

+ 123
- 0
crypto_kem/hqc-128/clean/parameters.h View File

@@ -0,0 +1,123 @@
#ifndef HQC_PARAMETERS_H
#define HQC_PARAMETERS_H
/**
* @file parameters.h
* @brief Parameters of the HQC_KEM IND-CCA2 scheme
*/

#include "api.h"
#include "api.h"
#include "vector.h"


#define CEIL_DIVIDE(a, b) (((a)/(b)) + ((a) % (b) == 0 ? 0 : 1)) /*!< Divide a by b and ceil the result*/
#define BITMASK(a, size) ((1UL << ((a) % (size))) - 1) /*!< Create a mask*/

/*
#define PARAM_N Define the parameter n of the scheme
#define PARAM_N1 Define the parameter n1 of the scheme (length of BCH code)
#define PARAM_N2 Define the parameter n2 of the scheme (length of the repetition code)
#define PARAM_N1N2 Define the parameter n1 * n2 of the scheme (length of the tensor code)
#define PARAM_OMEGA Define the parameter omega of the scheme
#define PARAM_OMEGA_E Define the parameter omega_e of the scheme
#define PARAM_OMEGA_R Define the parameter omega_r of the scheme
#define PARAM_SECURITY Define the security level corresponding to the chosen parameters
#define PARAM_DFR_EXP Define the decryption failure rate corresponding to the chosen parameters

#define SECRET_KEY_BYTES Define the size of the secret key in bytes
#define PUBLIC_KEY_BYTES Define the size of the public key in bytes
#define SHARED_SECRET_BYTES Define the size of the shared secret in bytes
#define CIPHERTEXT_BYTES Define the size of the ciphertext in bytes

#define UTILS_REJECTION_THRESHOLD Define the rejection threshold used to generate given weight vectors (see vector_set_random_fixed_weight function)
#define VEC_N_SIZE_BYTES Define the size of the array used to store a PARAM_N sized vector in bytes
#define VEC_K_SIZE_BYTES Define the size of the array used to store a PARAM_K sized vector in bytes
#define VEC_N1_SIZE_BYTES Define the size of the array used to store a PARAM_N1 sized vector in bytes
#define VEC_N1N2_SIZE_BYTES Define the size of the array used to store a PARAM_N1N2 sized vector in bytes

#define VEC_N_SIZE_64 Define the size of the array used to store a PARAM_N sized vector in 64 bits
#define VEC_K_SIZE_64 Define the size of the array used to store a PARAM_K sized vector in 64 bits
#define VEC_N1_SIZE_64 Define the size of the array used to store a PARAM_N1 sized vector in 64 bits
#define VEC_N1N2_SIZE_64 Define the size of the array used to store a PARAM_N1N2 sized vector in 64 bits

#define PARAM_T Define a threshold for decoding repetition code word (PARAM_T = (PARAM_N2 - 1) / 2)

#define PARAM_DELTA Define the parameter delta of the scheme (correcting capacity of the BCH code)
#define PARAM_M Define a positive integer
#define PARAM_GF_POLY Generator polynomial of galois field GF(2^PARAM_M), represented in hexadecimial form
#define PARAM_GF_MUL_ORDER Define the size of the multiplicative group of GF(2^PARAM_M), i.e 2^PARAM_M -1
#define PARAM_K Define the size of the information bits of the BCH code
#define PARAM_G Define the size of the generator polynomial of BCH code
#define PARAM_FFT The additive FFT takes a 2^PARAM_FFT polynomial as input
We use the FFT to compute the roots of sigma, whose degree if PARAM_DELTA=60
The smallest power of 2 greater than 60+1 is 64=2^6
#define PARAM_FFT_T The additive FFT transpose computes a (2^PARAM_FFT_T)-sized syndrome vector
We want to compute 2*PARAM_DELTA=120 syndromes
The smallest power of 2 greater than 120 is 2^7
#define PARAM_BCH_POLY Generator polynomial of the BCH code

#define RED_MASK A mask fot the higher bits of a vector
#define SHA512_BYTES Define the size of SHA512 output in bytes
#define SEED_BYTES Define the size of the seed in bytes
#define SEEDEXPANDER_MAX_LENGTH Define the seed expander max length
*/

#define PARAM_N 23869
#define PARAM_N1 766
#define PARAM_N2 31
#define PARAM_N1N2 23746
#define PARAM_OMEGA 67
#define PARAM_OMEGA_E 77
#define PARAM_OMEGA_R 77
#define PARAM_SECURITY 128
#define PARAM_DFR_EXP 128

#define SECRET_KEY_BYTES PQCLEAN_HQC128_CLEAN_CRYPTO_SECRETKEYBYTES
#define PUBLIC_KEY_BYTES PQCLEAN_HQC128_CLEAN_CRYPTO_PUBLICKEYBYTES
#define SHARED_SECRET_BYTES PQCLEAN_HQC128_CLEAN_CRYPTO_BYTES
#define CIPHERTEXT_BYTES PQCLEAN_HQC128_CLEAN_CRYPTO_CIPHERTEXTBYTES

#define UTILS_REJECTION_THRESHOLD 16756038
#define VEC_N_SIZE_BYTES CEIL_DIVIDE(PARAM_N, 8)
#define VEC_K_SIZE_BYTES CEIL_DIVIDE(PARAM_K, 8)
#define VEC_N1_SIZE_BYTES CEIL_DIVIDE(PARAM_N1, 8)
#define VEC_N1N2_SIZE_BYTES CEIL_DIVIDE(PARAM_N1N2, 8)

#define VEC_N_SIZE_64 CEIL_DIVIDE(PARAM_N, 64)
#define VEC_K_SIZE_64 CEIL_DIVIDE(PARAM_K, 64)
#define VEC_N1_SIZE_64 CEIL_DIVIDE(PARAM_N1, 64)
#define VEC_N1N2_SIZE_64 CEIL_DIVIDE(PARAM_N1N2, 64)

#define PARAM_T 15

#define PARAM_DELTA 57
#define PARAM_M 10
#define PARAM_GF_POLY 0x409
#define PARAM_GF_MUL_ORDER 1023
#define PARAM_K 256
#define PARAM_G 511
#define PARAM_FFT 6
#define PARAM_FFT_T 7
#define PARAM_BCH_POLY { \
1,1,0,0,0,0,1,0,0,1,1,0,1,1,0,1,0,1,1,0,0,1,0,0,1,1,1,1,1,1,0,0,1,1,0,1,1, \
1,1,0,1,1,1,1,0,1,0,0,0,1,0,0,1,1,1,0,1,1,0,1,0,1,1,1,0,1,0,1,0,0,1,0,0,0, \
0,1,1,1,1,0,1,1,1,1,1,0,0,0,0,1,0,0,1,0,0,1,1,1,0,0,0,1,1,0,0,1,0,1,0,0,0, \
1,0,0,0,0,1,0,0,0,1,0,1,1,0,0,0,0,1,1,0,0,1,1,0,1,0,1,0,1,0,1,1,1,1,0,1,0, \
0,1,1,0,1,0,1,1,0,0,1,1,0,1,1,1,1,1,0,1,0,1,1,1,0,1,0,0,0,1,1,0,1,1,1,1,0, \
1,1,1,1,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,1,1,1,1,0,0,1,1,0,1,0,0,0,0,1,0, \
0,1,0,0,1,0,1,0,0,1,1,0,1,0,1,1,1,1,1,0,1,1,0,1,0,1,1,1,1,1,1,0,0,0,1,0,1, \
1,1,1,1,1,0,1,0,1,0,1,1,0,0,0,1,1,0,0,1,1,0,1,1,1,1,1,1,1,0,0,0,1,1,1,1,0, \
1,0,0,0,1,0,0,1,1,0,1,1,0,0,1,0,1,1,0,1,0,1,0,1,1,0,0,0,0,0,1,1,1,1,1,1,1, \
1,1,1,0,1,1,0,1,0,1,1,1,1,1,1,1,0,1,1,0,1,1,0,0,0,1,0,0,1,1,1,1,1,0,1,0,1, \
0,0,0,0,1,0,1,1,1,1,0,1,0,0,0,0,0,1,0,0,1,0,1,1,1,1,1,0,0,0,0,0,0,1,1,1,1, \
1,0,1,0,0,1,0,0,1,1,0,1,0,0,0,0,0,0,0,0,1,1,0,0,0,1,1,1,0,0,1,1,0,0,0,1,1, \
0,1,0,0,1,0,0,0,1,0,1,0,1,0,0,0,1,1,1,1,1,0,0,0,1,0,0,1,1,0,1,1,0,0,1,0,1, \
1,0,1,1,1,0,0,0,0,1,1,0,1,1,1,0,1,0,0,0,0,1,0,0,0,1,0,0,1,1 \
};

#define RED_MASK 0x1fffffffffffffffUL
#define SHA512_BYTES 64
#define SEED_BYTES 40
#define SEEDEXPANDER_MAX_LENGTH 4294967295

#endif

+ 121
- 0
crypto_kem/hqc-128/clean/parsing.c View File

@@ -0,0 +1,121 @@
#include "nistseedexpander.h"
#include "parameters.h"
#include "parsing.h"
#include "randombytes.h"
#include "vector.h"
#include <stdint.h>
#include <string.h>
/**
* @file parsing.c
* @brief Functions to parse secret key, public key and ciphertext of the HQC scheme
*/



/**
* @brief Parse a secret key into a string
*
* The secret key is composed of the seed used to generate vectors <b>x</b> and <b>y</b>.
* As technicality, the public key is appended to the secret key in order to respect NIST API.
*
* @param[out] sk String containing the secret key
* @param[in] sk_seed Seed used to generate the secret key
* @param[in] pk String containing the public key
*/
void PQCLEAN_HQC128_CLEAN_hqc_secret_key_to_string(uint8_t *sk, const uint8_t *sk_seed, const uint8_t *pk) {
memcpy(sk, sk_seed, SEED_BYTES);
memcpy(sk + SEED_BYTES, pk, PUBLIC_KEY_BYTES);
}

/**
* @brief Parse a secret key from a string
*
* The secret key is composed of the seed used to generate vectors <b>x</b> and <b>y</b>.
* As technicality, the public key is appended to the secret key in order to respect NIST API.
*
* @param[out] x uint64_t representation of vector x
* @param[out] y uint32_t representation of vector y
* @param[out] pk String containing the public key
* @param[in] sk String containing the secret key
*/
void PQCLEAN_HQC128_CLEAN_hqc_secret_key_from_string(uint64_t *x, uint32_t *y, uint8_t *pk, const uint8_t *sk) {
AES_XOF_struct sk_seedexpander;
uint8_t sk_seed[SEED_BYTES] = {0};

memcpy(sk_seed, sk, SEED_BYTES);
seedexpander_init(&sk_seedexpander, sk_seed, sk_seed + 32, SEEDEXPANDER_MAX_LENGTH);

PQCLEAN_HQC128_CLEAN_vect_set_random_fixed_weight(&sk_seedexpander, x, PARAM_OMEGA);
PQCLEAN_HQC128_CLEAN_vect_set_random_fixed_weight_by_coordinates(&sk_seedexpander, y, PARAM_OMEGA);
memcpy(pk, sk + SEED_BYTES, PUBLIC_KEY_BYTES);
}

/**
* @brief Parse a public key into a string
*
* The public key is composed of the syndrome <b>s</b> as well as the seed used to generate the vector <b>h</b>
*
* @param[out] pk String containing the public key
* @param[in] pk_seed Seed used to generate the public key
* @param[in] s uint8_t representation of vector s
*/
void PQCLEAN_HQC128_CLEAN_hqc_public_key_to_string(uint8_t *pk, const uint8_t *pk_seed, const uint64_t *s) {
memcpy(pk, pk_seed, SEED_BYTES);
memcpy(pk + SEED_BYTES, s, VEC_N_SIZE_BYTES);
}



/**
* @brief Parse a public key from a string
*
* The public key is composed of the syndrome <b>s</b> as well as the seed used to generate the vector <b>h</b>
*
* @param[out] h uint8_t representation of vector h
* @param[out] s uint8_t representation of vector s
* @param[in] pk String containing the public key
*/
void PQCLEAN_HQC128_CLEAN_hqc_public_key_from_string(uint64_t *h, uint64_t *s, const uint8_t *pk) {
AES_XOF_struct pk_seedexpander;
uint8_t pk_seed[SEED_BYTES] = {0};

memcpy(pk_seed, pk, SEED_BYTES);
seedexpander_init(&pk_seedexpander, pk_seed, pk_seed + 32, SEEDEXPANDER_MAX_LENGTH);
PQCLEAN_HQC128_CLEAN_vect_set_random(&pk_seedexpander, h);

memcpy(s, pk + SEED_BYTES, VEC_N_SIZE_BYTES);
}


/**
* @brief Parse a ciphertext into a string
*
* The ciphertext is composed of vectors <b>u</b>, <b>v</b> and hash <b>d</b>.
*
* @param[out] ct String containing the ciphertext
* @param[in] u uint8_t representation of vector u
* @param[in] v uint8_t representation of vector v
* @param[in] d String containing the hash d
*/
void PQCLEAN_HQC128_CLEAN_hqc_ciphertext_to_string(uint8_t *ct, const uint64_t *u, const uint64_t *v, const uint8_t *d) {
memcpy(ct, u, VEC_N_SIZE_BYTES);
memcpy(ct + VEC_N_SIZE_BYTES, v, VEC_N1N2_SIZE_BYTES);
memcpy(ct + VEC_N_SIZE_BYTES + VEC_N1N2_SIZE_BYTES, d, SHA512_BYTES);
}


/**
* @brief Parse a ciphertext from a string
*
* The ciphertext is composed of vectors <b>u</b>, <b>v</b> and hash <b>d</b>.
*
* @param[out] u uint8_t representation of vector u
* @param[out] v uint8_t representation of vector v
* @param[out] d String containing the hash d
* @param[in] ct String containing the ciphertext
*/
void PQCLEAN_HQC128_CLEAN_hqc_ciphertext_from_string(uint64_t *u, uint64_t *v, uint8_t *d, const uint8_t *ct) {
memcpy(u, ct, VEC_N_SIZE_BYTES);
memcpy(v, ct + VEC_N_SIZE_BYTES, VEC_N1N2_SIZE_BYTES);
memcpy(d, ct + VEC_N_SIZE_BYTES + VEC_N1N2_SIZE_BYTES, SHA512_BYTES);
}

+ 29
- 0
crypto_kem/hqc-128/clean/parsing.h View File

@@ -0,0 +1,29 @@
#ifndef PARSING_H
#define PARSING_H


/**
* @file parsing.h
* @brief Header file for parsing.c
*/

#include <stdint.h>

#include <stdint.h>

void PQCLEAN_HQC128_CLEAN_hqc_secret_key_to_string(uint8_t *sk, const uint8_t *sk_seed, const uint8_t *pk);

void PQCLEAN_HQC128_CLEAN_hqc_secret_key_from_string(uint64_t *x, uint32_t *y, uint8_t *pk, const uint8_t *sk);


void PQCLEAN_HQC128_CLEAN_hqc_public_key_to_string(uint8_t *pk, const uint8_t *pk_seed, const uint64_t *s);

void PQCLEAN_HQC128_CLEAN_hqc_public_key_from_string(uint64_t *h, uint64_t *s, const uint8_t *pk);


void PQCLEAN_HQC128_CLEAN_hqc_ciphertext_to_string(uint8_t *ct, const uint64_t *u, const uint64_t *v, const uint8_t *d);

void PQCLEAN_HQC128_CLEAN_hqc_ciphertext_from_string(uint64_t *u, uint64_t *v, uint8_t *d, const uint8_t *ct);


#endif

+ 92
- 0
crypto_kem/hqc-128/clean/repetition.c View File

@@ -0,0 +1,92 @@
#include "parameters.h"
#include "repetition.h"
#include <stddef.h>
#include <stdint.h>
#include <stdio.h>
/**
* @file repetition.c
* @brief Implementation of repetition codes
*/

#define MASK_N2 ((1UL << PARAM_N2) - 1)

static inline int32_t popcount(uint64_t n);

/**
* @brief Encoding each bit in the message m using the repetition code
*
*
* @param[out] em Pointer to an array that is the code word
* @param[in] m Pointer to an array that is the message
*/
void PQCLEAN_HQC128_CLEAN_repetition_code_encode(uint64_t *em, const uint64_t *m) {
static const uint64_t mask[2][2] = {{0x0UL, 0x0UL}, {0x7FFFFFFFUL, 0x3FFFFFFFUL}};
for (size_t i = 0 ; i < VEC_N1_SIZE_64 - 1 ; i++) {
for (size_t j = 0 ; j < 64 ; j++) {
uint8_t bit = (m[i] >> j) & 0x1;
uint32_t pos_r = PARAM_N2 * ((i << 6) + j);
uint16_t idx_r = (pos_r & 0x3f);
uint64_t *p64 = em;
p64 += pos_r >> 6;
*p64 ^= mask[bit][0] << idx_r;
*(p64 + 1) ^= mask[bit][1] >> ((63 - idx_r));
}
}

for (size_t j = 0 ; j < (PARAM_N1 & 0x3f) ; j++) {
uint8_t bit = (m[VEC_N1_SIZE_64 - 1] >> j) & 0x1;
uint32_t pos_r = PARAM_N2 * (((VEC_N1_SIZE_64 - 1) << 6) + j);
uint16_t idx_r = (pos_r & 0x3f);
uint64_t *p64 = em;
p64 += pos_r >> 6;
*p64 ^= mask[bit][0] << idx_r;
*(p64 + 1) ^= mask[bit][1] >> ((63 - idx_r));
}
}



/**
* @brief Compute the Hamming weight of the 64-bit integer n
*
* The Hamming weight is computed using a trick described in
* Henry S. Warren : "Hacker's Delight", chap 5., p. 66
* @param[out] the Hamming weight of n
* @param[in] a 64-bit integer n
*/
static inline int32_t popcount(uint64_t n) {
n -= (n >> 1) & 0x5555555555555555UL;
n = (n & 0x3333333333333333UL) + ((n >> 2) & 0x3333333333333333UL);
n = (n + (n >> 4)) & 0x0f0f0f0f0f0f0f0fUL;
return (n * 0x0101010101010101UL) >> 56;
}



/**
* @brief Decoding the code words to a message using the repetition code
*
* We use a majority decoding. In fact we have that PARAM_N2 = 2 * PARAM_T + 1, thus,
* if the Hamming weight of the vector is greater than PARAM_T, the code word is decoded
* to 1 and 0 otherwise.
*
* @param[out] m Pointer to an array that is the message
* @param[in] em Pointer to an array that is the code word
*/
void PQCLEAN_HQC128_CLEAN_repetition_code_decode(uint64_t *m, const uint64_t *em) {
size_t t = 0, b, bn, bi, c, cn, ci;
uint64_t cx, ones;

for (b = 0 ; b < PARAM_N1N2 - PARAM_N2 + 1 ; b += PARAM_N2) {
bn = b >> 6;
bi = b & 63;
c = b + PARAM_N2 - 1;
cn = c >> 6;
ci = c & 63;
cx = em[cn] << (63 - ci);
int64_t verif = (cn == (bn + 1));
ones = popcount(((em[bn] >> bi) & MASK_N2) | (cx * verif));
m[t >> 6] |= ((uint64_t) (ones > PARAM_T)) << (t & 63);
t++;
}
}

+ 19
- 0
crypto_kem/hqc-128/clean/repetition.h View File

@@ -0,0 +1,19 @@
#ifndef REPETITION_H
#define REPETITION_H


/**
* @file repetition.h
* @brief Header file for repetition.c
*/

#include <stdint.h>

#include <stdint.h>

void PQCLEAN_HQC128_CLEAN_repetition_code_encode(uint64_t *em, const uint64_t *m);

void PQCLEAN_HQC128_CLEAN_repetition_code_decode(uint64_t *m, const uint64_t *em);


#endif

+ 226
- 0
crypto_kem/hqc-128/clean/vector.c View File

@@ -0,0 +1,226 @@
#include "nistseedexpander.h"
#include "parameters.h"
#include "randombytes.h"
#include "vector.h"
#include <stdint.h>
#include <string.h>
/**
* @file vector.c
* @brief Implementation of vectors sampling and some utilities for the HQC scheme
*/


/**
* @brief Generates a vector of a given Hamming weight
*
* This function generates uniformly at random a binary vector of a Hamming weight equal to the parameter <b>weight</b>. The vector
* is stored by position.
* To generate the vector we have to sample uniformly at random values in the interval [0, PARAM_N -1]. Suppose the PARAM_N is equal to \f$ 70853 \f$, to select a position \f$ r\f$ the function works as follow:
* 1. It makes a call to the seedexpander function to obtain a random number \f$ x\f$ in \f$ [0, 2^{24}[ \f$.
* 2. Let \f$ t = \lfloor {2^{24} \over 70853} \rfloor \times 70853\f$
* 3. If \f$ x \geq t\f$, go to 1
* 4. It return \f$ r = x \mod 70853\f$
*
* The parameter \f$ t \f$ is precomputed and it's denoted by UTILS_REJECTION_THRESHOLD (see the file parameters.h).
*
* @param[in] v Pointer to an array
* @param[in] weight Integer that is the Hamming weight
* @param[in] ctx Pointer to the context of the seed expander
*/
void PQCLEAN_HQC128_CLEAN_vect_set_random_fixed_weight_by_coordinates(AES_XOF_struct *ctx, uint32_t *v, uint16_t weight) {
size_t random_bytes_size = 3 * weight;
uint8_t rand_bytes[3 * PARAM_OMEGA_R] = {0}; // weight is expected to be <= PARAM_OMEGA_R
uint32_t random_data = 0;
uint8_t exist = 0;
size_t j = 0;

seedexpander(ctx, rand_bytes, random_bytes_size);

for (uint32_t i = 0 ; i < weight ; ++i) {
exist = 0;
do {
if (j == random_bytes_size) {
seedexpander(ctx, rand_bytes, random_bytes_size);
j = 0;
}

random_data = ((uint32_t) rand_bytes[j++]) << 16;
random_data |= ((uint32_t) rand_bytes[j++]) << 8;
random_data |= rand_bytes[j++];

} while (random_data >= UTILS_REJECTION_THRESHOLD);

random_data = random_data % PARAM_N;

for (uint32_t k = 0 ; k < i ; k++) {
if (v[k] == random_data) {
exist = 1;
}
}

if (exist == 1) {
i--;
} else {
v[i] = random_data;
}
}
}



/**
* @brief Generates a vector of a given Hamming weight
*
* This function generates uniformly at random a binary vector of a Hamming weight equal to the parameter <b>weight</b>.
* To generate the vector we have to sample uniformly at random values in the interval [0, PARAM_N -1]. Suppose the PARAM_N is equal to \f$ 70853 \f$, to select a position \f$ r\f$ the function works as follow:
* 1. It makes a call to the seedexpander function to obtain a random number \f$ x\f$ in \f$ [0, 2^{24}[ \f$.
* 2. Let \f$ t = \lfloor {2^{24} \over 70853} \rfloor \times 70853\f$
* 3. If \f$ x \geq t\f$, go to 1
* 4. It return \f$ r = x \mod 70853\f$
*
* The parameter \f$ t \f$ is precomputed and it's denoted by UTILS_REJECTION_THRESHOLD (see the file parameters.h).
*
* @param[in] v Pointer to an array
* @param[in] weight Integer that is the Hamming weight
* @param[in] ctx Pointer to the context of the seed expander
*/
void PQCLEAN_HQC128_CLEAN_vect_set_random_fixed_weight(AES_XOF_struct *ctx, uint64_t *v, uint16_t weight) {

size_t random_bytes_size = 3 * weight;
uint8_t rand_bytes[3 * PARAM_OMEGA_R] = {0}; // weight is expected to be <= PARAM_OMEGA_R
uint32_t random_data = 0;
uint32_t tmp[PARAM_OMEGA_R] = {0};
uint8_t exist = 0;
size_t j = 0;

seedexpander(ctx, rand_bytes, random_bytes_size);

for (uint32_t i = 0 ; i < weight ; ++i) {
exist = 0;
do {
if (j == random_bytes_size) {
seedexpander(ctx, rand_bytes, random_bytes_size);
j = 0;
}

random_data = ((uint32_t) rand_bytes[j++]) << 16;
random_data |= ((uint32_t) rand_bytes[j++]) << 8;
random_data |= rand_bytes[j++];

} while (random_data >= UTILS_REJECTION_THRESHOLD);

random_data = random_data % PARAM_N;

for (uint32_t k = 0 ; k < i ; k++) {
if (tmp[k] == random_data) {
exist = 1;
}
}

if (exist == 1) {
i--;
} else {
tmp[i] = random_data;
}
}

for (uint16_t i = 0 ; i < weight ; ++i) {
int32_t index = tmp[i] / 64;
int32_t pos = tmp[i] % 64;
v[index] |= ((uint64_t) 1) << pos;
}
}



/**
* @brief Generates a random vector of dimension <b>PARAM_N</b>
*
* This function generates a random binary vector of dimension <b>PARAM_N</b>. It generates a random
* array of bytes using the seedexpander function, and drop the extra bits using a mask.
*
* @param[in] v Pointer to an array
* @param[in] ctx Pointer to the context of the seed expander
*/
void PQCLEAN_HQC128_CLEAN_vect_set_random(AES_XOF_struct *ctx, uint64_t *v) {
uint8_t rand_bytes[VEC_N_SIZE_BYTES] = {0};

seedexpander(ctx, rand_bytes, VEC_N_SIZE_BYTES);

memcpy(v, rand_bytes, VEC_N_SIZE_BYTES);
v[VEC_N_SIZE_64 - 1] &= BITMASK(PARAM_N, 64);
}



/**
* @brief Generates a random vector
*
* This function generates a random binary vector. It uses the the randombytes function.
*
* @param[in] v Pointer to an array
*/
void PQCLEAN_HQC128_CLEAN_vect_set_random_from_randombytes(uint64_t *v) {
uint8_t rand_bytes [VEC_K_SIZE_BYTES] = {0};

randombytes(rand_bytes, VEC_K_SIZE_BYTES);
memcpy(v, rand_bytes, VEC_K_SIZE_BYTES);
}



/**
* @brief Adds two vectors
*
* @param[out] o Pointer to an array that is the result
* @param[in] v1 Pointer to an array that is the first vector
* @param[in] v2 Pointer to an array that is the second vector
* @param[in] size Integer that is the size of the vectors
*/
void PQCLEAN_HQC128_CLEAN_vect_add(uint64_t *o, const uint64_t *v1, const uint64_t *v2, uint32_t size) {
for (uint32_t i = 0 ; i < size ; ++i) {
o[i] = v1[i] ^ v2[i];
}
}


/**
* @brief Compares two vectors
*
* @param[in] v1 Pointer to an array that is first vector
* @param[in] v2 Pointer to an array that is second vector
* @param[in] size Integer that is the size of the vectors
* @returns 0 if the vectors are equals and a negative/psotive value otherwise
*/
int PQCLEAN_HQC128_CLEAN_vect_compare(const uint64_t *v1, const uint64_t *v2, uint32_t size) {
return memcmp(v1, v2, size);
}



/**
* @brief Resize a vector so that it contains <b>size_o</b> bits
*
* @param[out] o Pointer to the output vector
* @param[in] size_o Integer that is the size of the output vector in bits
* @param[in] v Pointer to the input vector
* @param[in] size_v Integer that is the size of the input vector in bits
*/
void PQCLEAN_HQC128_CLEAN_vect_resize(uint64_t *o, uint32_t size_o, const uint64_t *v, uint32_t size_v) {
if (size_o < size_v) {
uint64_t mask = 0x7FFFFFFFFFFFFFFF;
int8_t val = 0;

if (size_o % 64) {
val = 64 - (size_o % 64);
}

memcpy(o, v, VEC_N1N2_SIZE_BYTES);

for (int8_t i = 0 ; i < val ; ++i) {
o[VEC_N1N2_SIZE_64 - 1] &= (mask >> i);
}
} else {
memcpy(o, v, CEIL_DIVIDE(size_v, 8));
}
}

+ 31
- 0
crypto_kem/hqc-128/clean/vector.h View File

@@ -0,0 +1,31 @@
#ifndef VECTOR_H
#define VECTOR_H


/**
* @file vector.h
* @brief Header file for vector.c
*/

#include "nistseedexpander.h"
#include "nistseedexpander.h"
#include "randombytes.h"
#include <stdint.h>

void PQCLEAN_HQC128_CLEAN_vect_set_random_fixed_weight_by_coordinates(AES_XOF_struct *ctx, uint32_t *v, uint16_t weight);

void PQCLEAN_HQC128_CLEAN_vect_set_random_fixed_weight(AES_XOF_struct *ctx, uint64_t *v, uint16_t weight);

void PQCLEAN_HQC128_CLEAN_vect_set_random(AES_XOF_struct *ctx, uint64_t *v);

void PQCLEAN_HQC128_CLEAN_vect_set_random_from_randombytes(uint64_t *v);


void PQCLEAN_HQC128_CLEAN_vect_add(uint64_t *o, const uint64_t *v1, const uint64_t *v2, uint32_t size);

int PQCLEAN_HQC128_CLEAN_vect_compare(const uint64_t *v1, const uint64_t *v2, uint32_t size);

void PQCLEAN_HQC128_CLEAN_vect_resize(uint64_t *o, uint32_t size_o, const uint64_t *v, uint32_t size_v);


#endif

+ 34
- 0
crypto_kem/hqc-192/META.yml View File

@@ -0,0 +1,34 @@
name: HQC-192
type: kem
claimed-nist-level: 3
claimed-security: IND-CCA2
length-ciphertext: 11364
length-public-key: 5690
length-secret-key: 5730
length-shared-secret: 64
nistkat-sha256: b49351ae5bdab016521254af85a0df2072b81841722c0c422bb44af22cec4418
principal-submitters:
- Carlos Aguilar Melchor
- Nicolas Aragon
- Slim Bettaieb
- Olivier Blazy
- Jurjen Bos
- Jean-Christophe Deneuville
- Philippe Gaborit
- Edoardo Persichetti
- Jean-Marc Robert
- Pascal Véron
- Gilles Zémor
- Loïc Bidoux
implementations:
- name: clean
version: 2020-05-29
- name: avx2
version: 2020-05-29
supported_platforms:
- architecture: x86_64
operating_systems:
- Linux
- Darwin
required_flags:
- avx2

+ 1
- 0
crypto_kem/hqc-192/avx2/LICENSE View File

@@ -0,0 +1 @@
Public Domain

+ 22
- 0
crypto_kem/hqc-192/avx2/Makefile View File

@@ -0,0 +1,22 @@
# This Makefile can be used with GNU Make or BSD Make

LIB=libhqc-192_avx2.a
HEADERS=alpha_table.h api.h bch.h code.h fft.h gen_matrix.h gf2x.h gf.h hqc.h parameters.h parsing.h repetition.h vector.h
OBJECTS=bch.o code.o fft.o gf2x.o gf.o hqc.o kem.o parsing.o repetition.o vector.o

CFLAGS=-O3 -mavx2 -mbmi -mpclmul -Wall -Wextra -Wpedantic -Wvla -Werror -Wredundant-decls -Wmissing-prototypes -std=c99 -I../../../common $(EXTRAFLAGS)

all: $(LIB)

%.o: %.s $(HEADERS)
$(AS) -o $@ $<

%.o: %.c $(HEADERS)
$(CC) $(CFLAGS) -c -o $@ $<

$(LIB): $(OBJECTS)
$(AR) -r $@ $(OBJECTS)

clean:
$(RM) $(OBJECTS)
$(RM) $(LIB)

+ 18
- 0
crypto_kem/hqc-192/avx2/alpha_table.h
File diff suppressed because it is too large
View File


+ 25
- 0
crypto_kem/hqc-192/avx2/api.h View File

@@ -0,0 +1,25 @@
#ifndef PQCLEAN_HQC192_AVX2_API_H
#define PQCLEAN_HQC192_AVX2_API_H
/**
* @file api.h
* @brief NIST KEM API used by the HQC_KEM IND-CCA2 scheme
*/

#define PQCLEAN_HQC192_AVX2_CRYPTO_ALGNAME "HQC-192"

#define PQCLEAN_HQC192_AVX2_CRYPTO_SECRETKEYBYTES 5730
#define PQCLEAN_HQC192_AVX2_CRYPTO_PUBLICKEYBYTES 5690
#define PQCLEAN_HQC192_AVX2_CRYPTO_BYTES 64
#define PQCLEAN_HQC192_AVX2_CRYPTO_CIPHERTEXTBYTES 11364

// As a technicality, the public key is appended to the secret key in order to respect the NIST API.
// Without this constraint, PQCLEAN_HQC192_AVX2_CRYPTO_SECRETKEYBYTES would be defined as 32

int PQCLEAN_HQC192_AVX2_crypto_kem_keypair(unsigned char *pk, unsigned char *sk);

int PQCLEAN_HQC192_AVX2_crypto_kem_enc(unsigned char *ct, unsigned char *ss, const unsigned char *pk);

int PQCLEAN_HQC192_AVX2_crypto_kem_dec(unsigned char *ss, const unsigned char *ct, const unsigned char *sk);


#endif

+ 367
- 0
crypto_kem/hqc-192/avx2/bch.c View File

@@ -0,0 +1,367 @@
#include "alpha_table.h"
#include "bch.h"
#include "fft.h"
#include "gf.h"
#include "parameters.h"
#include "vector.h"
#include <immintrin.h>
#include <stdint.h>
#include <string.h>
/**
* @file bch.c
* Constant time implementation of BCH codes
*/


static uint16_t mod(uint16_t i, uint16_t modulus);
static void compute_cyclotomic_cosets(uint16_t *cosets, uint16_t upper_bound);
static size_t compute_elp(uint16_t *sigma, const uint16_t *syndromes);
static void message_from_codeword(uint64_t *message, const uint64_t *codeword);
static void compute_syndromes(__m256i *syndromes, const uint64_t *rcv);
static void compute_roots(uint64_t *error, const uint16_t *sigma);

/**
* @brief Returns i modulo the given modulus.
*
* i must be less than 2*modulus.
* Therefore, the return value is either i or i-modulus.
* @returns i mod (modulus)
* @param[in] i The integer whose modulo is taken
* @param[in] modulus The modulus
*/
static uint16_t mod(uint16_t i, uint16_t modulus) {
uint16_t tmp = i - modulus;

// mask = 0xffff if(i < PARAM_GF_MUL_ORDER)
int16_t mask = -(tmp >> 15);

return tmp + (mask & modulus);
}



/**
* @brief Computes the odd binary cyclotomic cosets modulo 2^m-1 for integers less than upper_bound.
*
* The array cosets of size 2^m-1 is filled by placing at index i the coset representative of i.
* @param[out] cosets Array receiving the coset representatives
* @param[in] upper_bound The upper bound
*/
static void compute_cyclotomic_cosets(uint16_t *cosets, uint16_t upper_bound) {
// Compute the odd cyclotomic classes
for (uint16_t i = 1 ; i < upper_bound ; i += 2) {
if (cosets[i] == 0) { // If i does not already belong to a class
uint16_t tmp = i;
size_t j = PARAM_M;
cosets[i] = i;
while (--j) { // Complete i's class
tmp = mod(2 * tmp, PARAM_GF_MUL_ORDER);
cosets[tmp] = i;
}
}
}
}



/**
* @brief Computes the generator polynomial of the primitive BCH code with given parameters.
*
* Code length is 2^m-1. <br>
* Parameter t is the targeted correction capacity of the code
* and receives the real correction capacity (which is at least equal to the target). <br>
* exp and log are arrays giving antilog and log of GF(2^m) elements.
* @returns the degree of the generator polynomial
* @param[out] bch_poly Array of size (m*t + 1) receiving the coefficients of the generator polynomial
* @param[in,out] t Targeted correction capacity; receives the real correction capacity
* @param[in] exp Antilog table of GF(2^m)
* @param[in] log Log table of GF(2^m)
*/
size_t PQCLEAN_HQC192_AVX2_compute_bch_poly(uint16_t *bch_poly, size_t *t, const uint16_t *exp, const uint16_t *log) {
uint16_t cosets[PARAM_GF_MUL_ORDER];
size_t deg_bch_poly = 0;

memset(cosets, 0, 2 * PARAM_GF_MUL_ORDER);
compute_cyclotomic_cosets(cosets, 2 * *t);

// Start with bch_poly(X) = 1
bch_poly[0] = 1;

for (uint16_t i = 1 ; i < PARAM_GF_MUL_ORDER ; ++i) {
if (cosets[i] == 0) {
continue;
}

// Multiply bch_poly(X) by X-a^i
for (size_t j = deg_bch_poly ; j ; --j) {
int16_t mask = -((uint16_t) - bch_poly[j] >> 15);
bch_poly[j] = (mask & exp[mod(log[bch_poly[j]] + i, PARAM_GF_MUL_ORDER)]) ^ bch_poly[j - 1];
}
bch_poly[0] = exp[mod(log[bch_poly[0]] + i, PARAM_GF_MUL_ORDER)];
bch_poly[++deg_bch_poly] = 1;
}

// Determine the real correction capacity
while (cosets[2 * *t + 1] != 0) {
++*t;
}

return deg_bch_poly;
}



/**
* @brief Computes the values alpha^ij for decoding syndromes
*
* function to initialize a table which contains values alpha^ij for i in [0,N1[ and j in [1,2*PARAM_DELTA]
* these values are used in order to compute the syndromes of the received word v(x)=v_0+v_1x+...+v_{n1-1}x^{n1-1}
* value alpha^ij is stored in alpha_ij_table[2*PARAM_DELTA*i+j-1]
* The syndromes are equal to v(alpha^k) for k in [1,2*PARAM_DELTA]
* Size of the table is fixed to match 256 bit representation
* Useless values are filled with 0.
*
* @param[in] exp Exp look-up-table of GF
*/
void PQCLEAN_HQC192_AVX2_table_alphaij_generation(const uint16_t *exp) {
int32_t tmp_value;
int16_t *alpha_tmp;

// pre-computation of alpha^ij for i in [0, N1[ and j in [1, 2*PARAM_DELTA]
// see comment of alpha_ij_table_init() function.
for (uint16_t i = 0; i < PARAM_N1 ; ++i) {
tmp_value = 0;
alpha_tmp = table_alpha_ij + i * (PARAM_DELTA << 1);
for (uint16_t j = 0 ; j < (PARAM_DELTA << 1) ; j++) {
tmp_value = PQCLEAN_HQC192_AVX2_gf_mod(tmp_value + i);
alpha_tmp[j] = exp[tmp_value];
}
}
}



/**
* @brief Computes the error locator polynomial (ELP) sigma
*
* This is a constant time implementation of Berlekamp's simplified algorithm (see @cite joiner1995decoding). <br>
* We use the letter p for rho which is initialized at -1/2. <br>
* The array X_sigma_p represents the polynomial X^(2(mu-rho))*sigma_p(X). <br>
* Instead of maintaining a list of sigmas, we update in place both sigma and X_sigma_p. <br>
* sigma_copy serves as a temporary save of sigma in case X_sigma_p needs to be updated. <br>
* We can properly correct only if the degree of sigma does not exceed PARAM_DELTA.
* This means only the first PARAM_DELTA + 1 coefficients of sigma are of value
* and we only need to save its first PARAM_DELTA - 1 coefficients.
*
* @returns the degree of the ELP sigma
* @param[out] sigma Array of size (at least) PARAM_DELTA receiving the ELP
* @param[in] syndromes Array of size (at least) 2*PARAM_DELTA storing the syndromes
*/
static size_t compute_elp(uint16_t *sigma, const uint16_t *syndromes) {
sigma[0] = 1;
size_t deg_sigma = 0;
size_t deg_sigma_p = 0;
uint16_t sigma_copy[PARAM_DELTA - 1] = {0};
size_t deg_sigma_copy = 0;
uint16_t X_sigma_p[PARAM_DELTA + 1] = {0, 1};
int32_t pp = -1; // 2*rho
uint16_t d_p = 1;
uint16_t d = syndromes[0];

for (size_t mu = 0 ; mu < PARAM_DELTA ; ++mu) {
// Save sigma in case we need it to update X_sigma_p
memcpy(sigma_copy, sigma, 2 * (PARAM_DELTA - 1));
deg_sigma_copy = deg_sigma;

uint16_t dd = PQCLEAN_HQC192_AVX2_gf_mul(d, PQCLEAN_HQC192_AVX2_gf_inverse(d_p)); // 0 if(d == 0)
for (size_t i = 1 ; (i <= 2 * mu + 1) && (i <= PARAM_DELTA) ; ++i) {
sigma[i] ^= PQCLEAN_HQC192_AVX2_gf_mul(dd, X_sigma_p[i]);
}

size_t deg_X = 2 * mu - pp; // 2*(mu-rho)
size_t deg_X_sigma_p = deg_X + deg_sigma_p;

// mask1 = 0xffff if(d != 0) and 0 otherwise
int16_t mask1 = -((uint16_t) - d >> 15);

// mask2 = 0xffff if(deg_X_sigma_p > deg_sigma) and 0 otherwise
int16_t mask2 = -((uint16_t) (deg_sigma - deg_X_sigma_p) >> 15);

// mask12 = 0xffff if the deg_sigma increased and 0 otherwise
int16_t mask12 = mask1 & mask2;
deg_sigma = (mask12 & deg_X_sigma_p) ^ (~mask12 & deg_sigma);

if (mu == PARAM_DELTA - 1) {
break;
}

// Update pp, d_p and X_sigma_p if needed
pp = (mask12 & (2 * mu)) ^ (~mask12 & pp);
d_p = (mask12 & d) ^ (~mask12 & d_p);
for (size_t i = PARAM_DELTA - 1 ; i ; --i) {
X_sigma_p[i + 1] = (mask12 & sigma_copy[i - 1]) ^ (~mask12 & X_sigma_p[i - 1]);
}
X_sigma_p[1] = 0;
X_sigma_p[0] = 0;
deg_sigma_p = (mask12 & deg_sigma_copy) ^ (~mask12 & deg_sigma_p);

// Compute the next discrepancy
d = syndromes[2 * mu + 2];
for (size_t i = 1 ; (i <= 2 * mu + 1) && (i <= PARAM_DELTA) ; ++i) {
d ^= PQCLEAN_HQC192_AVX2_gf_mul(sigma[i], syndromes[2 * mu + 2 - i]);
}
}

return deg_sigma;
}



/**
* @brief Retrieves the message message from the codeword codeword
*
* Since we performed a systematic encoding, the message is the last PARAM_K bits of the codeword.
*
* @param[out] message Array of size VEC_K_SIZE_BYTES receiving the message
* @param[in] codeword Array of size VEC_N1_SIZE_BYTES storing the codeword
*/
static void message_from_codeword(uint64_t *message, const uint64_t *codeword) {
int32_t val = PARAM_N1 - PARAM_K;

uint64_t mask1 = (uint64_t) (0xffffffffffffffff << val % 64);
uint64_t mask2 = (uint64_t) (0xffffffffffffffff >> (64 - val % 64));
size_t index = val / 64;

for (size_t i = 0 ; i < VEC_K_SIZE_64 - 1 ; ++i) {
uint64_t message1 = (codeword[index] & mask1) >> val % 64;
uint64_t message2 = (codeword[++index] & mask2) << (64 - val % 64);
message[i] = message1 | message2;
}

// Last byte (8-val % 8 is the number of bits given by message1)
if ((PARAM_K % 64 == 0) || (64 - val % 64 < PARAM_K % 64)) {
uint64_t message1 = (codeword[index] & mask1) >> val % 64;
uint64_t message2 = (codeword[++index] & mask2) << (64 - val % 64);
message[VEC_K_SIZE_64 - 1] = message1 | message2;
} else {
uint64_t message1 = (codeword[index] & mask1) >> val % 64;
message[VEC_K_SIZE_64 - 1] = message1;
}
}



/**
* @brief Computes the 2^PARAM_DELTA syndromes from the received vector vector
*
* Syndromes are the sum of powers of alpha weighted by vector's coefficients.
* These powers have been pre-computed in table_alphaPARAM_DELTA.h
* Syndromes are 16-bits long , hence we can simultaneously compute 16 syndromes
* in a 256-bit register
*
* @param[out] syndromes Array of size 2^(PARAM_FFT_T) receiving the 2*PARAM_DELTA syndromes
* @param[in] rcv Array of size VEC_N1_SIZE_BYTES storing the received word
*/
void compute_syndromes(__m256i *syndromes, const uint64_t *rcv) {
const __m256i zero_256 = _mm256_set1_epi64x(0);
const __m256i mask_one = _mm256_set_epi64x(0x0303030303030303, 0x0202020202020202, 0x0101010101010101, 0x0);
const __m256i mask_two = _mm256_set1_epi64x(-0x7FBFDFEFF7FBFDFF);
const __m256i un_256 = _mm256_set1_epi64x(1);

__m256i y;
__m256i S;
__m256i L;
__m256i tmp_repeat;
uint32_t *aux;
int16_t *alpha_tmp;
uint32_t i;
// static variable so that it is stored in the DATA segment
// not in the STACK segment
static uint8_t tmp_array[PARAM_N1 + 4]; // +4 to control overflow due to management of 256 bits
__m256i *z = (__m256i *) tmp_array;
// vectorized version of the separation of the coordinates of the vector v in order to put each coordinate in an unsigned char
// aux is used to consider 4 elements in v at each step of the loop
aux = (uint32_t *) rcv;
for (i = 0 ; i < ((VEC_N1_SIZE_BYTES >> 2) << 2) ; i += 4) {
// duplicate aux 8 times in y , i.e y= (aux aux aux .... aux)
y = _mm256_set1_epi32(*aux);
// shuffle the bytes of y so that if aux=(a0 a1 a2 a3)
// then y = (a0 a0 a0 a0 a0 a0 a0 a0 a1 a1 a1 a1 a1 a1 a1 a1 .... a3)
y = _mm256_shuffle_epi8(y, mask_one);
// apply a mask on each byte of y to determine if jth bit of a_k is 0 or 1
z[i >> 2] = _mm256_and_si256(y, mask_two);
aux ++;
}

// Evaluation of the polynomial corresponding to the vector v in alpha^i for i in {1, ..., 2 * PARAM_DELTA}
for (size_t j = 0 ; j < SYND_SIZE_256 ; ++j) {
S = zero_256;
alpha_tmp = table_alpha_ij + (j << 4);

for (size_t i = 0 ; i < PARAM_N1 ; ++i) {
tmp_repeat = _mm256_set1_epi64x((long long)(tmp_array[i] != 0));
L = _mm256_cmpeq_epi64(tmp_repeat, un_256);
tmp_repeat = _mm256_lddqu_si256((__m256i *)(alpha_tmp + i * (PARAM_DELTA << 1)));
L = _mm256_and_si256(L, tmp_repeat);
S = _mm256_xor_si256(L, S);
}
_mm256_storeu_si256(syndromes + j, S);
}
}


/**
* @brief Computes the error polynomial error from the error locator polynomial sigma
*
* See function PQCLEAN_HQC192_AVX2_fft for more details.
*
* @param[out] error Array of VEC_N1_SIZE_BYTES elements receiving the error polynomial
* @param[in] sigma Array of 2^PARAM_FFT elements storing the error locator polynomial
*/
static void compute_roots(uint64_t *error, const uint16_t *sigma) {
uint16_t w[1 << PARAM_M] = {0}; // w will receive the evaluation of sigma in all field elements

PQCLEAN_HQC192_AVX2_fft(w, sigma, PARAM_DELTA + 1);
PQCLEAN_HQC192_AVX2_fft_retrieve_bch_error_poly(error, w);
}



/**
* @brief Decodes the received word
*
* This function relies on four steps:
* <ol>
* <li> The first step, done by additive FFT transpose, is the computation of the 2*PARAM_DELTA syndromes.
* <li> The second step is the computation of the error-locator polynomial sigma.
* <li> The third step, done by additive FFT, is finding the error-locator numbers by calculating the roots of the polynomial sigma and takings their inverses.
* <li> The fourth step is the correction of the errors in the received polynomial.
* </ol>
* For a more complete picture on BCH decoding, see Shu. Lin and Daniel J. Costello in Error Control Coding: Fundamentals and Applications @cite lin1983error
*
* @param[out] message Array of size VEC_K_SIZE_BYTES receiving the decoded message
* @param[in] vector Array of size VEC_N1_SIZE_BYTES storing the received word
*/

void PQCLEAN_HQC192_AVX2_bch_code_decode(uint64_t *message, uint64_t *vector) {
uint16_t sigma[1 << PARAM_FFT] = {0};
uint64_t error[(1 << PARAM_M) / 8] = {0};
static __m256i syndromes_256[SYND_SIZE_256];

// Calculate the 2*PARAM_DELTA syndromes
compute_syndromes(syndromes_256, vector);

// Compute the error locator polynomial sigma
// Sigma's degree is at most PARAM_DELTA but the FFT requires the extra room
compute_elp(sigma, (uint16_t *)syndromes_256);

// Compute the error polynomial error
compute_roots(error, sigma);

// Add the error polynomial to the received polynomial
PQCLEAN_HQC192_AVX2_vect_add(vector, vector, error, VEC_N1_SIZE_64);

// Retrieve the message from the decoded codeword
message_from_codeword(message, vector);

}

+ 23
- 0
crypto_kem/hqc-192/avx2/bch.h View File

@@ -0,0 +1,23 @@
#ifndef BCH_H
#define BCH_H


/**
* @file bch.h
* Header file of bch.c
*/

#include "parameters.h"
#include "parameters.h"
#include <stddef.h>
#include <stdint.h>

void PQCLEAN_HQC192_AVX2_bch_code_decode(uint64_t *message, uint64_t *vector);


size_t PQCLEAN_HQC192_AVX2_compute_bch_poly(uint16_t *bch_poly, size_t *t, const uint16_t *exp, const uint16_t *log);

void PQCLEAN_HQC192_AVX2_table_alphaij_generation(const uint16_t *exp);


#endif

+ 104
- 0
crypto_kem/hqc-192/avx2/code.c View File

@@ -0,0 +1,104 @@
#include "bch.h"
#include "code.h"
#include "gen_matrix.h"
#include "parameters.h"
#include "repetition.h"
#include <immintrin.h>
#include <stdint.h>
#include <string.h>
/**
* @file code.c
* @brief Implementation of tensor code
*/


static inline uint64_t mux(uint64_t a, uint64_t b, int64_t bit);

static inline uint64_t mux(uint64_t a, uint64_t b, int64_t bit) {
uint64_t ret = a ^ b;
return (ret & (-bit >> 63)) ^ a;
}



/**
*
* @brief Encoding the message m to a code word em using the tensor code
*
* We encode the message using the BCH code. For each bit obtained,
* we duplicate the bit PARAM_N2 times to apply repetition code.
* BCH encoding is done using the classical mG operation,
* columns of the matrix are stored in 256-bit registers
*
* @param[out] em Pointer to an array that is the tensor code word
* @param[in] m Pointer to an array that is the message
*/
void PQCLEAN_HQC192_AVX2_code_encode(uint64_t *em, const uint64_t *m) {
uint64_t res;
uint32_t i;
static const uint64_t mask[2][2] = {{0x0UL, 0x0UL}, {0x7FFFFFFFFFFFFFFUL, 0x3FFFFFFFFFFFFFFUL}};


__m256i *colonne, y, aux0;
__m256i msg = _mm256_lddqu_si256((const __m256i *) m);
colonne = ((__m256i *) gen_matrix);

for (i = 0 ; i < PARAM_N1 - PARAM_K ; i++) {
// y is the and operation between m and ith column of G
y = _mm256_and_si256(colonne[i], msg);
// aux0 = (y2 y3 y0 y1)
aux0 = _mm256_permute2x128_si256(y, y, 1);
// y = (y0^y2 y1^y3 y2^y0 y3^y1)
y = _mm256_xor_si256(y, aux0);
// aux0 = (y1^y3 y0^y2 y1^y3 y0^y2)
aux0 = _mm256_shuffle_epi32(y, 0x4e);
// y = (y0^y1^y2^y3 repeated 4 times)
y = _mm256_xor_si256(aux0, y);
res = _mm_popcnt_u64(_mm256_extract_epi64(y, 0)) & 1;


uint16_t pos_r = PARAM_N2 * i;
uint16_t idx_r = (pos_r & 0x3f);
uint64_t *p64 = em;
p64 += pos_r >> 6;
uint64_t select = mux(mask[0][0], mask[1][0], res);
*p64 ^= select << idx_r;
select = mux(mask[0][1], mask[1][1], res);
*(p64 + 1) ^= select >> ((63 - idx_r));
}

/* now we add the message m */
/* systematic encoding */
for (int32_t i = 0 ; i < 4 ; i++) {
for (int32_t j = 0 ; j < 64 ; j++) {
uint8_t bit = (m[i] >> j) & 0x1;
uint32_t pos_r = PARAM_N2 * ((PARAM_N1 - PARAM_K) + ((i << 6) + j));
uint16_t idx_r = (pos_r & 0x3f);
uint64_t *p64 = em;


p64 += pos_r >> 6;
uint64_t select = mux(mask[0][0], mask[1][0], bit);
*p64 ^= select << idx_r;
select = mux(mask[0][1], mask[1][1], bit);
*(p64 + 1) ^= select >> ((63 - idx_r));
}
}

}


/**
* @brief Decoding the code word em to a message m using the tensor code
*
* @param[out] m Pointer to an array that is the message
* @param[in] em Pointer to an array that is the code word
*/
void PQCLEAN_HQC192_AVX2_code_decode(uint64_t *m, const uint64_t *em) {

uint64_t tmp[VEC_N1_SIZE_64] = {0};

PQCLEAN_HQC192_AVX2_repetition_code_decode(tmp, em);
PQCLEAN_HQC192_AVX2_bch_code_decode(m, tmp);

}

+ 20
- 0
crypto_kem/hqc-192/avx2/code.h View File

@@ -0,0 +1,20 @@
#ifndef CODE_H
#define CODE_H


/**
* @file code.h
* Header file of code.c
*/

#include "parameters.h"
#include "parameters.h"
#include <stddef.h>
#include <stdint.h>

void PQCLEAN_HQC192_AVX2_code_encode(uint64_t *em, const uint64_t *message);

void PQCLEAN_HQC192_AVX2_code_decode(uint64_t *m, const uint64_t *em);


#endif

+ 333
- 0
crypto_kem/hqc-192/avx2/fft.c View File

@@ -0,0 +1,333 @@
#include "fft.h"
#include "gf.h"
#include "parameters.h"
#include <stdint.h>
#include <stdio.h>
#include <string.h>
/**
* @file fft.c
* Implementation of the additive FFT and its transpose.
* This implementation is based on the paper from Gao and Mateer: <br>
* Shuhong Gao and Todd Mateer, Additive Fast Fourier Transforms over Finite Fields,
* IEEE Transactions on Information Theory 56 (2010), 6265--6272.
* http://www.math.clemson.edu/~sgao/papers/GM10.pdf <br>
* and includes improvements proposed by Bernstein, Chou and Schwabe here:
* https://binary.cr.yp.to/mcbits-20130616.pdf
*/


static void compute_fft_betas(uint16_t *betas);
static void compute_subset_sums(uint16_t *subset_sums, const uint16_t *set, size_t set_size);
static void radix(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f);
static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32_t m_f, const uint16_t *betas);


/**
* @brief Computes the basis of betas (omitting 1) used in the additive FFT and its transpose
*
* @param[out] betas Array of size PARAM_M-1
*/
static void compute_fft_betas(uint16_t *betas) {
for (size_t i = 0 ; i < PARAM_M - 1 ; ++i) {
betas[i] = 1 << (PARAM_M - 1 - i);
}
}



/**
* @brief Computes the subset sums of the given set
*
* The array subset_sums is such that its ith element is
* the subset sum of the set elements given by the binary form of i.
*
* @param[out] subset_sums Array of size 2^set_size receiving the subset sums
* @param[in] set Array of set_size elements
* @param[in] set_size Size of the array set
*/
static void compute_subset_sums(uint16_t *subset_sums, const uint16_t *set, size_t set_size) {
subset_sums[0] = 0;

for (size_t i = 0 ; i < set_size ; ++i) {
for (size_t j = 0 ; j < (1U << i) ; ++j) {
subset_sums[(1 << i) + j] = set[i] ^ subset_sums[j];
}
}
}



/**
* @brief Computes the radix conversion of a polynomial f in GF(2^m)[x]
*
* Computes f0 and f1 such that f(x) = f0(x^2-x) + x.f1(x^2-x)
* as proposed by Bernstein, Chou and Schwabe:
* https://binary.cr.yp.to/mcbits-20130616.pdf
*
* @param[out] f0 Array half the size of f
* @param[out] f1 Array half the size of f
* @param[in] f Array of size a power of 2
* @param[in] m_f 2^{m_f} is the smallest power of 2 greater or equal to the number of coefficients of f
*/
static void radix(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f) {
switch (m_f) {
case 4:
f0[4] = f[8] ^ f[12];
f0[6] = f[12] ^ f[14];
f0[7] = f[14] ^ f[15];
f1[5] = f[11] ^ f[13];
f1[6] = f[13] ^ f[14];
f1[7] = f[15];
f0[5] = f[10] ^ f[12] ^ f1[5];
f1[4] = f[9] ^ f[13] ^ f0[5];

f0[0] = f[0];
f1[3] = f[7] ^ f[11] ^ f[15];
f0[3] = f[6] ^ f[10] ^ f[14] ^ f1[3];
f0[2] = f[4] ^ f0[4] ^ f0[3] ^ f1[3];
f1[1] = f[3] ^ f[5] ^ f[9] ^ f[13] ^ f1[3];
f1[2] = f[3] ^ f1[1] ^ f0[3];
f0[1] = f[2] ^ f0[2] ^ f1[1];
f1[0] = f[1] ^ f0[1];
return;

case 3:
f0[0] = f[0];
f0[2] = f[4] ^ f[6];
f0[3] = f[6] ^ f[7];
f1[1] = f[3] ^ f[5] ^ f[7];
f1[2] = f[5] ^ f[6];
f1[3] = f[7];
f0[1] = f[2] ^ f0[2] ^ f1[1];
f1[0] = f[1] ^ f0[1];
return;

case 2:
f0[0] = f[0];
f0[1] = f[2] ^ f[3];
f1[0] = f[1] ^ f0[1];
f1[1] = f[3];
return;

case 1:
f0[0] = f[0];
f1[0] = f[1];
return;

default:
;
size_t n = 1 << (m_f - 2);

uint16_t Q[2 * (1 << (PARAM_FFT - 2))];
uint16_t R[2 * (1 << (PARAM_FFT - 2))];

uint16_t Q0[1 << (PARAM_FFT - 2)];
uint16_t Q1[1 << (PARAM_FFT - 2)];
uint16_t R0[1 << (PARAM_FFT - 2)];
uint16_t R1[1 << (PARAM_FFT - 2)];

memcpy(Q, f + 3 * n, 2 * n);
memcpy(Q + n, f + 3 * n, 2 * n);
memcpy(R, f, 4 * n);

for (size_t i = 0 ; i < n ; ++i) {
Q[i] ^= f[2 * n + i];
R[n + i] ^= Q[i];
}

radix(Q0, Q1, Q, m_f - 1);
radix(R0, R1, R, m_f - 1);

memcpy(f0, R0, 2 * n);
memcpy(f0 + n, Q0, 2 * n);
memcpy(f1, R1, 2 * n);
memcpy(f1 + n, Q1, 2 * n);
}
}



/**
* @brief Evaluates f at all subset sums of a given set
*
* This function is a subroutine of the function fft.
*
* @param[out] w Array
* @param[in] f Array
* @param[in] f_coeffs Number of coefficients of f
* @param[in] m Number of betas
* @param[in] m_f Number of coefficients of f (one more than its degree)
* @param[in] betas FFT constants
*/
static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32_t m_f, const uint16_t *betas) {
uint16_t f0[1 << (PARAM_FFT - 2)];
uint16_t f1[1 << (PARAM_FFT - 2)];
uint16_t gammas[PARAM_M - 2];
uint16_t deltas[PARAM_M - 2];
size_t k = 1 << (m - 1);
uint16_t gammas_sums[1 << (PARAM_M - 2)];
uint16_t u[1 << (PARAM_M - 2)] = {0};
uint16_t v[1 << (PARAM_M - 2)] = {0};

// Step 1
if (m_f == 1) {
uint16_t tmp[PARAM_M - (PARAM_FFT - 1)];
for (size_t i = 0 ; i < m ; ++i) {
tmp[i] = PQCLEAN_HQC192_AVX2_gf_mul(betas[i], f[1]);
}

w[0] = f[0];
for (size_t j = 0 ; j < m ; ++j) {
for (size_t k = 0 ; k < (1U << j) ; ++k) {
w[(1 << j) + k] = w[k] ^ tmp[j];
}
}

return;
}

// Step 2: compute g
if (betas[m - 1] != 1) {
uint16_t beta_m_pow = 1;
for (size_t i = 1 ; i < (1U << m_f) ; ++i) {
beta_m_pow = PQCLEAN_HQC192_AVX2_gf_mul(beta_m_pow, betas[m - 1]);
f[i] = PQCLEAN_HQC192_AVX2_gf_mul(beta_m_pow, f[i]);
}
}

// Step 3
radix(f0, f1, f, m_f);

// Step 4: compute gammas and deltas
for (uint8_t i = 0 ; i < m - 1 ; ++i) {
gammas[i] = PQCLEAN_HQC192_AVX2_gf_mul(betas[i], PQCLEAN_HQC192_AVX2_gf_inverse(betas[m - 1]));
deltas[i] = PQCLEAN_HQC192_AVX2_gf_square(gammas[i]) ^ gammas[i];
}

// Compute gammas sums
compute_subset_sums(gammas_sums, gammas, m - 1);

// Step 5
fft_rec(u, f0, (f_coeffs + 1) / 2, m - 1, m_f - 1, deltas);

if (f_coeffs <= 3) { // 3-coefficient polynomial f case: f1 is constant
w[0] = u[0];
w[k] = u[0] ^ f1[0];
for (size_t i = 1 ; i < k ; ++i) {
w[i] = u[i] ^ PQCLEAN_HQC192_AVX2_gf_mul(gammas_sums[i], f1[0]);
w[k + i] = w[i] ^ f1[0];
}
} else {
fft_rec(v, f1, f_coeffs / 2, m - 1, m_f - 1, deltas);

// Step 6
memcpy(w + k, v, 2 * k);
w[0] = u[0];
w[k] ^= u[0];
for (size_t i = 1 ; i < k ; ++i) {
w[i] = u[i] ^ PQCLEAN_HQC192_AVX2_gf_mul(gammas_sums[i], v[i]);
w[k + i] ^= w[i];
}
}
}



/**
* @brief Evaluates f on all fields elements using an additive FFT algorithm
*
* f_coeffs is the number of coefficients of f (one less than its degree). <br>
* The FFT proceeds recursively to evaluate f at all subset sums of a basis B. <br>
* This implementation is based on the paper from Gao and Mateer: <br>
* Shuhong Gao and Todd Mateer, Additive Fast Fourier Transforms over Finite Fields,
* IEEE Transactions on Information Theory 56 (2010), 6265--6272.
* http://www.math.clemson.edu/~sgao/papers/GM10.pdf <br>
* and includes improvements proposed by Bernstein, Chou and Schwabe here:
* https://binary.cr.yp.to/mcbits-20130616.pdf <br>
* Note that on this first call (as opposed to the recursive calls to fft_rec), gammas are equal to betas,
* meaning the first gammas subset sums are actually the subset sums of betas (except 1). <br>
* Also note that f is altered during computation (twisted at each level).
*
* @param[out] w Array
* @param[in] f Array of 2^PARAM_FFT elements
* @param[in] f_coeffs Number coefficients of f (i.e. deg(f)+1)
*/
void PQCLEAN_HQC192_AVX2_fft(uint16_t *w, const uint16_t *f, size_t f_coeffs) {
uint16_t betas[PARAM_M - 1];
uint16_t betas_sums[1 << (PARAM_M - 1)];
uint16_t f0[1 << (PARAM_FFT - 1)];
uint16_t f1[1 << (PARAM_FFT - 1)];
uint16_t deltas[PARAM_M - 1];
size_t k = 1 << (PARAM_M - 1);
uint16_t u[1 << (PARAM_M - 1)];
uint16_t v[1 << (PARAM_M - 1)];

// Follows Gao and Mateer algorithm
compute_fft_betas(betas);

// Step 1: PARAM_FFT > 1, nothing to do

// Compute gammas sums
compute_subset_sums(betas_sums, betas, PARAM_M - 1);

// Step 2: beta_m = 1, nothing to do

// Step 3
radix(f0, f1, f, PARAM_FFT);

// Step 4: Compute deltas
for (size_t i = 0 ; i < PARAM_M - 1 ; ++i) {
deltas[i] = PQCLEAN_HQC192_AVX2_gf_square(betas[i]) ^ betas[i];
}

// Step 5
fft_rec(u, f0, (f_coeffs + 1) / 2, PARAM_M - 1, PARAM_FFT - 1, deltas);
fft_rec(v, f1, f_coeffs / 2, PARAM_M - 1, PARAM_FFT - 1, deltas);

// Step 6, 7 and error polynomial computation
memcpy(w + k, v, 2 * k);

// Check if 0 is root
w[0] = u[0];

// Check if 1 is root
w[k] ^= u[0];

// Find other roots
for (size_t i = 1 ; i < k ; ++i) {
w[i] = u[i] ^ PQCLEAN_HQC192_AVX2_gf_mul(betas_sums[i], v[i]);
w[k + i] ^= w[i];
}
}



/**
* @brief Retrieves the error polynomial error from the evaluations w of the ELP (Error Locator Polynomial) on all field elements.
*
* @param[out] error Array of size VEC_N1_SIZE_BYTES
* @param[in] w Array of size 2^PARAM_M
*/
void PQCLEAN_HQC192_AVX2_fft_retrieve_bch_error_poly(uint64_t *error, const uint16_t *w) {
uint16_t gammas[PARAM_M - 1];
uint16_t gammas_sums[1 << (PARAM_M - 1)];
size_t k = 1 << (PARAM_M - 1);
size_t index = PARAM_GF_MUL_ORDER;

compute_fft_betas(gammas);
compute_subset_sums(gammas_sums, gammas, PARAM_M - 1);

error[0] ^= ((uint64_t) 1) ^ ((uint16_t) - w[0] >> 15);
uint64_t bit = ((uint64_t) 1) ^ ((uint16_t) - w[k] >> 15);
error[index / 8] ^= bit << (index % 64);

for (size_t i = 1 ; i < k ; ++i) {
index = PARAM_GF_MUL_ORDER - PQCLEAN_HQC192_AVX2_gf_log(gammas_sums[i]);
bit = ((uint64_t) 1) ^ ((uint16_t) - w[i] >> 15);
error[index / 64] ^= bit << (index % 64);

index = PARAM_GF_MUL_ORDER - PQCLEAN_HQC192_AVX2_gf_log(gammas_sums[i] ^ 1);
bit = ((uint64_t) 1) ^ ((uint16_t) - w[k + i] >> 15);
error[index / 64] ^= bit << (index % 64);
}
}

+ 20
- 0
crypto_kem/hqc-192/avx2/fft.h View File

@@ -0,0 +1,20 @@
#ifndef FFT_H
#define FFT_H


/**
* @file fft.h
* Header file of fft.c
*/

#include <stddef.h>

#include <stddef.h>
#include <stdint.h>

void PQCLEAN_HQC192_AVX2_fft(uint16_t *w, const uint16_t *f, size_t f_coeffs);

void PQCLEAN_HQC192_AVX2_fft_retrieve_bch_error_poly(uint64_t *error, const uint16_t *w);


#endif

+ 16
- 0
crypto_kem/hqc-192/avx2/gen_matrix.h
File diff suppressed because it is too large
View File


+ 167
- 0
crypto_kem/hqc-192/avx2/gf.c
File diff suppressed because it is too large
View File


+ 29
- 0
crypto_kem/hqc-192/avx2/gf.h View File

@@ -0,0 +1,29 @@
#ifndef GF_H
#define GF_H


/**
* @file gf.h
* Header file of gf.c
*/

#include <stddef.h>

#include <stddef.h>
#include <stdint.h>

void PQCLEAN_HQC192_AVX2_gf_generate(uint16_t *exp, uint16_t *log, int16_t m);


uint16_t PQCLEAN_HQC192_AVX2_gf_log(uint16_t elt);

uint16_t PQCLEAN_HQC192_AVX2_gf_mul(uint16_t a, uint16_t b);

uint16_t PQCLEAN_HQC192_AVX2_gf_square(uint16_t a);

uint16_t PQCLEAN_HQC192_AVX2_gf_inverse(uint16_t a);

uint16_t PQCLEAN_HQC192_AVX2_gf_mod(uint16_t i);


#endif

+ 598
- 0
crypto_kem/hqc-192/avx2/gf2x.c View File

@@ -0,0 +1,598 @@
#include "gf2x.h"
#include "parameters.h"
#include <immintrin.h>
#include <stdint.h>
#include <string.h>

/**
* \file gf2x.c
* \brief AVX2 implementation of multiplication of two polynomials
*/


// sizes for Toom-Cook
#define T_TM3_3W_256 64
#define T_TM3_3W_64 256

#define VEC_N_ARRAY_SIZE_VEC CEIL_DIVIDE(PARAM_N, 256) /*!< The number of needed vectors to store PARAM_N bits*/
#define WORD 64
#define LAST64 (PARAM_N >> 6)
uint64_t a1_times_a2[2 * VEC_N_256_SIZE_64 + 1];
uint64_t tmp_reduce[VEC_N_ARRAY_SIZE_VEC << 2];
__m256i *o256 = (__m256i *) tmp_reduce;
uint64_t bloc64[PARAM_OMEGA_R]; // Allocation with the biggest possible weight
uint64_t bit64[PARAM_OMEGA_R]; // Allocation with the biggest possible weight


static inline void reduce(uint64_t *o, const uint64_t *a);
inline static void karat_mult_1(__m128i *C, __m128i *A, __m128i *B);
inline static void karat_mult_2(__m256i *C, __m256i *A, __m256i *B);
inline static void karat_mult_4(__m256i *C, __m256i *A, __m256i *B);
inline static void karat_mult_8(__m256i *C, __m256i *A, __m256i *B);
inline static void karat_mult_16(__m256i *C, __m256i *A, __m256i *B);
inline static void karat_mult_32(__m256i *C, __m256i *A, __m256i *B);
inline static void karat_mult_64(__m256i *C, __m256i *A, __m256i *B);
static inline void divByXplus1(__m256i *out, __m256i *in, int size);
static void TOOM3Mult(uint64_t *Out, const uint64_t *A, const uint64_t *B);



/**
* @brief Compute o(x) = a(x) mod \f$ X^n - 1\f$
*
* This function computes the modular reduction of the polynomial a(x)
*
* @param[out] o Pointer to the result
* @param[in] a Pointer to the polynomial a(x)
*/
static inline void reduce(uint64_t *o, const uint64_t *a) {
__m256i r256, carry256;
__m256i *a256 = (__m256i *) a;
static const int32_t dec64 = PARAM_N & 0x3f;
static const int32_t d0 = WORD - dec64;
int32_t i, i2;

for (i = LAST64 ; i < (PARAM_N >> 5) - 4 ; i += 4) {
r256 = _mm256_lddqu_si256((__m256i const *) (& a[i]));
r256 = _mm256_srli_epi64(r256, dec64);
carry256 = _mm256_lddqu_si256((__m256i const *) (& a[i + 1]));
carry256 = _mm256_slli_epi64(carry256, d0);
r256 ^= carry256;
i2 = (i - LAST64) >> 2;
o256[i2] = a256[i2] ^ r256;
}

r256 = _mm256_lddqu_si256((__m256i const *) (& a[i]));
carry256 = _mm256_lddqu_si256((__m256i const *) (& a[i + 1]));
r256 = _mm256_srli_epi64(r256, dec64);
carry256 = _mm256_slli_epi64(carry256, d0);
r256 ^= carry256;
i2 = (i - LAST64) >> 2;
o256[i2] = (a256[i2] ^ r256);
tmp_reduce[LAST64] &= RED_MASK;
memcpy(o, tmp_reduce, VEC_N_SIZE_BYTES);
}



/**
* @brief Compute C(x) = A(x)*B(x)
* A(x) and B(x) are stored in 128-bit registers
* This function computes A(x)*B(x) using Karatsuba
*
* @param[out] C Pointer to the result
* @param[in] A Pointer to the polynomial A(x)
* @param[in] B Pointer to the polynomial B(x)
*/
inline static void karat_mult_1(__m128i *C, __m128i *A, __m128i *B) {
__m128i D1[2];
__m128i D0[2], D2[2];
__m128i Al = _mm_loadu_si128(A);
__m128i Ah = _mm_loadu_si128(A + 1);
__m128i Bl = _mm_loadu_si128(B);
__m128i Bh = _mm_loadu_si128(B + 1);

// Compute Al.Bl=D0
__m128i DD0 = _mm_clmulepi64_si128(Al, Bl, 0);
__m128i DD2 = _mm_clmulepi64_si128(Al, Bl, 0x11);
__m128i AAlpAAh = _mm_xor_si128(Al, _mm_shuffle_epi32(Al, 0x4e));
__m128i BBlpBBh = _mm_xor_si128(Bl, _mm_shuffle_epi32(Bl, 0x4e));
__m128i DD1 = _mm_xor_si128(_mm_xor_si128(DD0, DD2), _mm_clmulepi64_si128(AAlpAAh, BBlpBBh, 0));
D0[0] = _mm_xor_si128(DD0, _mm_unpacklo_epi64(_mm_setzero_si128(), DD1));
D0[1] = _mm_xor_si128(DD2, _mm_unpackhi_epi64(DD1, _mm_setzero_si128()));

// Compute Ah.Bh=D2
DD0 = _mm_clmulepi64_si128(Ah, Bh, 0);
DD2 = _mm_clmulepi64_si128(Ah, Bh, 0x11);
AAlpAAh = _mm_xor_si128(Ah, _mm_shuffle_epi32(Ah, 0x4e));
BBlpBBh = _mm_xor_si128(Bh, _mm_shuffle_epi32(Bh, 0x4e));
DD1 = _mm_xor_si128(_mm_xor_si128(DD0, DD2), _mm_clmulepi64_si128(AAlpAAh, BBlpBBh, 0));
D2[0] = _mm_xor_si128(DD0, _mm_unpacklo_epi64(_mm_setzero_si128(), DD1));
D2[1] = _mm_xor_si128(DD2, _mm_unpackhi_epi64(DD1, _mm_setzero_si128()));

// Compute AlpAh.BlpBh=D1
// Initialisation of AlpAh and BlpBh
__m128i AlpAh = _mm_xor_si128(Al, Ah);
__m128i BlpBh = _mm_xor_si128(Bl, Bh);
DD0 = _mm_clmulepi64_si128(AlpAh, BlpBh, 0);
DD2 = _mm_clmulepi64_si128(AlpAh, BlpBh, 0x11);
AAlpAAh = _mm_xor_si128(AlpAh, _mm_shuffle_epi32(AlpAh, 0x4e));
BBlpBBh = _mm_xor_si128(BlpBh, _mm_shuffle_epi32(BlpBh, 0x4e));
DD1 = _mm_xor_si128(_mm_xor_si128(DD0, DD2), _mm_clmulepi64_si128(AAlpAAh, BBlpBBh, 0));
D1[0] = _mm_xor_si128(DD0, _mm_unpacklo_epi64(_mm_setzero_si128(), DD1));
D1[1] = _mm_xor_si128(DD2, _mm_unpackhi_epi64(DD1, _mm_setzero_si128()));

// Final comutation of C
__m128i middle = _mm_xor_si128(D0[1], D2[0]);
C[0] = D0[0];
C[1] = middle ^ D0[0] ^ D1[0];
C[2] = middle ^ D1[1] ^ D2[1];
C[3] = D2[1];
}



/**
* @brief Compute C(x) = A(x)*B(x)
*
* This function computes A(x)*B(x) using Karatsuba
* A(x) and B(x) are stored in 256-bit registers
* @param[out] C Pointer to the result
* @param[in] A Pointer to the polynomial A(x)
* @param[in] B Pointer to the polynomial B(x)
*/
inline static void karat_mult_2(__m256i *C, __m256i *A, __m256i *B) {
__m256i D0[2], D1[2], D2[2], SAA, SBB;
__m128i *A128 = (__m128i *)A, *B128 = (__m128i *)B;

karat_mult_1((__m128i *) D0, A128, B128);
karat_mult_1((__m128i *) D2, A128 + 2, B128 + 2);

SAA = A[0] ^ A[1];
SBB = B[0] ^ B[1];

karat_mult_1((__m128i *) D1, (__m128i *) &SAA, (__m128i *) &SBB);
__m256i middle = _mm256_xor_si256(D0[1], D2[0]);

C[0] = D0[0];
C[1] = middle ^ D0[0] ^ D1[0];
C[2] = middle ^ D1[1] ^ D2[1];
C[3] = D2[1];
}



/**
* @brief Compute C(x) = A(x)*B(x)
*
* This function computes A(x)*B(x) using Karatsuba
* A(x) and B(x) are stored in 256-bit registers
* @param[out] C Pointer to the result
* @param[in] A Pointer to the polynomial A(x)
* @param[in] B Pointer to the polynomial B(x)
*/
inline static void karat_mult_4(__m256i *C, __m256i *A, __m256i *B) {
__m256i D0[4], D1[4], D2[4], SAA[2], SBB[2];

karat_mult_2( D0, A, B);
karat_mult_2(D2, A + 2, B + 2);

SAA[0] = A[0] ^ A[2];
SBB[0] = B[0] ^ B[2];
SAA[1] = A[1] ^ A[3];
SBB[1] = B[1] ^ B[3];

karat_mult_2( D1, SAA, SBB);

__m256i middle0 = _mm256_xor_si256(D0[2], D2[0]);
__m256i middle1 = _mm256_xor_si256(D0[3], D2[1]);

C[0] = D0[0];
C[1] = D0[1];
C[2] = middle0 ^ D0[0] ^ D1[0];
C[3] = middle1 ^ D0[1] ^ D1[1];
C[4] = middle0 ^ D1[2] ^ D2[2];
C[5] = middle1 ^ D1[3] ^ D2[3];
C[6] = D2[2];
C[7] = D2[3];
}



/**
* @brief Compute C(x) = A(x)*B(x)
*
* This function computes A(x)*B(x) using Karatsuba
* A(x) and B(x) are stored in 256-bit registers
* @param[out] C Pointer to the result
* @param[in] A Pointer to the polynomial A(x)
* @param[in] B Pointer to the polynomial B(x)
*/
inline static void karat_mult_8(__m256i *C, __m256i *A, __m256i *B) {
__m256i D0[8], D1[8], D2[8], SAA[4], SBB[4];

karat_mult_4( D0, A, B);
karat_mult_4(D2, A + 4, B + 4);

for (int32_t i = 0 ; i < 4 ; i++) {
int is = i + 4;
SAA[i] = A[i] ^ A[is];
SBB[i] = B[i] ^ B[is];
}

karat_mult_4(D1, SAA, SBB);

for (int32_t i = 0 ; i < 4 ; i++) {
int32_t is = i + 4;
int32_t is2 = is + 4;
int32_t is3 = is2 + 4;

__m256i middle = _mm256_xor_si256(D0[is], D2[i]);

C[i] = D0[i];
C[is] = middle ^ D0[i] ^ D1[i];
C[is2] = middle ^ D1[is] ^ D2[is];
C[is3] = D2[is];
}
}



/**
* @brief Compute C(x) = A(x)*B(x)
*
* This function computes A(x)*B(x) using Karatsuba
* A(x) and B(x) are stored in 256-bit registers
* @param[out] C Pointer to the result
* @param[in] A Pointer to the polynomial A(x)
* @param[in] B Pointer to the polynomial B(x)
*/
inline static void karat_mult_16(__m256i *C, __m256i *A, __m256i *B) {
__m256i D0[16], D1[16], D2[16], SAA[8], SBB[8];

karat_mult_8( D0, A, B);
karat_mult_8(D2, A + 8, B + 8);

for (int32_t i = 0 ; i < 8 ; i++) {
int32_t is = i + 8;
SAA[i] = A[i] ^ A[is];
SBB[i] = B[i] ^ B[is];
}

karat_mult_8( D1, SAA, SBB);

for (int32_t i = 0 ; i < 8 ; i++) {
int32_t is = i + 8;
int32_t is2 = is + 8;
int32_t is3 = is2 + 8;

__m256i middle = _mm256_xor_si256(D0[is], D2[i]);

C[i] = D0[i];
C[is] = middle ^ D0[i] ^ D1[i];
C[is2] = middle ^ D1[is] ^ D2[is];
C[is3] = D2[is];
}
}



/**
* @brief Compute C(x) = A(x)*B(x)
*
* This function computes A(x)*B(x) using Karatsuba
* A(x) and B(x) are stored in 256-bit registers
* @param[out] C Pointer to the result
* @param[in] A Pointer to the polynomial A(x)
* @param[in] B Pointer to the polynomial B(x)
*/
inline static void karat_mult_32(__m256i *C, __m256i *A, __m256i *B) {
__m256i D0[32], D1[32], D2[32], SAA[16], SBB[16];

karat_mult_16( D0, A, B);
karat_mult_16(D2, A + 16, B + 16);

for (int32_t i = 0 ; i < 16 ; i++) {
int is = i + 16;
SAA[i] = A[i] ^ A[is];
SBB[i] = B[i] ^ B[is];
}

karat_mult_16( D1, SAA, SBB);

for (int32_t i = 0 ; i < 16 ; i++) {
int32_t is = i + 16;
int32_t is2 = is + 16;
int32_t is3 = is2 + 16;

__m256i middle = _mm256_xor_si256(D0[is], D2[i]);

C[i] = D0[i];
C[is] = middle ^ D0[i] ^ D1[i];
C[is2] = middle ^ D1[is] ^ D2[is];
C[is3] = D2[is];
}
}



/**
* @brief Compute C(x) = A(x)*B(x)
*
* This function computes A(x)*B(x) using Karatsuba
* A(x) and B(x) are stored in 256-bit registers
* @param[out] C Pointer to the result
* @param[in] A Pointer to the polynomial A(x)
* @param[in] B Pointer to the polynomial B(x)
*/
inline static void karat_mult_64(__m256i *C, __m256i *A, __m256i *B) {
__m256i D0[64], D1[64], D2[64], SAA[32], SBB[32];

karat_mult_32( D0, A, B);
karat_mult_32(D2, A + 32, B + 32);
for (int32_t i = 0 ; i < 32 ; i++) {
int32_t is = i + 32;
SAA[i] = A[i] ^ A[is];
SBB[i] = B[i] ^ B[is];
}

karat_mult_32( D1, SAA, SBB);

for (int32_t i = 0 ; i < 32 ; i++) {
int32_t is = i + 32;
int32_t is2 = is + 32;
int32_t is3 = is2 + 32;

__m256i middle = _mm256_xor_si256(D0[is], D2[i]);

C[i] = D0[i];
C[is] = middle ^ D0[i] ^ D1[i];
C[is2] = middle ^ D1[is] ^ D2[is];
C[is3] = D2[is];
}
}



/**
* @brief Compute B(x) = A(x)/(x+1)
*
* This function computes A(x)/(x+1) using a Quercia like algorithm
* @param[out] out Pointer to the result
* @param[in] in Pointer to the polynomial A(x)
* @param[in] size used to define the number of coeeficients of A
*/
static inline void divByXplus1(__m256i *out, __m256i *in, int size) {
uint64_t *A = (uint64_t *) in;
uint64_t *B = (uint64_t *) out;

B[0] = A[0];

for (int32_t i = 1 ; i < 2 * (size << 2) ; i++) {
B[i] = B[i - 1] ^ A[i];
}
}



/**
* @brief Compute C(x) = A(x)*B(x) using TOOM3Mult
*
* This function computes A(x)*B(x) using TOOM-COOK3 Multiplication
* last multiplication are done using Karatsuba
* @param[out] Out Pointer to the result
* @param[in] A Pointer to the polynomial A(x)
* @param[in] B Pointer to the polynomial B(x)
*/
static void TOOM3Mult(uint64_t *Out, const uint64_t *A, const uint64_t *B) {
static __m256i U0[T_TM3_3W_256], V0[T_TM3_3W_256], U1[T_TM3_3W_256], V1[T_TM3_3W_256], U2[T_TM3_3W_256], V2[T_TM3_3W_256];
static __m256i W0[2 * (T_TM3_3W_256)], W1[2 * (T_TM3_3W_256)], W2[2 * (T_TM3_3W_256)], W3[2 * (T_TM3_3W_256)], W4[2 * (T_TM3_3W_256)];
static __m256i tmp[2 * (T_TM3_3W_256)];
static __m256i ro256[6 * (T_TM3_3W_256)];
const __m256i zero = (__m256i) {
0ul, 0ul, 0ul, 0ul
};
int32_t T2 = T_TM3_3W_64 << 1;

for (int32_t i = 0 ; i < T_TM3_3W_256 - 1 ; i++) {
int32_t i4 = i << 2;
int32_t i42 = i4 - 2;
U0[i] = _mm256_lddqu_si256((__m256i const *)(& A[i4]));
V0[i] = _mm256_lddqu_si256((__m256i const *)(& B[i4]));
U1[i] = _mm256_lddqu_si256((__m256i const *)(& A[i42 + T_TM3_3W_64]));
V1[i] = _mm256_lddqu_si256((__m256i const *)(& B[i42 + T_TM3_3W_64]));
U2[i] = _mm256_lddqu_si256((__m256i const *)(& A[i4 + T2 - 4]));
V2[i] = _mm256_lddqu_si256((__m256i const *)(& B[i4 + T2 - 4]));
}

for (int32_t i = T_TM3_3W_256 - 1 ; i < T_TM3_3W_256 ; i++) {
int32_t i4 = i << 2;
int32_t i41 = i4 + 1;
U0[i] = (__m256i) {
A[i4], A[i41], 0x0ul, 0x0ul
};
V0[i] = (__m256i) {
B[i4], B[i41], 0x0ul, 0x0ul
};
U1[i] = (__m256i) {
A[i4 + T_TM3_3W_64 - 2], A[i41 + T_TM3_3W_64 - 2], 0x0ul, 0x0ul
};
V1[i] = (__m256i) {
B[i4 + T_TM3_3W_64 - 2], B[i41 + T_TM3_3W_64 - 2], 0x0ul, 0x0ul
};
U2[i] = (__m256i) {
A[i4 - 4 + T2], A[i4 - 3 + T2], 0x0ul, 0x0ul
};
V2[i] = (__m256i) {
B[i4 - 4 + T2], B[i4 - 3 + T2], 0x0ul, 0x0ul
};
}

// Evaluation phase : x= X^64
// P(X): P0=(0); P1=(1); P2=(x); P3=(1+x); P4=(\infty)
// Evaluation: 5*2 add, 2*2 shift; 5 mul (n)
//W3 = U2 + U1 + U0 ; W2 = V2 + V1 + V0
for (int32_t i = 0 ; i < T_TM3_3W_256 ; i++) {
W3[i] = U0[i] ^ U1[i] ^ U2[i];
W2[i] = V0[i] ^ V1[i] ^ V2[i];
}

//W1 = W2 * W3
karat_mult_64( W1, W2, W3);
//W0 =(U1 + U2*x)*x ; W4 =(V1 + V2*x)*x (SIZE = T_TM3_3W_256 !)
int64_t *U1_64 = ((int64_t *) U1);
int64_t *U2_64 = ((int64_t *) U2);

int64_t *V1_64 = ((int64_t *) V1);
int64_t *V2_64 = ((int64_t *) V2);

W0[0] = _mm256_set_epi64x(U1_64[2] ^ U2_64[1], U1_64[1] ^ U2_64[0], U1_64[0], 0);
W4[0] = _mm256_set_epi64x(V1_64[2] ^ V2_64[1], V1_64[1] ^ V2_64[0], V1_64[0], 0);

U1_64 = ((int64_t *) U1);
U2_64 = ((int64_t *) U2);

V1_64 = ((int64_t *) V1);
V2_64 = ((int64_t *) V2);

for (int32_t i = 1 ; i < T_TM3_3W_256 ; i++) {
int i4 = i << 2;
W0[i] = _mm256_lddqu_si256((__m256i const *)(& U1_64[i4 - 1]));
W0[i] ^= _mm256_lddqu_si256((__m256i const *)(& U2_64[i4 - 2]));

W4[i] = _mm256_lddqu_si256((__m256i const *)(& V1_64[i4 - 1]));
W4[i] ^= _mm256_lddqu_si256((__m256i const *)(& V2_64[i4 - 2]));
}

//W3 = W3 + W0 ; W2 = W2 + W4
for (int32_t i = 0 ; i < T_TM3_3W_256 ; i++) {
W3[i] ^= W0[i];
W2[i] ^= W4[i];
}

//W0 = W0 + U0 ; W4 = W4 + V0
for (int32_t i = 0 ; i < T_TM3_3W_256 ; i++) {
W0[i] ^= U0[i];
W4[i] ^= V0[i];
}

karat_mult_64(tmp, W3, W2);

for (int32_t i = 0 ; i < 2 * (T_TM3_3W_256) ; i++) {
W3[i] = tmp[i];
}

karat_mult_64( W2, W0, W4);

//W4 = U2 * V2 ; W0 = U0 * V0
karat_mult_64(W4, U2, V2);
karat_mult_64(W0, U0, V0);

// Interpolation phase
// 9 add, 1 shift, 1 Smul, 2 Sdiv (2n)
//W3 = W3 + W2
for (int32_t i = 0 ; i < 2 * (T_TM3_3W_256) ; i++) {
W3[i] ^= W2[i];
}

//W1 = W1 + W0
for (int32_t i = 0 ; i < 2 * (T_TM3_3W_256) ; i++) {
W1[i] ^= W0[i];
}

//W2 =(W2 + W0)/x -> x = X^64
U1_64 = ((int64_t *) W2);
U2_64 = ((int64_t *) W0);
for (int32_t i = 0 ; i < (T_TM3_3W_256 << 1) ; i++) {
int32_t i4 = i << 2;
W2[i] = _mm256_lddqu_si256((__m256i const *)(& U1_64[i4 + 1]));
W2[i] ^= _mm256_lddqu_si256((__m256i const *)(& U2_64[i4 + 1]));
}

//W2 =(W2 + W3 + W4*(x^3+1))/(x+1)
U1_64 = ((int64_t *) W4);
__m256i *U1_256 = (__m256i *) (U1_64 + 1);
tmp[0] = W2[0] ^ W3[0] ^ W4[0] ^ (__m256i) {
0x0ul, 0x0ul, 0x0ul, U1_64[0]
};

for (int32_t i = 1 ; i < (T_TM3_3W_256 << 1) - 1 ; i++) {
tmp[i] = W2[i] ^ W3[i] ^ W4[i] ^ _mm256_lddqu_si256(&U1_256[i - 1]);
}

divByXplus1(W2, tmp, T_TM3_3W_256);
W2[2 * (T_TM3_3W_256) - 1] = zero;

//W3 =(W3 + W1)/(x*(x+1))
U1_64 = (int64_t *) W3;
U1_256 = (__m256i *) (U1_64 + 1);

U2_64 = (int64_t *) W1;
__m256i *U2_256 = (__m256i *) (U2_64 + 1);

for (int32_t i = 0 ; i < 2 * (T_TM3_3W_256) - 1 ; i++) {
tmp[i] = _mm256_lddqu_si256(&U1_256[i]) ^ _mm256_lddqu_si256(&U2_256[i]);
}

divByXplus1(W3, tmp, T_TM3_3W_256);
W3[2 * (T_TM3_3W_256) - 1] = zero;

//W1 = W1 + W4 + W2
for (int32_t i = 0 ; i < 2 * (T_TM3_3W_256) ; i++) {
W1[i] ^= W2[i] ^ W4[i];
}

//W2 = W2 + W3
for (int32_t i = 0 ; i < 2 * (T_TM3_3W_256) ; i++) {
W2[i] ^= W3[i];
}

// Recomposition
//W = W0+ W1*x+ W2*x^2+ W3*x^3 + W4*x^4
//W0, W1, W4 of size 2*T_TM3_3W_256, W2 and W3 of size 2*(T_TM3_3W_256)
for (int32_t i = 0 ; i < (T_TM3_3W_256 << 1) - 1 ; i++) {
ro256[i] = W0[i];
ro256[i + 2 * T_TM3_3W_256 - 1] = W2[i];
ro256[i + 4 * T_TM3_3W_256 - 2] = W4[i];
}

ro256[(T_TM3_3W_256 << 1) - 1] = W0[(T_TM3_3W_256 << 1) - 1] ^ W2[0];
ro256[(T_TM3_3W_256 << 2) - 2] = W2[(T_TM3_3W_256 << 1) - 1] ^ W4[0];
ro256[(T_TM3_3W_256 * 6) - 3] = W4[(T_TM3_3W_256 << 1) - 1];

U1_64 = ((int64_t *) &ro256[T_TM3_3W_256]);
U1_256 = (__m256i *) (U1_64 - 2);

U2_64 = ((int64_t *) &ro256[3 * T_TM3_3W_256 - 1]);
U2_256 = (__m256i *) (U2_64 - 2);

for (int32_t i = 0 ; i < T_TM3_3W_256 << 1 ; i++) {
_mm256_storeu_si256(&U1_256[i], W1[i] ^ _mm256_lddqu_si256(&U1_256[i]));
_mm256_storeu_si256(&U2_256[i], W3[i] ^ _mm256_loadu_si256(&U2_256[i]));
}

for (int32_t i = 0 ; i < 6 * T_TM3_3W_256 - 2 ; i++) {
uint64_t *out64 = Out + (i << 2);
_mm256_storeu_si256((__m256i *)out64, ro256[i]);
}
}



/**
* @brief Multiply two polynomials modulo \f$ X^n - 1\f$.
*
* This functions multiplies a sparse polynomial <b>a1</b> (of Hamming weight equal to <b>weight</b>)
* and a dense polynomial <b>a2</b>. The multiplication is done modulo \f$ X^n - 1\f$.
*
* @param[out] o Pointer to the result
* @param[in] a1 Pointer to a polynomial
* @param[in] a2 Pointer to a polynomial
*/
void PQCLEAN_HQC192_AVX2_vect_mul(uint64_t *o, const uint64_t *a1, const uint64_t *a2) {
TOOM3Mult(a1_times_a2, a1, a2);
reduce(o, a1_times_a2);

// clear all
memset(a1_times_a2, 0, (VEC_N_SIZE_64 << 1) * sizeof(uint64_t));
}

+ 17
- 0
crypto_kem/hqc-192/avx2/gf2x.h View File

@@ -0,0 +1,17 @@
#ifndef GF2X_H
#define GF2X_H


/**
* @file gf2x.h
* @brief Header file for gf2x.c
*/

#include <stdint.h>

#include <stdint.h>

void PQCLEAN_HQC192_AVX2_vect_mul(uint64_t *o, const uint64_t *a1, const uint64_t *a2);


#endif

+ 138
- 0
crypto_kem/hqc-192/avx2/hqc.c View File

@@ -0,0 +1,138 @@
#include "code.h"
#include "gf2x.h"
#include "hqc.h"
#include "nistseedexpander.h"
#include "parameters.h"
#include "parsing.h"
#include "randombytes.h"
#include "vector.h"
#include <stdint.h>
/**
* @file hqc.c
* @brief Implementation of hqc.h
*/



/**
* @brief Keygen of the HQC_PKE IND_CPA scheme
*
* The public key is composed of the syndrome <b>s</b> as well as the <b>seed</b> used to generate the vector <b>h</b>.
*
* The secret key is composed of the <b>seed</b> used to generate vectors <b>x</b> and <b>y</b>.
* As a technicality, the public key is appended to the secret key in order to respect NIST API.
*
* @param[out] pk String containing the public key
* @param[out] sk String containing the secret key
*/
void PQCLEAN_HQC192_AVX2_hqc_pke_keygen(unsigned char *pk, unsigned char *sk) {
AES_XOF_struct sk_seedexpander;
AES_XOF_struct pk_seedexpander;
uint8_t sk_seed[SEED_BYTES] = {0};
uint8_t pk_seed[SEED_BYTES] = {0};
uint64_t x[VEC_N_256_SIZE_64] = {0};
uint64_t y[VEC_N_256_SIZE_64] = {0};
uint64_t h[VEC_N_256_SIZE_64] = {0};
uint64_t s[VEC_N_256_SIZE_64] = {0};

// Create seed_expanders for public key and secret key
randombytes(sk_seed, SEED_BYTES);
seedexpander_init(&sk_seedexpander, sk_seed, sk_seed + 32, SEEDEXPANDER_MAX_LENGTH);

randombytes(pk_seed, SEED_BYTES);
seedexpander_init(&pk_seedexpander, pk_seed, pk_seed + 32, SEEDEXPANDER_MAX_LENGTH);

// Compute secret key
PQCLEAN_HQC192_AVX2_vect_set_random_fixed_weight(&sk_seedexpander, x, PARAM_OMEGA);
PQCLEAN_HQC192_AVX2_vect_set_random_fixed_weight(&sk_seedexpander, y, PARAM_OMEGA);

// Compute public key
PQCLEAN_HQC192_AVX2_vect_set_random(&pk_seedexpander, h);
PQCLEAN_HQC192_AVX2_vect_mul(s, y, h);
PQCLEAN_HQC192_AVX2_vect_add(s, x, s, VEC_N_256_SIZE_64);

// Parse keys to string
PQCLEAN_HQC192_AVX2_hqc_public_key_to_string(pk, pk_seed, s);
PQCLEAN_HQC192_AVX2_hqc_secret_key_to_string(sk, sk_seed, pk);

}



/**
* @brief Encryption of the HQC_PKE IND_CPA scheme
*
* The cihertext is composed of vectors <b>u</b> and <b>v</b>.
*
* @param[out] u Vector u (first part of the ciphertext)
* @param[out] v Vector v (second part of the ciphertext)
* @param[in] m Vector representing the message to encrypt
* @param[in] theta Seed used to derive randomness required for encryption
* @param[in] pk String containing the public key
*/
void PQCLEAN_HQC192_AVX2_hqc_pke_encrypt(uint64_t *u, uint64_t *v, uint64_t *m, unsigned char *theta, const unsigned char *pk) {
AES_XOF_struct seedexpander;
uint64_t h[VEC_N_256_SIZE_64] = {0};
uint64_t s[VEC_N_256_SIZE_64] = {0};
uint64_t r1[VEC_N_256_SIZE_64] = {0};
uint64_t r2[VEC_N_256_SIZE_64] = {0};
uint64_t e[VEC_N_256_SIZE_64] = {0};
uint64_t tmp1[VEC_N_256_SIZE_64] = {0};
uint64_t tmp2[VEC_N_256_SIZE_64] = {0};

// Create seed_expander from theta
seedexpander_init(&seedexpander, theta, theta + 32, SEEDEXPANDER_MAX_LENGTH);

// Retrieve h and s from public key
PQCLEAN_HQC192_AVX2_hqc_public_key_from_string(h, s, pk);

// Generate r1, r2 and e
PQCLEAN_HQC192_AVX2_vect_set_random_fixed_weight(&seedexpander, r1, PARAM_OMEGA_R);
PQCLEAN_HQC192_AVX2_vect_set_random_fixed_weight(&seedexpander, r2, PARAM_OMEGA_R);
PQCLEAN_HQC192_AVX2_vect_set_random_fixed_weight(&seedexpander, e, PARAM_OMEGA_E);

// Compute u = r1 + r2.h
PQCLEAN_HQC192_AVX2_vect_mul(u, r2, h);
PQCLEAN_HQC192_AVX2_vect_add(u, r1, u, VEC_N_256_SIZE_64);

// Compute v = m.G by encoding the message
PQCLEAN_HQC192_AVX2_code_encode(v, m);
PQCLEAN_HQC192_AVX2_vect_resize(tmp1, PARAM_N, v, PARAM_N1N2);

// Compute v = m.G + s.r2 + e
PQCLEAN_HQC192_AVX2_vect_mul(tmp2, r2, s);
PQCLEAN_HQC192_AVX2_vect_add(tmp2, e, tmp2, VEC_N_256_SIZE_64);
PQCLEAN_HQC192_AVX2_vect_add(tmp2, tmp1, tmp2, VEC_N_256_SIZE_64);
PQCLEAN_HQC192_AVX2_vect_resize(v, PARAM_N1N2, tmp2, PARAM_N);

}



/**
* @brief Decryption of the HQC_PKE IND_CPA scheme
*
* @param[out] m Vector representing the decrypted message
* @param[in] u Vector u (first part of the ciphertext)
* @param[in] v Vector v (second part of the ciphertext)
* @param[in] sk String containing the secret key
*/
void PQCLEAN_HQC192_AVX2_hqc_pke_decrypt(uint64_t *m, const uint64_t *u, const uint64_t *v, const unsigned char *sk) {
uint64_t x[VEC_N_256_SIZE_64] = {0};
uint64_t y[VEC_N_256_SIZE_64] = {0};
uint8_t pk[PUBLIC_KEY_BYTES] = {0};
uint64_t tmp1[VEC_N_256_SIZE_64] = {0};
uint64_t tmp2[VEC_N_256_SIZE_64] = {0};

// Retrieve x, y, pk from secret key
PQCLEAN_HQC192_AVX2_hqc_secret_key_from_string(x, y, pk, sk);

// Compute v - u.y
PQCLEAN_HQC192_AVX2_vect_resize(tmp1, PARAM_N, v, PARAM_N1N2);
PQCLEAN_HQC192_AVX2_vect_mul(tmp2, y, u);
PQCLEAN_HQC192_AVX2_vect_add(tmp2, tmp1, tmp2, VEC_N_256_SIZE_64);


// Compute m by decoding v - u.y
PQCLEAN_HQC192_AVX2_code_decode(m, tmp2);
}

+ 21
- 0
crypto_kem/hqc-192/avx2/hqc.h View File

@@ -0,0 +1,21 @@
#ifndef HQC_H
#define HQC_H


/**
* @file hqc.h
* @brief Functions of the HQC_PKE IND_CPA scheme
*/

#include <stdint.h>

#include <stdint.h>

void PQCLEAN_HQC192_AVX2_hqc_pke_keygen(unsigned char *pk, unsigned char *sk);

void PQCLEAN_HQC192_AVX2_hqc_pke_encrypt(uint64_t *u, uint64_t *v, uint64_t *m, unsigned char *theta, const unsigned char *pk);

void PQCLEAN_HQC192_AVX2_hqc_pke_decrypt(uint64_t *m, const uint64_t *u, const uint64_t *v, const unsigned char *sk);


#endif

+ 138
- 0
crypto_kem/hqc-192/avx2/kem.c View File

@@ -0,0 +1,138 @@
#include "api.h"
#include "fips202.h"
#include "hqc.h"
#include "nistseedexpander.h"
#include "parameters.h"
#include "parsing.h"
#include "randombytes.h"
#include "sha2.h"
#include "vector.h"
#include <stdint.h>
#include <string.h>
/**
* @file kem.c
* @brief Implementation of api.h
*/



/**
* @brief Keygen of the HQC_KEM IND_CAA2 scheme
*
* The public key is composed of the syndrome <b>s</b> as well as the seed used to generate the vector <b>h</b>.
*
* The secret key is composed of the seed used to generate vectors <b>x</b> and <b>y</b>.
* As a technicality, the public key is appended to the secret key in order to respect NIST API.
*
* @param[out] pk String containing the public key
* @param[out] sk String containing the secret key
* @returns 0 if keygen is successful
*/
int PQCLEAN_HQC192_AVX2_crypto_kem_keypair(unsigned char *pk, unsigned char *sk) {

PQCLEAN_HQC192_AVX2_hqc_pke_keygen(pk, sk);
return 0;
}



/**
* @brief Encapsulation of the HQC_KEM IND_CAA2 scheme
*
* @param[out] ct String containing the ciphertext
* @param[out] ss String containing the shared secret
* @param[in] pk String containing the public key
* @returns 0 if encapsulation is successful
*/
int PQCLEAN_HQC192_AVX2_crypto_kem_enc(unsigned char *ct, unsigned char *ss, const unsigned char *pk) {

uint8_t theta[SHA512_BYTES] = {0};
uint64_t m[VEC_K_SIZE_64] = {0};
uint64_t u[VEC_N_256_SIZE_64] = {0};
uint64_t v[VEC_N1N2_256_SIZE_64] = {0};
unsigned char d[SHA512_BYTES] = {0};
unsigned char mc[VEC_K_SIZE_BYTES + VEC_N_SIZE_BYTES + VEC_N1N2_SIZE_BYTES] = {0};

// Computing m
PQCLEAN_HQC192_AVX2_vect_set_random_from_randombytes(m);

// Computing theta
sha3_512(theta, (uint8_t *) m, VEC_K_SIZE_BYTES);

// Encrypting m
PQCLEAN_HQC192_AVX2_hqc_pke_encrypt(u, v, m, theta, pk);

// Computing d
sha512(d, (unsigned char *) m, VEC_K_SIZE_BYTES);

// Computing shared secret
memcpy(mc, m, VEC_K_SIZE_BYTES);
memcpy(mc + VEC_K_SIZE_BYTES, u, VEC_N_SIZE_BYTES);
memcpy(mc + VEC_K_SIZE_BYTES + VEC_N_SIZE_BYTES, v, VEC_N1N2_SIZE_BYTES);
sha512(ss, mc, VEC_K_SIZE_BYTES + VEC_N_SIZE_BYTES + VEC_N1N2_SIZE_BYTES);

// Computing ciphertext
PQCLEAN_HQC192_AVX2_hqc_ciphertext_to_string(ct, u, v, d);


return 0;
}



/**
* @brief Decapsulation of the HQC_KEM IND_CAA2 scheme
*
* @param[out] ss String containing the shared secret
* @param[in] ct String containing the cipĥertext
* @param[in] sk String containing the secret key
* @returns 0 if decapsulation is successful, -1 otherwise
*/
int PQCLEAN_HQC192_AVX2_crypto_kem_dec(unsigned char *ss, const unsigned char *ct, const unsigned char *sk) {

int8_t result = -1;
uint64_t u[VEC_N_256_SIZE_64] = {0};
uint64_t v[VEC_N1N2_256_SIZE_64] = {0};
unsigned char d[SHA512_BYTES] = {0};
unsigned char pk[PUBLIC_KEY_BYTES] = {0};
uint64_t m[VEC_K_SIZE_64] = {0};
uint8_t theta[SHA512_BYTES] = {0};
uint64_t u2[VEC_N_256_SIZE_64] = {0};
uint64_t v2[VEC_N1N2_256_SIZE_64] = {0};
unsigned char d2[SHA512_BYTES] = {0};
unsigned char mc[VEC_K_SIZE_BYTES + VEC_N_SIZE_BYTES + VEC_N1N2_SIZE_BYTES] = {0};

// Retrieving u, v and d from ciphertext
PQCLEAN_HQC192_AVX2_hqc_ciphertext_from_string(u, v, d, ct);

// Retrieving pk from sk
memcpy(pk, sk + SEED_BYTES, PUBLIC_KEY_BYTES);

// Decryting
PQCLEAN_HQC192_AVX2_hqc_pke_decrypt(m, u, v, sk);

// Computing theta
sha3_512(theta, (uint8_t *) m, VEC_K_SIZE_BYTES);

// Encrypting m'
PQCLEAN_HQC192_AVX2_hqc_pke_encrypt(u2, v2, m, theta, pk);

// Computing d'
sha512(d2, (unsigned char *) m, VEC_K_SIZE_BYTES);

// Computing shared secret
memcpy(mc, m, VEC_K_SIZE_BYTES);
memcpy(mc + VEC_K_SIZE_BYTES, u, VEC_N_SIZE_BYTES);
memcpy(mc + VEC_K_SIZE_BYTES + VEC_N_SIZE_BYTES, v, VEC_N1N2_SIZE_BYTES);
sha512(ss, mc, VEC_K_SIZE_BYTES + VEC_N_SIZE_BYTES + VEC_N1N2_SIZE_BYTES);

// Abort if c != c' or d != d'
result = (PQCLEAN_HQC192_AVX2_vect_compare(u, u2, VEC_N_SIZE_BYTES) == 0 && PQCLEAN_HQC192_AVX2_vect_compare(v, v2, VEC_N1N2_SIZE_BYTES) == 0 && PQCLEAN_HQC192_AVX2_vect_compare((uint64_t *)d, (uint64_t *)d2, SHA512_BYTES) == 0);
for (size_t i = 0 ; i < SHARED_SECRET_BYTES ; i++) {
ss[i] = result * ss[i];
}
result--;


return result;
}

+ 127
- 0
crypto_kem/hqc-192/avx2/parameters.h View File

@@ -0,0 +1,127 @@
#ifndef HQC_PARAMETERS_H
#define HQC_PARAMETERS_H
/**
* @file parameters.h
* @brief Parameters of the HQC_KEM IND-CCA2 scheme
*/

#include "api.h"
#include "api.h"
#include "vector.h"


#define CEIL_DIVIDE(a, b) (((a)/(b)) + ((a) % (b) == 0 ? 0 : 1)) /*!< Divide a by b and ceil the result*/
#define BITMASK(a, size) ((1UL << ((a) % (size))) - 1) /*!< Create a mask*/

/*
#define PARAM_N Define the parameter n of the scheme
#define PARAM_N1 Define the parameter n1 of the scheme (length of BCH code)
#define PARAM_N2 Define the parameter n2 of the scheme (length of the repetition code)
#define PARAM_N1N2 Define the parameter n1 * n2 of the scheme (length of the tensor code)
#define PARAM_OMEGA Define the parameter omega of the scheme
#define PARAM_OMEGA_E Define the parameter omega_e of the scheme
#define PARAM_OMEGA_R Define the parameter omega_r of the scheme
#define PARAM_SECURITY Define the security level corresponding to the chosen parameters
#define PARAM_DFR_EXP Define the decryption failure rate corresponding to the chosen parameters

#define SECRET_KEY_BYTES Define the size of the secret key in bytes
#define PUBLIC_KEY_BYTES Define the size of the public key in bytes
#define SHARED_SECRET_BYTES Define the size of the shared secret in bytes
#define CIPHERTEXT_BYTES Define the size of the ciphertext in bytes

#define UTILS_REJECTION_THRESHOLD Define the rejection threshold used to generate given weight vectors (see vector_set_random_fixed_weight function)
#define VEC_N_SIZE_BYTES Define the size of the array used to store a PARAM_N sized vector in bytes
#define VEC_K_SIZE_BYTES Define the size of the array used to store a PARAM_K sized vector in bytes
#define VEC_N1_SIZE_BYTES Define the size of the array used to store a PARAM_N1 sized vector in bytes
#define VEC_N1N2_SIZE_BYTES Define the size of the array used to store a PARAM_N1N2 sized vector in bytes

#define VEC_N_SIZE_64 Define the size of the array used to store a PARAM_N sized vector in 64 bits
#define VEC_K_SIZE_64 Define the size of the array used to store a PARAM_K sized vector in 64 bits
#define VEC_N1_SIZE_64 Define the size of the array used to store a PARAM_N1 sized vector in 64 bits
#define VEC_N1N2_SIZE_64 Define the size of the array used to store a PARAM_N1N2 sized vector in 64 bits

#define VEC_N_256_SIZE_64 Define the size of the array of 64 bits elements used to store an array of size PARAM_N considered as elements of 256 bits
#define VEC_N1N2_256_SIZE_64 Define the size of the array of 64 bits elements used to store an array of size PARAM_N1N2 considered as elements of 256 bits

#define PARAM_T Define a threshold for decoding repetition code word (PARAM_T = (PARAM_N2 - 1) / 2)

#define PARAM_DELTA Define the parameter delta of the scheme (correcting capacity of the BCH code)
#define PARAM_M Define a positive integer
#define PARAM_GF_POLY Generator polynomial of galois field GF(2^PARAM_M), represented in hexadecimial form
#define PARAM_GF_MUL_ORDER Define the size of the multiplicative group of GF(2^PARAM_M), i.e 2^PARAM_M -1
#define PARAM_K Define the size of the information bits of the BCH code
#define PARAM_G Define the size of the generator polynomial of BCH code
#define PARAM_FFT The additive FFT takes a 2^PARAM_FFT polynomial as input
We use the FFT to compute the roots of sigma, whose degree if PARAM_DELTA=60
The smallest power of 2 greater than 60+1 is 64=2^6
#define PARAM_BCH_POLY Generator polynomial of the BCH code

#define RED_MASK A mask fot the higher bits of a vector
#define SHA512_BYTES Define the size of SHA512 output in bytes
#define SEED_BYTES Define the size of the seed in bytes
#define SEEDEXPANDER_MAX_LENGTH Define the seed expander max length
*/

#define PARAM_N 45197
#define PARAM_N1 766
#define PARAM_N2 59
#define PARAM_N1N2 45194
#define PARAM_OMEGA 101
#define PARAM_OMEGA_E 117
#define PARAM_OMEGA_R 117
#define PARAM_SECURITY 192
#define PARAM_DFR_EXP 192

#define SECRET_KEY_BYTES PQCLEAN_HQC192_AVX2_CRYPTO_SECRETKEYBYTES
#define PUBLIC_KEY_BYTES PQCLEAN_HQC192_AVX2_CRYPTO_PUBLICKEYBYTES
#define SHARED_SECRET_BYTES PQCLEAN_HQC192_AVX2_CRYPTO_BYTES
#define CIPHERTEXT_BYTES PQCLEAN_HQC192_AVX2_CRYPTO_CIPHERTEXTBYTES

#define UTILS_REJECTION_THRESHOLD 16768087
#define VEC_K_SIZE_BYTES CEIL_DIVIDE(PARAM_K, 8)
#define VEC_N_SIZE_BYTES CEIL_DIVIDE(PARAM_N, 8)
#define VEC_N1_SIZE_BYTES CEIL_DIVIDE(PARAM_N1, 8)
#define VEC_N1N2_SIZE_BYTES CEIL_DIVIDE(PARAM_N1N2, 8)

#define VEC_N_SIZE_64 CEIL_DIVIDE(PARAM_N, 64)
#define VEC_K_SIZE_64 CEIL_DIVIDE(PARAM_K, 64)
#define VEC_N1_SIZE_64 CEIL_DIVIDE(PARAM_N1, 64)
#define VEC_N1N2_SIZE_64 CEIL_DIVIDE(PARAM_N1N2, 64)

#define PARAM_N_MULT 48768
#define VEC_N_256_SIZE_64 (CEIL_DIVIDE(PARAM_N_MULT, 256) << 2)
#define VEC_N1N2_256_SIZE_64 (CEIL_DIVIDE(PARAM_N1N2, 256) << 2)

#define PARAM_T 29

#define PARAM_DELTA 57
#define PARAM_M 10
#define PARAM_GF_POLY 0x409
#define PARAM_GF_MUL_ORDER 1023
#define PARAM_K 256
#define PARAM_G 511
#define PARAM_FFT 6
#define PARAM_FFT_T 7
#define PARAM_BCH_POLY { \
1,1,0,0,0,0,1,0,0,1,1,0,1,1,0,1,0,1,1,0,0,1,0,0,1,1,1,1,1,1,0,0,1,1,0,1,1, \
1,1,0,1,1,1,1,0,1,0,0,0,1,0,0,1,1,1,0,1,1,0,1,0,1,1,1,0,1,0,1,0,0,1,0,0,0, \
0,1,1,1,1,0,1,1,1,1,1,0,0,0,0,1,0,0,1,0,0,1,1,1,0,0,0,1,1,0,0,1,0,1,0,0,0, \
1,0,0,0,0,1,0,0,0,1,0,1,1,0,0,0,0,1,1,0,0,1,1,0,1,0,1,0,1,0,1,1,1,1,0,1,0, \
0,1,1,0,1,0,1,1,0,0,1,1,0,1,1,1,1,1,0,1,0,1,1,1,0,1,0,0,0,1,1,0,1,1,1,1,0, \
1,1,1,1,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,1,1,1,1,0,0,1,1,0,1,0,0,0,0,1,0, \
0,1,0,0,1,0,1,0,0,1,1,0,1,0,1,1,1,1,1,0,1,1,0,1,0,1,1,1,1,1,1,0,0,0,1,0,1, \
1,1,1,1,1,0,1,0,1,0,1,1,0,0,0,1,1,0,0,1,1,0,1,1,1,1,1,1,1,0,0,0,1,1,1,1,0, \
1,0,0,0,1,0,0,1,1,0,1,1,0,0,1,0,1,1,0,1,0,1,0,1,1,0,0,0,0,0,1,1,1,1,1,1,1, \
1,1,1,0,1,1,0,1,0,1,1,1,1,1,1,1,0,1,1,0,1,1,0,0,0,1,0,0,1,1,1,1,1,0,1,0,1, \
0,0,0,0,1,0,1,1,1,1,0,1,0,0,0,0,0,1,0,0,1,0,1,1,1,1,1,0,0,0,0,0,0,1,1,1,1, \
1,0,1,0,0,1,0,0,1,1,0,1,0,0,0,0,0,0,0,0,1,1,0,0,0,1,1,1,0,0,1,1,0,0,0,1,1, \
0,1,0,0,1,0,0,0,1,0,1,0,1,0,0,0,1,1,1,1,1,0,0,0,1,0,0,1,1,0,1,1,0,0,1,0,1, \
1,0,1,1,1,0,0,0,0,1,1,0,1,1,1,0,1,0,0,0,0,1,0,0,0,1,0,0,1,1 \
};

#define RED_MASK 0x0000000000001fffUL
#define SHA512_BYTES 64
#define SEED_BYTES 40
#define SEEDEXPANDER_MAX_LENGTH 4294967295

#endif

+ 121
- 0
crypto_kem/hqc-192/avx2/parsing.c View File

@@ -0,0 +1,121 @@
#include "nistseedexpander.h"
#include "parameters.h"
#include "parsing.h"
#include "randombytes.h"
#include "vector.h"
#include <stdint.h>
#include <string.h>
/**
* @file parsing.c
* @brief Functions to parse secret key, public key and ciphertext of the HQC scheme
*/



/**
* @brief Parse a secret key into a string
*
* The secret key is composed of the seed used to generate vectors <b>x</b> and <b>y</b>.
* As technicality, the public key is appended to the secret key in order to respect NIST API.
*
* @param[out] sk String containing the secret key
* @param[in] sk_seed Seed used to generate the secret key
* @param[in] pk String containing the public key
*/
void PQCLEAN_HQC192_AVX2_hqc_secret_key_to_string(uint8_t *sk, const uint8_t *sk_seed, const uint8_t *pk) {
memcpy(sk, sk_seed, SEED_BYTES);
memcpy(sk + SEED_BYTES, pk, PUBLIC_KEY_BYTES);
}

/**
* @brief Parse a secret key from a string
*
* The secret key is composed of the seed used to generate vectors <b>x</b> and <b>y</b>.
* As technicality, the public key is appended to the secret key in order to respect NIST API.
*
* @param[out] x uint64_t representation of vector x
* @param[out] y uint64_t representation of vector y
* @param[out] pk String containing the public key
* @param[in] sk String containing the secret key
*/
void PQCLEAN_HQC192_AVX2_hqc_secret_key_from_string(uint64_t *x, uint64_t *y, uint8_t *pk, const uint8_t *sk) {
AES_XOF_struct sk_seedexpander;
uint8_t sk_seed[SEED_BYTES] = {0};

memcpy(sk_seed, sk, SEED_BYTES);
seedexpander_init(&sk_seedexpander, sk_seed, sk_seed + 32, SEEDEXPANDER_MAX_LENGTH);

PQCLEAN_HQC192_AVX2_vect_set_random_fixed_weight(&sk_seedexpander, x, PARAM_OMEGA);
PQCLEAN_HQC192_AVX2_vect_set_random_fixed_weight(&sk_seedexpander, y, PARAM_OMEGA);
memcpy(pk, sk + SEED_BYTES, PUBLIC_KEY_BYTES);
}

/**
* @brief Parse a public key into a string
*
* The public key is composed of the syndrome <b>s</b> as well as the seed used to generate the vector <b>h</b>
*
* @param[out] pk String containing the public key
* @param[in] pk_seed Seed used to generate the public key
* @param[in] s uint8_t representation of vector s
*/
void PQCLEAN_HQC192_AVX2_hqc_public_key_to_string(uint8_t *pk, const uint8_t *pk_seed, const uint64_t *s) {
memcpy(pk, pk_seed, SEED_BYTES);
memcpy(pk + SEED_BYTES, s, VEC_N_SIZE_BYTES);
}



/**
* @brief Parse a public key from a string
*
* The public key is composed of the syndrome <b>s</b> as well as the seed used to generate the vector <b>h</b>
*
* @param[out] h uint8_t representation of vector h
* @param[out] s uint8_t representation of vector s
* @param[in] pk String containing the public key
*/
void PQCLEAN_HQC192_AVX2_hqc_public_key_from_string(uint64_t *h, uint64_t *s, const uint8_t *pk) {
AES_XOF_struct pk_seedexpander;
uint8_t pk_seed[SEED_BYTES] = {0};

memcpy(pk_seed, pk, SEED_BYTES);
seedexpander_init(&pk_seedexpander, pk_seed, pk_seed + 32, SEEDEXPANDER_MAX_LENGTH);
PQCLEAN_HQC192_AVX2_vect_set_random(&pk_seedexpander, h);

memcpy(s, pk + SEED_BYTES, VEC_N_SIZE_BYTES);
}


/**
* @brief Parse a ciphertext into a string
*
* The ciphertext is composed of vectors <b>u</b>, <b>v</b> and hash <b>d</b>.
*
* @param[out] ct String containing the ciphertext
* @param[in] u uint8_t representation of vector u
* @param[in] v uint8_t representation of vector v
* @param[in] d String containing the hash d
*/
void PQCLEAN_HQC192_AVX2_hqc_ciphertext_to_string(uint8_t *ct, const uint64_t *u, const uint64_t *v, const uint8_t *d) {
memcpy(ct, u, VEC_N_SIZE_BYTES);
memcpy(ct + VEC_N_SIZE_BYTES, v, VEC_N1N2_SIZE_BYTES);
memcpy(ct + VEC_N_SIZE_BYTES + VEC_N1N2_SIZE_BYTES, d, SHA512_BYTES);
}


/**
* @brief Parse a ciphertext from a string
*
* The ciphertext is composed of vectors <b>u</b>, <b>v</b> and hash <b>d</b>.
*
* @param[out] u uint8_t representation of vector u
* @param[out] v uint8_t representation of vector v
* @param[out] d String containing the hash d
* @param[in] ct String containing the ciphertext
*/
void PQCLEAN_HQC192_AVX2_hqc_ciphertext_from_string(uint64_t *u, uint64_t *v, uint8_t *d, const uint8_t *ct) {
memcpy(u, ct, VEC_N_SIZE_BYTES);
memcpy(v, ct + VEC_N_SIZE_BYTES, VEC_N1N2_SIZE_BYTES);
memcpy(d, ct + VEC_N_SIZE_BYTES + VEC_N1N2_SIZE_BYTES, SHA512_BYTES);
}

+ 29
- 0
crypto_kem/hqc-192/avx2/parsing.h View File

@@ -0,0 +1,29 @@
#ifndef PARSING_H
#define PARSING_H


/**
* @file parsing.h
* @brief Header file for parsing.c
*/

#include <stdint.h>

#include <stdint.h>

void PQCLEAN_HQC192_AVX2_hqc_secret_key_to_string(uint8_t *sk, const uint8_t *sk_seed, const uint8_t *pk);

void PQCLEAN_HQC192_AVX2_hqc_secret_key_from_string(uint64_t *x, uint64_t *y, uint8_t *pk, const uint8_t *sk);


void PQCLEAN_HQC192_AVX2_hqc_public_key_to_string(uint8_t *pk, const uint8_t *pk_seed, const uint64_t *s);

void PQCLEAN_HQC192_AVX2_hqc_public_key_from_string(uint64_t *h, uint64_t *s, const uint8_t *pk);


void PQCLEAN_HQC192_AVX2_hqc_ciphertext_to_string(uint8_t *ct, const uint64_t *u, const uint64_t *v, const uint8_t *d);

void PQCLEAN_HQC192_AVX2_hqc_ciphertext_from_string(uint64_t *u, uint64_t *v, uint8_t *d, const uint8_t *ct);


#endif

+ 41
- 0
crypto_kem/hqc-192/avx2/repetition.c View File

@@ -0,0 +1,41 @@
#include "parameters.h"
#include "repetition.h"
#include <immintrin.h>
#include <stddef.h>
#include <stdint.h>
#include <stdio.h>
/**
* @file repetition.c
* @brief Implementation of repetition codes
*/


#define MASK_N2 ((1UL << PARAM_N2) - 1)

/**
* @brief Decoding the code words to a message using the repetition code
*
* We use a majority decoding. In fact we have that PARAM_N2 = 2 * PARAM_T + 1, thus,
* if the Hamming weight of the vector is greater than PARAM_T, the code word is decoded
* to 1 and 0 otherwise.
*
* @param[out] m Pointer to an array that is the message
* @param[in] em Pointer to an array that is the code word
*/
void PQCLEAN_HQC192_AVX2_repetition_code_decode(uint64_t *m, const uint64_t *em) {
size_t t = 0, b, bn, bi, c, cn, ci;
uint64_t cx, ones;

for (b = 0 ; b < PARAM_N1N2 - PARAM_N2 + 1 ; b += PARAM_N2) {
bn = b >> 6;
bi = b & 63;
c = b + PARAM_N2 - 1;
cn = c >> 6;
ci = c & 63;
cx = em[cn] << (63 - ci);
int64_t verif = (cn == (bn + 1));
ones = _mm_popcnt_u64(((em[bn] >> bi) & MASK_N2) | (cx * verif));
m[t >> 6] |= ((uint64_t)(ones > PARAM_T)) << (t & 63);
t++;
}
}

+ 17
- 0
crypto_kem/hqc-192/avx2/repetition.h View File

@@ -0,0 +1,17 @@
#ifndef REPETITION_H
#define REPETITION_H


/**
* @file repetition.h
* @brief Header file for repetition.c
*/

#include <stdint.h>

#include <stdint.h>

void PQCLEAN_HQC192_AVX2_repetition_code_decode(uint64_t *m, const uint64_t *em);


#endif

+ 200
- 0
crypto_kem/hqc-192/avx2/vector.c View File

@@ -0,0 +1,200 @@
#include "nistseedexpander.h"
#include "parameters.h"
#include "randombytes.h"
#include "vector.h"
#include <immintrin.h>
#include <stdint.h>
#include <string.h>
/**
* @file vector.c
* @brief Implementation of vectors sampling and some utilities for the HQC scheme
*/



/**
* @brief Generates a vector of a given Hamming weight
*
* This function generates uniformly at random a binary vector of a Hamming weight equal to the parameter <b>weight</b>.
* To generate the vector we have to sample uniformly at random values in the interval [0, PARAM_N -1]. Suppose the PARAM_N is equal to \f$ 70853 \f$, to select a position \f$ r\f$ the function works as follow:
* 1. It makes a call to the seedexpander function to obtain a random number \f$ x\f$ in \f$ [0, 2^{24}[ \f$.
* 2. Let \f$ t = \lfloor {2^{24} \over 70853} \rfloor \times 70853\f$
* 3. If \f$ x \geq t\f$, go to 1
* 4. It return \f$ r = x \mod 70853\f$
*
* The parameter \f$ t \f$ is precomputed and it's denoted by UTILS_REJECTION_THRESHOLD (see the file parameters.h).
*
* @param[in] v Pointer to an array
* @param[in] weight Integer that is the Hamming weight
* @param[in] ctx Pointer to the context of the seed expander
*/
void PQCLEAN_HQC192_AVX2_vect_set_random_fixed_weight(AES_XOF_struct *ctx, uint64_t *v, uint16_t weight) {
size_t random_bytes_size = 3 * weight;
uint8_t rand_bytes[3 * PARAM_OMEGA_R] = {0};
uint32_t random_data = 0;
uint32_t tmp[PARAM_OMEGA_R] = {0};
uint8_t exist = 0;
size_t j = 0;
__m256i bit256[PARAM_OMEGA_R];
__m256i bloc256[PARAM_OMEGA_R];
static __m256i posCmp256 = (__m256i) {
0UL, 1UL, 2UL, 3UL
};
#define LOOP_SIZE CEIL_DIVIDE(PARAM_N, 256)

seedexpander(ctx, rand_bytes, random_bytes_size);

for (uint32_t i = 0 ; i < weight ; ++i) {
exist = 0;
do {
if (j == random_bytes_size) {
seedexpander(ctx, rand_bytes, random_bytes_size);
j = 0;
}

random_data = ((uint32_t) rand_bytes[j++]) << 16;
random_data |= ((uint32_t) rand_bytes[j++]) << 8;
random_data |= rand_bytes[j++];

} while (random_data >= UTILS_REJECTION_THRESHOLD);

random_data = random_data % PARAM_N;

for (uint32_t k = 0 ; k < i ; k++) {
if (tmp[k] == random_data) {
exist = 1;
}
}

if (exist == 1) {
i--;
} else {
tmp[i] = random_data;
}
}

for (uint32_t i = 0 ; i < weight ; i++) {
// we store the bloc number and bit position of each vb[i]
uint64_t bloc = tmp[i] >> 6;
bloc256[i] = _mm256_set1_epi64x(bloc >> 2);
uint64_t pos = (bloc & 0x3UL);
__m256i pos256 = _mm256_set1_epi64x(pos);
__m256i mask256 = _mm256_cmpeq_epi64(pos256, posCmp256);
uint64_t bit64 = 1ULL << (tmp[i] & 0x3f);
__m256i bloc256 = _mm256_set1_epi64x(bit64);
bit256[i] = bloc256 & mask256;
}

for (uint32_t i = 0 ; i < LOOP_SIZE ; i++) {
__m256i aux = _mm256_loadu_si256(((__m256i *)v) + i);
__m256i i256 = _mm256_set1_epi64x(i);

for (uint32_t j = 0 ; j < weight ; j++) {
__m256i mask256 = _mm256_cmpeq_epi64(bloc256[j], i256);
aux ^= bit256[j] & mask256;
}
_mm256_storeu_si256(((__m256i *)v) + i, aux);
}

#undef LOOP_SIZE
}



/**
* @brief Generates a random vector of dimension <b>PARAM_N</b>
*
* This function generates a random binary vector of dimension <b>PARAM_N</b>. It generates a random
* array of bytes using the seedexpander function, and drop the extra bits using a mask.
*
* @param[in] v Pointer to an array
* @param[in] ctx Pointer to the context of the seed expander
*/
void PQCLEAN_HQC192_AVX2_vect_set_random(AES_XOF_struct *ctx, uint64_t *v) {
uint8_t rand_bytes[VEC_N_SIZE_BYTES] = {0};

seedexpander(ctx, rand_bytes, VEC_N_SIZE_BYTES);

memcpy(v, rand_bytes, VEC_N_SIZE_BYTES);
v[VEC_N_SIZE_64 - 1] &= BITMASK(PARAM_N, 64);
}



/**
* @brief Generates a random vector
*
* This function generates a random binary vector. It uses the the randombytes function.
*
* @param[in] v Pointer to an array
*/
void PQCLEAN_HQC192_AVX2_vect_set_random_from_randombytes(uint64_t *v) {
uint8_t rand_bytes [VEC_K_SIZE_BYTES] = {0};

randombytes(rand_bytes, VEC_K_SIZE_BYTES);
memcpy(v, rand_bytes, VEC_K_SIZE_BYTES);
}



/**
* @brief Adds two vectors
*
* @param[out] o Pointer to an array that is the result
* @param[in] v1 Pointer to an array that is the first vector
* @param[in] v2 Pointer to an array that is the second vector
* @param[in] size Integer that is the size of the vectors
*/
void PQCLEAN_HQC192_AVX2_vect_add(uint64_t *o, const uint64_t *v1, const uint64_t *v2, uint32_t size) {
for (uint32_t i = 0 ; i < size ; ++i) {
o[i] = v1[i] ^ v2[i];
}
}



/**
* @brief Compares two vectors
*
* @param[in] v1 Pointer to an array that is first vector
* @param[in] v2 Pointer to an array that is second vector
* @param[in] size Integer that is the size of the vectors
* @returns 0 if the vectors are equals and a negative/psotive value otherwise
*/
int PQCLEAN_HQC192_AVX2_vect_compare(const uint64_t *v1, const uint64_t *v2, uint32_t size) {
unsigned char diff = 0;

for (uint32_t i = 0 ; i < size ; i++) {
diff |= ((uint8_t *) v1)[i] ^ ((uint8_t *) v2)[i];
}
return diff != 0;
}



/**
* @brief Resize a vector so that it contains <b>size_o</b> bits
*
* @param[out] o Pointer to the output vector
* @param[in] size_o Integer that is the size of the output vector in bits
* @param[in] v Pointer to the input vector
* @param[in] size_v Integer that is the size of the input vector in bits
*/
void PQCLEAN_HQC192_AVX2_vect_resize(uint64_t *o, uint32_t size_o, const uint64_t *v, uint32_t size_v) {
if (size_o < size_v) {
uint64_t mask = 0x7FFFFFFFFFFFFFFF;
int8_t val = 0;

if (size_o % 64) {
val = 64 - (size_o % 64);
}

memcpy(o, v, VEC_N1N2_SIZE_BYTES);

for (int8_t i = 0 ; i < val ; ++i) {
o[VEC_N1N2_SIZE_64 - 1] &= (mask >> i);
}
} else {
memcpy(o, v, CEIL_DIVIDE(size_v, 8));
}
}

+ 29
- 0
crypto_kem/hqc-192/avx2/vector.h View File

@@ -0,0 +1,29 @@
#ifndef VECTOR_H
#define VECTOR_H


/**
* @file vector.h
* @brief Header file for vector.c
*/

#include "nistseedexpander.h"
#include "nistseedexpander.h"
#include "randombytes.h"
#include <stdint.h>

void PQCLEAN_HQC192_AVX2_vect_set_random_fixed_weight(AES_XOF_struct *ctx, uint64_t *v, uint16_t weight);

void PQCLEAN_HQC192_AVX2_vect_set_random(AES_XOF_struct *ctx, uint64_t *v);

void PQCLEAN_HQC192_AVX2_vect_set_random_from_randombytes(uint64_t *v);


void PQCLEAN_HQC192_AVX2_vect_add(uint64_t *o, const uint64_t *v1, const uint64_t *v2, uint32_t size);

int PQCLEAN_HQC192_AVX2_vect_compare(const uint64_t *v1, const uint64_t *v2, uint32_t size);

void PQCLEAN_HQC192_AVX2_vect_resize(uint64_t *o, uint32_t size_o, const uint64_t *v, uint32_t size_v);


#endif

+ 1
- 0
crypto_kem/hqc-192/clean/LICENSE View File

@@ -0,0 +1 @@
Public Domain

+ 19
- 0
crypto_kem/hqc-192/clean/Makefile View File

@@ -0,0 +1,19 @@
# This Makefile can be used with GNU Make or BSD Make

LIB=libhqc-192_clean.a
HEADERS=api.h bch.h code.h fft.h gf2x.h gf.h hqc.h parameters.h parsing.h repetition.h vector.h
OBJECTS=bch.o code.o fft.o gf2x.o gf.o hqc.o kem.o parsing.o repetition.o vector.o

CFLAGS=-O3 -Wall -Wextra -Wpedantic -Wvla -Werror -Wredundant-decls -Wmissing-prototypes -std=c99 -I../../../common $(EXTRAFLAGS)

all: $(LIB)

%.o: %.c $(HEADERS)
$(CC) $(CFLAGS) -c -o $@ $<

$(LIB): $(OBJECTS)
$(AR) -r $@ $(OBJECTS)

clean:
$(RM) $(OBJECTS)
$(RM) $(LIB)

+ 19
- 0
crypto_kem/hqc-192/clean/Makefile.Microsoft_nmake View File

@@ -0,0 +1,19 @@
# This Makefile can be used with Microsoft Visual Studio's nmake using the command:
# nmake /f Makefile.Microsoft_nmake

LIBRARY=libhqc-192_clean.lib
OBJECTS=bch.obj code.obj fft.obj gf2x.obj gf.obj hqc.obj kem.obj parsing.obj repetition.obj vector.obj

CFLAGS=/nologo /O2 /I ..\..\..\common /W4 /WX

all: $(LIBRARY)

# Make sure objects are recompiled if headers change.
$(OBJECTS): *.h

$(LIBRARY): $(OBJECTS)
LIB.EXE /NOLOGO /WX /OUT:$@ $**

clean:
-DEL $(OBJECTS)
-DEL $(LIBRARY)

+ 25
- 0
crypto_kem/hqc-192/clean/api.h View File

@@ -0,0 +1,25 @@
#ifndef PQCLEAN_HQC192_CLEAN_API_H
#define PQCLEAN_HQC192_CLEAN_API_H
/**
* @file api.h
* @brief NIST KEM API used by the HQC_KEM IND-CCA2 scheme
*/

#define PQCLEAN_HQC192_CLEAN_CRYPTO_ALGNAME "HQC-192"

#define PQCLEAN_HQC192_CLEAN_CRYPTO_SECRETKEYBYTES 5730
#define PQCLEAN_HQC192_CLEAN_CRYPTO_PUBLICKEYBYTES 5690
#define PQCLEAN_HQC192_CLEAN_CRYPTO_BYTES 64
#define PQCLEAN_HQC192_CLEAN_CRYPTO_CIPHERTEXTBYTES 11364

// As a technicality, the public key is appended to the secret key in order to respect the NIST API.
// Without this constraint, PQCLEAN_HQC192_CLEAN_CRYPTO_SECRETKEYBYTES would be defined as 32

int PQCLEAN_HQC192_CLEAN_crypto_kem_keypair(unsigned char *pk, unsigned char *sk);

int PQCLEAN_HQC192_CLEAN_crypto_kem_enc(unsigned char *ct, unsigned char *ss, const unsigned char *pk);

int PQCLEAN_HQC192_CLEAN_crypto_kem_dec(unsigned char *ss, const unsigned char *ct, const unsigned char *sk);


#endif

+ 383
- 0
crypto_kem/hqc-192/clean/bch.c View File

@@ -0,0 +1,383 @@
#include "bch.h"
#include "fft.h"
#include "gf.h"
#include "parameters.h"
#include "vector.h"
#include <stdint.h>
#include <string.h>
/**
* @file bch.c
* Constant time implementation of BCH codes
*/


static uint16_t mod(uint16_t i, uint16_t modulus);
static void compute_cyclotomic_cosets(uint16_t *cosets, uint16_t upper_bound);
static void unpack_message(uint8_t *message_unpacked, const uint64_t *message);
static void lfsr_encode(uint8_t *codeword, const uint8_t *message);
static void pack_codeword(uint64_t *codeword, const uint8_t *codeword_unpacked);
static size_t compute_elp(uint16_t *sigma, const uint16_t *syndromes);
static void message_from_codeword(uint64_t *message, const uint64_t *codeword);
static void compute_syndromes(uint16_t *syndromes, const uint64_t *vector);
static void compute_roots(uint64_t *error, const uint16_t *sigma);

/**
* @brief Returns i modulo the given modulus.
*
* i must be less than 2*modulus.
* Therefore, the return value is either i or i-modulus.
* @returns i mod (modulus)
* @param[in] i The integer whose modulo is taken
* @param[in] modulus The modulus
*/
static uint16_t mod(uint16_t i, uint16_t modulus) {
uint16_t tmp = i - modulus;

// mask = 0xffff if(i < PARAM_GF_MUL_ORDER)
int16_t mask = -(tmp >> 15);

return tmp + (mask & modulus);
}



/**
* @brief Computes the odd binary cyclotomic cosets modulo 2^m-1 for integers less than upper_bound.
*
* The array cosets of size 2^m-1 is filled by placing at index i the coset representative of i.
* @param[out] cosets Array receiving the coset representatives
* @param[in] upper_bound The upper bound
*/
static void compute_cyclotomic_cosets(uint16_t *cosets, uint16_t upper_bound) {
// Compute the odd cyclotomic classes
for (uint16_t i = 1 ; i < upper_bound ; i += 2) {
if (cosets[i] == 0) { // If i does not already belong to a class
uint16_t tmp = i;
size_t j = PARAM_M;
cosets[i] = i;
while (--j) { // Complete i's class
tmp = mod(2 * tmp, PARAM_GF_MUL_ORDER);
cosets[tmp] = i;
}
}
}
}



/**
* @brief Computes the generator polynomial of the primitive BCH code with given parameters.
*
* Code length is 2^m-1. <br>
* Parameter t is the targeted correction capacity of the code
* and receives the real correction capacity (which is at least equal to the target). <br>
* exp and log are arrays giving antilog and log of GF(2^m) elements.
* @returns the degree of the generator polynomial
* @param[out] bch_poly Array of size (m*t + 1) receiving the coefficients of the generator polynomial
* @param[in,out] t Targeted correction capacity; receives the real correction capacity
* @param[in] exp Antilog table of GF(2^m)
* @param[in] log Log table of GF(2^m)
*/
size_t PQCLEAN_HQC192_CLEAN_compute_bch_poly(uint16_t *bch_poly, size_t *t, const uint16_t *exp, const uint16_t *log) {
uint16_t cosets[PARAM_GF_MUL_ORDER];
size_t deg_bch_poly = 0;

memset(cosets, 0, 2 * PARAM_GF_MUL_ORDER);
compute_cyclotomic_cosets(cosets, 2 * *t);

// Start with bch_poly(X) = 1
bch_poly[0] = 1;

for (uint16_t i = 1 ; i < PARAM_GF_MUL_ORDER ; ++i) {
if (cosets[i] == 0) {
continue;
}

// Multiply bch_poly(X) by X-a^i
for (size_t j = deg_bch_poly ; j ; --j) {
int16_t mask = -((uint16_t) - bch_poly[j] >> 15);
bch_poly[j] = (mask & exp[mod(log[bch_poly[j]] + i, PARAM_GF_MUL_ORDER)]) ^ bch_poly[j - 1];
}
bch_poly[0] = exp[mod(log[bch_poly[0]] + i, PARAM_GF_MUL_ORDER)];
bch_poly[++deg_bch_poly] = 1;
}

// Determine the real correction capacity
while (cosets[2 * *t + 1] != 0) {
++*t;
}

return deg_bch_poly;
}



/**
* @brief Unpacks the message message to the array message_unpacked where each byte stores a bit of the message
*
* @param[out] message_unpacked Array of VEC_K_SIZE_BYTES bytes receiving the unpacked message
* @param[in] message Array of PARAM_K bytes storing the packed message
*/
static void unpack_message(uint8_t *message_unpacked, const uint64_t *message) {
for (size_t i = 0 ; i < (VEC_K_SIZE_64 - (PARAM_K % 64 != 0)) ; ++i) {
for (size_t j = 0 ; j < 64 ; ++j) {
message_unpacked[j + 64 * i] = (message[i] >> j) & 0x0000000000000001;
}
}

for (int8_t j = 0 ; j < PARAM_K % 64 ; ++j) {
message_unpacked[j + 64 * (VEC_K_SIZE_64 - 1)] = (message[VEC_K_SIZE_64 - 1] >> j) & 0x0000000000000001;
}
}


/**
* @brief Encodes the message message to a codeword codeword using the generator polynomial bch_poly of the code
*
* @param[out] codeword Array of PARAM_N1 bytes receiving the codeword
* @param[in] message Array of PARAM_K bytes storing the message to encode
*/
static void lfsr_encode(uint8_t *codeword, const uint8_t *message) {
uint8_t gate_value = 0;
uint8_t bch_poly[PARAM_G] = PARAM_BCH_POLY;

// Compute the Parity-check digits
for (int16_t i = PARAM_K - 1 ; i >= 0 ; --i) {
gate_value = message[i] ^ codeword[PARAM_N1 - PARAM_K - 1];

for (size_t j = PARAM_N1 - PARAM_K - 1 ; j ; --j) {
codeword[j] = codeword[j - 1] ^ (-gate_value & bch_poly[j]);
}

codeword[0] = gate_value;
}

// Add the message
memcpy(codeword + PARAM_N1 - PARAM_K, message, PARAM_K);
}



/**
* @brief Packs the codeword from an array codeword_unpacked where each byte stores a bit to a compact array codeword
*
* @param[out] codeword Array of VEC_N1_SIZE_BYTES bytes receiving the packed codeword
* @param[in] codeword_unpacked Array of PARAM_N1 bytes storing the unpacked codeword
*/
static void pack_codeword(uint64_t *codeword, const uint8_t *codeword_unpacked) {
for (size_t i = 0 ; i < (VEC_N1_SIZE_64 - (PARAM_N1 % 64 != 0)) ; ++i) {
for (size_t j = 0 ; j < 64 ; ++j) {
codeword[i] |= ((uint64_t) codeword_unpacked[j + 64 * i]) << j;
}
}

for (size_t j = 0 ; j < PARAM_N1 % 64 ; ++j) {
codeword[VEC_N1_SIZE_64 - 1] |= ((uint64_t) codeword_unpacked[j + 64 * (VEC_N1_SIZE_64 - 1)]) << j;
}
}


/**
* @brief Encodes a message message of PARAM_K bits to a BCH codeword codeword of PARAM_N1 bits
*
* Following @cite lin1983error (Chapter 4 - Cyclic Codes),
* We perform a systematic encoding using a linear (PARAM_N1 - PARAM_K)-stage shift register
* with feedback connections based on the generator polynomial bch_poly of the BCH code.
*
* @param[out] codeword Array of size VEC_N1_SIZE_BYTES receiving the encoded message
* @param[in] message Array of size VEC_K_SIZE_BYTES storing the message
*/
void PQCLEAN_HQC192_CLEAN_bch_code_encode(uint64_t *codeword, const uint64_t *message) {
uint8_t message_unpacked[PARAM_K];
uint8_t codeword_unpacked[PARAM_N1] = {0};

unpack_message(message_unpacked, message);
lfsr_encode(codeword_unpacked, message_unpacked);
pack_codeword(codeword, codeword_unpacked);
}


/**
* @brief Computes the error locator polynomial (ELP) sigma
*
* This is a constant time implementation of Berlekamp's simplified algorithm (see @cite joiner1995decoding). <br>
* We use the letter p for rho which is initialized at -1/2. <br>
* The array X_sigma_p represents the polynomial X^(2(mu-rho))*sigma_p(X). <br>
* Instead of maintaining a list of sigmas, we update in place both sigma and X_sigma_p. <br>
* sigma_copy serves as a temporary save of sigma in case X_sigma_p needs to be updated. <br>
* We can properly correct only if the degree of sigma does not exceed PARAM_DELTA.
* This means only the first PARAM_DELTA + 1 coefficients of sigma are of value
* and we only need to save its first PARAM_DELTA - 1 coefficients.
*
* @returns the degree of the ELP sigma
* @param[out] sigma Array of size (at least) PARAM_DELTA receiving the ELP
* @param[in] syndromes Array of size (at least) 2*PARAM_DELTA storing the syndromes
*/
static size_t compute_elp(uint16_t *sigma, const uint16_t *syndromes) {
sigma[0] = 1;
size_t deg_sigma = 0;
size_t deg_sigma_p = 0;
uint16_t sigma_copy[PARAM_DELTA - 1] = {0};
size_t deg_sigma_copy = 0;
uint16_t X_sigma_p[PARAM_DELTA + 1] = {0, 1};
int32_t pp = -1; // 2*rho
uint16_t d_p = 1;
uint16_t d = syndromes[0];

for (size_t mu = 0 ; mu < PARAM_DELTA ; ++mu) {
// Save sigma in case we need it to update X_sigma_p
memcpy(sigma_copy, sigma, 2 * (PARAM_DELTA - 1));
deg_sigma_copy = deg_sigma;

uint16_t dd = PQCLEAN_HQC192_CLEAN_gf_mul(d, PQCLEAN_HQC192_CLEAN_gf_inverse(d_p)); // 0 if(d == 0)
for (size_t i = 1 ; (i <= 2 * mu + 1) && (i <= PARAM_DELTA) ; ++i) {
sigma[i] ^= PQCLEAN_HQC192_CLEAN_gf_mul(dd, X_sigma_p[i]);
}

size_t deg_X = 2 * mu - pp; // 2*(mu-rho)
size_t deg_X_sigma_p = deg_X + deg_sigma_p;

// mask1 = 0xffff if(d != 0) and 0 otherwise
int16_t mask1 = -((uint16_t) - d >> 15);

// mask2 = 0xffff if(deg_X_sigma_p > deg_sigma) and 0 otherwise
int16_t mask2 = -((uint16_t) (deg_sigma - deg_X_sigma_p) >> 15);

// mask12 = 0xffff if the deg_sigma increased and 0 otherwise
int16_t mask12 = mask1 & mask2;
deg_sigma = (mask12 & deg_X_sigma_p) ^ (~mask12 & deg_sigma);

if (mu == PARAM_DELTA - 1) {
break;
}

// Update pp, d_p and X_sigma_p if needed
pp = (mask12 & (2 * mu)) ^ (~mask12 & pp);
d_p = (mask12 & d) ^ (~mask12 & d_p);
for (size_t i = PARAM_DELTA - 1 ; i ; --i) {
X_sigma_p[i + 1] = (mask12 & sigma_copy[i - 1]) ^ (~mask12 & X_sigma_p[i - 1]);
}
X_sigma_p[1] = 0;
X_sigma_p[0] = 0;
deg_sigma_p = (mask12 & deg_sigma_copy) ^ (~mask12 & deg_sigma_p);

// Compute the next discrepancy
d = syndromes[2 * mu + 2];
for (size_t i = 1 ; (i <= 2 * mu + 1) && (i <= PARAM_DELTA) ; ++i) {
d ^= PQCLEAN_HQC192_CLEAN_gf_mul(sigma[i], syndromes[2 * mu + 2 - i]);
}
}

return deg_sigma;
}



/**
* @brief Retrieves the message message from the codeword codeword
*
* Since we performed a systematic encoding, the message is the last PARAM_K bits of the codeword.
*
* @param[out] message Array of size VEC_K_SIZE_BYTES receiving the message
* @param[in] codeword Array of size VEC_N1_SIZE_BYTES storing the codeword
*/
static void message_from_codeword(uint64_t *message, const uint64_t *codeword) {
int32_t val = PARAM_N1 - PARAM_K;

uint64_t mask1 = (uint64_t) (0xffffffffffffffff << val % 64);
uint64_t mask2 = (uint64_t) (0xffffffffffffffff >> (64 - val % 64));
size_t index = val / 64;

for (size_t i = 0 ; i < VEC_K_SIZE_64 - 1 ; ++i) {
uint64_t message1 = (codeword[index] & mask1) >> val % 64;
uint64_t message2 = (codeword[++index] & mask2) << (64 - val % 64);
message[i] = message1 | message2;
}

// Last byte (8-val % 8 is the number of bits given by message1)
if ((PARAM_K % 64 == 0) || (64 - val % 64 < PARAM_K % 64)) {
uint64_t message1 = (codeword[index] & mask1) >> val % 64;
uint64_t message2 = (codeword[++index] & mask2) << (64 - val % 64);
message[VEC_K_SIZE_64 - 1] = message1 | message2;
} else {
uint64_t message1 = (codeword[index] & mask1) >> val % 64;
message[VEC_K_SIZE_64 - 1] = message1;
}
}


/**
* @brief Computes the 2^PARAM_DELTA syndromes from the received vector vector
*
* Syndromes are the sum of powers of alpha weighted by vector's coefficients.
* To do so, we use the additive FFT transpose, which takes as input a family w of GF(2^PARAM_M) elements
* and outputs the weighted power sums of these w. <br>
* Therefore, this requires twisting and applying a permutation before feeding vector to the PQCLEAN_HQC192_CLEAN_fft transpose. <br>
* For more details see Berstein, Chou and Schawbe's explanations:
* https://binary.cr.yp.to/mcbits-20130616.pdf
*
* @param[out] syndromes Array of size 2^(PARAM_FFT_T) receiving the 2*PARAM_DELTA syndromes
* @param[in] vector Array of size VEC_N1_SIZE_BYTES storing the received word
*/
static void compute_syndromes(uint16_t *syndromes, const uint64_t *vector) {
uint16_t w[1 << PARAM_M];

PQCLEAN_HQC192_CLEAN_fft_t_preprocess_bch_codeword(w, vector);
PQCLEAN_HQC192_CLEAN_fft_t(syndromes, w, 2 * PARAM_DELTA);
}


/**
* @brief Computes the error polynomial error from the error locator polynomial sigma
*
* See function PQCLEAN_HQC192_CLEAN_fft for more details.
*
* @param[out] error Array of VEC_N1_SIZE_BYTES elements receiving the error polynomial
* @param[in] sigma Array of 2^PARAM_FFT elements storing the error locator polynomial
*/
static void compute_roots(uint64_t *error, const uint16_t *sigma) {
uint16_t w[1 << PARAM_M] = {0}; // w will receive the evaluation of sigma in all field elements

PQCLEAN_HQC192_CLEAN_fft(w, sigma, PARAM_DELTA + 1);
PQCLEAN_HQC192_CLEAN_fft_retrieve_bch_error_poly(error, w);
}



/**
* @brief Decodes the received word
*
* This function relies on four steps:
* <ol>
* <li> The first step, done by additive FFT transpose, is the computation of the 2*PARAM_DELTA syndromes.
* <li> The second step is the computation of the error-locator polynomial sigma.
* <li> The third step, done by additive FFT, is finding the error-locator numbers by calculating the roots of the polynomial sigma and takings their inverses.
* <li> The fourth step is the correction of the errors in the received polynomial.
* </ol>
* For a more complete picture on BCH decoding, see Shu. Lin and Daniel J. Costello in Error Control Coding: Fundamentals and Applications @cite lin1983error
*
* @param[out] message Array of size VEC_K_SIZE_BYTES receiving the decoded message
* @param[in] vector Array of size VEC_N1_SIZE_BYTES storing the received word
*/
void PQCLEAN_HQC192_CLEAN_bch_code_decode(uint64_t *message, uint64_t *vector) {
uint16_t syndromes[1 << PARAM_FFT_T] = {0};
uint16_t sigma[1 << PARAM_FFT] = {0};
uint64_t error[(1 << PARAM_M) / 8] = {0};

// Calculate the 2*PARAM_DELTA syndromes
compute_syndromes(syndromes, vector);

// Compute the error locator polynomial sigma
// Sigma's degree is at most PARAM_DELTA but the FFT requires the extra room
compute_elp(sigma, syndromes);

// Compute the error polynomial error
compute_roots(error, sigma);

// Add the error polynomial to the received polynomial
PQCLEAN_HQC192_CLEAN_vect_add(vector, vector, error, VEC_N1_SIZE_64);

// Retrieve the message from the decoded codeword
message_from_codeword(message, vector);

}

+ 23
- 0
crypto_kem/hqc-192/clean/bch.h View File

@@ -0,0 +1,23 @@
#ifndef BCH_H
#define BCH_H


/**
* @file bch.h
* Header file of bch.c
*/

#include "parameters.h"
#include "parameters.h"
#include <stddef.h>
#include <stdint.h>

void PQCLEAN_HQC192_CLEAN_bch_code_encode(uint64_t *codeword, const uint64_t *message);

void PQCLEAN_HQC192_CLEAN_bch_code_decode(uint64_t *message, uint64_t *vector);


size_t PQCLEAN_HQC192_CLEAN_compute_bch_poly(uint16_t *bch_poly, size_t *t, const uint16_t *exp, const uint16_t *log);


#endif

+ 49
- 0
crypto_kem/hqc-192/clean/code.c View File

@@ -0,0 +1,49 @@
#include "bch.h"
#include "code.h"
#include "parameters.h"
#include "repetition.h"
#include <stdint.h>
#include <string.h>
/**
* @file code.c
* @brief Implementation of tensor code
*/



/**
*
* @brief Encoding the message m to a code word em using the tensor code
*
* First we encode the message using the BCH code, then with the repetition code to obtain
* a tensor code word.
*
* @param[out] em Pointer to an array that is the tensor code word
* @param[in] m Pointer to an array that is the message
*/
void PQCLEAN_HQC192_CLEAN_code_encode(uint64_t *em, const uint64_t *m) {

uint64_t tmp[VEC_N1_SIZE_64] = {0};

PQCLEAN_HQC192_CLEAN_bch_code_encode(tmp, m);
PQCLEAN_HQC192_CLEAN_repetition_code_encode(em, tmp);

}



/**
* @brief Decoding the code word em to a message m using the tensor code
*
* @param[out] m Pointer to an array that is the message
* @param[in] em Pointer to an array that is the code word
*/
void PQCLEAN_HQC192_CLEAN_code_decode(uint64_t *m, const uint64_t *em) {

uint64_t tmp[VEC_N1_SIZE_64] = {0};

PQCLEAN_HQC192_CLEAN_repetition_code_decode(tmp, em);
PQCLEAN_HQC192_CLEAN_bch_code_decode(m, tmp);


}

+ 20
- 0
crypto_kem/hqc-192/clean/code.h View File

@@ -0,0 +1,20 @@
#ifndef CODE_H
#define CODE_H


/**
* @file code.h
* Header file of code.c
*/

#include "parameters.h"
#include "parameters.h"
#include <stddef.h>
#include <stdint.h>

void PQCLEAN_HQC192_CLEAN_code_encode(uint64_t *em, const uint64_t *message);

void PQCLEAN_HQC192_CLEAN_code_decode(uint64_t *m, const uint64_t *em);


#endif

+ 627
- 0
crypto_kem/hqc-192/clean/fft.c View File

@@ -0,0 +1,627 @@
#include "fft.h"
#include "gf.h"
#include "parameters.h"
#include <stdint.h>
#include <stdio.h>
#include <string.h>
/**
* @file fft.c
* Implementation of the additive FFT and its transpose.
* This implementation is based on the paper from Gao and Mateer: <br>
* Shuhong Gao and Todd Mateer, Additive Fast Fourier Transforms over Finite Fields,
* IEEE Transactions on Information Theory 56 (2010), 6265--6272.
* http://www.math.clemson.edu/~sgao/papers/GM10.pdf <br>
* and includes improvements proposed by Bernstein, Chou and Schwabe here:
* https://binary.cr.yp.to/mcbits-20130616.pdf
*/


static void compute_fft_betas(uint16_t *betas);
static void compute_subset_sums(uint16_t *subset_sums, const uint16_t *set, size_t set_size);
static void radix_t(uint16_t *f, const uint16_t *f0, const uint16_t *f1, uint32_t m_f);
static void fft_t_rec(uint16_t *f, const uint16_t *w, size_t f_coeffs, uint8_t m, uint32_t m_f, const uint16_t *betas);
static void radix(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f);
static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32_t m_f, const uint16_t *betas);


/**
* @brief Computes the basis of betas (omitting 1) used in the additive FFT and its transpose
*
* @param[out] betas Array of size PARAM_M-1
*/
static void compute_fft_betas(uint16_t *betas) {
for (size_t i = 0 ; i < PARAM_M - 1 ; ++i) {
betas[i] = 1 << (PARAM_M - 1 - i);
}
}



/**
* @brief Computes the subset sums of the given set
*
* The array subset_sums is such that its ith element is
* the subset sum of the set elements given by the binary form of i.
*
* @param[out] subset_sums Array of size 2^set_size receiving the subset sums
* @param[in] set Array of set_size elements
* @param[in] set_size Size of the array set
*/
static void compute_subset_sums(uint16_t *subset_sums, const uint16_t *set, size_t set_size) {
subset_sums[0] = 0;

for (size_t i = 0 ; i < set_size ; ++i) {
for (size_t j = 0 ; j < (1U << i) ; ++j) {
subset_sums[(1 << i) + j] = set[i] ^ subset_sums[j];
}
}
}



/**
* @brief Transpose of the linear radix conversion
*
* This is a direct transposition of the radix function
* implemented following the process of transposing a linear function as exposed by Bernstein, Chou and Schwabe here:
* https://binary.cr.yp.to/mcbits-20130616.pdf
*
* @param[out] f Array of size a power of 2
* @param[in] f0 Array half the size of f
* @param[in] f1 Array half the size of f
* @param[in] m_f 2^{m_f} is the smallest power of 2 greater or equal to the number of coefficients of f
*/
static void radix_t(uint16_t *f, const uint16_t *f0, const uint16_t *f1, uint32_t m_f) {
switch (m_f) {
case 4:
f[0] = f0[0];
f[1] = f1[0];
f[2] = f0[1] ^ f1[0];
f[3] = f[2] ^ f1[1];
f[4] = f[2] ^ f0[2];
f[5] = f[3] ^ f1[2];
f[6] = f[4] ^ f0[3] ^ f1[2];
f[7] = f[3] ^ f0[3] ^ f1[3];
f[8] = f[4] ^ f0[4];
f[9] = f[5] ^ f1[4];
f[10] = f[6] ^ f0[5] ^ f1[4];
f[11] = f[7] ^ f0[5] ^ f1[4] ^ f1[5];
f[12] = f[8] ^ f0[5] ^ f0[6] ^ f1[4];
f[13] = f[7] ^ f[9] ^ f[11] ^ f1[6];
f[14] = f[6] ^ f0[6] ^ f0[7] ^ f1[6];
f[15] = f[7] ^ f0[7] ^ f1[7];
return;

case 3:
f[0] = f0[0];
f[1] = f1[0];
f[2] = f0[1] ^ f1[0];
f[3] = f[2] ^ f1[1];
f[4] = f[2] ^ f0[2];
f[5] = f[3] ^ f1[2];
f[6] = f[4] ^ f0[3] ^ f1[2];
f[7] = f[3] ^ f0[3] ^ f1[3];
return;

case 2:
f[0] = f0[0];
f[1] = f1[0];
f[2] = f0[1] ^ f1[0];
f[3] = f[2] ^ f1[1];
return;

case 1:
f[0] = f0[0];
f[1] = f1[0];
return;

default:
;

size_t n = 1 << (m_f - 2);

uint16_t Q0[1 << (PARAM_FFT_T - 2)];
uint16_t Q1[1 << (PARAM_FFT_T - 2)];
uint16_t R0[1 << (PARAM_FFT_T - 2)];
uint16_t R1[1 << (PARAM_FFT_T - 2)];

uint16_t Q[1 << 2 * (PARAM_FFT_T - 2)];
uint16_t R[1 << 2 * (PARAM_FFT_T - 2)];

memcpy(Q0, f0 + n, 2 * n);
memcpy(Q1, f1 + n, 2 * n);
memcpy(R0, f0, 2 * n);
memcpy(R1, f1, 2 * n);

radix_t (Q, Q0, Q1, m_f - 1);
radix_t (R, R0, R1, m_f - 1);

memcpy(f, R, 4 * n);
memcpy(f + 2 * n, R + n, 2 * n);
memcpy(f + 3 * n, Q + n, 2 * n);

for (size_t i = 0 ; i < n ; ++i) {
f[2 * n + i] ^= Q[i];
f[3 * n + i] ^= f[2 * n + i];
}
}
}



/**
* @brief Recursively computes syndromes of family w
*
* This function is a subroutine of the function fft_t
*
* @param[out] f Array receiving the syndromes
* @param[in] w Array storing the family
* @param[in] f_coeffs Length of syndromes vector
* @param[in] m 2^m is the smallest power of 2 greater or equal to the length of family w
* @param[in] m_f 2^{m_f} is the smallest power of 2 greater or equal to the length of f
* @param[in] betas FFT constants
*/
static void fft_t_rec(uint16_t *f, const uint16_t *w, size_t f_coeffs, uint8_t m, uint32_t m_f, const uint16_t *betas) {
size_t k = 1 << (m - 1);
uint16_t gammas[PARAM_M - 2];
uint16_t deltas[PARAM_M - 2];
uint16_t gammas_sums[1 << (PARAM_M - 1)];
uint16_t u[1 << (PARAM_M - 2)] = {0};
uint16_t f0[1 << (PARAM_FFT_T - 2)] = {0};
uint16_t f1[1 << (PARAM_FFT_T - 2)] = {0};

// Step 1
if (m_f == 1) {
f[0] = 0;
for (size_t i = 0 ; i < (1U << m) ; ++i) {
f[0] ^= w[i];
}
f[1] = 0;

uint16_t betas_sums[1 << (PARAM_M - 1)];
betas_sums[0] = 0;
for (size_t j = 0 ; j < m ; ++j) {
for (size_t k = 0 ; k < (1U << j) ; ++k) {
size_t index = (1 << j) + k;
betas_sums[index] = betas_sums[k] ^ betas[j];
f[1] ^= PQCLEAN_HQC192_CLEAN_gf_mul(betas_sums[index], w[index]);
}
}

return;
}

// Compute gammas and deltas
for (uint8_t i = 0 ; i < m - 1 ; ++i) {
gammas[i] = PQCLEAN_HQC192_CLEAN_gf_mul(betas[i], PQCLEAN_HQC192_CLEAN_gf_inverse(betas[m - 1]));
deltas[i] = PQCLEAN_HQC192_CLEAN_gf_square(gammas[i]) ^ gammas[i];
}

// Compute gammas subset sums
compute_subset_sums(gammas_sums, gammas, m - 1);

/* Step 6: Compute u and v from w (aka w)
* w[i] = u[i] + G[i].v[i]
* w[k+i] = w[i] + v[i] = u[i] + (G[i]+1).v[i]
* Transpose:
* u[i] = w[i] + w[k+i]
* v[i] = G[i].w[i] + (G[i]+1).w[k+i] = G[i].u[i] + w[k+i] */
if (f_coeffs <= 3) { // 3-coefficient polynomial f case
// Step 5: Compute f0 from u and f1 from v
f1[1] = 0;
u[0] = w[0] ^ w[k];
f1[0] = w[k];
for (size_t i = 1 ; i < k ; ++i) {
u[i] = w[i] ^ w[k + i];
f1[0] ^= PQCLEAN_HQC192_CLEAN_gf_mul(gammas_sums[i], u[i]) ^ w[k + i];
}
fft_t_rec(f0, u, (f_coeffs + 1) / 2, m - 1, m_f - 1, deltas);
} else {
uint16_t v[1 << (PARAM_M - 2)] = {0};

u[0] = w[0] ^ w[k];
v[0] = w[k];

for (size_t i = 1 ; i < k ; ++i) {
u[i] = w[i] ^ w[k + i];
v[i] = PQCLEAN_HQC192_CLEAN_gf_mul(gammas_sums[i], u[i]) ^ w[k + i];
}

// Step 5: Compute f0 from u and f1 from v
fft_t_rec(f0, u, (f_coeffs + 1) / 2, m - 1, m_f - 1, deltas);
fft_t_rec(f1, v, f_coeffs / 2, m - 1, m_f - 1, deltas);
}

// Step 3: Compute g from g0 and g1
radix_t(f, f0, f1, m_f);

// Step 2: compute f from g
if (betas[m - 1] != 1) {
uint16_t beta_m_pow = 1;
for (size_t i = 1 ; i < (1U << m_f) ; ++i) {
beta_m_pow = PQCLEAN_HQC192_CLEAN_gf_mul(beta_m_pow, betas[m - 1]);
f[i] = PQCLEAN_HQC192_CLEAN_gf_mul(beta_m_pow, f[i]);
}
}
}



/**
* @brief Computes the syndromes f of the family w
*
* Since the syndromes linear map is the transpose of multipoint evaluation,
* it uses exactly the same constants, either hardcoded or precomputed by compute_fft_lut(...). <br>
* This follows directives from Bernstein, Chou and Schwabe given here:
* https://binary.cr.yp.to/mcbits-20130616.pdf
*
* @param[out] f Array of size 2*(PARAM_FFT_T) elements receiving the syndromes
* @param[in] w Array of PARAM_GF_MUL_ORDER+1 elements
* @param[in] f_coeffs Length of syndromes vector f
*/
void PQCLEAN_HQC192_CLEAN_fft_t(uint16_t *f, const uint16_t *w, size_t f_coeffs) {
// Transposed from Gao and Mateer algorithm
uint16_t betas[PARAM_M - 1];
uint16_t betas_sums[1 << (PARAM_M - 1)];
size_t k = 1 << (PARAM_M - 1);
uint16_t u[1 << (PARAM_M - 1)] = {0};
uint16_t v[1 << (PARAM_M - 1)] = {0};
uint16_t deltas[PARAM_M - 1];
uint16_t f0[1 << (PARAM_FFT_T - 1)];
uint16_t f1[1 << (PARAM_FFT_T - 1)];

compute_fft_betas(betas);
compute_subset_sums(betas_sums, betas, PARAM_M - 1);

/* Step 6: Compute u and v from w (aka w)
*
* We had:
* w[i] = u[i] + G[i].v[i]
* w[k+i] = w[i] + v[i] = u[i] + (G[i]+1).v[i]
* Transpose:
* u[i] = w[i] + w[k+i]
* v[i] = G[i].w[i] + (G[i]+1).w[k+i] = G[i].u[i] + w[k+i] */
u[0] = w[0] ^ w[k];
v[0] = w[k];
for (size_t i = 1 ; i < k ; ++i) {
u[i] = w[i] ^ w[k + i];
v[i] = PQCLEAN_HQC192_CLEAN_gf_mul(betas_sums[i], u[i]) ^ w[k + i];
}

// Compute deltas
for (size_t i = 0 ; i < PARAM_M - 1 ; ++i) {
deltas[i] = PQCLEAN_HQC192_CLEAN_gf_square(betas[i]) ^ betas[i];
}

// Step 5: Compute f0 from u and f1 from v
fft_t_rec(f0, u, (f_coeffs + 1) / 2, PARAM_M - 1, PARAM_FFT_T - 1, deltas);
fft_t_rec(f1, v, f_coeffs / 2, PARAM_M - 1, PARAM_FFT_T - 1, deltas);

// Step 3: Compute g from g0 and g1
radix_t(f, f0, f1, PARAM_FFT_T);

// Step 2: beta_m = 1 so f = g
}



/**
* @brief Computes the radix conversion of a polynomial f in GF(2^m)[x]
*
* Computes f0 and f1 such that f(x) = f0(x^2-x) + x.f1(x^2-x)
* as proposed by Bernstein, Chou and Schwabe:
* https://binary.cr.yp.to/mcbits-20130616.pdf
*
* @param[out] f0 Array half the size of f
* @param[out] f1 Array half the size of f
* @param[in] f Array of size a power of 2
* @param[in] m_f 2^{m_f} is the smallest power of 2 greater or equal to the number of coefficients of f
*/
static void radix(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f) {
switch (m_f) {
case 4:
f0[4] = f[8] ^ f[12];
f0[6] = f[12] ^ f[14];
f0[7] = f[14] ^ f[15];
f1[5] = f[11] ^ f[13];
f1[6] = f[13] ^ f[14];
f1[7] = f[15];
f0[5] = f[10] ^ f[12] ^ f1[5];
f1[4] = f[9] ^ f[13] ^ f0[5];

f0[0] = f[0];
f1[3] = f[7] ^ f[11] ^ f[15];
f0[3] = f[6] ^ f[10] ^ f[14] ^ f1[3];
f0[2] = f[4] ^ f0[4] ^ f0[3] ^ f1[3];
f1[1] = f[3] ^ f[5] ^ f[9] ^ f[13] ^ f1[3];
f1[2] = f[3] ^ f1[1] ^ f0[3];
f0[1] = f[2] ^ f0[2] ^ f1[1];
f1[0] = f[1] ^ f0[1];
return;

case 3:
f0[0] = f[0];
f0[2] = f[4] ^ f[6];
f0[3] = f[6] ^ f[7];
f1[1] = f[3] ^ f[5] ^ f[7];
f1[2] = f[5] ^ f[6];
f1[3] = f[7];
f0[1] = f[2] ^ f0[2] ^ f1[1];
f1[0] = f[1] ^ f0[1];
return;

case 2:
f0[0] = f[0];
f0[1] = f[2] ^ f[3];
f1[0] = f[1] ^ f0[1];
f1[1] = f[3];
return;

case 1:
f0[0] = f[0];
f1[0] = f[1];
return;

default:
;
size_t n = 1 << (m_f - 2);

uint16_t Q[2 * (1 << (PARAM_FFT - 2))];
uint16_t R[2 * (1 << (PARAM_FFT - 2))];

uint16_t Q0[1 << (PARAM_FFT - 2)];
uint16_t Q1[1 << (PARAM_FFT - 2)];
uint16_t R0[1 << (PARAM_FFT - 2)];
uint16_t R1[1 << (PARAM_FFT - 2)];

memcpy(Q, f + 3 * n, 2 * n);
memcpy(Q + n, f + 3 * n, 2 * n);
memcpy(R, f, 4 * n);

for (size_t i = 0 ; i < n ; ++i) {
Q[i] ^= f[2 * n + i];
R[n + i] ^= Q[i];
}

radix(Q0, Q1, Q, m_f - 1);
radix(R0, R1, R, m_f - 1);

memcpy(f0, R0, 2 * n);
memcpy(f0 + n, Q0, 2 * n);
memcpy(f1, R1, 2 * n);
memcpy(f1 + n, Q1, 2 * n);
}
}



/**
* @brief Evaluates f at all subset sums of a given set
*
* This function is a subroutine of the function fft.
*
* @param[out] w Array
* @param[in] f Array
* @param[in] f_coeffs Number of coefficients of f
* @param[in] m Number of betas
* @param[in] m_f Number of coefficients of f (one more than its degree)
* @param[in] betas FFT constants
*/
static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32_t m_f, const uint16_t *betas) {
uint16_t f0[1 << (PARAM_FFT - 2)];
uint16_t f1[1 << (PARAM_FFT - 2)];
uint16_t gammas[PARAM_M - 2];
uint16_t deltas[PARAM_M - 2];
size_t k = 1 << (m - 1);
uint16_t gammas_sums[1 << (PARAM_M - 2)];
uint16_t u[1 << (PARAM_M - 2)] = {0};
uint16_t v[1 << (PARAM_M - 2)] = {0};

// Step 1
if (m_f == 1) {
uint16_t tmp[PARAM_M - (PARAM_FFT - 1)];
for (size_t i = 0 ; i < m ; ++i) {
tmp[i] = PQCLEAN_HQC192_CLEAN_gf_mul(betas[i], f[1]);
}

w[0] = f[0];
for (size_t j = 0 ; j < m ; ++j) {
for (size_t k = 0 ; k < (1U << j) ; ++k) {
w[(1 << j) + k] = w[k] ^ tmp[j];
}
}

return;
}

// Step 2: compute g
if (betas[m - 1] != 1) {
uint16_t beta_m_pow = 1;
for (size_t i = 1 ; i < (1U << m_f) ; ++i) {
beta_m_pow = PQCLEAN_HQC192_CLEAN_gf_mul(beta_m_pow, betas[m - 1]);
f[i] = PQCLEAN_HQC192_CLEAN_gf_mul(beta_m_pow, f[i]);
}
}

// Step 3
radix(f0, f1, f, m_f);

// Step 4: compute gammas and deltas
for (uint8_t i = 0 ; i < m - 1 ; ++i) {
gammas[i] = PQCLEAN_HQC192_CLEAN_gf_mul(betas[i], PQCLEAN_HQC192_CLEAN_gf_inverse(betas[m - 1]));
deltas[i] = PQCLEAN_HQC192_CLEAN_gf_square(gammas[i]) ^ gammas[i];
}

// Compute gammas sums
compute_subset_sums(gammas_sums, gammas, m - 1);

// Step 5
fft_rec(u, f0, (f_coeffs + 1) / 2, m - 1, m_f - 1, deltas);

if (f_coeffs <= 3) { // 3-coefficient polynomial f case: f1 is constant
w[0] = u[0];
w[k] = u[0] ^ f1[0];
for (size_t i = 1 ; i < k ; ++i) {
w[i] = u[i] ^ PQCLEAN_HQC192_CLEAN_gf_mul(gammas_sums[i], f1[0]);
w[k + i] = w[i] ^ f1[0];
}
} else {
fft_rec(v, f1, f_coeffs / 2, m - 1, m_f - 1, deltas);

// Step 6
memcpy(w + k, v, 2 * k);
w[0] = u[0];
w[k] ^= u[0];
for (size_t i = 1 ; i < k ; ++i) {
w[i] = u[i] ^ PQCLEAN_HQC192_CLEAN_gf_mul(gammas_sums[i], v[i]);
w[k + i] ^= w[i];
}
}
}



/**
* @brief Evaluates f on all fields elements using an additive FFT algorithm
*
* f_coeffs is the number of coefficients of f (one less than its degree). <br>
* The FFT proceeds recursively to evaluate f at all subset sums of a basis B. <br>
* This implementation is based on the paper from Gao and Mateer: <br>
* Shuhong Gao and Todd Mateer, Additive Fast Fourier Transforms over Finite Fields,
* IEEE Transactions on Information Theory 56 (2010), 6265--6272.
* http://www.math.clemson.edu/~sgao/papers/GM10.pdf <br>
* and includes improvements proposed by Bernstein, Chou and Schwabe here:
* https://binary.cr.yp.to/mcbits-20130616.pdf <br>
* Note that on this first call (as opposed to the recursive calls to fft_rec), gammas are equal to betas,
* meaning the first gammas subset sums are actually the subset sums of betas (except 1). <br>
* Also note that f is altered during computation (twisted at each level).
*
* @param[out] w Array
* @param[in] f Array of 2^PARAM_FFT elements
* @param[in] f_coeffs Number coefficients of f (i.e. deg(f)+1)
*/
void PQCLEAN_HQC192_CLEAN_fft(uint16_t *w, const uint16_t *f, size_t f_coeffs) {
uint16_t betas[PARAM_M - 1];
uint16_t betas_sums[1 << (PARAM_M - 1)];
uint16_t f0[1 << (PARAM_FFT - 1)];
uint16_t f1[1 << (PARAM_FFT - 1)];
uint16_t deltas[PARAM_M - 1];
size_t k = 1 << (PARAM_M - 1);
uint16_t u[1 << (PARAM_M - 1)];
uint16_t v[1 << (PARAM_M - 1)];

// Follows Gao and Mateer algorithm
compute_fft_betas(betas);

// Step 1: PARAM_FFT > 1, nothing to do

// Compute gammas sums
compute_subset_sums(betas_sums, betas, PARAM_M - 1);

// Step 2: beta_m = 1, nothing to do

// Step 3
radix(f0, f1, f, PARAM_FFT);

// Step 4: Compute deltas
for (size_t i = 0 ; i < PARAM_M - 1 ; ++i) {
deltas[i] = PQCLEAN_HQC192_CLEAN_gf_square(betas[i]) ^ betas[i];
}

// Step 5
fft_rec(u, f0, (f_coeffs + 1) / 2, PARAM_M - 1, PARAM_FFT - 1, deltas);
fft_rec(v, f1, f_coeffs / 2, PARAM_M - 1, PARAM_FFT - 1, deltas);

// Step 6, 7 and error polynomial computation
memcpy(w + k, v, 2 * k);

// Check if 0 is root
w[0] = u[0];

// Check if 1 is root
w[k] ^= u[0];

// Find other roots
for (size_t i = 1 ; i < k ; ++i) {
w[i] = u[i] ^ PQCLEAN_HQC192_CLEAN_gf_mul(betas_sums[i], v[i]);
w[k + i] ^= w[i];
}
}



/**
* @brief Arranges the received word vector in a form w such that applying the additive FFT transpose to w yields the BCH syndromes of the received word vector.
*
* Since the received word vector gives coefficients of the primitive element alpha, we twist accordingly. <br>
* Furthermore, the additive FFT transpose needs elements indexed by their decomposition on the chosen basis,
* so we apply the adequate permutation.
*
* @param[out] w Array of size 2^PARAM_M
* @param[in] vector Array of size VEC_N1_SIZE_BYTES
*/
void PQCLEAN_HQC192_CLEAN_fft_t_preprocess_bch_codeword(uint16_t *w, const uint64_t *vector) {
uint16_t r[1 << PARAM_M];
uint16_t gammas[PARAM_M - 1];
uint16_t gammas_sums[1 << (PARAM_M - 1)];
size_t k = 1 << (PARAM_M - 1);

// Unpack the received word vector into array r
size_t i;
for (i = 0 ; i < VEC_N1_SIZE_64 - (PARAM_N1 % 64 != 0) ; ++i) {
for (size_t j = 0 ; j < 64 ; ++j) {
r[64 * i + j] = (uint8_t) ((vector[i] >> j) & 1);
}
}

// Last byte
for (size_t j = 0 ; j < PARAM_N1 % 64 ; ++j) {
r[64 * i + j] = (uint8_t) ((vector[i] >> j) & 1);
}

// Complete r with zeros
memset(r + PARAM_N1, 0, 2 * ((1 << PARAM_M) - PARAM_N1));

compute_fft_betas(gammas);
compute_subset_sums(gammas_sums, gammas, PARAM_M - 1);

// Twist and permute r adequately to obtain w
w[0] = 0;
w[k] = -r[0] & 1;
for (size_t i = 1 ; i < k ; ++i) {
w[i] = -r[PQCLEAN_HQC192_CLEAN_gf_log(gammas_sums[i])] & gammas_sums[i];
w[k + i] = -r[PQCLEAN_HQC192_CLEAN_gf_log(gammas_sums[i] ^ 1)] & (gammas_sums[i] ^ 1);
}
}



/**
* @brief Retrieves the error polynomial error from the evaluations w of the ELP (Error Locator Polynomial) on all field elements.
*
* @param[out] error Array of size VEC_N1_SIZE_BYTES
* @param[in] w Array of size 2^PARAM_M
*/
void PQCLEAN_HQC192_CLEAN_fft_retrieve_bch_error_poly(uint64_t *error, const uint16_t *w) {
uint16_t gammas[PARAM_M - 1];
uint16_t gammas_sums[1 << (PARAM_M - 1)];
size_t k = 1 << (PARAM_M - 1);
size_t index = PARAM_GF_MUL_ORDER;

compute_fft_betas(gammas);
compute_subset_sums(gammas_sums, gammas, PARAM_M - 1);

error[0] ^= ((uint64_t) 1) ^ ((uint16_t) - w[0] >> 15);
uint64_t bit = ((uint64_t) 1) ^ ((uint16_t) - w[k] >> 15);
error[index / 8] ^= bit << (index % 64);

for (size_t i = 1 ; i < k ; ++i) {
index = PARAM_GF_MUL_ORDER - PQCLEAN_HQC192_CLEAN_gf_log(gammas_sums[i]);
bit = ((uint64_t) 1) ^ ((uint16_t) - w[i] >> 15);
error[index / 64] ^= bit << (index % 64);

index = PARAM_GF_MUL_ORDER - PQCLEAN_HQC192_CLEAN_gf_log(gammas_sums[i] ^ 1);
bit = ((uint64_t) 1) ^ ((uint16_t) - w[k + i] >> 15);
error[index / 64] ^= bit << (index % 64);
}
}

+ 25
- 0
crypto_kem/hqc-192/clean/fft.h View File

@@ -0,0 +1,25 @@
#ifndef FFT_H
#define FFT_H


/**
* @file fft.h
* Header file of fft.c
*/

#include <stddef.h>

#include <stddef.h>
#include <stdint.h>

void PQCLEAN_HQC192_CLEAN_fft_t(uint16_t *f, const uint16_t *w, size_t f_coeffs);

void PQCLEAN_HQC192_CLEAN_fft_t_preprocess_bch_codeword(uint16_t *w, const uint64_t *vector);


void PQCLEAN_HQC192_CLEAN_fft(uint16_t *w, const uint16_t *f, size_t f_coeffs);

void PQCLEAN_HQC192_CLEAN_fft_retrieve_bch_error_poly(uint64_t *error, const uint16_t *w);


#endif

+ 132
- 0
crypto_kem/hqc-192/clean/gf.c
File diff suppressed because it is too large
View File


+ 29
- 0
crypto_kem/hqc-192/clean/gf.h View File

@@ -0,0 +1,29 @@
#ifndef GF_H
#define GF_H


/**
* @file gf.h
* Header file of gf.c
*/

#include <stddef.h>

#include <stddef.h>
#include <stdint.h>

void PQCLEAN_HQC192_CLEAN_gf_generate(uint16_t *exp, uint16_t *log, int16_t m);


uint16_t PQCLEAN_HQC192_CLEAN_gf_log(uint16_t elt);

uint16_t PQCLEAN_HQC192_CLEAN_gf_mul(uint16_t a, uint16_t b);

uint16_t PQCLEAN_HQC192_CLEAN_gf_square(uint16_t a);

uint16_t PQCLEAN_HQC192_CLEAN_gf_inverse(uint16_t a);

uint16_t PQCLEAN_HQC192_CLEAN_gf_mod(uint16_t i);


#endif

+ 155
- 0
crypto_kem/hqc-192/clean/gf2x.c View File

@@ -0,0 +1,155 @@
#include "gf2x.h"
#include "nistseedexpander.h"
#include "parameters.h"
#include "randombytes.h"
#include <stdint.h>
#include <stdio.h>
#include <string.h>
/**
* \file gf2x.c
* \brief Implementation of multiplication of two polynomials
*/


static inline void swap(uint16_t *tab, uint16_t elt1, uint16_t elt2);
static void reduce(uint64_t *o, const uint64_t *a);
static void fast_convolution_mult(uint64_t *o, const uint32_t *a1, const uint64_t *a2, uint16_t weight, AES_XOF_struct *ctx);

/**
* @brief swap two elements in a table
*
* This function exchanges tab[elt1] with tab[elt2]
*
* @param[in] tab Pointer to the table
* @param[in] elt1 Index of the first element
* @param[in] elt2 Index of the second element
*/
static inline void swap(uint16_t *tab, uint16_t elt1, uint16_t elt2) {
uint16_t tmp = tab[elt1];

tab[elt1] = tab[elt2];
tab[elt2] = tmp;
}



/**
* @brief Compute o(x) = a(x) mod \f$ X^n - 1\f$
*
* This function computes the modular reduction of the polynomial a(x)
*
* @param[in] a Pointer to the polynomial a(x)
* @param[out] o Pointer to the result
*/
static void reduce(uint64_t *o, const uint64_t *a) {
uint64_t r;
uint64_t carry;

for (uint32_t i = 0 ; i < VEC_N_SIZE_64 ; i++) {
r = a[i + VEC_N_SIZE_64 - 1] >> (PARAM_N & 63);
carry = (uint64_t) (a[i + VEC_N_SIZE_64] << (64 - (PARAM_N & 63)));
o[i] = a[i] ^ r ^ carry;
}

o[VEC_N_SIZE_64 - 1] &= RED_MASK;
}



/**
* @brief computes product of the polynomial a1(x) with the sparse polynomial a2
*
* o(x) = a1(x)a2(x)
*
* @param[out] o Pointer to the result
* @param[in] a1 Pointer to the sparse polynomial a2 (list of degrees of the monomials which appear in a2)
* @param[in] a2 Pointer to the polynomial a1(x)
* @param[in] weight Hamming wifht of the sparse polynomial a2
* @param[in] ctx Pointer to a seed expander used to randomize the multiplication process
*/
static void fast_convolution_mult(uint64_t *o, const uint32_t *a1, const uint64_t *a2, uint16_t weight, AES_XOF_struct *ctx) {
//static uint32_t fast_convolution_mult(const uint64_t *A, const uint32_t *vB, uint64_t *C, const uint16_t w, AES_XOF_struct *ctx)
uint64_t carry;
uint32_t dec, s;
uint64_t table[16 * (VEC_N_SIZE_64 + 1)];
uint16_t permuted_table[16];
uint16_t permutation_table[16];
uint16_t permuted_sparse_vect[PARAM_OMEGA_E];
uint16_t permutation_sparse_vect[PARAM_OMEGA_E];
uint64_t *pt;
uint16_t *res_16;

for (uint32_t i = 0 ; i < 16; i++) {
permuted_table[i] = i;
}

seedexpander(ctx, (uint8_t *) permutation_table, 16 * sizeof(uint16_t));

for (uint32_t i = 0 ; i < 15 ; i++) {
swap(permuted_table + i, 0, permutation_table[i] % (16 - i));
}

pt = table + (permuted_table[0] * (VEC_N_SIZE_64 + 1));
for (int32_t j = 0 ; j < VEC_N_SIZE_64 ; j++) {
pt[j] = a2[j];
}
pt[VEC_N_SIZE_64] = 0x0;

for (uint32_t i = 1 ; i < 16 ; i++) {
carry = 0;
pt = table + (permuted_table[i] * (VEC_N_SIZE_64 + 1));
for (uint32_t j = 0 ; j < VEC_N_SIZE_64 ; j++) {
pt[j] = (a2[j] << i) ^ carry;
carry = (a2[j] >> ((64 - i)));
}
pt[VEC_N_SIZE_64] = carry;
}

for (uint32_t i = 0 ; i < weight ; i++) {
permuted_sparse_vect[i] = i;
}

seedexpander(ctx, (uint8_t *) permutation_sparse_vect, weight * sizeof(uint16_t));

for (uint32_t i = 0 ; i + 1 < weight ; i++) {
swap(permuted_sparse_vect + i, 0, permutation_sparse_vect[i] % (weight - i));
}

for (uint32_t i = 0 ; i < weight ; i++) {
dec = a1[permuted_sparse_vect[i]] & 0xf;
s = a1[permuted_sparse_vect[i]] >> 4;
res_16 = ((uint16_t *) o) + s;
pt = table + (permuted_table[dec] * (VEC_N_SIZE_64 + 1));

for (uint32_t j = 0 ; j < VEC_N_SIZE_64 + 1 ; j++) {
*res_16++ ^= (uint16_t) pt[j];
*res_16++ ^= (uint16_t) (pt[j] >> 16);
*res_16++ ^= (uint16_t) (pt[j] >> 32);
*res_16++ ^= (uint16_t) (pt[j] >> 48);
}
}
}



/**
* @brief Multiply two polynomials modulo \f$ X^n - 1\f$.
*
* This functions multiplies a sparse polynomial <b>a1</b> (of Hamming weight equal to <b>weight</b>)
* and a dense polynomial <b>a2</b>. The multiplication is done modulo \f$ X^n - 1\f$.
*
* @param[out] o Pointer to the result
* @param[in] a1 Pointer to the sparse polynomial
* @param[in] a2 Pointer to the dense polynomial
* @param[in] weight Integer that is the weigt of the sparse polynomial
* @param[in] ctx Pointer to the randomness context
*/
void PQCLEAN_HQC192_CLEAN_vect_mul(uint64_t *o, const uint32_t *a1, const uint64_t *a2, uint16_t weight, AES_XOF_struct *ctx) {
uint64_t tmp[2 * VEC_N_SIZE_64 + 1];
for (uint32_t j = 0 ; j < 2 * VEC_N_SIZE_64 + 1 ; j++) {
tmp[j] = 0;
}

fast_convolution_mult(tmp, a1, a2, weight, ctx);
reduce(o, tmp);
}

+ 18
- 0
crypto_kem/hqc-192/clean/gf2x.h View File

@@ -0,0 +1,18 @@
#ifndef GF2X_H
#define GF2X_H


/**
* @file gf2x.h
* @brief Header file for gf2x.c
*/

#include "nistseedexpander.h"
#include "nistseedexpander.h"
#include "randombytes.h"
#include <stdint.h>

void PQCLEAN_HQC192_CLEAN_vect_mul(uint64_t *o, const uint32_t *a1, const uint64_t *a2, uint16_t weight, AES_XOF_struct *ctx);


#endif

+ 143
- 0
crypto_kem/hqc-192/clean/hqc.c View File

@@ -0,0 +1,143 @@
#include "code.h"
#include "gf2x.h"
#include "hqc.h"
#include "nistseedexpander.h"
#include "parameters.h"
#include "parsing.h"
#include "randombytes.h"
#include "vector.h"
#include <stdint.h>
/**
* @file hqc.c
* @brief Implementation of hqc.h
*/



/**
* @brief Keygen of the HQC_PKE IND_CPA scheme
*
* The public key is composed of the syndrome <b>s</b> as well as the <b>seed</b> used to generate the vector <b>h</b>.
*
* The secret key is composed of the <b>seed</b> used to generate vectors <b>x</b> and <b>y</b>.
* As a technicality, the public key is appended to the secret key in order to respect NIST API.
*
* @param[out] pk String containing the public key
* @param[out] sk String containing the secret key
*/
void PQCLEAN_HQC192_CLEAN_hqc_pke_keygen(unsigned char *pk, unsigned char *sk) {
AES_XOF_struct sk_seedexpander;
AES_XOF_struct pk_seedexpander;
uint8_t sk_seed[SEED_BYTES] = {0};
uint8_t pk_seed[SEED_BYTES] = {0};
uint64_t x[VEC_N_SIZE_64] = {0};
uint32_t y[PARAM_OMEGA] = {0};
uint64_t h[VEC_N_SIZE_64] = {0};
uint64_t s[VEC_N_SIZE_64] = {0};

// Create seed_expanders for public key and secret key
randombytes(sk_seed, SEED_BYTES);
seedexpander_init(&sk_seedexpander, sk_seed, sk_seed + 32, SEEDEXPANDER_MAX_LENGTH);

randombytes(pk_seed, SEED_BYTES);
seedexpander_init(&pk_seedexpander, pk_seed, pk_seed + 32, SEEDEXPANDER_MAX_LENGTH);

// Compute secret key
PQCLEAN_HQC192_CLEAN_vect_set_random_fixed_weight(&sk_seedexpander, x, PARAM_OMEGA);
PQCLEAN_HQC192_CLEAN_vect_set_random_fixed_weight_by_coordinates(&sk_seedexpander, y, PARAM_OMEGA);

// Compute public key
PQCLEAN_HQC192_CLEAN_vect_set_random(&pk_seedexpander, h);
PQCLEAN_HQC192_CLEAN_vect_mul(s, y, h, PARAM_OMEGA, &sk_seedexpander);
PQCLEAN_HQC192_CLEAN_vect_add(s, x, s, VEC_N_SIZE_64);

// Parse keys to string
PQCLEAN_HQC192_CLEAN_hqc_public_key_to_string(pk, pk_seed, s);
PQCLEAN_HQC192_CLEAN_hqc_secret_key_to_string(sk, sk_seed, pk);

}



/**
* @brief Encryption of the HQC_PKE IND_CPA scheme
*
* The cihertext is composed of vectors <b>u</b> and <b>v</b>.
*
* @param[out] u Vector u (first part of the ciphertext)
* @param[out] v Vector v (second part of the ciphertext)
* @param[in] m Vector representing the message to encrypt
* @param[in] theta Seed used to derive randomness required for encryption
* @param[in] pk String containing the public key
*/
void PQCLEAN_HQC192_CLEAN_hqc_pke_encrypt(uint64_t *u, uint64_t *v, uint64_t *m, unsigned char *theta, const unsigned char *pk) {
AES_XOF_struct seedexpander;
uint64_t h[VEC_N_SIZE_64] = {0};
uint64_t s[VEC_N_SIZE_64] = {0};
uint64_t r1[VEC_N_SIZE_64] = {0};
uint32_t r2[PARAM_OMEGA_R] = {0};
uint64_t e[VEC_N_SIZE_64] = {0};
uint64_t tmp1[VEC_N_SIZE_64] = {0};
uint64_t tmp2[VEC_N_SIZE_64] = {0};

// Create seed_expander from theta
seedexpander_init(&seedexpander, theta, theta + 32, SEEDEXPANDER_MAX_LENGTH);

// Retrieve h and s from public key
PQCLEAN_HQC192_CLEAN_hqc_public_key_from_string(h, s, pk);

// Generate r1, r2 and e
PQCLEAN_HQC192_CLEAN_vect_set_random_fixed_weight(&seedexpander, r1, PARAM_OMEGA_R);
PQCLEAN_HQC192_CLEAN_vect_set_random_fixed_weight_by_coordinates(&seedexpander, r2, PARAM_OMEGA_R);
PQCLEAN_HQC192_CLEAN_vect_set_random_fixed_weight(&seedexpander, e, PARAM_OMEGA_E);

// Compute u = r1 + r2.h
PQCLEAN_HQC192_CLEAN_vect_mul(u, r2, h, PARAM_OMEGA_R, &seedexpander);
PQCLEAN_HQC192_CLEAN_vect_add(u, r1, u, VEC_N_SIZE_64);

// Compute v = m.G by encoding the message
PQCLEAN_HQC192_CLEAN_code_encode(v, m);
PQCLEAN_HQC192_CLEAN_vect_resize(tmp1, PARAM_N, v, PARAM_N1N2);

// Compute v = m.G + s.r2 + e
PQCLEAN_HQC192_CLEAN_vect_mul(tmp2, r2, s, PARAM_OMEGA_R, &seedexpander);
PQCLEAN_HQC192_CLEAN_vect_add(tmp2, e, tmp2, VEC_N_SIZE_64);
PQCLEAN_HQC192_CLEAN_vect_add(tmp2, tmp1, tmp2, VEC_N_SIZE_64);
PQCLEAN_HQC192_CLEAN_vect_resize(v, PARAM_N1N2, tmp2, PARAM_N);

}



/**
* @brief Decryption of the HQC_PKE IND_CPA scheme
*
* @param[out] m Vector representing the decrypted message
* @param[in] u Vector u (first part of the ciphertext)
* @param[in] v Vector v (second part of the ciphertext)
* @param[in] sk String containing the secret key
*/
void PQCLEAN_HQC192_CLEAN_hqc_pke_decrypt(uint64_t *m, const uint64_t *u, const uint64_t *v, const unsigned char *sk) {
uint64_t x[VEC_N_SIZE_64] = {0};
uint32_t y[PARAM_OMEGA] = {0};
uint8_t pk[PUBLIC_KEY_BYTES] = {0};
uint64_t tmp1[VEC_N_SIZE_64] = {0};
uint64_t tmp2[VEC_N_SIZE_64] = {0};
AES_XOF_struct perm_seedexpander;
uint8_t perm_seed[SEED_BYTES] = {0};

// Retrieve x, y, pk from secret key
PQCLEAN_HQC192_CLEAN_hqc_secret_key_from_string(x, y, pk, sk);

randombytes(perm_seed, SEED_BYTES);
seedexpander_init(&perm_seedexpander, perm_seed, perm_seed + 32, SEEDEXPANDER_MAX_LENGTH);

// Compute v - u.y
PQCLEAN_HQC192_CLEAN_vect_resize(tmp1, PARAM_N, v, PARAM_N1N2);
PQCLEAN_HQC192_CLEAN_vect_mul(tmp2, y, u, PARAM_OMEGA, &perm_seedexpander);
PQCLEAN_HQC192_CLEAN_vect_add(tmp2, tmp1, tmp2, VEC_N_SIZE_64);


// Compute m by decoding v - u.y
PQCLEAN_HQC192_CLEAN_code_decode(m, tmp2);
}

+ 21
- 0
crypto_kem/hqc-192/clean/hqc.h View File

@@ -0,0 +1,21 @@
#ifndef HQC_H
#define HQC_H


/**
* @file hqc.h
* @brief Functions of the HQC_PKE IND_CPA scheme
*/

#include <stdint.h>

#include <stdint.h>

void PQCLEAN_HQC192_CLEAN_hqc_pke_keygen(unsigned char *pk, unsigned char *sk);

void PQCLEAN_HQC192_CLEAN_hqc_pke_encrypt(uint64_t *u, uint64_t *v, uint64_t *m, unsigned char *theta, const unsigned char *pk);

void PQCLEAN_HQC192_CLEAN_hqc_pke_decrypt(uint64_t *m, const uint64_t *u, const uint64_t *v, const unsigned char *sk);


#endif

+ 138
- 0
crypto_kem/hqc-192/clean/kem.c View File

@@ -0,0 +1,138 @@
#include "api.h"
#include "fips202.h"
#include "hqc.h"
#include "nistseedexpander.h"
#include "parameters.h"
#include "parsing.h"
#include "randombytes.h"
#include "sha2.h"
#include "vector.h"
#include <stdint.h>
#include <string.h>
/**
* @file kem.c
* @brief Implementation of api.h
*/



/**
* @brief Keygen of the HQC_KEM IND_CAA2 scheme
*
* The public key is composed of the syndrome <b>s</b> as well as the seed used to generate the vector <b>h</b>.
*
* The secret key is composed of the seed used to generate vectors <b>x</b> and <b>y</b>.
* As a technicality, the public key is appended to the secret key in order to respect NIST API.
*
* @param[out] pk String containing the public key
* @param[out] sk String containing the secret key
* @returns 0 if keygen is successful
*/
int PQCLEAN_HQC192_CLEAN_crypto_kem_keypair(unsigned char *pk, unsigned char *sk) {

PQCLEAN_HQC192_CLEAN_hqc_pke_keygen(pk, sk);
return 0;
}



/**
* @brief Encapsulation of the HQC_KEM IND_CAA2 scheme
*
* @param[out] ct String containing the ciphertext
* @param[out] ss String containing the shared secret
* @param[in] pk String containing the public key
* @returns 0 if encapsulation is successful
*/
int PQCLEAN_HQC192_CLEAN_crypto_kem_enc(unsigned char *ct, unsigned char *ss, const unsigned char *pk) {

uint8_t theta[SHA512_BYTES] = {0};
uint64_t m[VEC_K_SIZE_64] = {0};
uint64_t u[VEC_N_SIZE_64] = {0};
uint64_t v[VEC_N1N2_SIZE_64] = {0};
unsigned char d[SHA512_BYTES] = {0};
unsigned char mc[VEC_K_SIZE_BYTES + VEC_N_SIZE_BYTES + VEC_N1N2_SIZE_BYTES] = {0};

// Computing m
PQCLEAN_HQC192_CLEAN_vect_set_random_from_randombytes(m);

// Computing theta
sha3_512(theta, (uint8_t *) m, VEC_K_SIZE_BYTES);

// Encrypting m
PQCLEAN_HQC192_CLEAN_hqc_pke_encrypt(u, v, m, theta, pk);

// Computing d
sha512(d, (unsigned char *) m, VEC_K_SIZE_BYTES);

// Computing shared secret
memcpy(mc, m, VEC_K_SIZE_BYTES);
memcpy(mc + VEC_K_SIZE_BYTES, u, VEC_N_SIZE_BYTES);
memcpy(mc + VEC_K_SIZE_BYTES + VEC_N_SIZE_BYTES, v, VEC_N1N2_SIZE_BYTES);
sha512(ss, mc, VEC_K_SIZE_BYTES + VEC_N_SIZE_BYTES + VEC_N1N2_SIZE_BYTES);

// Computing ciphertext
PQCLEAN_HQC192_CLEAN_hqc_ciphertext_to_string(ct, u, v, d);


return 0;
}



/**
* @brief Decapsulation of the HQC_KEM IND_CAA2 scheme
*
* @param[out] ss String containing the shared secret
* @param[in] ct String containing the cipĥertext
* @param[in] sk String containing the secret key
* @returns 0 if decapsulation is successful, -1 otherwise
*/
int PQCLEAN_HQC192_CLEAN_crypto_kem_dec(unsigned char *ss, const unsigned char *ct, const unsigned char *sk) {

int8_t result = -1;
uint64_t u[VEC_N_SIZE_64] = {0};
uint64_t v[VEC_N1N2_SIZE_64] = {0};
unsigned char d[SHA512_BYTES] = {0};
unsigned char pk[PUBLIC_KEY_BYTES] = {0};
uint64_t m[VEC_K_SIZE_64] = {0};
uint8_t theta[SHA512_BYTES] = {0};
uint64_t u2[VEC_N_SIZE_64] = {0};
uint64_t v2[VEC_N1N2_SIZE_64] = {0};
unsigned char d2[SHA512_BYTES] = {0};
unsigned char mc[VEC_K_SIZE_BYTES + VEC_N_SIZE_BYTES + VEC_N1N2_SIZE_BYTES] = {0};

// Retrieving u, v and d from ciphertext
PQCLEAN_HQC192_CLEAN_hqc_ciphertext_from_string(u, v, d, ct);

// Retrieving pk from sk
memcpy(pk, sk + SEED_BYTES, PUBLIC_KEY_BYTES);

// Decryting
PQCLEAN_HQC192_CLEAN_hqc_pke_decrypt(m, u, v, sk);

// Computing theta
sha3_512(theta, (uint8_t *) m, VEC_K_SIZE_BYTES);

// Encrypting m'
PQCLEAN_HQC192_CLEAN_hqc_pke_encrypt(u2, v2, m, theta, pk);

// Computing d'
sha512(d2, (unsigned char *) m, VEC_K_SIZE_BYTES);

// Computing shared secret
memcpy(mc, m, VEC_K_SIZE_BYTES);
memcpy(mc + VEC_K_SIZE_BYTES, u, VEC_N_SIZE_BYTES);
memcpy(mc + VEC_K_SIZE_BYTES + VEC_N_SIZE_BYTES, v, VEC_N1N2_SIZE_BYTES);
sha512(ss, mc, VEC_K_SIZE_BYTES + VEC_N_SIZE_BYTES + VEC_N1N2_SIZE_BYTES);

// Abort if c != c' or d != d'
result = (PQCLEAN_HQC192_CLEAN_vect_compare(u, u2, VEC_N_SIZE_BYTES) == 0 && PQCLEAN_HQC192_CLEAN_vect_compare(v, v2, VEC_N1N2_SIZE_BYTES) == 0 && memcmp(d, d2, SHA512_BYTES) == 0);
for (size_t i = 0 ; i < SHARED_SECRET_BYTES ; i++) {
ss[i] = result * ss[i];
}
result--;


return result;
}

+ 123
- 0
crypto_kem/hqc-192/clean/parameters.h View File

@@ -0,0 +1,123 @@
#ifndef HQC_PARAMETERS_H
#define HQC_PARAMETERS_H
/**
* @file parameters.h
* @brief Parameters of the HQC_KEM IND-CCA2 scheme
*/

#include "api.h"
#include "api.h"
#include "vector.h"


#define CEIL_DIVIDE(a, b) (((a)/(b)) + ((a) % (b) == 0 ? 0 : 1)) /*!< Divide a by b and ceil the result*/
#define BITMASK(a, size) ((1UL << ((a) % (size))) - 1) /*!< Create a mask*/

/*
#define PARAM_N Define the parameter n of the scheme
#define PARAM_N1 Define the parameter n1 of the scheme (length of BCH code)
#define PARAM_N2 Define the parameter n2 of the scheme (length of the repetition code)
#define PARAM_N1N2 Define the parameter n1 * n2 of the scheme (length of the tensor code)
#define PARAM_OMEGA Define the parameter omega of the scheme
#define PARAM_OMEGA_E Define the parameter omega_e of the scheme
#define PARAM_OMEGA_R Define the parameter omega_r of the scheme
#define PARAM_SECURITY Define the security level corresponding to the chosen parameters
#define PARAM_DFR_EXP Define the decryption failure rate corresponding to the chosen parameters

#define SECRET_KEY_BYTES Define the size of the secret key in bytes
#define PUBLIC_KEY_BYTES Define the size of the public key in bytes
#define SHARED_SECRET_BYTES Define the size of the shared secret in bytes
#define CIPHERTEXT_BYTES Define the size of the ciphertext in bytes

#define UTILS_REJECTION_THRESHOLD Define the rejection threshold used to generate given weight vectors (see vector_set_random_fixed_weight function)
#define VEC_N_SIZE_BYTES Define the size of the array used to store a PARAM_N sized vector in bytes
#define VEC_K_SIZE_BYTES Define the size of the array used to store a PARAM_K sized vector in bytes
#define VEC_N1_SIZE_BYTES Define the size of the array used to store a PARAM_N1 sized vector in bytes
#define VEC_N1N2_SIZE_BYTES Define the size of the array used to store a PARAM_N1N2 sized vector in bytes

#define VEC_N_SIZE_64 Define the size of the array used to store a PARAM_N sized vector in 64 bits
#define VEC_K_SIZE_64 Define the size of the array used to store a PARAM_K sized vector in 64 bits
#define VEC_N1_SIZE_64 Define the size of the array used to store a PARAM_N1 sized vector in 64 bits
#define VEC_N1N2_SIZE_64 Define the size of the array used to store a PARAM_N1N2 sized vector in 64 bits

#define PARAM_T Define a threshold for decoding repetition code word (PARAM_T = (PARAM_N2 - 1) / 2)

#define PARAM_DELTA Define the parameter delta of the scheme (correcting capacity of the BCH code)
#define PARAM_M Define a positive integer
#define PARAM_GF_POLY Generator polynomial of galois field GF(2^PARAM_M), represented in hexadecimial form
#define PARAM_GF_MUL_ORDER Define the size of the multiplicative group of GF(2^PARAM_M), i.e 2^PARAM_M -1
#define PARAM_K Define the size of the information bits of the BCH code
#define PARAM_G Define the size of the generator polynomial of BCH code
#define PARAM_FFT The additive FFT takes a 2^PARAM_FFT polynomial as input
We use the FFT to compute the roots of sigma, whose degree if PARAM_DELTA=60
The smallest power of 2 greater than 60+1 is 64=2^6
#define PARAM_FFT_T The additive FFT transpose computes a (2^PARAM_FFT_T)-sized syndrome vector
We want to compute 2*PARAM_DELTA=120 syndromes
The smallest power of 2 greater than 120 is 2^7
#define PARAM_BCH_POLY Generator polynomial of the BCH code

#define RED_MASK A mask fot the higher bits of a vector
#define SHA512_BYTES Define the size of SHA512 output in bytes
#define SEED_BYTES Define the size of the seed in bytes
#define SEEDEXPANDER_MAX_LENGTH Define the seed expander max length
*/

#define PARAM_N 45197
#define PARAM_N1 766
#define PARAM_N2 59
#define PARAM_N1N2 45194
#define PARAM_OMEGA 101
#define PARAM_OMEGA_E 117
#define PARAM_OMEGA_R 117
#define PARAM_SECURITY 192
#define PARAM_DFR_EXP 192

#define SECRET_KEY_BYTES PQCLEAN_HQC192_CLEAN_CRYPTO_SECRETKEYBYTES
#define PUBLIC_KEY_BYTES PQCLEAN_HQC192_CLEAN_CRYPTO_PUBLICKEYBYTES
#define SHARED_SECRET_BYTES PQCLEAN_HQC192_CLEAN_CRYPTO_BYTES
#define CIPHERTEXT_BYTES PQCLEAN_HQC192_CLEAN_CRYPTO_CIPHERTEXTBYTES

#define UTILS_REJECTION_THRESHOLD 16768087
#define VEC_K_SIZE_BYTES CEIL_DIVIDE(PARAM_K, 8)
#define VEC_N_SIZE_BYTES CEIL_DIVIDE(PARAM_N, 8)
#define VEC_N1_SIZE_BYTES CEIL_DIVIDE(PARAM_N1, 8)
#define VEC_N1N2_SIZE_BYTES CEIL_DIVIDE(PARAM_N1N2, 8)

#define VEC_N_SIZE_64 CEIL_DIVIDE(PARAM_N, 64)
#define VEC_K_SIZE_64 CEIL_DIVIDE(PARAM_K, 64)
#define VEC_N1_SIZE_64 CEIL_DIVIDE(PARAM_N1, 64)
#define VEC_N1N2_SIZE_64 CEIL_DIVIDE(PARAM_N1N2, 64)

#define PARAM_T 29

#define PARAM_DELTA 57
#define PARAM_M 10
#define PARAM_GF_POLY 0x409
#define PARAM_GF_MUL_ORDER 1023
#define PARAM_K 256
#define PARAM_G 511
#define PARAM_FFT 6
#define PARAM_FFT_T 7
#define PARAM_BCH_POLY { \
1,1,0,0,0,0,1,0,0,1,1,0,1,1,0,1,0,1,1,0,0,1,0,0,1,1,1,1,1,1,0,0,1,1,0,1,1, \
1,1,0,1,1,1,1,0,1,0,0,0,1,0,0,1,1,1,0,1,1,0,1,0,1,1,1,0,1,0,1,0,0,1,0,0,0, \
0,1,1,1,1,0,1,1,1,1,1,0,0,0,0,1,0,0,1,0,0,1,1,1,0,0,0,1,1,0,0,1,0,1,0,0,0, \
1,0,0,0,0,1,0,0,0,1,0,1,1,0,0,0,0,1,1,0,0,1,1,0,1,0,1,0,1,0,1,1,1,1,0,1,0, \
0,1,1,0,1,0,1,1,0,0,1,1,0,1,1,1,1,1,0,1,0,1,1,1,0,1,0,0,0,1,1,0,1,1,1,1,0, \
1,1,1,1,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,1,1,1,1,0,0,1,1,0,1,0,0,0,0,1,0, \
0,1,0,0,1,0,1,0,0,1,1,0,1,0,1,1,1,1,1,0,1,1,0,1,0,1,1,1,1,1,1,0,0,0,1,0,1, \
1,1,1,1,1,0,1,0,1,0,1,1,0,0,0,1,1,0,0,1,1,0,1,1,1,1,1,1,1,0,0,0,1,1,1,1,0, \
1,0,0,0,1,0,0,1,1,0,1,1,0,0,1,0,1,1,0,1,0,1,0,1,1,0,0,0,0,0,1,1,1,1,1,1,1, \
1,1,1,0,1,1,0,1,0,1,1,1,1,1,1,1,0,1,1,0,1,1,0,0,0,1,0,0,1,1,1,1,1,0,1,0,1, \
0,0,0,0,1,0,1,1,1,1,0,1,0,0,0,0,0,1,0,0,1,0,1,1,1,1,1,0,0,0,0,0,0,1,1,1,1, \
1,0,1,0,0,1,0,0,1,1,0,1,0,0,0,0,0,0,0,0,1,1,0,0,0,1,1,1,0,0,1,1,0,0,0,1,1, \
0,1,0,0,1,0,0,0,1,0,1,0,1,0,0,0,1,1,1,1,1,0,0,0,1,0,0,1,1,0,1,1,0,0,1,0,1, \
1,0,1,1,1,0,0,0,0,1,1,0,1,1,1,0,1,0,0,0,0,1,0,0,0,1,0,0,1,1 \
};

#define RED_MASK 0x0000000000001fffUL
#define SHA512_BYTES 64
#define SEED_BYTES 40
#define SEEDEXPANDER_MAX_LENGTH 4294967295

#endif

+ 121
- 0
crypto_kem/hqc-192/clean/parsing.c View File

@@ -0,0 +1,121 @@
#include "nistseedexpander.h"
#include "parameters.h"
#include "parsing.h"
#include "randombytes.h"
#include "vector.h"
#include <stdint.h>
#include <string.h>
/**
* @file parsing.c
* @brief Functions to parse secret key, public key and ciphertext of the HQC scheme
*/



/**
* @brief Parse a secret key into a string
*
* The secret key is composed of the seed used to generate vectors <b>x</b> and <b>y</b>.
* As technicality, the public key is appended to the secret key in order to respect NIST API.
*
* @param[out] sk String containing the secret key
* @param[in] sk_seed Seed used to generate the secret key
* @param[in] pk String containing the public key
*/
void PQCLEAN_HQC192_CLEAN_hqc_secret_key_to_string(uint8_t *sk, const uint8_t *sk_seed, const uint8_t *pk) {
memcpy(sk, sk_seed, SEED_BYTES);
memcpy(sk + SEED_BYTES, pk, PUBLIC_KEY_BYTES);
}

/**
* @brief Parse a secret key from a string
*
* The secret key is composed of the seed used to generate vectors <b>x</b> and <b>y</b>.
* As technicality, the public key is appended to the secret key in order to respect NIST API.
*
* @param[out] x uint64_t representation of vector x
* @param[out] y uint32_t representation of vector y
* @param[out] pk String containing the public key
* @param[in] sk String containing the secret key
*/
void PQCLEAN_HQC192_CLEAN_hqc_secret_key_from_string(uint64_t *x, uint32_t *y, uint8_t *pk, const uint8_t *sk) {
AES_XOF_struct sk_seedexpander;
uint8_t sk_seed[SEED_BYTES] = {0};

memcpy(sk_seed, sk, SEED_BYTES);
seedexpander_init(&sk_seedexpander, sk_seed, sk_seed + 32, SEEDEXPANDER_MAX_LENGTH);

PQCLEAN_HQC192_CLEAN_vect_set_random_fixed_weight(&sk_seedexpander, x, PARAM_OMEGA);
PQCLEAN_HQC192_CLEAN_vect_set_random_fixed_weight_by_coordinates(&sk_seedexpander, y, PARAM_OMEGA);
memcpy(pk, sk + SEED_BYTES, PUBLIC_KEY_BYTES);
}

/**
* @brief Parse a public key into a string
*
* The public key is composed of the syndrome <b>s</b> as well as the seed used to generate the vector <b>h</b>
*
* @param[out] pk String containing the public key
* @param[in] pk_seed Seed used to generate the public key
* @param[in] s uint8_t representation of vector s
*/
void PQCLEAN_HQC192_CLEAN_hqc_public_key_to_string(uint8_t *pk, const uint8_t *pk_seed, const uint64_t *s) {
memcpy(pk, pk_seed, SEED_BYTES);
memcpy(pk + SEED_BYTES, s, VEC_N_SIZE_BYTES);
}



/**
* @brief Parse a public key from a string
*
* The public key is composed of the syndrome <b>s</b> as well as the seed used to generate the vector <b>h</b>
*
* @param[out] h uint8_t representation of vector h
* @param[out] s uint8_t representation of vector s
* @param[in] pk String containing the public key
*/
void PQCLEAN_HQC192_CLEAN_hqc_public_key_from_string(uint64_t *h, uint64_t *s, const uint8_t *pk) {
AES_XOF_struct pk_seedexpander;
uint8_t pk_seed[SEED_BYTES] = {0};

memcpy(pk_seed, pk, SEED_BYTES);
seedexpander_init(&pk_seedexpander, pk_seed, pk_seed + 32, SEEDEXPANDER_MAX_LENGTH);
PQCLEAN_HQC192_CLEAN_vect_set_random(&pk_seedexpander, h);

memcpy(s, pk + SEED_BYTES, VEC_N_SIZE_BYTES);
}


/**
* @brief Parse a ciphertext into a string
*
* The ciphertext is composed of vectors <b>u</b>, <b>v</b> and hash <b>d</b>.
*
* @param[out] ct String containing the ciphertext
* @param[in] u uint8_t representation of vector u
* @param[in] v uint8_t representation of vector v
* @param[in] d String containing the hash d
*/
void PQCLEAN_HQC192_CLEAN_hqc_ciphertext_to_string(uint8_t *ct, const uint64_t *u, const uint64_t *v, const uint8_t *d) {
memcpy(ct, u, VEC_N_SIZE_BYTES);
memcpy(ct + VEC_N_SIZE_BYTES, v, VEC_N1N2_SIZE_BYTES);
memcpy(ct + VEC_N_SIZE_BYTES + VEC_N1N2_SIZE_BYTES, d, SHA512_BYTES);
}


/**
* @brief Parse a ciphertext from a string
*
* The ciphertext is composed of vectors <b>u</b>, <b>v</b> and hash <b>d</b>.
*
* @param[out] u uint8_t representation of vector u
* @param[out] v uint8_t representation of vector v
* @param[out] d String containing the hash d
* @param[in] ct String containing the ciphertext
*/
void PQCLEAN_HQC192_CLEAN_hqc_ciphertext_from_string(uint64_t *u, uint64_t *v, uint8_t *d, const uint8_t *ct) {
memcpy(u, ct, VEC_N_SIZE_BYTES);
memcpy(v, ct + VEC_N_SIZE_BYTES, VEC_N1N2_SIZE_BYTES);
memcpy(d, ct + VEC_N_SIZE_BYTES + VEC_N1N2_SIZE_BYTES, SHA512_BYTES);
}

+ 29
- 0
crypto_kem/hqc-192/clean/parsing.h View File

@@ -0,0 +1,29 @@
#ifndef PARSING_H
#define PARSING_H


/**
* @file parsing.h
* @brief Header file for parsing.c
*/

#include <stdint.h>

#include <stdint.h>

void PQCLEAN_HQC192_CLEAN_hqc_secret_key_to_string(uint8_t *sk, const uint8_t *sk_seed, const uint8_t *pk);

void PQCLEAN_HQC192_CLEAN_hqc_secret_key_from_string(uint64_t *x, uint32_t *y, uint8_t *pk, const uint8_t *sk);


void PQCLEAN_HQC192_CLEAN_hqc_public_key_to_string(uint8_t *pk, const uint8_t *pk_seed, const uint64_t *s);

void PQCLEAN_HQC192_CLEAN_hqc_public_key_from_string(uint64_t *h, uint64_t *s, const uint8_t *pk);


void PQCLEAN_HQC192_CLEAN_hqc_ciphertext_to_string(uint8_t *ct, const uint64_t *u, const uint64_t *v, const uint8_t *d);

void PQCLEAN_HQC192_CLEAN_hqc_ciphertext_from_string(uint64_t *u, uint64_t *v, uint8_t *d, const uint8_t *ct);


#endif

+ 91
- 0
crypto_kem/hqc-192/clean/repetition.c View File

@@ -0,0 +1,91 @@
#include "parameters.h"
#include "repetition.h"
#include <stddef.h>
#include <stdint.h>
#include <stdio.h>
/**
* @file repetition.c
* @brief Implementation of repetition codes
*/

#define MASK_N2 ((1UL << PARAM_N2) - 1)

static inline int32_t popcount(uint64_t n);

/**
* @brief Encoding each bit in the message m using the repetition code
*
*
* @param[out] em Pointer to an array that is the code word
* @param[in] m Pointer to an array that is the message
*/
void PQCLEAN_HQC192_CLEAN_repetition_code_encode(uint64_t *em, const uint64_t *m) {
static const uint64_t mask[2][2] = {{0x0UL, 0x0UL}, {0x7FFFFFFFFFFFFFFUL, 0x3FFFFFFFFFFFFFFUL}};
for (size_t i = 0 ; i < VEC_N1_SIZE_64 - 1 ; i++) {
for (size_t j = 0 ; j < 64 ; j++) {
uint8_t bit = (m[i] >> j) & 0x1;
uint32_t pos_r = PARAM_N2 * ((i << 6) + j);
uint16_t idx_r = (pos_r & 0x3f);
uint64_t *p64 = em;
p64 += pos_r >> 6;
*p64 ^= mask[bit][0] << idx_r;
*(p64 + 1) ^= mask[bit][1] >> ((63 - idx_r));
}
}

for (size_t j = 0 ; j < (PARAM_N1 & 0x3f) ; j++) {
uint8_t bit = (m[VEC_N1_SIZE_64 - 1] >> j) & 0x1;
uint32_t pos_r = PARAM_N2 * (((VEC_N1_SIZE_64 - 1) << 6) + j);
uint16_t idx_r = (pos_r & 0x3f);
uint64_t *p64 = em;
p64 += pos_r >> 6;
*p64 ^= mask[bit][0] << idx_r;
*(p64 + 1) ^= mask[bit][1] >> ((63 - idx_r));
}
}



/**
* @brief Compute the Hamming weight of the 64-bit integer n
*
* The Hamming weight is computed using a trick described in
* Henry S. Warren : "Hacker's Delight", chap 5., p. 66
* @param[out] the Hamming weight of n
* @param[in] a 64-bit integer n
*/
static inline int32_t popcount(uint64_t n) {
n -= (n >> 1) & 0x5555555555555555UL;
n = (n & 0x3333333333333333UL) + ((n >> 2) & 0x3333333333333333UL);
n = (n + (n >> 4)) & 0x0f0f0f0f0f0f0f0fUL;
return (n * 0x0101010101010101UL) >> 56;
}



/**
* @brief Decoding the code words to a message using the repetition code
*
* We use a majority decoding. In fact we have that PARAM_N2 = 2 * PARAM_T + 1, thus,
* if the Hamming weight of the vector is greater than PARAM_T, the code word is decoded
* to 1 and 0 otherwise.
*
* @param[out] m Pointer to an array that is the message
* @param[in] em Pointer to an array that is the code word
*/
void PQCLEAN_HQC192_CLEAN_repetition_code_decode(uint64_t *m, const uint64_t *em) {
size_t t = 0, b, bn, bi, c, cn, ci;
uint64_t cx, ones;
for (b = 0 ; b < PARAM_N1N2 - PARAM_N2 + 1 ; b += PARAM_N2) {
bn = b >> 6;
bi = b & 63;
c = b + PARAM_N2 - 1;
cn = c >> 6;
ci = c & 63;
cx = em[cn] << (63 - ci);
int64_t verif = (cn == (bn + 1));
ones = popcount(((em[bn] >> bi) & MASK_N2) | (cx * verif));
m[t >> 6] |= ((uint64_t) (ones > PARAM_T)) << (t & 63);
t++;
}
}

+ 19
- 0
crypto_kem/hqc-192/clean/repetition.h View File

@@ -0,0 +1,19 @@
#ifndef REPETITION_H
#define REPETITION_H


/**
* @file repetition.h
* @brief Header file for repetition.c
*/

#include <stdint.h>

#include <stdint.h>

void PQCLEAN_HQC192_CLEAN_repetition_code_encode(uint64_t *em, const uint64_t *m);

void PQCLEAN_HQC192_CLEAN_repetition_code_decode(uint64_t *m, const uint64_t *em);


#endif

+ 226
- 0
crypto_kem/hqc-192/clean/vector.c View File

@@ -0,0 +1,226 @@
#include "nistseedexpander.h"
#include "parameters.h"
#include "randombytes.h"
#include "vector.h"
#include <stdint.h>
#include <string.h>
/**
* @file vector.c
* @brief Implementation of vectors sampling and some utilities for the HQC scheme
*/


/**
* @brief Generates a vector of a given Hamming weight
*
* This function generates uniformly at random a binary vector of a Hamming weight equal to the parameter <b>weight</b>. The vector
* is stored by position.
* To generate the vector we have to sample uniformly at random values in the interval [0, PARAM_N -1]. Suppose the PARAM_N is equal to \f$ 70853 \f$, to select a position \f$ r\f$ the function works as follow:
* 1. It makes a call to the seedexpander function to obtain a random number \f$ x\f$ in \f$ [0, 2^{24}[ \f$.
* 2. Let \f$ t = \lfloor {2^{24} \over 70853} \rfloor \times 70853\f$
* 3. If \f$ x \geq t\f$, go to 1
* 4. It return \f$ r = x \mod 70853\f$
*
* The parameter \f$ t \f$ is precomputed and it's denoted by UTILS_REJECTION_THRESHOLD (see the file parameters.h).
*
* @param[in] v Pointer to an array
* @param[in] weight Integer that is the Hamming weight
* @param[in] ctx Pointer to the context of the seed expander
*/
void PQCLEAN_HQC192_CLEAN_vect_set_random_fixed_weight_by_coordinates(AES_XOF_struct *ctx, uint32_t *v, uint16_t weight) {
size_t random_bytes_size = 3 * weight;
uint8_t rand_bytes[3 * PARAM_OMEGA_R] = {0}; // weight is expected to be <= PARAM_OMEGA_R
uint32_t random_data = 0;
uint8_t exist = 0;
size_t j = 0;

seedexpander(ctx, rand_bytes, random_bytes_size);

for (uint32_t i = 0 ; i < weight ; ++i) {
exist = 0;
do {
if (j == random_bytes_size) {
seedexpander(ctx, rand_bytes, random_bytes_size);
j = 0;
}

random_data = ((uint32_t) rand_bytes[j++]) << 16;
random_data |= ((uint32_t) rand_bytes[j++]) << 8;
random_data |= rand_bytes[j++];

} while (random_data >= UTILS_REJECTION_THRESHOLD);

random_data = random_data % PARAM_N;

for (uint32_t k = 0 ; k < i ; k++) {
if (v[k] == random_data) {
exist = 1;
}
}

if (exist == 1) {
i--;
} else {
v[i] = random_data;
}
}
}



/**
* @brief Generates a vector of a given Hamming weight
*
* This function generates uniformly at random a binary vector of a Hamming weight equal to the parameter <b>weight</b>.
* To generate the vector we have to sample uniformly at random values in the interval [0, PARAM_N -1]. Suppose the PARAM_N is equal to \f$ 70853 \f$, to select a position \f$ r\f$ the function works as follow:
* 1. It makes a call to the seedexpander function to obtain a random number \f$ x\f$ in \f$ [0, 2^{24}[ \f$.
* 2. Let \f$ t = \lfloor {2^{24} \over 70853} \rfloor \times 70853\f$
* 3. If \f$ x \geq t\f$, go to 1
* 4. It return \f$ r = x \mod 70853\f$
*
* The parameter \f$ t \f$ is precomputed and it's denoted by UTILS_REJECTION_THRESHOLD (see the file parameters.h).
*
* @param[in] v Pointer to an array
* @param[in] weight Integer that is the Hamming weight
* @param[in] ctx Pointer to the context of the seed expander
*/
void PQCLEAN_HQC192_CLEAN_vect_set_random_fixed_weight(AES_XOF_struct *ctx, uint64_t *v, uint16_t weight) {

size_t random_bytes_size = 3 * weight;
uint8_t rand_bytes[3 * PARAM_OMEGA_R] = {0}; // weight is expected to be <= PARAM_OMEGA_R
uint32_t random_data = 0;
uint32_t tmp[PARAM_OMEGA_R] = {0};
uint8_t exist = 0;
size_t j = 0;

seedexpander(ctx, rand_bytes, random_bytes_size);

for (uint32_t i = 0 ; i < weight ; ++i) {
exist = 0;
do {
if (j == random_bytes_size) {
seedexpander(ctx, rand_bytes, random_bytes_size);
j = 0;
}

random_data = ((uint32_t) rand_bytes[j++]) << 16;
random_data |= ((uint32_t) rand_bytes[j++]) << 8;
random_data |= rand_bytes[j++];

} while (random_data >= UTILS_REJECTION_THRESHOLD);

random_data = random_data % PARAM_N;

for (uint32_t k = 0 ; k < i ; k++) {
if (tmp[k] == random_data) {
exist = 1;
}
}

if (exist == 1) {
i--;
} else {
tmp[i] = random_data;
}
}

for (uint16_t i = 0 ; i < weight ; ++i) {
int32_t index = tmp[i] / 64;
int32_t pos = tmp[i] % 64;
v[index] |= ((uint64_t) 1) << pos;
}
}



/**
* @brief Generates a random vector of dimension <b>PARAM_N</b>
*
* This function generates a random binary vector of dimension <b>PARAM_N</b>. It generates a random
* array of bytes using the seedexpander function, and drop the extra bits using a mask.
*
* @param[in] v Pointer to an array
* @param[in] ctx Pointer to the context of the seed expander
*/
void PQCLEAN_HQC192_CLEAN_vect_set_random(AES_XOF_struct *ctx, uint64_t *v) {
uint8_t rand_bytes[VEC_N_SIZE_BYTES] = {0};

seedexpander(ctx, rand_bytes, VEC_N_SIZE_BYTES);

memcpy(v, rand_bytes, VEC_N_SIZE_BYTES);
v[VEC_N_SIZE_64 - 1] &= BITMASK(PARAM_N, 64);
}



/**
* @brief Generates a random vector
*
* This function generates a random binary vector. It uses the the randombytes function.
*
* @param[in] v Pointer to an array
*/
void PQCLEAN_HQC192_CLEAN_vect_set_random_from_randombytes(uint64_t *v) {
uint8_t rand_bytes [VEC_K_SIZE_BYTES] = {0};

randombytes(rand_bytes, VEC_K_SIZE_BYTES);
memcpy(v, rand_bytes, VEC_K_SIZE_BYTES);
}



/**
* @brief Adds two vectors
*
* @param[out] o Pointer to an array that is the result
* @param[in] v1 Pointer to an array that is the first vector
* @param[in] v2 Pointer to an array that is the second vector
* @param[in] size Integer that is the size of the vectors
*/
void PQCLEAN_HQC192_CLEAN_vect_add(uint64_t *o, const uint64_t *v1, const uint64_t *v2, uint32_t size) {
for (uint32_t i = 0 ; i < size ; ++i) {
o[i] = v1[i] ^ v2[i];
}
}


/**
* @brief Compares two vectors
*
* @param[in] v1 Pointer to an array that is first vector
* @param[in] v2 Pointer to an array that is second vector
* @param[in] size Integer that is the size of the vectors
* @returns 0 if the vectors are equals and a negative/psotive value otherwise
*/
int PQCLEAN_HQC192_CLEAN_vect_compare(const uint64_t *v1, const uint64_t *v2, uint32_t size) {
return memcmp(v1, v2, size);
}



/**
* @brief Resize a vector so that it contains <b>size_o</b> bits
*
* @param[out] o Pointer to the output vector
* @param[in] size_o Integer that is the size of the output vector in bits
* @param[in] v Pointer to the input vector
* @param[in] size_v Integer that is the size of the input vector in bits
*/
void PQCLEAN_HQC192_CLEAN_vect_resize(uint64_t *o, uint32_t size_o, const uint64_t *v, uint32_t size_v) {
if (size_o < size_v) {
uint64_t mask = 0x7FFFFFFFFFFFFFFF;
int8_t val = 0;

if (size_o % 64) {
val = 64 - (size_o % 64);
}

memcpy(o, v, VEC_N1N2_SIZE_BYTES);

for (int8_t i = 0 ; i < val ; ++i) {
o[VEC_N1N2_SIZE_64 - 1] &= (mask >> i);
}
} else {
memcpy(o, v, CEIL_DIVIDE(size_v, 8));
}
}

+ 31
- 0
crypto_kem/hqc-192/clean/vector.h View File

@@ -0,0 +1,31 @@
#ifndef VECTOR_H
#define VECTOR_H


/**
* @file vector.h
* @brief Header file for vector.c
*/

#include "nistseedexpander.h"
#include "nistseedexpander.h"
#include "randombytes.h"
#include <stdint.h>

void PQCLEAN_HQC192_CLEAN_vect_set_random_fixed_weight_by_coordinates(AES_XOF_struct *ctx, uint32_t *v, uint16_t weight);

void PQCLEAN_HQC192_CLEAN_vect_set_random_fixed_weight(AES_XOF_struct *ctx, uint64_t *v, uint16_t weight);

void PQCLEAN_HQC192_CLEAN_vect_set_random(AES_XOF_struct *ctx, uint64_t *v);

void PQCLEAN_HQC192_CLEAN_vect_set_random_from_randombytes(uint64_t *v);


void PQCLEAN_HQC192_CLEAN_vect_add(uint64_t *o, const uint64_t *v1, const uint64_t *v2, uint32_t size);

int PQCLEAN_HQC192_CLEAN_vect_compare(const uint64_t *v1, const uint64_t *v2, uint32_t size);

void PQCLEAN_HQC192_CLEAN_vect_resize(uint64_t *o, uint32_t size_o, const uint64_t *v, uint32_t size_v);


#endif

Some files were not shown because too many files changed in this diff

Loading…
Cancel
Save