@@ -328,6 +328,7 @@ add_library( | |||
src/common/randombytes.c | |||
src/common/sha2.c | |||
src/common/nistseedexpander.c | |||
src/common/utils.c | |||
src/capi/pqapi.c | |||
${COMMON_EXTRA_SRC}) | |||
@@ -2,6 +2,8 @@ | |||
#define PQC_COMMON_UTILS_ | |||
#include <cpuinfo_x86.h> | |||
#include <stdint.h> | |||
#include <stddef.h> | |||
// Helper to stringify constants | |||
#define STR(x) STR_(x) | |||
@@ -32,6 +34,15 @@ | |||
(((uint16_t)(x)[0])<<8 | \ | |||
((uint16_t)(x)[1])<<0) \ | |||
/** | |||
* \brief Compares two arrays in constant time. | |||
* \param [in] a first array | |||
* \param [in] b second arrray | |||
* \param [in] sz number of bytes to compare | |||
* \returns 0 if arrays are equal, otherwise 1. | |||
*/ | |||
uint8_t ct_memcmp(const void *a, const void *b, size_t sz); | |||
const X86Features * get_cpu_caps(void); | |||
#endif |
@@ -14,6 +14,9 @@ | |||
#include "common.h" | |||
#include "params.h" | |||
#include "common/ct_check.h" | |||
#include "common/utils.h" | |||
int PQCLEAN_FRODOKEM640SHAKE_CLEAN_crypto_kem_keypair(uint8_t *pk, uint8_t *sk) { | |||
// FrodoKEM's key generation | |||
// Outputs: public key pk ( BYTES_SEED_A + (PARAMS_LOGQ*PARAMS_N*PARAMS_NBAR)/8 bytes) | |||
@@ -139,7 +142,6 @@ int PQCLEAN_FRODOKEM640SHAKE_CLEAN_crypto_kem_enc(uint8_t *ct, uint8_t *ss, cons | |||
return 0; | |||
} | |||
int PQCLEAN_FRODOKEM640SHAKE_CLEAN_crypto_kem_dec(uint8_t *ss, const uint8_t *ct, const uint8_t *sk) { | |||
// FrodoKEM's key decapsulation | |||
uint16_t B[PARAMS_N * PARAMS_NBAR] = {0}; | |||
@@ -218,9 +220,25 @@ int PQCLEAN_FRODOKEM640SHAKE_CLEAN_crypto_kem_dec(uint8_t *ss, const uint8_t *ct | |||
// Needs to avoid branching on secret data as per: | |||
// Qian Guo, Thomas Johansson, Alexander Nilsson. A key-recovery timing attack on post-quantum | |||
// primitives using the Fujisaki-Okamoto transformation and its application on FrodoKEM. In CRYPTO 2020. | |||
int8_t selector = PQCLEAN_FRODOKEM640SHAKE_CLEAN_ct_verify(Bp, BBp, PARAMS_N * PARAMS_NBAR) | PQCLEAN_FRODOKEM640SHAKE_CLEAN_ct_verify(C, CC, PARAMS_NBAR * PARAMS_NBAR); | |||
#if 0 | |||
int8_t selector = ct_memcmp(Bp, BBp, PARAMS_N * PARAMS_NBAR) | ct_memcmp(C, CC, PARAMS_NBAR * PARAMS_NBAR); | |||
// If (selector == 0) then load k' to do ss = F(ct || k'), else if (selector == -1) load s to do ss = F(ct || s) | |||
PQCLEAN_FRODOKEM640SHAKE_CLEAN_ct_select((uint8_t *)Fin_k, (uint8_t *)kprime, (uint8_t *)sk_s, CRYPTO_BYTES, selector); | |||
#else | |||
// Is (Bp == BBp & C == CC) = true | |||
//ct_poison(Bp, sizeof(Bp)); | |||
//ct_poison(BBp, sizeof(BBp)); | |||
if (ct_memcmp(Bp, BBp, 2*PARAMS_N*PARAMS_NBAR) == 0 && ct_memcmp(C, CC, 2*PARAMS_NBAR*PARAMS_NBAR) == 0) { | |||
// Load k' to do ss = F(ct || k') | |||
memcpy(Fin_k, kprime, CRYPTO_BYTES); | |||
} else { | |||
// Load s to do ss = F(ct || s) | |||
// This branch is executed when a malicious ciphertext is decapsulated | |||
// and is necessary for security. Note that the known answer tests | |||
// will not exercise this line of code but it should not be removed. | |||
memcpy(Fin_k, sk_s, CRYPTO_BYTES); | |||
} | |||
#endif | |||
shake(ss, CRYPTO_BYTES, Fin, CRYPTO_CIPHERTEXTBYTES + CRYPTO_BYTES); | |||
// Cleanup: | |||
@@ -11,6 +11,8 @@ | |||
#include "common.h" | |||
#include "params.h" | |||
#include "common/ct_check.h" | |||
static inline uint8_t min(uint8_t x, uint8_t y) { | |||
if (x < y) { | |||
return x; | |||
@@ -246,9 +248,9 @@ int8_t PQCLEAN_FRODOKEM640SHAKE_CLEAN_ct_verify(const uint16_t *a, const uint16_ | |||
void PQCLEAN_FRODOKEM640SHAKE_CLEAN_ct_select(uint8_t *r, const uint8_t *a, const uint8_t *b, size_t len, int8_t selector) { | |||
// Select one of the two input arrays to be moved to r | |||
// If (selector == 0) then load r with a, else if (selector == -1) load r with b | |||
uint8_t mask = 0 - selector; | |||
for (size_t i = 0; i < len; i++) { | |||
r[i] = (~selector & a[i]) | (selector & b[i]); | |||
r[i] = (~mask & a[i]) | (mask & b[i]); | |||
} | |||
} | |||
@@ -2,9 +2,12 @@ | |||
#include <gtest/gtest.h> | |||
#include <common/ct_check.h> | |||
#include <stdio.h> | |||
TEST(ConstantTime, CtGrind_Negative) { | |||
extern "C" { | |||
uint8_t ct_memcmp(const void *a, const void *b, size_t sz); | |||
} | |||
TEST(ConstantTime, CtCheck_Negative) { | |||
unsigned char a[16], b[16]; | |||
unsigned i; | |||
memset(a, 42, 16); | |||
@@ -24,7 +27,7 @@ TEST(ConstantTime, CtGrind_Negative) { | |||
ASSERT_EQ(a[0], b[0]); | |||
} | |||
TEST(ConstantTime, CtGrind_Positive_NoAccess) { | |||
TEST(ConstantTime, CtCheck_Positive_NoAccess) { | |||
unsigned i; | |||
char result = 0; | |||
unsigned char a[16], b[16]; | |||
@@ -45,7 +48,7 @@ TEST(ConstantTime, CtGrind_Positive_NoAccess) { | |||
} | |||
TEST(ConstantTime, CtGrind_Negative_UseSecretAsIndex) { | |||
TEST(ConstantTime, CtCheck_Negative_UseSecretAsIndex) { | |||
static const unsigned char tab[2] = {1, 0}; | |||
unsigned char a[16]; | |||
unsigned char result; | |||
@@ -63,3 +66,20 @@ TEST(ConstantTime, CtGrind_Negative_UseSecretAsIndex) { | |||
ct_purify(&result, 1); | |||
ASSERT_EQ(result, 1); | |||
} | |||
TEST(ConstantTime, CtCheck_memcmp) { | |||
unsigned char a[16], b[16]; | |||
memset(a, 42, sizeof(a)); | |||
memset(b, 42, sizeof(b)); | |||
uint8_t ret; | |||
ct_poison(a, 16); | |||
ret = ct_memcmp(a,b,16); | |||
ct_purify(&ret, 1); | |||
ASSERT_EQ(ret,0); | |||
b[1] = 0; | |||
ret = ct_memcmp(a,b,16); | |||
ct_purify(&ret, 1); | |||
ASSERT_EQ(ret,1); | |||
} |
@@ -1,29 +1,31 @@ | |||
#include <algorithm> | |||
#include <random> | |||
#include <vector> | |||
#include <gtest/gtest.h> | |||
#include <pqc/pqc.h> | |||
#include <random> | |||
#include <common/ct_check.h> | |||
TEST(KEM,OneOff) { | |||
for (int i=0; i<PQC_ALG_KEM_MAX; i++) { | |||
const pqc_ctx_t *p = pqc_kem_alg_by_id(i); | |||
std::vector<uint8_t> ct(pqc_ciphertext_bsz(p)); | |||
std::vector<uint8_t> ss1(pqc_shared_secret_bsz(p)); | |||
std::vector<uint8_t> ss2(pqc_shared_secret_bsz(p)); | |||
std::vector<uint8_t> sk(pqc_private_key_bsz(p)); | |||
std::vector<uint8_t> pk(pqc_public_key_bsz(p)); | |||
ASSERT_TRUE( | |||
pqc_keygen(p, pk.data(), sk.data())); | |||
ASSERT_TRUE( | |||
pqc_kem_encapsulate(p, ct.data(), ss1.data(), pk.data())); | |||
ASSERT_TRUE( | |||
pqc_kem_decapsulate(p, ss2.data(), ct.data(), sk.data())); | |||
ASSERT_TRUE( | |||
std::equal(ss1.begin(), ss1.end(), ss2.begin())); | |||
} | |||
for (int i=0; i<PQC_ALG_KEM_MAX; i++) { | |||
const pqc_ctx_t *p = pqc_kem_alg_by_id(i); | |||
std::vector<uint8_t> ct(pqc_ciphertext_bsz(p)); | |||
std::vector<uint8_t> ss1(pqc_shared_secret_bsz(p)); | |||
std::vector<uint8_t> ss2(pqc_shared_secret_bsz(p)); | |||
std::vector<uint8_t> sk(pqc_private_key_bsz(p)); | |||
std::vector<uint8_t> pk(pqc_public_key_bsz(p)); | |||
ASSERT_TRUE( | |||
pqc_keygen(p, pk.data(), sk.data())); | |||
ASSERT_TRUE( | |||
pqc_kem_encapsulate(p, ct.data(), ss1.data(), pk.data())); | |||
ASSERT_TRUE( | |||
pqc_kem_decapsulate(p, ss2.data(), ct.data(), sk.data())); | |||
ASSERT_TRUE( | |||
std::equal(ss1.begin(), ss1.end(), ss2.begin())); | |||
} | |||
} | |||
TEST(SIGN,OneOff) { | |||
@@ -32,21 +34,81 @@ TEST(SIGN,OneOff) { | |||
std::uniform_int_distribution<uint8_t> dist(0, 0xFF); | |||
uint8_t msg[1234] = {0}; | |||
for (int i=0; i<PQC_ALG_SIG_MAX; i++) { | |||
const pqc_ctx_t *p = pqc_sig_alg_by_id(i); | |||
// generate some random msg | |||
for (auto &x : msg) {x = dist(rd);} | |||
std::vector<uint8_t> sig(pqc_signature_bsz(p)); | |||
std::vector<uint8_t> sk(pqc_private_key_bsz(p)); | |||
std::vector<uint8_t> pk(pqc_public_key_bsz(p)); | |||
ASSERT_TRUE( | |||
pqc_keygen(p, pk.data(), sk.data())); | |||
uint64_t sigsz = sig.size(); | |||
ASSERT_TRUE( | |||
pqc_sig_create(p, sig.data(), &sigsz, msg, 1234, sk.data())); | |||
ASSERT_TRUE( | |||
pqc_sig_verify(p, sig.data(), sigsz, msg, 1234, pk.data())); | |||
} | |||
for (int i=0; i<PQC_ALG_SIG_MAX; i++) { | |||
const pqc_ctx_t *p = pqc_sig_alg_by_id(i); | |||
// generate some random msg | |||
for (auto &x : msg) {x = dist(rd);} | |||
std::vector<uint8_t> sig(pqc_signature_bsz(p)); | |||
std::vector<uint8_t> sk(pqc_private_key_bsz(p)); | |||
std::vector<uint8_t> pk(pqc_public_key_bsz(p)); | |||
ASSERT_TRUE( | |||
pqc_keygen(p, pk.data(), sk.data())); | |||
uint64_t sigsz = sig.size(); | |||
ASSERT_TRUE( | |||
pqc_sig_create(p, sig.data(), &sigsz, msg, 1234, sk.data())); | |||
ASSERT_TRUE( | |||
pqc_sig_verify(p, sig.data(), sigsz, msg, 1234, pk.data())); | |||
} | |||
} | |||
TEST(Frodo, Decaps) { | |||
const pqc_ctx_t *p = pqc_kem_alg_by_id(PQC_ALG_KEM_FRODOKEM640SHAKE); | |||
std::vector<uint8_t> ct(pqc_ciphertext_bsz(p)); | |||
std::vector<uint8_t> ss1(pqc_shared_secret_bsz(p)); | |||
std::vector<uint8_t> ss2(pqc_shared_secret_bsz(p)); | |||
std::vector<uint8_t> sk(pqc_private_key_bsz(p)); | |||
std::vector<uint8_t> pk(pqc_public_key_bsz(p)); | |||
bool res; | |||
ASSERT_TRUE( | |||
pqc_keygen(p, pk.data(), sk.data())); | |||
ct_poison(sk.data(), 16 /*CRYPTO_BYTES*/); | |||
ASSERT_TRUE( | |||
pqc_kem_encapsulate(p, ct.data(), ss1.data(), pk.data())); | |||
// Decapsulate | |||
res = pqc_kem_decapsulate(p, ss2.data(), ct.data(), sk.data()); | |||
// Purify res to allow non-ct check by ASSERT_TRUE | |||
ct_purify(&res, 1); | |||
ASSERT_TRUE(res); | |||
// ss2 needs to be purified as it originates from poisoned data | |||
ct_purify(ss2.data(), ss2.size()); | |||
ASSERT_EQ(ss2, ss1); | |||
} | |||
TEST(Frodo, Decaps_Negative) { | |||
const pqc_ctx_t *p = pqc_kem_alg_by_id(PQC_ALG_KEM_FRODOKEM640SHAKE); | |||
std::vector<uint8_t> ct(pqc_ciphertext_bsz(p)); | |||
std::vector<uint8_t> ss1(pqc_shared_secret_bsz(p)); | |||
std::vector<uint8_t> ss2(pqc_shared_secret_bsz(p)); | |||
std::vector<uint8_t> sk(pqc_private_key_bsz(p)); | |||
std::vector<uint8_t> pk(pqc_public_key_bsz(p)); | |||
bool res; | |||
// Setup | |||
ASSERT_TRUE( | |||
pqc_keygen(p, pk.data(), sk.data())); | |||
ct_poison(sk.data(), 16); | |||
ASSERT_TRUE( | |||
pqc_kem_encapsulate(p, ct.data(), ss1.data(), pk.data())); | |||
// Ensure C2 of ciphertext is altered | |||
ct[ct.size() - 1] ^= 1; | |||
res = pqc_kem_decapsulate(p, ss2.data(), ct.data(), sk.data()); | |||
// Purify res to allow non-ct check by ASSERT_TRUE | |||
ct_purify(&res, 1); | |||
ASSERT_TRUE(res); | |||
// ss2 needs to be purified as it originates from poisoned data | |||
ct_purify(ss2.data(), ss2.size()); | |||
ASSERT_NE(ss2, ss1); | |||
} |