@@ -14,5 +14,5 @@ auxiliary-submitters: | |||
- Gerardo Pelosi | |||
- Paolo Santini | |||
implementations: | |||
- name: clean | |||
- name: leaktime | |||
version: 2.? |
@@ -1,11 +0,0 @@ | |||
#ifndef H_Q_MATRICES_GENERATION_H | |||
#define H_Q_MATRICES_GENERATION_H | |||
#include "gf2x_arith.h" | |||
#include "qc_ldpc_parameters.h" | |||
#include "rng.h" | |||
void PQCLEAN_LEDAKEMLT12_CLEAN_generateHPosOnes_HtrPosOnes(POSITION_T HPosOnes[N0][DV], POSITION_T HtrPosOnes[N0][DV], AES_XOF_struct *niederreiter_keys_expander); | |||
void PQCLEAN_LEDAKEMLT12_CLEAN_generateQsparse(POSITION_T pos_ones[N0][M], AES_XOF_struct *niederreiter_keys_expander); | |||
#endif |
@@ -1,18 +0,0 @@ | |||
#ifndef PQCLEAN_LEDAKEMLT12_CLEAN_API_H | |||
#define PQCLEAN_LEDAKEMLT12_CLEAN_API_H | |||
#include <stdint.h> | |||
#define PQCLEAN_LEDAKEMLT12_CLEAN_CRYPTO_SECRETKEYBYTES 26 | |||
#define PQCLEAN_LEDAKEMLT12_CLEAN_CRYPTO_PUBLICKEYBYTES 6520 | |||
#define PQCLEAN_LEDAKEMLT12_CLEAN_CRYPTO_CIPHERTEXTBYTES 6520 | |||
#define PQCLEAN_LEDAKEMLT12_CLEAN_CRYPTO_BYTES 32 | |||
#define PQCLEAN_LEDAKEMLT12_CLEAN_CRYPTO_ALGNAME "LEDAKEMLT12" | |||
int PQCLEAN_LEDAKEMLT12_CLEAN_crypto_kem_keypair(uint8_t *pk, uint8_t *sk); | |||
int PQCLEAN_LEDAKEMLT12_CLEAN_crypto_kem_enc(uint8_t *ct, uint8_t *ss, const uint8_t *pk); | |||
int PQCLEAN_LEDAKEMLT12_CLEAN_crypto_kem_dec(uint8_t *ss, const uint8_t *ct, const uint8_t *sk); | |||
#endif |
@@ -1,8 +0,0 @@ | |||
#ifndef DFR_TEST_H | |||
#define DFR_TEST_H | |||
#define DFR_TEST_FAIL (255) | |||
uint8_t PQCLEAN_LEDAKEMLT12_CLEAN_DFR_test(POSITION_T LSparse[N0][DV * M]); | |||
#endif |
@@ -1,38 +0,0 @@ | |||
#ifndef GF2X_ARITH_MOD_XPLUSONE_H | |||
#define GF2X_ARITH_MOD_XPLUSONE_H | |||
#include "qc_ldpc_parameters.h" | |||
#include "gf2x_arith.h" | |||
#include "rng.h" | |||
#define NUM_BITS_GF2X_ELEMENT (P) // 52147 | |||
#define NUM_DIGITS_GF2X_ELEMENT ((P+DIGIT_SIZE_b-1)/DIGIT_SIZE_b) | |||
#define MSb_POSITION_IN_MSB_DIGIT_OF_ELEMENT ((P % DIGIT_SIZE_b) ? (P % DIGIT_SIZE_b)-1 : DIGIT_SIZE_b-1) | |||
#define NUM_BITS_GF2X_MODULUS (P+1) | |||
#define NUM_DIGITS_GF2X_MODULUS ((P+1+DIGIT_SIZE_b-1)/DIGIT_SIZE_b) | |||
#define MSb_POSITION_IN_MSB_DIGIT_OF_MODULUS (P-DIGIT_SIZE_b*(NUM_DIGITS_GF2X_MODULUS-1)) | |||
#define INVALID_POS_VALUE (P) | |||
#define P_BITS (16) // log_2(p) = 15.6703 | |||
void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_copy(DIGIT dest[], const DIGIT in[]); | |||
DIGIT PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_get_coeff(const DIGIT poly[], unsigned int exponent); | |||
void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_set_coeff(DIGIT poly[], unsigned int exponent, DIGIT value); | |||
void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_toggle_coeff(DIGIT poly[], unsigned int exponent); | |||
int PQCLEAN_LEDAKEMLT12_CLEAN_population_count(DIGIT *poly); | |||
void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mod_add(DIGIT Res[], const DIGIT A[], const DIGIT B[]); | |||
void PQCLEAN_LEDAKEMLT12_CLEAN_quicksort_sparse(POSITION_T Res[]); | |||
void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mod_mul(DIGIT Res[], const DIGIT A[], const DIGIT B[]); | |||
void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_transpose_in_place(DIGIT A[]); | |||
void PQCLEAN_LEDAKEMLT12_CLEAN_rand_circulant_sparse_block(POSITION_T *pos_ones, int countOnes, AES_XOF_struct *seed_expander_ctx); | |||
void PQCLEAN_LEDAKEMLT12_CLEAN_rand_circulant_blocks_sequence(DIGIT *sequence, AES_XOF_struct *seed_expander_ctx); | |||
void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mod_add_sparse(int sizeR, POSITION_T Res[], int sizeA, const POSITION_T A[], int sizeB, const POSITION_T B[]); | |||
void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_transpose_in_place_sparse(int sizeA, POSITION_T A[]); | |||
int PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mod_inverse(DIGIT out[], const DIGIT in[]); | |||
void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mod_mul_sparse(size_t sizeR, POSITION_T Res[], size_t sizeA, const POSITION_T A[], size_t sizeB, const POSITION_T B[]); | |||
void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mod_mul_dense_to_sparse(DIGIT Res[], const DIGIT dense[], POSITION_T sparse[], unsigned int nPos); | |||
void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_tobytes(uint8_t *bytes, const DIGIT *poly); | |||
void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_frombytes(DIGIT *poly, const uint8_t *poly_bytes); | |||
#endif |
@@ -1,13 +1,13 @@ | |||
#include "H_Q_matrices_generation.h" | |||
#include "gf2x_arith_mod_xPplusOne.h" | |||
void PQCLEAN_LEDAKEMLT12_CLEAN_generateHPosOnes_HtrPosOnes( | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_generateHPosOnes_HtrPosOnes( | |||
POSITION_T HPosOnes[N0][DV], | |||
POSITION_T HtrPosOnes[N0][DV], | |||
AES_XOF_struct *keys_expander) { | |||
for (int i = 0; i < N0; i++) { | |||
/* Generate a random block of Htr */ | |||
PQCLEAN_LEDAKEMLT12_CLEAN_rand_circulant_sparse_block(&HtrPosOnes[i][0], DV, keys_expander); | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_rand_circulant_sparse_block(&HtrPosOnes[i][0], DV, keys_expander); | |||
} | |||
for (int i = 0; i < N0; i++) { | |||
/* Obtain directly the sparse representation of the block of H */ | |||
@@ -17,13 +17,13 @@ void PQCLEAN_LEDAKEMLT12_CLEAN_generateHPosOnes_HtrPosOnes( | |||
} | |||
} | |||
void PQCLEAN_LEDAKEMLT12_CLEAN_generateQsparse( | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_generateQsparse( | |||
POSITION_T pos_ones[N0][M], | |||
AES_XOF_struct *keys_expander) { | |||
for (int i = 0; i < N0; i++) { | |||
int placed_ones = 0; | |||
for (int j = 0; j < N0; j++) { | |||
PQCLEAN_LEDAKEMLT12_CLEAN_rand_circulant_sparse_block(&pos_ones[i][placed_ones], | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_rand_circulant_sparse_block(&pos_ones[i][placed_ones], | |||
qBlockWeights[i][j], | |||
keys_expander); | |||
placed_ones += qBlockWeights[i][j]; |
@@ -0,0 +1,11 @@ | |||
#ifndef H_Q_MATRICES_GENERATION_H | |||
#define H_Q_MATRICES_GENERATION_H | |||
#include "gf2x_arith.h" | |||
#include "qc_ldpc_parameters.h" | |||
#include "rng.h" | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_generateHPosOnes_HtrPosOnes(POSITION_T HPosOnes[N0][DV], POSITION_T HtrPosOnes[N0][DV], AES_XOF_struct *niederreiter_keys_expander); | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_generateQsparse(POSITION_T pos_ones[N0][M], AES_XOF_struct *niederreiter_keys_expander); | |||
#endif |
@@ -1,6 +1,6 @@ | |||
# This Makefile can be used with GNU Make or BSD Make | |||
LIB=libledakemlt52_clean.a | |||
LIB=libledakemlt12_leaktime.a | |||
HEADERS=api.h bf_decoding.h dfr_test.h gf2x_arith_mod_xPplusOne.h \ | |||
gf2x_arith.h H_Q_matrices_generation.h \ | |||
niederreiter.h qc_ldpc_parameters.h rng.h |
@@ -1,7 +1,7 @@ | |||
# This Makefile can be used with Microsoft Visual Studio's nmake using the command: | |||
# nmake /f Makefile.Microsoft_nmake | |||
LIBRARY=libledakemlt32_clean.lib | |||
LIBRARY=libledakemlt12_leaktime.lib | |||
OBJECTS=bf_decoding.obj dfr_test.obj gf2x_arith_mod_xPplusOne.obj gf2x_arith.obj H_Q_matrices_generation.obj kem.obj niederreiter.obj rng.obj | |||
CFLAGS=/nologo /I ..\..\..\common /W4 /WX |
@@ -0,0 +1,18 @@ | |||
#ifndef PQCLEAN_LEDAKEMLT12_LEAKTIME_API_H | |||
#define PQCLEAN_LEDAKEMLT12_LEAKTIME_API_H | |||
#include <stdint.h> | |||
#define PQCLEAN_LEDAKEMLT12_LEAKTIME_CRYPTO_SECRETKEYBYTES 26 | |||
#define PQCLEAN_LEDAKEMLT12_LEAKTIME_CRYPTO_PUBLICKEYBYTES 6520 | |||
#define PQCLEAN_LEDAKEMLT12_LEAKTIME_CRYPTO_CIPHERTEXTBYTES 6520 | |||
#define PQCLEAN_LEDAKEMLT12_LEAKTIME_CRYPTO_BYTES 32 | |||
#define PQCLEAN_LEDAKEMLT12_LEAKTIME_CRYPTO_ALGNAME "LEDAKEMLT12" | |||
int PQCLEAN_LEDAKEMLT12_LEAKTIME_crypto_kem_keypair(uint8_t *pk, uint8_t *sk); | |||
int PQCLEAN_LEDAKEMLT12_LEAKTIME_crypto_kem_enc(uint8_t *ct, uint8_t *ss, const uint8_t *pk); | |||
int PQCLEAN_LEDAKEMLT12_LEAKTIME_crypto_kem_dec(uint8_t *ss, const uint8_t *ct, const uint8_t *sk); | |||
#endif |
@@ -4,7 +4,7 @@ | |||
#include <assert.h> | |||
#include <string.h> | |||
int PQCLEAN_LEDAKEMLT12_CLEAN_bf_decoding(DIGIT err[], | |||
int PQCLEAN_LEDAKEMLT12_LEAKTIME_bf_decoding(DIGIT err[], | |||
const POSITION_T HtrPosOnes[N0][DV], | |||
const POSITION_T QtrPosOnes[N0][M], | |||
DIGIT privateSyndrome[], | |||
@@ -18,13 +18,13 @@ int PQCLEAN_LEDAKEMLT12_CLEAN_bf_decoding(DIGIT err[], | |||
unsigned int corrt_syndrome_based; | |||
do { | |||
PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_copy(currSyndrome, privateSyndrome); | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_copy(currSyndrome, privateSyndrome); | |||
memset(unsatParityChecks, 0x00, N0 * P * sizeof(uint8_t)); | |||
for (int i = 0; i < N0; i++) { | |||
for (int valueIdx = 0; valueIdx < P; valueIdx++) { | |||
for (int HtrOneIdx = 0; HtrOneIdx < DV; HtrOneIdx++) { | |||
POSITION_T tmp = (HtrPosOnes[i][HtrOneIdx] + valueIdx) >= P ? (HtrPosOnes[i][HtrOneIdx] + valueIdx) - P : (HtrPosOnes[i][HtrOneIdx] + valueIdx); | |||
if (PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_get_coeff(currSyndrome, tmp)) { | |||
if (PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_get_coeff(currSyndrome, tmp)) { | |||
unsatParityChecks[i * P + valueIdx]++; | |||
} | |||
} | |||
@@ -54,13 +54,13 @@ int PQCLEAN_LEDAKEMLT12_CLEAN_bf_decoding(DIGIT err[], | |||
} | |||
/* Correlation based flipping */ | |||
if (correlation >= corrt_syndrome_based) { | |||
PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_toggle_coeff(err + NUM_DIGITS_GF2X_ELEMENT * i, j); | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_toggle_coeff(err + NUM_DIGITS_GF2X_ELEMENT * i, j); | |||
for (int v = 0; v < M; v++) { | |||
POSITION_T syndromePosToFlip; | |||
for (int HtrOneIdx = 0; HtrOneIdx < DV; HtrOneIdx++) { | |||
syndromePosToFlip = (HtrPosOnes[currQBlkPos[v]][HtrOneIdx] + currQBitPos[v] ); | |||
syndromePosToFlip = syndromePosToFlip >= P ? syndromePosToFlip - P : syndromePosToFlip; | |||
PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_toggle_coeff(privateSyndrome, syndromePosToFlip); | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_toggle_coeff(privateSyndrome, syndromePosToFlip); | |||
} | |||
} // end for v | |||
} // end if |
@@ -9,7 +9,7 @@ | |||
#define B0 (43) | |||
#define T_BAR (4) | |||
int PQCLEAN_LEDAKEMLT12_CLEAN_bf_decoding(DIGIT err[], | |||
int PQCLEAN_LEDAKEMLT12_LEAKTIME_bf_decoding(DIGIT err[], | |||
const POSITION_T HtrPosOnes[N0][DV], | |||
const POSITION_T QtrPosOnes[N0][M], | |||
DIGIT privateSyndrome[], |
@@ -9,7 +9,7 @@ | |||
* computes the threshold for the second iteration of the decoder and returns this values | |||
* (max DV * M), on failure it returns 255 >> DV * M */ | |||
uint8_t PQCLEAN_LEDAKEMLT32_CLEAN_DFR_test(POSITION_T LSparse[N0][DV * M]) { | |||
uint8_t PQCLEAN_LEDAKEMLT12_LEAKTIME_DFR_test(POSITION_T LSparse[N0][DV * M]) { | |||
POSITION_T LSparse_loc[N0][DV * M]; | |||
POSITION_T rotated_column[DV * M]; | |||
@@ -31,7 +31,7 @@ uint8_t PQCLEAN_LEDAKEMLT32_CLEAN_DFR_test(POSITION_T LSparse[N0][DV * M]) { | |||
LSparse_loc[i][j] = (P - LSparse[i][j]); | |||
} | |||
} | |||
PQCLEAN_LEDAKEMLT32_CLEAN_quicksort_sparse(LSparse_loc[i]); | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_quicksort_sparse(LSparse_loc[i]); | |||
} | |||
for (int i = 0; i < N0; i++ ) { | |||
@@ -41,7 +41,7 @@ uint8_t PQCLEAN_LEDAKEMLT32_CLEAN_DFR_test(POSITION_T LSparse[N0][DV * M]) { | |||
for (int idxToRotate = 0; idxToRotate < (DV * M); idxToRotate++) { | |||
rotated_column[idxToRotate] = (LSparse_loc[j][idxToRotate] + k) % P; | |||
} | |||
PQCLEAN_LEDAKEMLT32_CLEAN_quicksort_sparse(rotated_column); | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_quicksort_sparse(rotated_column); | |||
/* compute the intersection amount */ | |||
firstidx = 0, secondidx = 0; | |||
intersectionval = 0; |
@@ -0,0 +1,8 @@ | |||
#ifndef DFR_TEST_H | |||
#define DFR_TEST_H | |||
#define DFR_TEST_FAIL (255) | |||
uint8_t PQCLEAN_LEDAKEMLT12_LEAKTIME_DFR_test(POSITION_T LSparse[N0][DV * M]); | |||
#endif |
@@ -3,14 +3,14 @@ | |||
#include <assert.h> | |||
#include <string.h> // memset(...) | |||
void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_add(DIGIT Res[], const DIGIT A[], const DIGIT B[], int nr) { | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_add(DIGIT Res[], const DIGIT A[], const DIGIT B[], int nr) { | |||
for (int i = 0; i < nr; i++) { | |||
Res[i] = A[i] ^ B[i]; | |||
} | |||
} | |||
/* PRE: MAX ALLOWED ROTATION AMOUNT : DIGIT_SIZE_b */ | |||
void PQCLEAN_LEDAKEMLT52_CLEAN_right_bit_shift_n(int length, DIGIT in[], unsigned int amount) { | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_right_bit_shift_n(int length, DIGIT in[], unsigned int amount) { | |||
assert(amount < DIGIT_SIZE_b); | |||
if ( amount == 0 ) { | |||
return; | |||
@@ -26,7 +26,7 @@ void PQCLEAN_LEDAKEMLT52_CLEAN_right_bit_shift_n(int length, DIGIT in[], unsigne | |||
} | |||
/* PRE: MAX ALLOWED ROTATION AMOUNT : DIGIT_SIZE_b */ | |||
void PQCLEAN_LEDAKEMLT52_CLEAN_left_bit_shift_n(int length, DIGIT in[], unsigned int amount) { | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_left_bit_shift_n(int length, DIGIT in[], unsigned int amount) { | |||
assert(amount < DIGIT_SIZE_b); | |||
if ( amount == 0 ) { | |||
return; | |||
@@ -41,7 +41,7 @@ void PQCLEAN_LEDAKEMLT52_CLEAN_left_bit_shift_n(int length, DIGIT in[], unsigned | |||
in[j] <<= amount; | |||
} | |||
void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mul_comb(int nr, DIGIT Res[], | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mul_comb(int nr, DIGIT Res[], | |||
int na, const DIGIT A[], | |||
int nb, const DIGIT B[]) { | |||
int i, j, k; |
@@ -48,11 +48,11 @@ typedef uint64_t DIGIT; | |||
#define DIGIT_SIZE_b (DIGIT_SIZE_B << 3) | |||
#define POSITION_T uint32_t | |||
#define GF2X_MUL PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mul_comb | |||
#define GF2X_MUL PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mul_comb | |||
void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_add(DIGIT Res[], const DIGIT A[], const DIGIT B[], int nr); | |||
void PQCLEAN_LEDAKEMLT52_CLEAN_right_bit_shift_n(int length, DIGIT in[], unsigned int amount); | |||
void PQCLEAN_LEDAKEMLT52_CLEAN_left_bit_shift_n(int length, DIGIT in[], unsigned int amount); | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_add(DIGIT Res[], const DIGIT A[], const DIGIT B[], int nr); | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_right_bit_shift_n(int length, DIGIT in[], unsigned int amount); | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_left_bit_shift_n(int length, DIGIT in[], unsigned int amount); | |||
void GF2X_MUL(int nr, DIGIT Res[], int na, const DIGIT A[], int nb, const DIGIT B[]); | |||
#endif |
@@ -4,14 +4,14 @@ | |||
#include <assert.h> | |||
#include <string.h> // memcpy(...), memset(...) | |||
void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_copy(DIGIT dest[], const DIGIT in[]) { | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_copy(DIGIT dest[], const DIGIT in[]) { | |||
for (int i = NUM_DIGITS_GF2X_ELEMENT - 1; i >= 0; i--) { | |||
dest[i] = in[i]; | |||
} | |||
} | |||
/* returns the coefficient of the x^exponent term as the LSB of a digit */ | |||
DIGIT PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_get_coeff(const DIGIT poly[], unsigned int exponent) { | |||
DIGIT PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_get_coeff(const DIGIT poly[], unsigned int exponent) { | |||
unsigned int straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent; | |||
unsigned int digitIdx = straightIdx / DIGIT_SIZE_b; | |||
unsigned int inDigitIdx = straightIdx % DIGIT_SIZE_b; | |||
@@ -19,7 +19,7 @@ DIGIT PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_get_coeff(const DIGIT poly[], unsigned int | |||
} | |||
/* sets the coefficient of the x^exponent term as the LSB of a digit */ | |||
void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_set_coeff(DIGIT poly[], unsigned int exponent, DIGIT value) { | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_set_coeff(DIGIT poly[], unsigned int exponent, DIGIT value) { | |||
unsigned int straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent; | |||
unsigned int digitIdx = straightIdx / DIGIT_SIZE_b; | |||
unsigned int inDigitIdx = straightIdx % DIGIT_SIZE_b; | |||
@@ -31,7 +31,7 @@ void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_set_coeff(DIGIT poly[], unsigned int exponen | |||
} | |||
/* toggles (flips) the coefficient of the x^exponent term as the LSB of a digit */ | |||
void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_toggle_coeff(DIGIT poly[], unsigned int exponent) { | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_toggle_coeff(DIGIT poly[], unsigned int exponent) { | |||
unsigned int straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent; | |||
unsigned int digitIdx = straightIdx / DIGIT_SIZE_b; | |||
unsigned int inDigitIdx = straightIdx % DIGIT_SIZE_b; | |||
@@ -51,7 +51,7 @@ static int popcount_uint64t(uint64_t x) { | |||
} | |||
/* population count for a single polynomial */ | |||
int PQCLEAN_LEDAKEMLT12_CLEAN_population_count(DIGIT *poly) { | |||
int PQCLEAN_LEDAKEMLT12_LEAKTIME_population_count(DIGIT *poly) { | |||
int ret = 0; | |||
for (int i = NUM_DIGITS_GF2X_ELEMENT - 1; i >= 0; i--) { | |||
ret += popcount_uint64t(poly[i]); | |||
@@ -59,8 +59,8 @@ int PQCLEAN_LEDAKEMLT12_CLEAN_population_count(DIGIT *poly) { | |||
return ret; | |||
} | |||
void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mod_add(DIGIT Res[], const DIGIT A[], const DIGIT B[]) { | |||
PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_add(Res, A, B, NUM_DIGITS_GF2X_ELEMENT); | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_add(DIGIT Res[], const DIGIT A[], const DIGIT B[]) { | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_add(Res, A, B, NUM_DIGITS_GF2X_ELEMENT); | |||
} | |||
static int partition(POSITION_T arr[], int lo, int hi) { | |||
@@ -82,7 +82,7 @@ static int partition(POSITION_T arr[], int lo, int hi) { | |||
return i + 1; | |||
} | |||
void PQCLEAN_LEDAKEMLT12_CLEAN_quicksort_sparse(POSITION_T Res[]) { | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_quicksort_sparse(POSITION_T Res[]) { | |||
int stack[DV * M]; | |||
int hi, lo, pivot, tos = -1; | |||
stack[++tos] = 0; | |||
@@ -175,7 +175,7 @@ static void left_DIGIT_shift_n(unsigned int length, DIGIT in[], unsigned int amo | |||
/* may shift by an arbitrary amount*/ | |||
static void left_bit_shift_wide_n(const int length, DIGIT in[], unsigned int amount) { | |||
left_DIGIT_shift_n(length, in, amount / DIGIT_SIZE_b); | |||
PQCLEAN_LEDAKEMLT12_CLEAN_left_bit_shift_n(length, in, amount % DIGIT_SIZE_b); | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_left_bit_shift_n(length, in, amount % DIGIT_SIZE_b); | |||
} | |||
/* Hackers delight, reverses a uint64_t */ | |||
@@ -193,7 +193,7 @@ static DIGIT reverse_digit(DIGIT x) { | |||
return x; | |||
} | |||
void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_transpose_in_place(DIGIT A[]) { | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_transpose_in_place(DIGIT A[]) { | |||
/* it keeps the lsb in the same position and | |||
* inverts the sequence of the remaining bits */ | |||
@@ -214,7 +214,7 @@ void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_transpose_in_place(DIGIT A[]) { | |||
A[NUM_DIGITS_GF2X_ELEMENT / 2] = reverse_digit(A[NUM_DIGITS_GF2X_ELEMENT / 2]); | |||
if (slack_bits_amount) { | |||
PQCLEAN_LEDAKEMLT12_CLEAN_right_bit_shift_n(NUM_DIGITS_GF2X_ELEMENT, A, slack_bits_amount); | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_right_bit_shift_n(NUM_DIGITS_GF2X_ELEMENT, A, slack_bits_amount); | |||
} | |||
A[NUM_DIGITS_GF2X_ELEMENT - 1] = (A[NUM_DIGITS_GF2X_ELEMENT - 1] & (~mask)) | a00; | |||
} | |||
@@ -265,7 +265,7 @@ static void gf2x_swap(const int length, DIGIT f[], DIGIT s[]) { | |||
* (Chapter 11 -- Algorithm 11.44 -- pag 223) | |||
* | |||
*/ | |||
int PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mod_inverse(DIGIT out[], const DIGIT in[]) { /* in^{-1} mod x^P-1 */ | |||
int PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_inverse(DIGIT out[], const DIGIT in[]) { /* in^{-1} mod x^P-1 */ | |||
int i; | |||
int delta = 0; | |||
@@ -299,8 +299,8 @@ int PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mod_inverse(DIGIT out[], const DIGIT in[]) { | |||
delta += 1; | |||
} else { | |||
if ( (s[0] & mask) != 0) { | |||
PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_add(s, s, f, NUM_DIGITS_GF2X_MODULUS); | |||
PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mod_add(v, v, u); | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_add(s, s, f, NUM_DIGITS_GF2X_MODULUS); | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_add(v, v, u); | |||
} | |||
left_bit_shift(NUM_DIGITS_GF2X_MODULUS, s); | |||
if ( delta == 0 ) { | |||
@@ -322,7 +322,7 @@ int PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mod_inverse(DIGIT out[], const DIGIT in[]) { | |||
return (delta == 0); | |||
} | |||
void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mod_mul(DIGIT Res[], const DIGIT A[], const DIGIT B[]) { | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_mul(DIGIT Res[], const DIGIT A[], const DIGIT B[]) { | |||
DIGIT aux[2 * NUM_DIGITS_GF2X_ELEMENT]; | |||
GF2X_MUL(2 * NUM_DIGITS_GF2X_ELEMENT, aux, | |||
@@ -334,7 +334,7 @@ void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mod_mul(DIGIT Res[], const DIGIT A[], const | |||
/*PRE: the representation of the sparse coefficients is sorted in increasing | |||
order of the coefficients themselves */ | |||
void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mod_mul_dense_to_sparse( | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_mul_dense_to_sparse( | |||
DIGIT Res[], | |||
const DIGIT dense[], | |||
POSITION_T sparse[], unsigned int nPos) { | |||
@@ -352,7 +352,7 @@ void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mod_mul_dense_to_sparse( | |||
for (unsigned int i = 1; i < nPos; i++) { | |||
if (sparse[i] != INVALID_POS_VALUE) { | |||
left_bit_shift_wide_n(2 * NUM_DIGITS_GF2X_ELEMENT, aux, (sparse[i] - sparse[i - 1]) ); | |||
PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_add(resDouble, aux, resDouble, 2 * NUM_DIGITS_GF2X_ELEMENT); | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_add(resDouble, aux, resDouble, 2 * NUM_DIGITS_GF2X_ELEMENT); | |||
} | |||
} | |||
} | |||
@@ -361,7 +361,7 @@ void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mod_mul_dense_to_sparse( | |||
} | |||
void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_transpose_in_place_sparse(int sizeA, POSITION_T A[]) { | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_transpose_in_place_sparse(int sizeA, POSITION_T A[]) { | |||
POSITION_T t; | |||
int i = 0, j; | |||
@@ -383,7 +383,7 @@ void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_transpose_in_place_sparse(int sizeA, POSITIO | |||
} | |||
void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mod_mul_sparse(size_t sizeR, POSITION_T Res[], | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_mul_sparse(size_t sizeR, POSITION_T Res[], | |||
size_t sizeA, const POSITION_T A[], | |||
size_t sizeB, const POSITION_T B[]) { | |||
@@ -406,7 +406,7 @@ void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mod_mul_sparse(size_t sizeR, POSITION_T Res[ | |||
Res[lastFilledPos] = INVALID_POS_VALUE; | |||
lastFilledPos++; | |||
} | |||
PQCLEAN_LEDAKEMLT12_CLEAN_quicksort_sparse(Res); | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_quicksort_sparse(Res); | |||
/* eliminate duplicates */ | |||
POSITION_T lastReadPos = Res[0]; | |||
int duplicateCount; | |||
@@ -433,7 +433,7 @@ void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mod_mul_sparse(size_t sizeR, POSITION_T Res[ | |||
/* the implementation is safe even in case A or B alias with the result */ | |||
/* PRE: A and B should be sorted and have INVALID_POS_VALUE at the end */ | |||
void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mod_add_sparse( | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_add_sparse( | |||
int sizeR, POSITION_T Res[], | |||
int sizeA, const POSITION_T A[], | |||
int sizeB, const POSITION_T B[]) { | |||
@@ -492,7 +492,7 @@ static uint32_t rand_range(const unsigned int n, const int logn, AES_XOF_struct | |||
uint32_t mask = ( (uint32_t)1 << logn) - 1; | |||
do { | |||
PQCLEAN_LEDAKEMLT12_CLEAN_seedexpander(seed_expander_ctx, rnd_char_buffer, required_rnd_bytes); | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_seedexpander(seed_expander_ctx, rnd_char_buffer, required_rnd_bytes); | |||
/* obtain an endianness independent representation of the generated random | |||
bytes into an unsigned integer */ | |||
rnd_value = ((uint32_t)rnd_char_buffer[3] << 24) + | |||
@@ -507,7 +507,7 @@ static uint32_t rand_range(const unsigned int n, const int logn, AES_XOF_struct | |||
/* Obtains fresh randomness and seed-expands it until all the required positions | |||
* for the '1's in the circulant block are obtained */ | |||
void PQCLEAN_LEDAKEMLT12_CLEAN_rand_circulant_sparse_block(POSITION_T *pos_ones, | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_rand_circulant_sparse_block(POSITION_T *pos_ones, | |||
int countOnes, | |||
AES_XOF_struct *seed_expander_ctx) { | |||
@@ -532,7 +532,7 @@ void PQCLEAN_LEDAKEMLT12_CLEAN_rand_circulant_sparse_block(POSITION_T *pos_ones, | |||
} | |||
/* Returns random weight-t circulant block */ | |||
void PQCLEAN_LEDAKEMLT12_CLEAN_rand_circulant_blocks_sequence( | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_rand_circulant_blocks_sequence( | |||
DIGIT sequence[N0 * NUM_DIGITS_GF2X_ELEMENT], | |||
AES_XOF_struct *seed_expander_ctx) { | |||
@@ -558,13 +558,13 @@ void PQCLEAN_LEDAKEMLT12_CLEAN_rand_circulant_blocks_sequence( | |||
for (int j = 0; j < counter; j++) { | |||
polyIndex = rndPos[j] / P; | |||
exponent = rndPos[j] % P; | |||
PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_set_coeff( sequence + NUM_DIGITS_GF2X_ELEMENT * polyIndex, exponent, | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_set_coeff( sequence + NUM_DIGITS_GF2X_ELEMENT * polyIndex, exponent, | |||
( (DIGIT) 1)); | |||
} | |||
} | |||
void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_tobytes(uint8_t *bytes, const DIGIT *poly) { | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_tobytes(uint8_t *bytes, const DIGIT *poly) { | |||
size_t i, j; | |||
for (i = 0; i < NUM_DIGITS_GF2X_ELEMENT; i++) { | |||
for (j = 0; j < DIGIT_SIZE_B; j++) { | |||
@@ -573,7 +573,7 @@ void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_tobytes(uint8_t *bytes, const DIGIT *poly) { | |||
} | |||
} | |||
void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_frombytes(DIGIT *poly, const uint8_t *poly_bytes) { | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_frombytes(DIGIT *poly, const uint8_t *poly_bytes) { | |||
size_t i, j; | |||
for (i = 0; i < NUM_DIGITS_GF2X_ELEMENT; i++) { | |||
poly[i] = (DIGIT) 0; |
@@ -0,0 +1,38 @@ | |||
#ifndef GF2X_ARITH_MOD_XPLUSONE_H | |||
#define GF2X_ARITH_MOD_XPLUSONE_H | |||
#include "qc_ldpc_parameters.h" | |||
#include "gf2x_arith.h" | |||
#include "rng.h" | |||
#define NUM_BITS_GF2X_ELEMENT (P) // 52147 | |||
#define NUM_DIGITS_GF2X_ELEMENT ((P+DIGIT_SIZE_b-1)/DIGIT_SIZE_b) | |||
#define MSb_POSITION_IN_MSB_DIGIT_OF_ELEMENT ((P % DIGIT_SIZE_b) ? (P % DIGIT_SIZE_b)-1 : DIGIT_SIZE_b-1) | |||
#define NUM_BITS_GF2X_MODULUS (P+1) | |||
#define NUM_DIGITS_GF2X_MODULUS ((P+1+DIGIT_SIZE_b-1)/DIGIT_SIZE_b) | |||
#define MSb_POSITION_IN_MSB_DIGIT_OF_MODULUS (P-DIGIT_SIZE_b*(NUM_DIGITS_GF2X_MODULUS-1)) | |||
#define INVALID_POS_VALUE (P) | |||
#define P_BITS (16) // log_2(p) = 15.6703 | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_copy(DIGIT dest[], const DIGIT in[]); | |||
DIGIT PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_get_coeff(const DIGIT poly[], unsigned int exponent); | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_set_coeff(DIGIT poly[], unsigned int exponent, DIGIT value); | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_toggle_coeff(DIGIT poly[], unsigned int exponent); | |||
int PQCLEAN_LEDAKEMLT12_LEAKTIME_population_count(DIGIT *poly); | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_add(DIGIT Res[], const DIGIT A[], const DIGIT B[]); | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_quicksort_sparse(POSITION_T Res[]); | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_mul(DIGIT Res[], const DIGIT A[], const DIGIT B[]); | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_transpose_in_place(DIGIT A[]); | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_rand_circulant_sparse_block(POSITION_T *pos_ones, int countOnes, AES_XOF_struct *seed_expander_ctx); | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_rand_circulant_blocks_sequence(DIGIT *sequence, AES_XOF_struct *seed_expander_ctx); | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_add_sparse(int sizeR, POSITION_T Res[], int sizeA, const POSITION_T A[], int sizeB, const POSITION_T B[]); | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_transpose_in_place_sparse(int sizeA, POSITION_T A[]); | |||
int PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_inverse(DIGIT out[], const DIGIT in[]); | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_mul_sparse(size_t sizeR, POSITION_T Res[], size_t sizeA, const POSITION_T A[], size_t sizeB, const POSITION_T B[]); | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_mul_dense_to_sparse(DIGIT Res[], const DIGIT dense[], POSITION_T sparse[], unsigned int nPos); | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_tobytes(uint8_t *bytes, const DIGIT *poly); | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_frombytes(DIGIT *poly, const uint8_t *poly_bytes); | |||
#endif |
@@ -8,43 +8,43 @@ | |||
static void pack_pk(uint8_t *pk_bytes, publicKeyNiederreiter_t *pk) { | |||
size_t i; | |||
for (i = 0; i < N0 - 1; i++) { | |||
PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_tobytes(pk_bytes + i * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B, | |||
pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT); | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_tobytes(pk_bytes + i * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B, | |||
pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT); | |||
} | |||
} | |||
static void unpack_pk(publicKeyNiederreiter_t *pk, const uint8_t *pk_bytes) { | |||
size_t i; | |||
for (i = 0; i < N0 - 1; i++) { | |||
PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_frombytes(pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT, | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_frombytes(pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT, | |||
pk_bytes + i * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B); | |||
} | |||
} | |||
static void pack_ct(uint8_t *sk_bytes, DIGIT *ct) { | |||
PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_tobytes(sk_bytes, ct); | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_tobytes(sk_bytes, ct); | |||
} | |||
static void unpack_ct(DIGIT *ct, const uint8_t *ct_bytes) { | |||
PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_frombytes(ct, ct_bytes); | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_frombytes(ct, ct_bytes); | |||
} | |||
static void pack_error(uint8_t *error_bytes, DIGIT *error_digits) { | |||
size_t i; | |||
for (i = 0; i < N0; i++) { | |||
PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_tobytes(error_bytes + i * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B, | |||
error_digits + i * NUM_DIGITS_GF2X_ELEMENT); | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_tobytes(error_bytes + i * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B, | |||
error_digits + i * NUM_DIGITS_GF2X_ELEMENT); | |||
} | |||
} | |||
/* Generates a keypair - pk is the public key and sk is the secret key. */ | |||
int PQCLEAN_LEDAKEMLT32_CLEAN_crypto_kem_keypair(unsigned char *pk, unsigned char *sk) { | |||
int PQCLEAN_LEDAKEMLT12_LEAKTIME_crypto_kem_keypair(unsigned char *pk, unsigned char *sk) { | |||
AES_XOF_struct niederreiter_keys_expander; | |||
publicKeyNiederreiter_t pk_nie; | |||
randombytes(((privateKeyNiederreiter_t *)sk)->prng_seed, TRNG_BYTE_LENGTH); | |||
PQCLEAN_LEDAKEMLT32_CLEAN_seedexpander_from_trng(&niederreiter_keys_expander, ((privateKeyNiederreiter_t *)sk)->prng_seed); | |||
PQCLEAN_LEDAKEMLT32_CLEAN_niederreiter_keygen(&pk_nie, (privateKeyNiederreiter_t *) sk, &niederreiter_keys_expander); | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_seedexpander_from_trng(&niederreiter_keys_expander, ((privateKeyNiederreiter_t *)sk)->prng_seed); | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_niederreiter_keygen(&pk_nie, (privateKeyNiederreiter_t *) sk, &niederreiter_keys_expander); | |||
pack_pk(pk, &pk_nie); | |||
@@ -53,7 +53,7 @@ int PQCLEAN_LEDAKEMLT32_CLEAN_crypto_kem_keypair(unsigned char *pk, unsigned cha | |||
/* Encrypt - pk is the public key, ct is a key encapsulation message | |||
(ciphertext), ss is the shared secret.*/ | |||
int PQCLEAN_LEDAKEMLT32_CLEAN_crypto_kem_enc(unsigned char *ct, unsigned char *ss, const unsigned char *pk) { | |||
int PQCLEAN_LEDAKEMLT12_LEAKTIME_crypto_kem_enc(unsigned char *ct, unsigned char *ss, const unsigned char *pk) { | |||
AES_XOF_struct niederreiter_encap_key_expander; | |||
unsigned char encapsulated_key_seed[TRNG_BYTE_LENGTH]; | |||
DIGIT error_vector[N0 * NUM_DIGITS_GF2X_ELEMENT]; | |||
@@ -64,11 +64,11 @@ int PQCLEAN_LEDAKEMLT32_CLEAN_crypto_kem_enc(unsigned char *ct, unsigned char *s | |||
randombytes(encapsulated_key_seed, TRNG_BYTE_LENGTH); | |||
unpack_pk(&pk_nie, pk); | |||
PQCLEAN_LEDAKEMLT32_CLEAN_seedexpander_from_trng(&niederreiter_encap_key_expander, encapsulated_key_seed); | |||
PQCLEAN_LEDAKEMLT32_CLEAN_rand_circulant_blocks_sequence(error_vector, &niederreiter_encap_key_expander); | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_seedexpander_from_trng(&niederreiter_encap_key_expander, encapsulated_key_seed); | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_rand_circulant_blocks_sequence(error_vector, &niederreiter_encap_key_expander); | |||
pack_error(error_bytes, error_vector); | |||
HASH_FUNCTION(ss, error_bytes, (N0 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B)); | |||
PQCLEAN_LEDAKEMLT32_CLEAN_niederreiter_encrypt(syndrome, &pk_nie, error_vector); | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_niederreiter_encrypt(syndrome, &pk_nie, error_vector); | |||
pack_ct(ct, syndrome); | |||
@@ -78,13 +78,13 @@ int PQCLEAN_LEDAKEMLT32_CLEAN_crypto_kem_enc(unsigned char *ct, unsigned char *s | |||
/* Decrypt - ct is a key encapsulation message (ciphertext), sk is the private | |||
key, ss is the shared secret */ | |||
int PQCLEAN_LEDAKEMLT32_CLEAN_crypto_kem_dec(unsigned char *ss, const unsigned char *ct, const unsigned char *sk) { | |||
int PQCLEAN_LEDAKEMLT12_LEAKTIME_crypto_kem_dec(unsigned char *ss, const unsigned char *ct, const unsigned char *sk) { | |||
DIGIT decoded_error_vector[N0 * NUM_DIGITS_GF2X_ELEMENT]; | |||
uint8_t decoded_error_bytes[N0 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B]; | |||
DIGIT syndrome[NUM_DIGITS_GF2X_ELEMENT]; | |||
unpack_ct(syndrome, ct); | |||
PQCLEAN_LEDAKEMLT32_CLEAN_niederreiter_decrypt(decoded_error_vector, (privateKeyNiederreiter_t *)sk, syndrome); | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_niederreiter_decrypt(decoded_error_vector, (privateKeyNiederreiter_t *)sk, syndrome); | |||
pack_error(decoded_error_bytes, decoded_error_vector); | |||
HASH_FUNCTION(ss, decoded_error_bytes, (N0 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B)); | |||
@@ -8,7 +8,7 @@ | |||
#include <string.h> | |||
void PQCLEAN_LEDAKEMLT52_CLEAN_niederreiter_keygen(publicKeyNiederreiter_t *pk, privateKeyNiederreiter_t *sk, AES_XOF_struct *keys_expander) { | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_niederreiter_keygen(publicKeyNiederreiter_t *pk, privateKeyNiederreiter_t *sk, AES_XOF_struct *keys_expander) { | |||
POSITION_T HPosOnes[N0][DV]; // sequence of N0 circ block matrices (p x p): Hi | |||
POSITION_T HtrPosOnes[N0][DV]; // Sparse tranposed circulant H | |||
@@ -23,8 +23,8 @@ void PQCLEAN_LEDAKEMLT52_CLEAN_niederreiter_keygen(publicKeyNiederreiter_t *pk, | |||
sk->rejections = (int8_t) 0; | |||
do { | |||
PQCLEAN_LEDAKEMLT52_CLEAN_generateHPosOnes_HtrPosOnes(HPosOnes, HtrPosOnes, keys_expander); | |||
PQCLEAN_LEDAKEMLT52_CLEAN_generateQsparse(QPosOnes, keys_expander); | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_generateHPosOnes_HtrPosOnes(HPosOnes, HtrPosOnes, keys_expander); | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_generateQsparse(QPosOnes, keys_expander); | |||
for (int i = 0; i < N0; i++) { | |||
for (int j = 0; j < DV * M; j++) { | |||
LPosOnes[i][j] = INVALID_POS_VALUE; | |||
@@ -34,10 +34,10 @@ void PQCLEAN_LEDAKEMLT52_CLEAN_niederreiter_keygen(publicKeyNiederreiter_t *pk, | |||
memset(processedQOnes, 0x00, sizeof(processedQOnes)); | |||
for (int colQ = 0; colQ < N0; colQ++) { | |||
for (int i = 0; i < N0; i++) { | |||
PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_mul_sparse(DV * M, auxPosOnes, | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_mul_sparse(DV * M, auxPosOnes, | |||
DV, HPosOnes[i], | |||
qBlockWeights[i][colQ], QPosOnes[i] + processedQOnes[i]); | |||
PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_add_sparse(DV * M, LPosOnes[colQ], | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_add_sparse(DV * M, LPosOnes[colQ], | |||
DV * M, LPosOnes[colQ], | |||
DV * M, auxPosOnes); | |||
processedQOnes[i] += qBlockWeights[i][colQ]; | |||
@@ -49,7 +49,7 @@ void PQCLEAN_LEDAKEMLT52_CLEAN_niederreiter_keygen(publicKeyNiederreiter_t *pk, | |||
} | |||
sk->rejections = sk->rejections + 1; | |||
if (is_L_full) { | |||
threshold = PQCLEAN_LEDAKEMLT52_CLEAN_DFR_test(LPosOnes); | |||
threshold = PQCLEAN_LEDAKEMLT12_LEAKTIME_DFR_test(LPosOnes); | |||
} | |||
} while (!is_L_full || threshold == DFR_TEST_FAIL); | |||
sk->rejections = sk->rejections - 1; | |||
@@ -58,41 +58,41 @@ void PQCLEAN_LEDAKEMLT52_CLEAN_niederreiter_keygen(publicKeyNiederreiter_t *pk, | |||
memset(Ln0dense, 0x00, sizeof(Ln0dense)); | |||
for (int j = 0; j < DV * M; j++) { | |||
if (LPosOnes[N0 - 1][j] != INVALID_POS_VALUE) { | |||
PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_set_coeff(Ln0dense, LPosOnes[N0 - 1][j], 1); | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_set_coeff(Ln0dense, LPosOnes[N0 - 1][j], 1); | |||
} | |||
} | |||
memset(Ln0Inv, 0x00, sizeof(Ln0Inv)); | |||
PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_inverse(Ln0Inv, Ln0dense); | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_inverse(Ln0Inv, Ln0dense); | |||
for (int i = 0; i < N0 - 1; i++) { | |||
PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_mul_dense_to_sparse(pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT, | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_mul_dense_to_sparse(pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT, | |||
Ln0Inv, | |||
LPosOnes[i], | |||
DV * M); | |||
} | |||
for (int i = 0; i < N0 - 1; i++) { | |||
PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_transpose_in_place(pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT); | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_transpose_in_place(pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT); | |||
} | |||
} | |||
void PQCLEAN_LEDAKEMLT52_CLEAN_niederreiter_encrypt(DIGIT *syndrome, const publicKeyNiederreiter_t *pk, const DIGIT *err) { | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_niederreiter_encrypt(DIGIT *syndrome, const publicKeyNiederreiter_t *pk, const DIGIT *err) { | |||
int i; | |||
DIGIT saux[NUM_DIGITS_GF2X_ELEMENT]; | |||
memset(syndrome, 0x00, NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B); | |||
for (i = 0; i < N0 - 1; i++) { | |||
PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_mul(saux, | |||
pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT, | |||
err + i * NUM_DIGITS_GF2X_ELEMENT); | |||
PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_add(syndrome, syndrome, saux); | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_mul(saux, | |||
pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT, | |||
err + i * NUM_DIGITS_GF2X_ELEMENT); | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_add(syndrome, syndrome, saux); | |||
} | |||
PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_add(syndrome, syndrome, err + (N0 - 1)*NUM_DIGITS_GF2X_ELEMENT); | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_add(syndrome, syndrome, err + (N0 - 1)*NUM_DIGITS_GF2X_ELEMENT); | |||
} | |||
int PQCLEAN_LEDAKEMLT52_CLEAN_niederreiter_decrypt(DIGIT *err, const privateKeyNiederreiter_t *sk, const DIGIT *syndrome) { | |||
int PQCLEAN_LEDAKEMLT12_LEAKTIME_niederreiter_decrypt(DIGIT *err, const privateKeyNiederreiter_t *sk, const DIGIT *syndrome) { | |||
AES_XOF_struct niederreiter_decrypt_expander; | |||
POSITION_T HPosOnes[N0][DV]; | |||
POSITION_T HtrPosOnes[N0][DV]; | |||
@@ -110,11 +110,11 @@ int PQCLEAN_LEDAKEMLT52_CLEAN_niederreiter_decrypt(DIGIT *err, const privateKeyN | |||
int currQoneIdx, endQblockIdx; | |||
int decryptOk, err_weight; | |||
PQCLEAN_LEDAKEMLT52_CLEAN_seedexpander_from_trng(&niederreiter_decrypt_expander, sk->prng_seed); | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_seedexpander_from_trng(&niederreiter_decrypt_expander, sk->prng_seed); | |||
do { | |||
PQCLEAN_LEDAKEMLT52_CLEAN_generateHPosOnes_HtrPosOnes(HPosOnes, HtrPosOnes, &niederreiter_decrypt_expander); | |||
PQCLEAN_LEDAKEMLT52_CLEAN_generateQsparse(QPosOnes, &niederreiter_decrypt_expander); | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_generateHPosOnes_HtrPosOnes(HPosOnes, HtrPosOnes, &niederreiter_decrypt_expander); | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_generateQsparse(QPosOnes, &niederreiter_decrypt_expander); | |||
for (int i = 0; i < N0; i++) { | |||
for (int j = 0; j < DV * M; j++) { | |||
LPosOnes[i][j] = INVALID_POS_VALUE; | |||
@@ -124,10 +124,10 @@ int PQCLEAN_LEDAKEMLT52_CLEAN_niederreiter_decrypt(DIGIT *err, const privateKeyN | |||
memset(processedQOnes, 0x00, sizeof(processedQOnes)); | |||
for (int colQ = 0; colQ < N0; colQ++) { | |||
for (int i = 0; i < N0; i++) { | |||
PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_mul_sparse(DV * M, auxPosOnes, | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_mul_sparse(DV * M, auxPosOnes, | |||
DV, HPosOnes[i], | |||
qBlockWeights[i][colQ], QPosOnes[i] + processedQOnes[i]); | |||
PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_add_sparse(DV * M, LPosOnes[colQ], | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_add_sparse(DV * M, LPosOnes[colQ], | |||
DV * M, LPosOnes[colQ], | |||
DV * M, auxPosOnes); | |||
processedQOnes[i] += qBlockWeights[i][colQ]; | |||
@@ -156,31 +156,31 @@ int PQCLEAN_LEDAKEMLT52_CLEAN_niederreiter_decrypt(DIGIT *err, const privateKeyN | |||
} | |||
for (int i = 0; i < N0; i++) { | |||
PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_mul_sparse(DV * M, auxSparse, | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_mul_sparse(DV * M, auxSparse, | |||
DV, HPosOnes[i], | |||
qBlockWeights[i][N0 - 1], &QPosOnes[i][ M - qBlockWeights[i][N0 - 1]]); | |||
PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_add_sparse(DV * M, Ln0trSparse, | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_add_sparse(DV * M, Ln0trSparse, | |||
DV * M, Ln0trSparse, | |||
DV * M, auxSparse); | |||
} | |||
PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_transpose_in_place_sparse(DV * M, Ln0trSparse); | |||
PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_mul_dense_to_sparse(privateSyndrome, syndrome, Ln0trSparse, DV * M); | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_transpose_in_place_sparse(DV * M, Ln0trSparse); | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_mul_dense_to_sparse(privateSyndrome, syndrome, Ln0trSparse, DV * M); | |||
/* prepare mockup error vector in case a decoding failure occurs */ | |||
memset(mockup_error_vector, 0x00, N0 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B); | |||
memcpy(mockup_error_vector, syndrome, NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B); | |||
PQCLEAN_LEDAKEMLT52_CLEAN_seedexpander(&niederreiter_decrypt_expander, | |||
((unsigned char *) mockup_error_vector) + (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B), | |||
TRNG_BYTE_LENGTH); | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_seedexpander(&niederreiter_decrypt_expander, | |||
((unsigned char *) mockup_error_vector) + (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B), | |||
TRNG_BYTE_LENGTH); | |||
memset(err, 0x00, N0 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B); | |||
decryptOk = PQCLEAN_LEDAKEMLT52_CLEAN_bf_decoding(err, (const POSITION_T (*)[DV]) HtrPosOnes, | |||
decryptOk = PQCLEAN_LEDAKEMLT12_LEAKTIME_bf_decoding(err, (const POSITION_T (*)[DV]) HtrPosOnes, | |||
(const POSITION_T (*)[M]) QtrPosOnes, privateSyndrome, sk->threshold); | |||
err_weight = 0; | |||
for (int i = 0 ; i < N0; i++) { | |||
err_weight += PQCLEAN_LEDAKEMLT52_CLEAN_population_count(err + (NUM_DIGITS_GF2X_ELEMENT * i)); | |||
err_weight += PQCLEAN_LEDAKEMLT12_LEAKTIME_population_count(err + (NUM_DIGITS_GF2X_ELEMENT * i)); | |||
} | |||
decryptOk = decryptOk && (err_weight == NUM_ERRORS_T); | |||
@@ -21,9 +21,9 @@ typedef struct { | |||
// with P coefficients. | |||
} publicKeyNiederreiter_t; | |||
void PQCLEAN_LEDAKEMLT12_CLEAN_niederreiter_keygen(publicKeyNiederreiter_t *pk, privateKeyNiederreiter_t *sk, AES_XOF_struct *keys_expander); | |||
void PQCLEAN_LEDAKEMLT12_CLEAN_niederreiter_encrypt(DIGIT syndrome[], const publicKeyNiederreiter_t *pk, const DIGIT *err); | |||
int PQCLEAN_LEDAKEMLT12_CLEAN_niederreiter_decrypt(DIGIT *err, const privateKeyNiederreiter_t *sk, const DIGIT *syndrome); | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_niederreiter_keygen(publicKeyNiederreiter_t *pk, privateKeyNiederreiter_t *sk, AES_XOF_struct *keys_expander); | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_niederreiter_encrypt(DIGIT syndrome[], const publicKeyNiederreiter_t *pk, const DIGIT *err); | |||
int PQCLEAN_LEDAKEMLT12_LEAKTIME_niederreiter_decrypt(DIGIT *err, const privateKeyNiederreiter_t *sk, const DIGIT *syndrome); | |||
#endif |
@@ -37,7 +37,7 @@ static void seedexpander_init(AES_XOF_struct *ctx, | |||
memset(ctx->buffer, 0x00, 16); | |||
} | |||
void PQCLEAN_LEDAKEMLT12_CLEAN_seedexpander_from_trng(AES_XOF_struct *ctx, | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_seedexpander_from_trng(AES_XOF_struct *ctx, | |||
const unsigned char *trng_entropy | |||
/* TRNG_BYTE_LENGTH wide buffer */) { | |||
@@ -61,7 +61,7 @@ void PQCLEAN_LEDAKEMLT12_CLEAN_seedexpander_from_trng(AES_XOF_struct *ctx, | |||
x - returns the XOF data | |||
xlen - number of bytes to return | |||
*/ | |||
int PQCLEAN_LEDAKEMLT12_CLEAN_seedexpander(AES_XOF_struct *ctx, unsigned char *x, size_t xlen) { | |||
int PQCLEAN_LEDAKEMLT12_LEAKTIME_seedexpander(AES_XOF_struct *ctx, unsigned char *x, size_t xlen) { | |||
size_t offset; | |||
aes256ctx ctx256; | |||
@@ -18,7 +18,7 @@ typedef struct { | |||
unsigned char ctr[16]; | |||
} AES_XOF_struct; | |||
int PQCLEAN_LEDAKEMLT12_CLEAN_seedexpander(AES_XOF_struct *ctx, unsigned char *x, size_t xlen); | |||
void PQCLEAN_LEDAKEMLT12_CLEAN_seedexpander_from_trng(AES_XOF_struct *ctx, const unsigned char *trng_entropy); | |||
int PQCLEAN_LEDAKEMLT12_LEAKTIME_seedexpander(AES_XOF_struct *ctx, unsigned char *x, size_t xlen); | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_seedexpander_from_trng(AES_XOF_struct *ctx, const unsigned char *trng_entropy); | |||
#endif |
@@ -14,5 +14,5 @@ auxiliary-submitters: | |||
- Gerardo Pelosi | |||
- Paolo Santini | |||
implementations: | |||
- name: clean | |||
- name: leaktime | |||
version: 2.? |
@@ -1,11 +0,0 @@ | |||
#ifndef H_Q_MATRICES_GENERATION_H | |||
#define H_Q_MATRICES_GENERATION_H | |||
#include "gf2x_arith.h" | |||
#include "qc_ldpc_parameters.h" | |||
#include "rng.h" | |||
void PQCLEAN_LEDAKEMLT32_CLEAN_generateHPosOnes_HtrPosOnes(POSITION_T HPosOnes[N0][DV], POSITION_T HtrPosOnes[N0][DV], AES_XOF_struct *niederreiter_keys_expander); | |||
void PQCLEAN_LEDAKEMLT32_CLEAN_generateQsparse(POSITION_T pos_ones[N0][M], AES_XOF_struct *niederreiter_keys_expander); | |||
#endif |
@@ -1,18 +0,0 @@ | |||
#ifndef PQCLEAN_LEDAKEMLT32_CLEAN_API_H | |||
#define PQCLEAN_LEDAKEMLT32_CLEAN_API_H | |||
#include <stdint.h> | |||
#define PQCLEAN_LEDAKEMLT32_CLEAN_CRYPTO_SECRETKEYBYTES 34 | |||
#define PQCLEAN_LEDAKEMLT32_CLEAN_CRYPTO_PUBLICKEYBYTES 12032 | |||
#define PQCLEAN_LEDAKEMLT32_CLEAN_CRYPTO_CIPHERTEXTBYTES 12032 | |||
#define PQCLEAN_LEDAKEMLT32_CLEAN_CRYPTO_BYTES 48 | |||
#define PQCLEAN_LEDAKEMLT32_CLEAN_CRYPTO_ALGNAME "LEDAKEMLT32" | |||
int PQCLEAN_LEDAKEMLT32_CLEAN_crypto_kem_keypair(uint8_t *pk, uint8_t *sk); | |||
int PQCLEAN_LEDAKEMLT32_CLEAN_crypto_kem_enc(uint8_t *ct, uint8_t *ss, const uint8_t *pk); | |||
int PQCLEAN_LEDAKEMLT32_CLEAN_crypto_kem_dec(uint8_t *ss, const uint8_t *ct, const uint8_t *sk); | |||
#endif |
@@ -1,8 +0,0 @@ | |||
#ifndef DFR_TEST_H | |||
#define DFR_TEST_H | |||
#define DFR_TEST_FAIL (255) | |||
uint8_t PQCLEAN_LEDAKEMLT32_CLEAN_DFR_test(POSITION_T LSparse[N0][DV * M]); | |||
#endif |
@@ -1,38 +0,0 @@ | |||
#ifndef GF2X_ARITH_MOD_XPLUSONE_H | |||
#define GF2X_ARITH_MOD_XPLUSONE_H | |||
#include "qc_ldpc_parameters.h" | |||
#include "gf2x_arith.h" | |||
#include "rng.h" | |||
#define NUM_BITS_GF2X_ELEMENT (P) // 96221 | |||
#define NUM_DIGITS_GF2X_ELEMENT ((P+DIGIT_SIZE_b-1)/DIGIT_SIZE_b) | |||
#define MSb_POSITION_IN_MSB_DIGIT_OF_ELEMENT ((P % DIGIT_SIZE_b) ? (P % DIGIT_SIZE_b)-1 : DIGIT_SIZE_b-1) | |||
#define NUM_BITS_GF2X_MODULUS (P+1) | |||
#define NUM_DIGITS_GF2X_MODULUS ((P+1+DIGIT_SIZE_b-1)/DIGIT_SIZE_b) | |||
#define MSb_POSITION_IN_MSB_DIGIT_OF_MODULUS (P-DIGIT_SIZE_b*(NUM_DIGITS_GF2X_MODULUS-1)) | |||
#define INVALID_POS_VALUE (P) | |||
#define P_BITS (17) // log_2(p) = 16.55406417 | |||
void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_copy(DIGIT dest[], const DIGIT in[]); | |||
DIGIT PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_get_coeff(const DIGIT poly[], unsigned int exponent); | |||
void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_set_coeff(DIGIT poly[], unsigned int exponent, DIGIT value); | |||
void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_toggle_coeff(DIGIT poly[], unsigned int exponent); | |||
int PQCLEAN_LEDAKEMLT32_CLEAN_population_count(DIGIT *poly); | |||
void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mod_add(DIGIT Res[], const DIGIT A[], const DIGIT B[]); | |||
void PQCLEAN_LEDAKEMLT32_CLEAN_quicksort_sparse(POSITION_T Res[]); | |||
void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mod_mul(DIGIT Res[], const DIGIT A[], const DIGIT B[]); | |||
void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_transpose_in_place(DIGIT A[]); | |||
void PQCLEAN_LEDAKEMLT32_CLEAN_rand_circulant_sparse_block(POSITION_T *pos_ones, int countOnes, AES_XOF_struct *seed_expander_ctx); | |||
void PQCLEAN_LEDAKEMLT32_CLEAN_rand_circulant_blocks_sequence(DIGIT *sequence, AES_XOF_struct *seed_expander_ctx); | |||
void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mod_add_sparse(int sizeR, POSITION_T Res[], int sizeA, const POSITION_T A[], int sizeB, const POSITION_T B[]); | |||
void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_transpose_in_place_sparse(int sizeA, POSITION_T A[]); | |||
int PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mod_inverse(DIGIT out[], const DIGIT in[]); | |||
void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mod_mul_sparse(size_t sizeR, POSITION_T Res[], size_t sizeA, const POSITION_T A[], size_t sizeB, const POSITION_T B[]); | |||
void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mod_mul_dense_to_sparse(DIGIT Res[], const DIGIT dense[], POSITION_T sparse[], unsigned int nPos); | |||
void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_tobytes(uint8_t *bytes, const DIGIT *poly); | |||
void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_frombytes(DIGIT *poly, const uint8_t *poly_bytes); | |||
#endif |
@@ -1,13 +1,13 @@ | |||
#include "H_Q_matrices_generation.h" | |||
#include "gf2x_arith_mod_xPplusOne.h" | |||
void PQCLEAN_LEDAKEMLT52_CLEAN_generateHPosOnes_HtrPosOnes( | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_generateHPosOnes_HtrPosOnes( | |||
POSITION_T HPosOnes[N0][DV], | |||
POSITION_T HtrPosOnes[N0][DV], | |||
AES_XOF_struct *keys_expander) { | |||
for (int i = 0; i < N0; i++) { | |||
/* Generate a random block of Htr */ | |||
PQCLEAN_LEDAKEMLT52_CLEAN_rand_circulant_sparse_block(&HtrPosOnes[i][0], DV, keys_expander); | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_rand_circulant_sparse_block(&HtrPosOnes[i][0], DV, keys_expander); | |||
} | |||
for (int i = 0; i < N0; i++) { | |||
/* Obtain directly the sparse representation of the block of H */ | |||
@@ -17,13 +17,13 @@ void PQCLEAN_LEDAKEMLT52_CLEAN_generateHPosOnes_HtrPosOnes( | |||
} | |||
} | |||
void PQCLEAN_LEDAKEMLT52_CLEAN_generateQsparse( | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_generateQsparse( | |||
POSITION_T pos_ones[N0][M], | |||
AES_XOF_struct *keys_expander) { | |||
for (int i = 0; i < N0; i++) { | |||
int placed_ones = 0; | |||
for (int j = 0; j < N0; j++) { | |||
PQCLEAN_LEDAKEMLT52_CLEAN_rand_circulant_sparse_block(&pos_ones[i][placed_ones], | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_rand_circulant_sparse_block(&pos_ones[i][placed_ones], | |||
qBlockWeights[i][j], | |||
keys_expander); | |||
placed_ones += qBlockWeights[i][j]; |
@@ -0,0 +1,11 @@ | |||
#ifndef H_Q_MATRICES_GENERATION_H | |||
#define H_Q_MATRICES_GENERATION_H | |||
#include "gf2x_arith.h" | |||
#include "qc_ldpc_parameters.h" | |||
#include "rng.h" | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_generateHPosOnes_HtrPosOnes(POSITION_T HPosOnes[N0][DV], POSITION_T HtrPosOnes[N0][DV], AES_XOF_struct *niederreiter_keys_expander); | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_generateQsparse(POSITION_T pos_ones[N0][M], AES_XOF_struct *niederreiter_keys_expander); | |||
#endif |
@@ -1,6 +1,6 @@ | |||
# This Makefile can be used with GNU Make or BSD Make | |||
LIB=libledakemlt32_clean.a | |||
LIB=libledakemlt32_leaktime.a | |||
HEADERS=api.h bf_decoding.h dfr_test.h gf2x_arith_mod_xPplusOne.h \ | |||
gf2x_arith.h H_Q_matrices_generation.h \ | |||
niederreiter.h qc_ldpc_parameters.h rng.h |
@@ -1,7 +1,7 @@ | |||
# This Makefile can be used with Microsoft Visual Studio's nmake using the command: | |||
# nmake /f Makefile.Microsoft_nmake | |||
LIBRARY=libledakemlt52_clean.lib | |||
LIBRARY=libledakemlt32_leaktime.lib | |||
OBJECTS=bf_decoding.obj dfr_test.obj gf2x_arith_mod_xPplusOne.obj gf2x_arith.obj H_Q_matrices_generation.obj kem.obj niederreiter.obj rng.obj | |||
CFLAGS=/nologo /I ..\..\..\common /W4 /WX |
@@ -0,0 +1,18 @@ | |||
#ifndef PQCLEAN_LEDAKEMLT32_LEAKTIME_API_H | |||
#define PQCLEAN_LEDAKEMLT32_LEAKTIME_API_H | |||
#include <stdint.h> | |||
#define PQCLEAN_LEDAKEMLT32_LEAKTIME_CRYPTO_SECRETKEYBYTES 34 | |||
#define PQCLEAN_LEDAKEMLT32_LEAKTIME_CRYPTO_PUBLICKEYBYTES 12032 | |||
#define PQCLEAN_LEDAKEMLT32_LEAKTIME_CRYPTO_CIPHERTEXTBYTES 12032 | |||
#define PQCLEAN_LEDAKEMLT32_LEAKTIME_CRYPTO_BYTES 48 | |||
#define PQCLEAN_LEDAKEMLT32_LEAKTIME_CRYPTO_ALGNAME "LEDAKEMLT32" | |||
int PQCLEAN_LEDAKEMLT32_LEAKTIME_crypto_kem_keypair(uint8_t *pk, uint8_t *sk); | |||
int PQCLEAN_LEDAKEMLT32_LEAKTIME_crypto_kem_enc(uint8_t *ct, uint8_t *ss, const uint8_t *pk); | |||
int PQCLEAN_LEDAKEMLT32_LEAKTIME_crypto_kem_dec(uint8_t *ss, const uint8_t *ct, const uint8_t *sk); | |||
#endif |
@@ -4,7 +4,7 @@ | |||
#include <assert.h> | |||
#include <string.h> | |||
int PQCLEAN_LEDAKEMLT52_CLEAN_bf_decoding(DIGIT err[], | |||
int PQCLEAN_LEDAKEMLT32_LEAKTIME_bf_decoding(DIGIT err[], | |||
const POSITION_T HtrPosOnes[N0][DV], | |||
const POSITION_T QtrPosOnes[N0][M], | |||
DIGIT privateSyndrome[], | |||
@@ -18,13 +18,13 @@ int PQCLEAN_LEDAKEMLT52_CLEAN_bf_decoding(DIGIT err[], | |||
unsigned int corrt_syndrome_based; | |||
do { | |||
PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_copy(currSyndrome, privateSyndrome); | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_copy(currSyndrome, privateSyndrome); | |||
memset(unsatParityChecks, 0x00, N0 * P * sizeof(uint8_t)); | |||
for (int i = 0; i < N0; i++) { | |||
for (int valueIdx = 0; valueIdx < P; valueIdx++) { | |||
for (int HtrOneIdx = 0; HtrOneIdx < DV; HtrOneIdx++) { | |||
POSITION_T tmp = (HtrPosOnes[i][HtrOneIdx] + valueIdx) >= P ? (HtrPosOnes[i][HtrOneIdx] + valueIdx) - P : (HtrPosOnes[i][HtrOneIdx] + valueIdx); | |||
if (PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_get_coeff(currSyndrome, tmp)) { | |||
if (PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_get_coeff(currSyndrome, tmp)) { | |||
unsatParityChecks[i * P + valueIdx]++; | |||
} | |||
} | |||
@@ -54,13 +54,13 @@ int PQCLEAN_LEDAKEMLT52_CLEAN_bf_decoding(DIGIT err[], | |||
} | |||
/* Correlation based flipping */ | |||
if (correlation >= corrt_syndrome_based) { | |||
PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_toggle_coeff(err + NUM_DIGITS_GF2X_ELEMENT * i, j); | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_toggle_coeff(err + NUM_DIGITS_GF2X_ELEMENT * i, j); | |||
for (int v = 0; v < M; v++) { | |||
POSITION_T syndromePosToFlip; | |||
for (int HtrOneIdx = 0; HtrOneIdx < DV; HtrOneIdx++) { | |||
syndromePosToFlip = (HtrPosOnes[currQBlkPos[v]][HtrOneIdx] + currQBitPos[v] ); | |||
syndromePosToFlip = syndromePosToFlip >= P ? syndromePosToFlip - P : syndromePosToFlip; | |||
PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_toggle_coeff(privateSyndrome, syndromePosToFlip); | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_toggle_coeff(privateSyndrome, syndromePosToFlip); | |||
} | |||
} // end for v | |||
} // end if |
@@ -9,7 +9,7 @@ | |||
#define B0 (64) | |||
#define T_BAR (5) | |||
int PQCLEAN_LEDAKEMLT32_CLEAN_bf_decoding(DIGIT err[], | |||
int PQCLEAN_LEDAKEMLT32_LEAKTIME_bf_decoding(DIGIT err[], | |||
const POSITION_T HtrPosOnes[N0][DV], | |||
const POSITION_T QtrPosOnes[N0][M], | |||
DIGIT privateSyndrome[], |
@@ -9,7 +9,7 @@ | |||
* computes the threshold for the second iteration of the decoder and returns this values | |||
* (max DV * M), on failure it returns 255 >> DV * M */ | |||
uint8_t PQCLEAN_LEDAKEMLT12_CLEAN_DFR_test(POSITION_T LSparse[N0][DV * M]) { | |||
uint8_t PQCLEAN_LEDAKEMLT32_LEAKTIME_DFR_test(POSITION_T LSparse[N0][DV * M]) { | |||
POSITION_T LSparse_loc[N0][DV * M]; | |||
POSITION_T rotated_column[DV * M]; | |||
@@ -31,7 +31,7 @@ uint8_t PQCLEAN_LEDAKEMLT12_CLEAN_DFR_test(POSITION_T LSparse[N0][DV * M]) { | |||
LSparse_loc[i][j] = (P - LSparse[i][j]); | |||
} | |||
} | |||
PQCLEAN_LEDAKEMLT12_CLEAN_quicksort_sparse(LSparse_loc[i]); | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_quicksort_sparse(LSparse_loc[i]); | |||
} | |||
for (int i = 0; i < N0; i++ ) { | |||
@@ -41,7 +41,7 @@ uint8_t PQCLEAN_LEDAKEMLT12_CLEAN_DFR_test(POSITION_T LSparse[N0][DV * M]) { | |||
for (int idxToRotate = 0; idxToRotate < (DV * M); idxToRotate++) { | |||
rotated_column[idxToRotate] = (LSparse_loc[j][idxToRotate] + k) % P; | |||
} | |||
PQCLEAN_LEDAKEMLT12_CLEAN_quicksort_sparse(rotated_column); | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_quicksort_sparse(rotated_column); | |||
/* compute the intersection amount */ | |||
firstidx = 0, secondidx = 0; | |||
intersectionval = 0; |
@@ -0,0 +1,8 @@ | |||
#ifndef DFR_TEST_H | |||
#define DFR_TEST_H | |||
#define DFR_TEST_FAIL (255) | |||
uint8_t PQCLEAN_LEDAKEMLT32_LEAKTIME_DFR_test(POSITION_T LSparse[N0][DV * M]); | |||
#endif |
@@ -3,14 +3,14 @@ | |||
#include <assert.h> | |||
#include <string.h> // memset(...) | |||
void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_add(DIGIT Res[], const DIGIT A[], const DIGIT B[], int nr) { | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_add(DIGIT Res[], const DIGIT A[], const DIGIT B[], int nr) { | |||
for (int i = 0; i < nr; i++) { | |||
Res[i] = A[i] ^ B[i]; | |||
} | |||
} | |||
/* PRE: MAX ALLOWED ROTATION AMOUNT : DIGIT_SIZE_b */ | |||
void PQCLEAN_LEDAKEMLT12_CLEAN_right_bit_shift_n(int length, DIGIT in[], unsigned int amount) { | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_right_bit_shift_n(int length, DIGIT in[], unsigned int amount) { | |||
assert(amount < DIGIT_SIZE_b); | |||
if ( amount == 0 ) { | |||
return; | |||
@@ -26,7 +26,7 @@ void PQCLEAN_LEDAKEMLT12_CLEAN_right_bit_shift_n(int length, DIGIT in[], unsigne | |||
} | |||
/* PRE: MAX ALLOWED ROTATION AMOUNT : DIGIT_SIZE_b */ | |||
void PQCLEAN_LEDAKEMLT12_CLEAN_left_bit_shift_n(int length, DIGIT in[], unsigned int amount) { | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_left_bit_shift_n(int length, DIGIT in[], unsigned int amount) { | |||
assert(amount < DIGIT_SIZE_b); | |||
if ( amount == 0 ) { | |||
return; | |||
@@ -41,7 +41,7 @@ void PQCLEAN_LEDAKEMLT12_CLEAN_left_bit_shift_n(int length, DIGIT in[], unsigned | |||
in[j] <<= amount; | |||
} | |||
void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mul_comb(int nr, DIGIT Res[], | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mul_comb(int nr, DIGIT Res[], | |||
int na, const DIGIT A[], | |||
int nb, const DIGIT B[]) { | |||
int i, j, k; |
@@ -48,11 +48,11 @@ typedef uint64_t DIGIT; | |||
#define DIGIT_SIZE_b (DIGIT_SIZE_B << 3) | |||
#define POSITION_T uint32_t | |||
#define GF2X_MUL PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mul_comb | |||
#define GF2X_MUL PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mul_comb | |||
void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_add(DIGIT Res[], const DIGIT A[], const DIGIT B[], int nr); | |||
void PQCLEAN_LEDAKEMLT32_CLEAN_right_bit_shift_n(int length, DIGIT in[], unsigned int amount); | |||
void PQCLEAN_LEDAKEMLT32_CLEAN_left_bit_shift_n(int length, DIGIT in[], unsigned int amount); | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_add(DIGIT Res[], const DIGIT A[], const DIGIT B[], int nr); | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_right_bit_shift_n(int length, DIGIT in[], unsigned int amount); | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_left_bit_shift_n(int length, DIGIT in[], unsigned int amount); | |||
void GF2X_MUL(int nr, DIGIT Res[], int na, const DIGIT A[], int nb, const DIGIT B[]); | |||
#endif |
@@ -4,14 +4,14 @@ | |||
#include <assert.h> | |||
#include <string.h> // memcpy(...), memset(...) | |||
void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_copy(DIGIT dest[], const DIGIT in[]) { | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_copy(DIGIT dest[], const DIGIT in[]) { | |||
for (int i = NUM_DIGITS_GF2X_ELEMENT - 1; i >= 0; i--) { | |||
dest[i] = in[i]; | |||
} | |||
} | |||
/* returns the coefficient of the x^exponent term as the LSB of a digit */ | |||
DIGIT PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_get_coeff(const DIGIT poly[], unsigned int exponent) { | |||
DIGIT PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_get_coeff(const DIGIT poly[], unsigned int exponent) { | |||
unsigned int straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent; | |||
unsigned int digitIdx = straightIdx / DIGIT_SIZE_b; | |||
unsigned int inDigitIdx = straightIdx % DIGIT_SIZE_b; | |||
@@ -19,7 +19,7 @@ DIGIT PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_get_coeff(const DIGIT poly[], unsigned int | |||
} | |||
/* sets the coefficient of the x^exponent term as the LSB of a digit */ | |||
void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_set_coeff(DIGIT poly[], unsigned int exponent, DIGIT value) { | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_set_coeff(DIGIT poly[], unsigned int exponent, DIGIT value) { | |||
unsigned int straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent; | |||
unsigned int digitIdx = straightIdx / DIGIT_SIZE_b; | |||
unsigned int inDigitIdx = straightIdx % DIGIT_SIZE_b; | |||
@@ -31,7 +31,7 @@ void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_set_coeff(DIGIT poly[], unsigned int exponen | |||
} | |||
/* toggles (flips) the coefficient of the x^exponent term as the LSB of a digit */ | |||
void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_toggle_coeff(DIGIT poly[], unsigned int exponent) { | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_toggle_coeff(DIGIT poly[], unsigned int exponent) { | |||
unsigned int straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent; | |||
unsigned int digitIdx = straightIdx / DIGIT_SIZE_b; | |||
unsigned int inDigitIdx = straightIdx % DIGIT_SIZE_b; | |||
@@ -51,7 +51,7 @@ static int popcount_uint64t(uint64_t x) { | |||
} | |||
/* population count for a single polynomial */ | |||
int PQCLEAN_LEDAKEMLT32_CLEAN_population_count(DIGIT *poly) { | |||
int PQCLEAN_LEDAKEMLT32_LEAKTIME_population_count(DIGIT *poly) { | |||
int ret = 0; | |||
for (int i = NUM_DIGITS_GF2X_ELEMENT - 1; i >= 0; i--) { | |||
ret += popcount_uint64t(poly[i]); | |||
@@ -59,8 +59,8 @@ int PQCLEAN_LEDAKEMLT32_CLEAN_population_count(DIGIT *poly) { | |||
return ret; | |||
} | |||
void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mod_add(DIGIT Res[], const DIGIT A[], const DIGIT B[]) { | |||
PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_add(Res, A, B, NUM_DIGITS_GF2X_ELEMENT); | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_add(DIGIT Res[], const DIGIT A[], const DIGIT B[]) { | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_add(Res, A, B, NUM_DIGITS_GF2X_ELEMENT); | |||
} | |||
static int partition(POSITION_T arr[], int lo, int hi) { | |||
@@ -82,7 +82,7 @@ static int partition(POSITION_T arr[], int lo, int hi) { | |||
return i + 1; | |||
} | |||
void PQCLEAN_LEDAKEMLT32_CLEAN_quicksort_sparse(POSITION_T Res[]) { | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_quicksort_sparse(POSITION_T Res[]) { | |||
int stack[DV * M]; | |||
int hi, lo, pivot, tos = -1; | |||
stack[++tos] = 0; | |||
@@ -175,7 +175,7 @@ static void left_DIGIT_shift_n(unsigned int length, DIGIT in[], unsigned int amo | |||
/* may shift by an arbitrary amount*/ | |||
static void left_bit_shift_wide_n(const int length, DIGIT in[], unsigned int amount) { | |||
left_DIGIT_shift_n(length, in, amount / DIGIT_SIZE_b); | |||
PQCLEAN_LEDAKEMLT32_CLEAN_left_bit_shift_n(length, in, amount % DIGIT_SIZE_b); | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_left_bit_shift_n(length, in, amount % DIGIT_SIZE_b); | |||
} | |||
/* Hackers delight, reverses a uint64_t */ | |||
@@ -193,7 +193,7 @@ static DIGIT reverse_digit(DIGIT x) { | |||
return x; | |||
} | |||
void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_transpose_in_place(DIGIT A[]) { | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_transpose_in_place(DIGIT A[]) { | |||
/* it keeps the lsb in the same position and | |||
* inverts the sequence of the remaining bits */ | |||
@@ -214,7 +214,7 @@ void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_transpose_in_place(DIGIT A[]) { | |||
// A[NUM_DIGITS_GF2X_ELEMENT / 2] = reverse_digit(A[NUM_DIGITS_GF2X_ELEMENT / 2]); // no middle digit | |||
if (slack_bits_amount) { | |||
PQCLEAN_LEDAKEMLT32_CLEAN_right_bit_shift_n(NUM_DIGITS_GF2X_ELEMENT, A, slack_bits_amount); | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_right_bit_shift_n(NUM_DIGITS_GF2X_ELEMENT, A, slack_bits_amount); | |||
} | |||
A[NUM_DIGITS_GF2X_ELEMENT - 1] = (A[NUM_DIGITS_GF2X_ELEMENT - 1] & (~mask)) | a00; | |||
} | |||
@@ -265,7 +265,7 @@ static void gf2x_swap(const int length, DIGIT f[], DIGIT s[]) { | |||
* (Chapter 11 -- Algorithm 11.44 -- pag 223) | |||
* | |||
*/ | |||
int PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mod_inverse(DIGIT out[], const DIGIT in[]) { /* in^{-1} mod x^P-1 */ | |||
int PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_inverse(DIGIT out[], const DIGIT in[]) { /* in^{-1} mod x^P-1 */ | |||
int i; | |||
int delta = 0; | |||
@@ -299,8 +299,8 @@ int PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mod_inverse(DIGIT out[], const DIGIT in[]) { | |||
delta += 1; | |||
} else { | |||
if ( (s[0] & mask) != 0) { | |||
PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_add(s, s, f, NUM_DIGITS_GF2X_MODULUS); | |||
PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mod_add(v, v, u); | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_add(s, s, f, NUM_DIGITS_GF2X_MODULUS); | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_add(v, v, u); | |||
} | |||
left_bit_shift(NUM_DIGITS_GF2X_MODULUS, s); | |||
if ( delta == 0 ) { | |||
@@ -322,7 +322,7 @@ int PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mod_inverse(DIGIT out[], const DIGIT in[]) { | |||
return (delta == 0); | |||
} | |||
void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mod_mul(DIGIT Res[], const DIGIT A[], const DIGIT B[]) { | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_mul(DIGIT Res[], const DIGIT A[], const DIGIT B[]) { | |||
DIGIT aux[2 * NUM_DIGITS_GF2X_ELEMENT]; | |||
GF2X_MUL(2 * NUM_DIGITS_GF2X_ELEMENT, aux, | |||
@@ -334,7 +334,7 @@ void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mod_mul(DIGIT Res[], const DIGIT A[], const | |||
/*PRE: the representation of the sparse coefficients is sorted in increasing | |||
order of the coefficients themselves */ | |||
void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mod_mul_dense_to_sparse( | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_mul_dense_to_sparse( | |||
DIGIT Res[], | |||
const DIGIT dense[], | |||
POSITION_T sparse[], unsigned int nPos) { | |||
@@ -352,7 +352,7 @@ void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mod_mul_dense_to_sparse( | |||
for (unsigned int i = 1; i < nPos; i++) { | |||
if (sparse[i] != INVALID_POS_VALUE) { | |||
left_bit_shift_wide_n(2 * NUM_DIGITS_GF2X_ELEMENT, aux, (sparse[i] - sparse[i - 1]) ); | |||
PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_add(resDouble, aux, resDouble, 2 * NUM_DIGITS_GF2X_ELEMENT); | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_add(resDouble, aux, resDouble, 2 * NUM_DIGITS_GF2X_ELEMENT); | |||
} | |||
} | |||
} | |||
@@ -361,7 +361,7 @@ void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mod_mul_dense_to_sparse( | |||
} | |||
void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_transpose_in_place_sparse(int sizeA, POSITION_T A[]) { | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_transpose_in_place_sparse(int sizeA, POSITION_T A[]) { | |||
POSITION_T t; | |||
int i = 0, j; | |||
@@ -383,7 +383,7 @@ void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_transpose_in_place_sparse(int sizeA, POSITIO | |||
} | |||
void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mod_mul_sparse(size_t sizeR, POSITION_T Res[], | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_mul_sparse(size_t sizeR, POSITION_T Res[], | |||
size_t sizeA, const POSITION_T A[], | |||
size_t sizeB, const POSITION_T B[]) { | |||
@@ -406,7 +406,7 @@ void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mod_mul_sparse(size_t sizeR, POSITION_T Res[ | |||
Res[lastFilledPos] = INVALID_POS_VALUE; | |||
lastFilledPos++; | |||
} | |||
PQCLEAN_LEDAKEMLT32_CLEAN_quicksort_sparse(Res); | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_quicksort_sparse(Res); | |||
/* eliminate duplicates */ | |||
POSITION_T lastReadPos = Res[0]; | |||
int duplicateCount; | |||
@@ -433,7 +433,7 @@ void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mod_mul_sparse(size_t sizeR, POSITION_T Res[ | |||
/* the implementation is safe even in case A or B alias with the result */ | |||
/* PRE: A and B should be sorted and have INVALID_POS_VALUE at the end */ | |||
void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mod_add_sparse( | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_add_sparse( | |||
int sizeR, POSITION_T Res[], | |||
int sizeA, const POSITION_T A[], | |||
int sizeB, const POSITION_T B[]) { | |||
@@ -492,7 +492,7 @@ static uint32_t rand_range(const unsigned int n, const int logn, AES_XOF_struct | |||
uint32_t mask = ( (uint32_t)1 << logn) - 1; | |||
do { | |||
PQCLEAN_LEDAKEMLT32_CLEAN_seedexpander(seed_expander_ctx, rnd_char_buffer, required_rnd_bytes); | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_seedexpander(seed_expander_ctx, rnd_char_buffer, required_rnd_bytes); | |||
/* obtain an endianness independent representation of the generated random | |||
bytes into an unsigned integer */ | |||
rnd_value = ((uint32_t)rnd_char_buffer[3] << 24) + | |||
@@ -507,7 +507,7 @@ static uint32_t rand_range(const unsigned int n, const int logn, AES_XOF_struct | |||
/* Obtains fresh randomness and seed-expands it until all the required positions | |||
* for the '1's in the circulant block are obtained */ | |||
void PQCLEAN_LEDAKEMLT32_CLEAN_rand_circulant_sparse_block(POSITION_T *pos_ones, | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_rand_circulant_sparse_block(POSITION_T *pos_ones, | |||
int countOnes, | |||
AES_XOF_struct *seed_expander_ctx) { | |||
@@ -532,7 +532,7 @@ void PQCLEAN_LEDAKEMLT32_CLEAN_rand_circulant_sparse_block(POSITION_T *pos_ones, | |||
} | |||
/* Returns random weight-t circulant block */ | |||
void PQCLEAN_LEDAKEMLT32_CLEAN_rand_circulant_blocks_sequence( | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_rand_circulant_blocks_sequence( | |||
DIGIT sequence[N0 * NUM_DIGITS_GF2X_ELEMENT], | |||
AES_XOF_struct *seed_expander_ctx) { | |||
@@ -558,13 +558,13 @@ void PQCLEAN_LEDAKEMLT32_CLEAN_rand_circulant_blocks_sequence( | |||
for (int j = 0; j < counter; j++) { | |||
polyIndex = rndPos[j] / P; | |||
exponent = rndPos[j] % P; | |||
PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_set_coeff( sequence + NUM_DIGITS_GF2X_ELEMENT * polyIndex, exponent, | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_set_coeff( sequence + NUM_DIGITS_GF2X_ELEMENT * polyIndex, exponent, | |||
( (DIGIT) 1)); | |||
} | |||
} | |||
void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_tobytes(uint8_t *bytes, const DIGIT *poly) { | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_tobytes(uint8_t *bytes, const DIGIT *poly) { | |||
size_t i, j; | |||
for (i = 0; i < NUM_DIGITS_GF2X_ELEMENT; i++) { | |||
for (j = 0; j < DIGIT_SIZE_B; j++) { | |||
@@ -573,7 +573,7 @@ void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_tobytes(uint8_t *bytes, const DIGIT *poly) { | |||
} | |||
} | |||
void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_frombytes(DIGIT *poly, const uint8_t *poly_bytes) { | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_frombytes(DIGIT *poly, const uint8_t *poly_bytes) { | |||
size_t i, j; | |||
for (i = 0; i < NUM_DIGITS_GF2X_ELEMENT; i++) { | |||
poly[i] = (DIGIT) 0; |
@@ -0,0 +1,38 @@ | |||
#ifndef GF2X_ARITH_MOD_XPLUSONE_H | |||
#define GF2X_ARITH_MOD_XPLUSONE_H | |||
#include "qc_ldpc_parameters.h" | |||
#include "gf2x_arith.h" | |||
#include "rng.h" | |||
#define NUM_BITS_GF2X_ELEMENT (P) // 96221 | |||
#define NUM_DIGITS_GF2X_ELEMENT ((P+DIGIT_SIZE_b-1)/DIGIT_SIZE_b) | |||
#define MSb_POSITION_IN_MSB_DIGIT_OF_ELEMENT ((P % DIGIT_SIZE_b) ? (P % DIGIT_SIZE_b)-1 : DIGIT_SIZE_b-1) | |||
#define NUM_BITS_GF2X_MODULUS (P+1) | |||
#define NUM_DIGITS_GF2X_MODULUS ((P+1+DIGIT_SIZE_b-1)/DIGIT_SIZE_b) | |||
#define MSb_POSITION_IN_MSB_DIGIT_OF_MODULUS (P-DIGIT_SIZE_b*(NUM_DIGITS_GF2X_MODULUS-1)) | |||
#define INVALID_POS_VALUE (P) | |||
#define P_BITS (17) // log_2(p) = 16.55406417 | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_copy(DIGIT dest[], const DIGIT in[]); | |||
DIGIT PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_get_coeff(const DIGIT poly[], unsigned int exponent); | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_set_coeff(DIGIT poly[], unsigned int exponent, DIGIT value); | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_toggle_coeff(DIGIT poly[], unsigned int exponent); | |||
int PQCLEAN_LEDAKEMLT32_LEAKTIME_population_count(DIGIT *poly); | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_add(DIGIT Res[], const DIGIT A[], const DIGIT B[]); | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_quicksort_sparse(POSITION_T Res[]); | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_mul(DIGIT Res[], const DIGIT A[], const DIGIT B[]); | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_transpose_in_place(DIGIT A[]); | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_rand_circulant_sparse_block(POSITION_T *pos_ones, int countOnes, AES_XOF_struct *seed_expander_ctx); | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_rand_circulant_blocks_sequence(DIGIT *sequence, AES_XOF_struct *seed_expander_ctx); | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_add_sparse(int sizeR, POSITION_T Res[], int sizeA, const POSITION_T A[], int sizeB, const POSITION_T B[]); | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_transpose_in_place_sparse(int sizeA, POSITION_T A[]); | |||
int PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_inverse(DIGIT out[], const DIGIT in[]); | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_mul_sparse(size_t sizeR, POSITION_T Res[], size_t sizeA, const POSITION_T A[], size_t sizeB, const POSITION_T B[]); | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_mul_dense_to_sparse(DIGIT Res[], const DIGIT dense[], POSITION_T sparse[], unsigned int nPos); | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_tobytes(uint8_t *bytes, const DIGIT *poly); | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_frombytes(DIGIT *poly, const uint8_t *poly_bytes); | |||
#endif |
@@ -8,43 +8,43 @@ | |||
static void pack_pk(uint8_t *pk_bytes, publicKeyNiederreiter_t *pk) { | |||
size_t i; | |||
for (i = 0; i < N0 - 1; i++) { | |||
PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_tobytes(pk_bytes + i * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B, | |||
pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT); | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_tobytes(pk_bytes + i * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B, | |||
pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT); | |||
} | |||
} | |||
static void unpack_pk(publicKeyNiederreiter_t *pk, const uint8_t *pk_bytes) { | |||
size_t i; | |||
for (i = 0; i < N0 - 1; i++) { | |||
PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_frombytes(pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT, | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_frombytes(pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT, | |||
pk_bytes + i * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B); | |||
} | |||
} | |||
static void pack_ct(uint8_t *sk_bytes, DIGIT *ct) { | |||
PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_tobytes(sk_bytes, ct); | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_tobytes(sk_bytes, ct); | |||
} | |||
static void unpack_ct(DIGIT *ct, const uint8_t *ct_bytes) { | |||
PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_frombytes(ct, ct_bytes); | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_frombytes(ct, ct_bytes); | |||
} | |||
static void pack_error(uint8_t *error_bytes, DIGIT *error_digits) { | |||
size_t i; | |||
for (i = 0; i < N0; i++) { | |||
PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_tobytes(error_bytes + i * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B, | |||
error_digits + i * NUM_DIGITS_GF2X_ELEMENT); | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_tobytes(error_bytes + i * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B, | |||
error_digits + i * NUM_DIGITS_GF2X_ELEMENT); | |||
} | |||
} | |||
/* Generates a keypair - pk is the public key and sk is the secret key. */ | |||
int PQCLEAN_LEDAKEMLT52_CLEAN_crypto_kem_keypair(unsigned char *pk, unsigned char *sk) { | |||
int PQCLEAN_LEDAKEMLT32_LEAKTIME_crypto_kem_keypair(unsigned char *pk, unsigned char *sk) { | |||
AES_XOF_struct niederreiter_keys_expander; | |||
publicKeyNiederreiter_t pk_nie; | |||
randombytes(((privateKeyNiederreiter_t *)sk)->prng_seed, TRNG_BYTE_LENGTH); | |||
PQCLEAN_LEDAKEMLT52_CLEAN_seedexpander_from_trng(&niederreiter_keys_expander, ((privateKeyNiederreiter_t *)sk)->prng_seed); | |||
PQCLEAN_LEDAKEMLT52_CLEAN_niederreiter_keygen(&pk_nie, (privateKeyNiederreiter_t *) sk, &niederreiter_keys_expander); | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_seedexpander_from_trng(&niederreiter_keys_expander, ((privateKeyNiederreiter_t *)sk)->prng_seed); | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_niederreiter_keygen(&pk_nie, (privateKeyNiederreiter_t *) sk, &niederreiter_keys_expander); | |||
pack_pk(pk, &pk_nie); | |||
@@ -53,7 +53,7 @@ int PQCLEAN_LEDAKEMLT52_CLEAN_crypto_kem_keypair(unsigned char *pk, unsigned cha | |||
/* Encrypt - pk is the public key, ct is a key encapsulation message | |||
(ciphertext), ss is the shared secret.*/ | |||
int PQCLEAN_LEDAKEMLT52_CLEAN_crypto_kem_enc(unsigned char *ct, unsigned char *ss, const unsigned char *pk) { | |||
int PQCLEAN_LEDAKEMLT32_LEAKTIME_crypto_kem_enc(unsigned char *ct, unsigned char *ss, const unsigned char *pk) { | |||
AES_XOF_struct niederreiter_encap_key_expander; | |||
unsigned char encapsulated_key_seed[TRNG_BYTE_LENGTH]; | |||
DIGIT error_vector[N0 * NUM_DIGITS_GF2X_ELEMENT]; | |||
@@ -64,11 +64,11 @@ int PQCLEAN_LEDAKEMLT52_CLEAN_crypto_kem_enc(unsigned char *ct, unsigned char *s | |||
randombytes(encapsulated_key_seed, TRNG_BYTE_LENGTH); | |||
unpack_pk(&pk_nie, pk); | |||
PQCLEAN_LEDAKEMLT52_CLEAN_seedexpander_from_trng(&niederreiter_encap_key_expander, encapsulated_key_seed); | |||
PQCLEAN_LEDAKEMLT52_CLEAN_rand_circulant_blocks_sequence(error_vector, &niederreiter_encap_key_expander); | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_seedexpander_from_trng(&niederreiter_encap_key_expander, encapsulated_key_seed); | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_rand_circulant_blocks_sequence(error_vector, &niederreiter_encap_key_expander); | |||
pack_error(error_bytes, error_vector); | |||
HASH_FUNCTION(ss, error_bytes, (N0 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B)); | |||
PQCLEAN_LEDAKEMLT52_CLEAN_niederreiter_encrypt(syndrome, &pk_nie, error_vector); | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_niederreiter_encrypt(syndrome, &pk_nie, error_vector); | |||
pack_ct(ct, syndrome); | |||
@@ -78,13 +78,13 @@ int PQCLEAN_LEDAKEMLT52_CLEAN_crypto_kem_enc(unsigned char *ct, unsigned char *s | |||
/* Decrypt - ct is a key encapsulation message (ciphertext), sk is the private | |||
key, ss is the shared secret */ | |||
int PQCLEAN_LEDAKEMLT52_CLEAN_crypto_kem_dec(unsigned char *ss, const unsigned char *ct, const unsigned char *sk) { | |||
int PQCLEAN_LEDAKEMLT32_LEAKTIME_crypto_kem_dec(unsigned char *ss, const unsigned char *ct, const unsigned char *sk) { | |||
DIGIT decoded_error_vector[N0 * NUM_DIGITS_GF2X_ELEMENT]; | |||
uint8_t decoded_error_bytes[N0 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B]; | |||
DIGIT syndrome[NUM_DIGITS_GF2X_ELEMENT]; | |||
unpack_ct(syndrome, ct); | |||
PQCLEAN_LEDAKEMLT52_CLEAN_niederreiter_decrypt(decoded_error_vector, (privateKeyNiederreiter_t *)sk, syndrome); | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_niederreiter_decrypt(decoded_error_vector, (privateKeyNiederreiter_t *)sk, syndrome); | |||
pack_error(decoded_error_bytes, decoded_error_vector); | |||
HASH_FUNCTION(ss, decoded_error_bytes, (N0 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B)); | |||
@@ -8,7 +8,7 @@ | |||
#include <string.h> | |||
void PQCLEAN_LEDAKEMLT12_CLEAN_niederreiter_keygen(publicKeyNiederreiter_t *pk, privateKeyNiederreiter_t *sk, AES_XOF_struct *keys_expander) { | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_niederreiter_keygen(publicKeyNiederreiter_t *pk, privateKeyNiederreiter_t *sk, AES_XOF_struct *keys_expander) { | |||
POSITION_T HPosOnes[N0][DV]; // sequence of N0 circ block matrices (p x p): Hi | |||
POSITION_T HtrPosOnes[N0][DV]; // Sparse tranposed circulant H | |||
@@ -23,8 +23,8 @@ void PQCLEAN_LEDAKEMLT12_CLEAN_niederreiter_keygen(publicKeyNiederreiter_t *pk, | |||
sk->rejections = (int8_t) 0; | |||
do { | |||
PQCLEAN_LEDAKEMLT12_CLEAN_generateHPosOnes_HtrPosOnes(HPosOnes, HtrPosOnes, keys_expander); | |||
PQCLEAN_LEDAKEMLT12_CLEAN_generateQsparse(QPosOnes, keys_expander); | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_generateHPosOnes_HtrPosOnes(HPosOnes, HtrPosOnes, keys_expander); | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_generateQsparse(QPosOnes, keys_expander); | |||
for (int i = 0; i < N0; i++) { | |||
for (int j = 0; j < DV * M; j++) { | |||
LPosOnes[i][j] = INVALID_POS_VALUE; | |||
@@ -34,10 +34,10 @@ void PQCLEAN_LEDAKEMLT12_CLEAN_niederreiter_keygen(publicKeyNiederreiter_t *pk, | |||
memset(processedQOnes, 0x00, sizeof(processedQOnes)); | |||
for (int colQ = 0; colQ < N0; colQ++) { | |||
for (int i = 0; i < N0; i++) { | |||
PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mod_mul_sparse(DV * M, auxPosOnes, | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_mul_sparse(DV * M, auxPosOnes, | |||
DV, HPosOnes[i], | |||
qBlockWeights[i][colQ], QPosOnes[i] + processedQOnes[i]); | |||
PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mod_add_sparse(DV * M, LPosOnes[colQ], | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_add_sparse(DV * M, LPosOnes[colQ], | |||
DV * M, LPosOnes[colQ], | |||
DV * M, auxPosOnes); | |||
processedQOnes[i] += qBlockWeights[i][colQ]; | |||
@@ -49,7 +49,7 @@ void PQCLEAN_LEDAKEMLT12_CLEAN_niederreiter_keygen(publicKeyNiederreiter_t *pk, | |||
} | |||
sk->rejections = sk->rejections + 1; | |||
if (is_L_full) { | |||
threshold = PQCLEAN_LEDAKEMLT12_CLEAN_DFR_test(LPosOnes); | |||
threshold = PQCLEAN_LEDAKEMLT32_LEAKTIME_DFR_test(LPosOnes); | |||
} | |||
} while (!is_L_full || threshold == DFR_TEST_FAIL); | |||
sk->rejections = sk->rejections - 1; | |||
@@ -58,41 +58,41 @@ void PQCLEAN_LEDAKEMLT12_CLEAN_niederreiter_keygen(publicKeyNiederreiter_t *pk, | |||
memset(Ln0dense, 0x00, sizeof(Ln0dense)); | |||
for (int j = 0; j < DV * M; j++) { | |||
if (LPosOnes[N0 - 1][j] != INVALID_POS_VALUE) { | |||
PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_set_coeff(Ln0dense, LPosOnes[N0 - 1][j], 1); | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_set_coeff(Ln0dense, LPosOnes[N0 - 1][j], 1); | |||
} | |||
} | |||
memset(Ln0Inv, 0x00, sizeof(Ln0Inv)); | |||
PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mod_inverse(Ln0Inv, Ln0dense); | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_inverse(Ln0Inv, Ln0dense); | |||
for (int i = 0; i < N0 - 1; i++) { | |||
PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mod_mul_dense_to_sparse(pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT, | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_mul_dense_to_sparse(pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT, | |||
Ln0Inv, | |||
LPosOnes[i], | |||
DV * M); | |||
} | |||
for (int i = 0; i < N0 - 1; i++) { | |||
PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_transpose_in_place(pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT); | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_transpose_in_place(pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT); | |||
} | |||
} | |||
void PQCLEAN_LEDAKEMLT12_CLEAN_niederreiter_encrypt(DIGIT *syndrome, const publicKeyNiederreiter_t *pk, const DIGIT *err) { | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_niederreiter_encrypt(DIGIT *syndrome, const publicKeyNiederreiter_t *pk, const DIGIT *err) { | |||
int i; | |||
DIGIT saux[NUM_DIGITS_GF2X_ELEMENT]; | |||
memset(syndrome, 0x00, NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B); | |||
for (i = 0; i < N0 - 1; i++) { | |||
PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mod_mul(saux, | |||
pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT, | |||
err + i * NUM_DIGITS_GF2X_ELEMENT); | |||
PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mod_add(syndrome, syndrome, saux); | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_mul(saux, | |||
pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT, | |||
err + i * NUM_DIGITS_GF2X_ELEMENT); | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_add(syndrome, syndrome, saux); | |||
} | |||
PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mod_add(syndrome, syndrome, err + (N0 - 1)*NUM_DIGITS_GF2X_ELEMENT); | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_add(syndrome, syndrome, err + (N0 - 1)*NUM_DIGITS_GF2X_ELEMENT); | |||
} | |||
int PQCLEAN_LEDAKEMLT12_CLEAN_niederreiter_decrypt(DIGIT *err, const privateKeyNiederreiter_t *sk, const DIGIT *syndrome) { | |||
int PQCLEAN_LEDAKEMLT32_LEAKTIME_niederreiter_decrypt(DIGIT *err, const privateKeyNiederreiter_t *sk, const DIGIT *syndrome) { | |||
AES_XOF_struct niederreiter_decrypt_expander; | |||
POSITION_T HPosOnes[N0][DV]; | |||
POSITION_T HtrPosOnes[N0][DV]; | |||
@@ -110,11 +110,11 @@ int PQCLEAN_LEDAKEMLT12_CLEAN_niederreiter_decrypt(DIGIT *err, const privateKeyN | |||
int currQoneIdx, endQblockIdx; | |||
int decryptOk, err_weight; | |||
PQCLEAN_LEDAKEMLT12_CLEAN_seedexpander_from_trng(&niederreiter_decrypt_expander, sk->prng_seed); | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_seedexpander_from_trng(&niederreiter_decrypt_expander, sk->prng_seed); | |||
do { | |||
PQCLEAN_LEDAKEMLT12_CLEAN_generateHPosOnes_HtrPosOnes(HPosOnes, HtrPosOnes, &niederreiter_decrypt_expander); | |||
PQCLEAN_LEDAKEMLT12_CLEAN_generateQsparse(QPosOnes, &niederreiter_decrypt_expander); | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_generateHPosOnes_HtrPosOnes(HPosOnes, HtrPosOnes, &niederreiter_decrypt_expander); | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_generateQsparse(QPosOnes, &niederreiter_decrypt_expander); | |||
for (int i = 0; i < N0; i++) { | |||
for (int j = 0; j < DV * M; j++) { | |||
LPosOnes[i][j] = INVALID_POS_VALUE; | |||
@@ -124,10 +124,10 @@ int PQCLEAN_LEDAKEMLT12_CLEAN_niederreiter_decrypt(DIGIT *err, const privateKeyN | |||
memset(processedQOnes, 0x00, sizeof(processedQOnes)); | |||
for (int colQ = 0; colQ < N0; colQ++) { | |||
for (int i = 0; i < N0; i++) { | |||
PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mod_mul_sparse(DV * M, auxPosOnes, | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_mul_sparse(DV * M, auxPosOnes, | |||
DV, HPosOnes[i], | |||
qBlockWeights[i][colQ], QPosOnes[i] + processedQOnes[i]); | |||
PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mod_add_sparse(DV * M, LPosOnes[colQ], | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_add_sparse(DV * M, LPosOnes[colQ], | |||
DV * M, LPosOnes[colQ], | |||
DV * M, auxPosOnes); | |||
processedQOnes[i] += qBlockWeights[i][colQ]; | |||
@@ -156,31 +156,31 @@ int PQCLEAN_LEDAKEMLT12_CLEAN_niederreiter_decrypt(DIGIT *err, const privateKeyN | |||
} | |||
for (int i = 0; i < N0; i++) { | |||
PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mod_mul_sparse(DV * M, auxSparse, | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_mul_sparse(DV * M, auxSparse, | |||
DV, HPosOnes[i], | |||
qBlockWeights[i][N0 - 1], &QPosOnes[i][ M - qBlockWeights[i][N0 - 1]]); | |||
PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mod_add_sparse(DV * M, Ln0trSparse, | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_add_sparse(DV * M, Ln0trSparse, | |||
DV * M, Ln0trSparse, | |||
DV * M, auxSparse); | |||
} | |||
PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_transpose_in_place_sparse(DV * M, Ln0trSparse); | |||
PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mod_mul_dense_to_sparse(privateSyndrome, syndrome, Ln0trSparse, DV * M); | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_transpose_in_place_sparse(DV * M, Ln0trSparse); | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_mul_dense_to_sparse(privateSyndrome, syndrome, Ln0trSparse, DV * M); | |||
/* prepare mockup error vector in case a decoding failure occurs */ | |||
memset(mockup_error_vector, 0x00, N0 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B); | |||
memcpy(mockup_error_vector, syndrome, NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B); | |||
PQCLEAN_LEDAKEMLT12_CLEAN_seedexpander(&niederreiter_decrypt_expander, | |||
((unsigned char *) mockup_error_vector) + (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B), | |||
TRNG_BYTE_LENGTH); | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_seedexpander(&niederreiter_decrypt_expander, | |||
((unsigned char *) mockup_error_vector) + (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B), | |||
TRNG_BYTE_LENGTH); | |||
memset(err, 0x00, N0 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B); | |||
decryptOk = PQCLEAN_LEDAKEMLT12_CLEAN_bf_decoding(err, (const POSITION_T (*)[DV]) HtrPosOnes, | |||
decryptOk = PQCLEAN_LEDAKEMLT32_LEAKTIME_bf_decoding(err, (const POSITION_T (*)[DV]) HtrPosOnes, | |||
(const POSITION_T (*)[M]) QtrPosOnes, privateSyndrome, sk->threshold); | |||
err_weight = 0; | |||
for (int i = 0 ; i < N0; i++) { | |||
err_weight += PQCLEAN_LEDAKEMLT12_CLEAN_population_count(err + (NUM_DIGITS_GF2X_ELEMENT * i)); | |||
err_weight += PQCLEAN_LEDAKEMLT32_LEAKTIME_population_count(err + (NUM_DIGITS_GF2X_ELEMENT * i)); | |||
} | |||
decryptOk = decryptOk && (err_weight == NUM_ERRORS_T); | |||
@@ -21,9 +21,9 @@ typedef struct { | |||
// with P coefficients. | |||
} publicKeyNiederreiter_t; | |||
void PQCLEAN_LEDAKEMLT52_CLEAN_niederreiter_keygen(publicKeyNiederreiter_t *pk, privateKeyNiederreiter_t *sk, AES_XOF_struct *keys_expander); | |||
void PQCLEAN_LEDAKEMLT52_CLEAN_niederreiter_encrypt(DIGIT syndrome[], const publicKeyNiederreiter_t *pk, const DIGIT *err); | |||
int PQCLEAN_LEDAKEMLT52_CLEAN_niederreiter_decrypt(DIGIT *err, const privateKeyNiederreiter_t *sk, const DIGIT *syndrome); | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_niederreiter_keygen(publicKeyNiederreiter_t *pk, privateKeyNiederreiter_t *sk, AES_XOF_struct *keys_expander); | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_niederreiter_encrypt(DIGIT syndrome[], const publicKeyNiederreiter_t *pk, const DIGIT *err); | |||
int PQCLEAN_LEDAKEMLT32_LEAKTIME_niederreiter_decrypt(DIGIT *err, const privateKeyNiederreiter_t *sk, const DIGIT *syndrome); | |||
#endif |
@@ -37,7 +37,7 @@ static void seedexpander_init(AES_XOF_struct *ctx, | |||
memset(ctx->buffer, 0x00, 16); | |||
} | |||
void PQCLEAN_LEDAKEMLT32_CLEAN_seedexpander_from_trng(AES_XOF_struct *ctx, | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_seedexpander_from_trng(AES_XOF_struct *ctx, | |||
const unsigned char *trng_entropy | |||
/* TRNG_BYTE_LENGTH wide buffer */) { | |||
@@ -61,7 +61,7 @@ void PQCLEAN_LEDAKEMLT32_CLEAN_seedexpander_from_trng(AES_XOF_struct *ctx, | |||
x - returns the XOF data | |||
xlen - number of bytes to return | |||
*/ | |||
int PQCLEAN_LEDAKEMLT32_CLEAN_seedexpander(AES_XOF_struct *ctx, unsigned char *x, size_t xlen) { | |||
int PQCLEAN_LEDAKEMLT32_LEAKTIME_seedexpander(AES_XOF_struct *ctx, unsigned char *x, size_t xlen) { | |||
size_t offset; | |||
aes256ctx ctx256; | |||
@@ -18,7 +18,7 @@ typedef struct { | |||
unsigned char ctr[16]; | |||
} AES_XOF_struct; | |||
int PQCLEAN_LEDAKEMLT52_CLEAN_seedexpander(AES_XOF_struct *ctx, unsigned char *x, size_t xlen); | |||
void PQCLEAN_LEDAKEMLT52_CLEAN_seedexpander_from_trng(AES_XOF_struct *ctx, const unsigned char *trng_entropy); | |||
int PQCLEAN_LEDAKEMLT32_LEAKTIME_seedexpander(AES_XOF_struct *ctx, unsigned char *x, size_t xlen); | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_seedexpander_from_trng(AES_XOF_struct *ctx, const unsigned char *trng_entropy); | |||
#endif |
@@ -14,5 +14,5 @@ auxiliary-submitters: | |||
- Gerardo Pelosi | |||
- Paolo Santini | |||
implementations: | |||
- name: clean | |||
- name: leaktime | |||
version: 2.? |
@@ -1,11 +0,0 @@ | |||
#ifndef H_Q_MATRICES_GENERATION_H | |||
#define H_Q_MATRICES_GENERATION_H | |||
#include "gf2x_arith.h" | |||
#include "qc_ldpc_parameters.h" | |||
#include "rng.h" | |||
void PQCLEAN_LEDAKEMLT52_CLEAN_generateHPosOnes_HtrPosOnes(POSITION_T HPosOnes[N0][DV], POSITION_T HtrPosOnes[N0][DV], AES_XOF_struct *niederreiter_keys_expander); | |||
void PQCLEAN_LEDAKEMLT52_CLEAN_generateQsparse(POSITION_T pos_ones[N0][M], AES_XOF_struct *niederreiter_keys_expander); | |||
#endif |
@@ -1,18 +0,0 @@ | |||
#ifndef PQCLEAN_LEDAKEMLT52_CLEAN_API_H | |||
#define PQCLEAN_LEDAKEMLT52_CLEAN_API_H | |||
#include <stdint.h> | |||
#define PQCLEAN_LEDAKEMLT52_CLEAN_CRYPTO_SECRETKEYBYTES 42 | |||
#define PQCLEAN_LEDAKEMLT52_CLEAN_CRYPTO_PUBLICKEYBYTES 19040 | |||
#define PQCLEAN_LEDAKEMLT52_CLEAN_CRYPTO_CIPHERTEXTBYTES 19040 | |||
#define PQCLEAN_LEDAKEMLT52_CLEAN_CRYPTO_BYTES 64 | |||
#define PQCLEAN_LEDAKEMLT52_CLEAN_CRYPTO_ALGNAME "LEDAKEMLT52" | |||
int PQCLEAN_LEDAKEMLT52_CLEAN_crypto_kem_keypair(uint8_t *pk, uint8_t *sk); | |||
int PQCLEAN_LEDAKEMLT52_CLEAN_crypto_kem_enc(uint8_t *ct, uint8_t *ss, const uint8_t *pk); | |||
int PQCLEAN_LEDAKEMLT52_CLEAN_crypto_kem_dec(uint8_t *ss, const uint8_t *ct, const uint8_t *sk); | |||
#endif |
@@ -1,8 +0,0 @@ | |||
#ifndef DFR_TEST_H | |||
#define DFR_TEST_H | |||
#define DFR_TEST_FAIL (255) | |||
uint8_t PQCLEAN_LEDAKEMLT52_CLEAN_DFR_test(POSITION_T LSparse[N0][DV * M]); | |||
#endif |
@@ -1,37 +0,0 @@ | |||
#ifndef GF2X_ARITH_MOD_XPLUSONE_H | |||
#define GF2X_ARITH_MOD_XPLUSONE_H | |||
#include "qc_ldpc_parameters.h" | |||
#include "gf2x_arith.h" | |||
#include "rng.h" | |||
#define NUM_BITS_GF2X_ELEMENT (P) // 152267 | |||
#define NUM_DIGITS_GF2X_ELEMENT ((P+DIGIT_SIZE_b-1)/DIGIT_SIZE_b) // 2380 | |||
#define MSb_POSITION_IN_MSB_DIGIT_OF_ELEMENT ((P % DIGIT_SIZE_b) ? (P % DIGIT_SIZE_b)-1 : DIGIT_SIZE_b-1) | |||
#define NUM_BITS_GF2X_MODULUS (P+1) | |||
#define NUM_DIGITS_GF2X_MODULUS ((P+1+DIGIT_SIZE_b-1)/DIGIT_SIZE_b) // 2380 | |||
#define MSb_POSITION_IN_MSB_DIGIT_OF_MODULUS (P-DIGIT_SIZE_b*(NUM_DIGITS_GF2X_MODULUS-1)) | |||
#define INVALID_POS_VALUE (P) | |||
#define P_BITS (18) // log_2(p) = 17.216243783 | |||
void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_copy(DIGIT dest[], const DIGIT in[]); | |||
DIGIT PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_get_coeff(const DIGIT poly[], unsigned int exponent); | |||
void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_set_coeff(DIGIT poly[], unsigned int exponent, DIGIT value); | |||
void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_toggle_coeff(DIGIT poly[], unsigned int exponent); | |||
int PQCLEAN_LEDAKEMLT52_CLEAN_population_count(DIGIT *poly); | |||
void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_add(DIGIT Res[], const DIGIT A[], const DIGIT B[]); | |||
void PQCLEAN_LEDAKEMLT52_CLEAN_quicksort_sparse(POSITION_T Res[]); | |||
void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_mul(DIGIT Res[], const DIGIT A[], const DIGIT B[]); | |||
void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_transpose_in_place(DIGIT A[]); | |||
void PQCLEAN_LEDAKEMLT52_CLEAN_rand_circulant_sparse_block(POSITION_T *pos_ones, int countOnes, AES_XOF_struct *seed_expander_ctx); | |||
void PQCLEAN_LEDAKEMLT52_CLEAN_rand_circulant_blocks_sequence(DIGIT *sequence, AES_XOF_struct *seed_expander_ctx); | |||
void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_add_sparse(int sizeR, POSITION_T Res[], int sizeA, const POSITION_T A[], int sizeB, const POSITION_T B[]); | |||
void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_transpose_in_place_sparse(int sizeA, POSITION_T A[]); | |||
int PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_inverse(DIGIT out[], const DIGIT in[]); | |||
void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_mul_sparse(size_t sizeR, POSITION_T Res[], size_t sizeA, const POSITION_T A[], size_t sizeB, const POSITION_T B[]); | |||
void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_mul_dense_to_sparse(DIGIT Res[], const DIGIT dense[], POSITION_T sparse[], unsigned int nPos); | |||
void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_tobytes(uint8_t *bytes, const DIGIT *poly); | |||
void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_frombytes(DIGIT *poly, const uint8_t *poly_bytes); | |||
#endif |
@@ -1,13 +1,13 @@ | |||
#include "H_Q_matrices_generation.h" | |||
#include "gf2x_arith_mod_xPplusOne.h" | |||
void PQCLEAN_LEDAKEMLT32_CLEAN_generateHPosOnes_HtrPosOnes( | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_generateHPosOnes_HtrPosOnes( | |||
POSITION_T HPosOnes[N0][DV], | |||
POSITION_T HtrPosOnes[N0][DV], | |||
AES_XOF_struct *keys_expander) { | |||
for (int i = 0; i < N0; i++) { | |||
/* Generate a random block of Htr */ | |||
PQCLEAN_LEDAKEMLT32_CLEAN_rand_circulant_sparse_block(&HtrPosOnes[i][0], DV, keys_expander); | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_rand_circulant_sparse_block(&HtrPosOnes[i][0], DV, keys_expander); | |||
} | |||
for (int i = 0; i < N0; i++) { | |||
/* Obtain directly the sparse representation of the block of H */ | |||
@@ -17,13 +17,13 @@ void PQCLEAN_LEDAKEMLT32_CLEAN_generateHPosOnes_HtrPosOnes( | |||
} | |||
} | |||
void PQCLEAN_LEDAKEMLT32_CLEAN_generateQsparse( | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_generateQsparse( | |||
POSITION_T pos_ones[N0][M], | |||
AES_XOF_struct *keys_expander) { | |||
for (int i = 0; i < N0; i++) { | |||
int placed_ones = 0; | |||
for (int j = 0; j < N0; j++) { | |||
PQCLEAN_LEDAKEMLT32_CLEAN_rand_circulant_sparse_block(&pos_ones[i][placed_ones], | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_rand_circulant_sparse_block(&pos_ones[i][placed_ones], | |||
qBlockWeights[i][j], | |||
keys_expander); | |||
placed_ones += qBlockWeights[i][j]; |
@@ -0,0 +1,11 @@ | |||
#ifndef H_Q_MATRICES_GENERATION_H | |||
#define H_Q_MATRICES_GENERATION_H | |||
#include "gf2x_arith.h" | |||
#include "qc_ldpc_parameters.h" | |||
#include "rng.h" | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_generateHPosOnes_HtrPosOnes(POSITION_T HPosOnes[N0][DV], POSITION_T HtrPosOnes[N0][DV], AES_XOF_struct *niederreiter_keys_expander); | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_generateQsparse(POSITION_T pos_ones[N0][M], AES_XOF_struct *niederreiter_keys_expander); | |||
#endif |
@@ -1,6 +1,6 @@ | |||
# This Makefile can be used with GNU Make or BSD Make | |||
LIB=libledakemlt12_clean.a | |||
LIB=libledakemlt52_leaktime.a | |||
HEADERS=api.h bf_decoding.h dfr_test.h gf2x_arith_mod_xPplusOne.h \ | |||
gf2x_arith.h H_Q_matrices_generation.h \ | |||
niederreiter.h qc_ldpc_parameters.h rng.h |
@@ -1,7 +1,7 @@ | |||
# This Makefile can be used with Microsoft Visual Studio's nmake using the command: | |||
# nmake /f Makefile.Microsoft_nmake | |||
LIBRARY=libledakemlt12_clean.lib | |||
LIBRARY=libledakemlt52_leaktime.lib | |||
OBJECTS=bf_decoding.obj dfr_test.obj gf2x_arith_mod_xPplusOne.obj gf2x_arith.obj H_Q_matrices_generation.obj kem.obj niederreiter.obj rng.obj | |||
CFLAGS=/nologo /I ..\..\..\common /W4 /WX |
@@ -0,0 +1,18 @@ | |||
#ifndef PQCLEAN_LEDAKEMLT52_LEAKTIME_API_H | |||
#define PQCLEAN_LEDAKEMLT52_LEAKTIME_API_H | |||
#include <stdint.h> | |||
#define PQCLEAN_LEDAKEMLT52_LEAKTIME_CRYPTO_SECRETKEYBYTES 42 | |||
#define PQCLEAN_LEDAKEMLT52_LEAKTIME_CRYPTO_PUBLICKEYBYTES 19040 | |||
#define PQCLEAN_LEDAKEMLT52_LEAKTIME_CRYPTO_CIPHERTEXTBYTES 19040 | |||
#define PQCLEAN_LEDAKEMLT52_LEAKTIME_CRYPTO_BYTES 64 | |||
#define PQCLEAN_LEDAKEMLT52_LEAKTIME_CRYPTO_ALGNAME "LEDAKEMLT52" | |||
int PQCLEAN_LEDAKEMLT52_LEAKTIME_crypto_kem_keypair(uint8_t *pk, uint8_t *sk); | |||
int PQCLEAN_LEDAKEMLT52_LEAKTIME_crypto_kem_enc(uint8_t *ct, uint8_t *ss, const uint8_t *pk); | |||
int PQCLEAN_LEDAKEMLT52_LEAKTIME_crypto_kem_dec(uint8_t *ss, const uint8_t *ct, const uint8_t *sk); | |||
#endif |
@@ -4,7 +4,7 @@ | |||
#include <assert.h> | |||
#include <string.h> | |||
int PQCLEAN_LEDAKEMLT32_CLEAN_bf_decoding(DIGIT err[], | |||
int PQCLEAN_LEDAKEMLT52_LEAKTIME_bf_decoding(DIGIT err[], | |||
const POSITION_T HtrPosOnes[N0][DV], | |||
const POSITION_T QtrPosOnes[N0][M], | |||
DIGIT privateSyndrome[], | |||
@@ -18,13 +18,13 @@ int PQCLEAN_LEDAKEMLT32_CLEAN_bf_decoding(DIGIT err[], | |||
unsigned int corrt_syndrome_based; | |||
do { | |||
PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_copy(currSyndrome, privateSyndrome); | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_copy(currSyndrome, privateSyndrome); | |||
memset(unsatParityChecks, 0x00, N0 * P * sizeof(uint8_t)); | |||
for (int i = 0; i < N0; i++) { | |||
for (int valueIdx = 0; valueIdx < P; valueIdx++) { | |||
for (int HtrOneIdx = 0; HtrOneIdx < DV; HtrOneIdx++) { | |||
POSITION_T tmp = (HtrPosOnes[i][HtrOneIdx] + valueIdx) >= P ? (HtrPosOnes[i][HtrOneIdx] + valueIdx) - P : (HtrPosOnes[i][HtrOneIdx] + valueIdx); | |||
if (PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_get_coeff(currSyndrome, tmp)) { | |||
if (PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_get_coeff(currSyndrome, tmp)) { | |||
unsatParityChecks[i * P + valueIdx]++; | |||
} | |||
} | |||
@@ -54,13 +54,13 @@ int PQCLEAN_LEDAKEMLT32_CLEAN_bf_decoding(DIGIT err[], | |||
} | |||
/* Correlation based flipping */ | |||
if (correlation >= corrt_syndrome_based) { | |||
PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_toggle_coeff(err + NUM_DIGITS_GF2X_ELEMENT * i, j); | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_toggle_coeff(err + NUM_DIGITS_GF2X_ELEMENT * i, j); | |||
for (int v = 0; v < M; v++) { | |||
POSITION_T syndromePosToFlip; | |||
for (int HtrOneIdx = 0; HtrOneIdx < DV; HtrOneIdx++) { | |||
syndromePosToFlip = (HtrPosOnes[currQBlkPos[v]][HtrOneIdx] + currQBitPos[v] ); | |||
syndromePosToFlip = syndromePosToFlip >= P ? syndromePosToFlip - P : syndromePosToFlip; | |||
PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_toggle_coeff(privateSyndrome, syndromePosToFlip); | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_toggle_coeff(privateSyndrome, syndromePosToFlip); | |||
} | |||
} // end for v | |||
} // end if |
@@ -9,7 +9,7 @@ | |||
#define B0 (88) | |||
#define T_BAR (6) | |||
int PQCLEAN_LEDAKEMLT52_CLEAN_bf_decoding(DIGIT err[], | |||
int PQCLEAN_LEDAKEMLT52_LEAKTIME_bf_decoding(DIGIT err[], | |||
const POSITION_T HtrPosOnes[N0][DV], | |||
const POSITION_T QtrPosOnes[N0][M], | |||
DIGIT privateSyndrome[], |
@@ -9,7 +9,7 @@ | |||
* computes the threshold for the second iteration of the decoder and returns this values | |||
* (max DV * M), on failure it returns 255 >> DV * M */ | |||
uint8_t PQCLEAN_LEDAKEMLT52_CLEAN_DFR_test(POSITION_T LSparse[N0][DV * M]) { | |||
uint8_t PQCLEAN_LEDAKEMLT52_LEAKTIME_DFR_test(POSITION_T LSparse[N0][DV * M]) { | |||
POSITION_T LSparse_loc[N0][DV * M]; | |||
POSITION_T rotated_column[DV * M]; | |||
@@ -31,7 +31,7 @@ uint8_t PQCLEAN_LEDAKEMLT52_CLEAN_DFR_test(POSITION_T LSparse[N0][DV * M]) { | |||
LSparse_loc[i][j] = (P - LSparse[i][j]); | |||
} | |||
} | |||
PQCLEAN_LEDAKEMLT52_CLEAN_quicksort_sparse(LSparse_loc[i]); | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_quicksort_sparse(LSparse_loc[i]); | |||
} | |||
for (int i = 0; i < N0; i++ ) { | |||
@@ -41,7 +41,7 @@ uint8_t PQCLEAN_LEDAKEMLT52_CLEAN_DFR_test(POSITION_T LSparse[N0][DV * M]) { | |||
for (int idxToRotate = 0; idxToRotate < (DV * M); idxToRotate++) { | |||
rotated_column[idxToRotate] = (LSparse_loc[j][idxToRotate] + k) % P; | |||
} | |||
PQCLEAN_LEDAKEMLT52_CLEAN_quicksort_sparse(rotated_column); | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_quicksort_sparse(rotated_column); | |||
/* compute the intersection amount */ | |||
firstidx = 0, secondidx = 0; | |||
intersectionval = 0; |
@@ -0,0 +1,8 @@ | |||
#ifndef DFR_TEST_H | |||
#define DFR_TEST_H | |||
#define DFR_TEST_FAIL (255) | |||
uint8_t PQCLEAN_LEDAKEMLT52_LEAKTIME_DFR_test(POSITION_T LSparse[N0][DV * M]); | |||
#endif |
@@ -3,14 +3,14 @@ | |||
#include <assert.h> | |||
#include <string.h> // memset(...) | |||
void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_add(DIGIT Res[], const DIGIT A[], const DIGIT B[], int nr) { | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_add(DIGIT Res[], const DIGIT A[], const DIGIT B[], int nr) { | |||
for (int i = 0; i < nr; i++) { | |||
Res[i] = A[i] ^ B[i]; | |||
} | |||
} | |||
/* PRE: MAX ALLOWED ROTATION AMOUNT : DIGIT_SIZE_b */ | |||
void PQCLEAN_LEDAKEMLT32_CLEAN_right_bit_shift_n(int length, DIGIT in[], unsigned int amount) { | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_right_bit_shift_n(int length, DIGIT in[], unsigned int amount) { | |||
assert(amount < DIGIT_SIZE_b); | |||
if ( amount == 0 ) { | |||
return; | |||
@@ -26,7 +26,7 @@ void PQCLEAN_LEDAKEMLT32_CLEAN_right_bit_shift_n(int length, DIGIT in[], unsigne | |||
} | |||
/* PRE: MAX ALLOWED ROTATION AMOUNT : DIGIT_SIZE_b */ | |||
void PQCLEAN_LEDAKEMLT32_CLEAN_left_bit_shift_n(int length, DIGIT in[], unsigned int amount) { | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_left_bit_shift_n(int length, DIGIT in[], unsigned int amount) { | |||
assert(amount < DIGIT_SIZE_b); | |||
if ( amount == 0 ) { | |||
return; | |||
@@ -41,7 +41,7 @@ void PQCLEAN_LEDAKEMLT32_CLEAN_left_bit_shift_n(int length, DIGIT in[], unsigned | |||
in[j] <<= amount; | |||
} | |||
void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mul_comb(int nr, DIGIT Res[], | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mul_comb(int nr, DIGIT Res[], | |||
int na, const DIGIT A[], | |||
int nb, const DIGIT B[]) { | |||
int i, j, k; |
@@ -48,11 +48,11 @@ typedef uint64_t DIGIT; | |||
#define DIGIT_SIZE_b (DIGIT_SIZE_B << 3) | |||
#define POSITION_T uint32_t | |||
#define GF2X_MUL PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mul_comb | |||
#define GF2X_MUL PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mul_comb | |||
void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_add(DIGIT Res[], const DIGIT A[], const DIGIT B[], int nr); | |||
void PQCLEAN_LEDAKEMLT12_CLEAN_right_bit_shift_n(int length, DIGIT in[], unsigned int amount); | |||
void PQCLEAN_LEDAKEMLT12_CLEAN_left_bit_shift_n(int length, DIGIT in[], unsigned int amount); | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_add(DIGIT Res[], const DIGIT A[], const DIGIT B[], int nr); | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_right_bit_shift_n(int length, DIGIT in[], unsigned int amount); | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_left_bit_shift_n(int length, DIGIT in[], unsigned int amount); | |||
void GF2X_MUL(int nr, DIGIT Res[], int na, const DIGIT A[], int nb, const DIGIT B[]); | |||
#endif |
@@ -5,14 +5,14 @@ | |||
#include <string.h> // memcpy(...), memset(...) | |||
void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_copy(DIGIT dest[], const DIGIT in[]) { | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_copy(DIGIT dest[], const DIGIT in[]) { | |||
for (int i = NUM_DIGITS_GF2X_ELEMENT - 1; i >= 0; i--) { | |||
dest[i] = in[i]; | |||
} | |||
} | |||
/* returns the coefficient of the x^exponent term as the LSB of a digit */ | |||
DIGIT PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_get_coeff(const DIGIT poly[], unsigned int exponent) { | |||
DIGIT PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_get_coeff(const DIGIT poly[], unsigned int exponent) { | |||
unsigned int straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent; | |||
unsigned int digitIdx = straightIdx / DIGIT_SIZE_b; | |||
unsigned int inDigitIdx = straightIdx % DIGIT_SIZE_b; | |||
@@ -20,7 +20,7 @@ DIGIT PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_get_coeff(const DIGIT poly[], unsigned int | |||
} | |||
/* sets the coefficient of the x^exponent term as the LSB of a digit */ | |||
void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_set_coeff(DIGIT poly[], unsigned int exponent, DIGIT value) { | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_set_coeff(DIGIT poly[], unsigned int exponent, DIGIT value) { | |||
unsigned int straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent; | |||
unsigned int digitIdx = straightIdx / DIGIT_SIZE_b; | |||
unsigned int inDigitIdx = straightIdx % DIGIT_SIZE_b; | |||
@@ -32,7 +32,7 @@ void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_set_coeff(DIGIT poly[], unsigned int exponen | |||
} | |||
/* toggles (flips) the coefficient of the x^exponent term as the LSB of a digit */ | |||
void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_toggle_coeff(DIGIT poly[], unsigned int exponent) { | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_toggle_coeff(DIGIT poly[], unsigned int exponent) { | |||
unsigned int straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent; | |||
unsigned int digitIdx = straightIdx / DIGIT_SIZE_b; | |||
unsigned int inDigitIdx = straightIdx % DIGIT_SIZE_b; | |||
@@ -52,7 +52,7 @@ static int popcount_uint64t(uint64_t x) { | |||
} | |||
/* population count for a single polynomial */ | |||
int PQCLEAN_LEDAKEMLT52_CLEAN_population_count(DIGIT *poly) { | |||
int PQCLEAN_LEDAKEMLT52_LEAKTIME_population_count(DIGIT *poly) { | |||
int ret = 0; | |||
for (int i = NUM_DIGITS_GF2X_ELEMENT - 1; i >= 0; i--) { | |||
ret += popcount_uint64t(poly[i]); | |||
@@ -60,8 +60,8 @@ int PQCLEAN_LEDAKEMLT52_CLEAN_population_count(DIGIT *poly) { | |||
return ret; | |||
} | |||
void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_add(DIGIT Res[], const DIGIT A[], const DIGIT B[]) { | |||
PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_add(Res, A, B, NUM_DIGITS_GF2X_ELEMENT); | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_add(DIGIT Res[], const DIGIT A[], const DIGIT B[]) { | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_add(Res, A, B, NUM_DIGITS_GF2X_ELEMENT); | |||
} | |||
static int partition(POSITION_T arr[], int lo, int hi) { | |||
@@ -83,7 +83,7 @@ static int partition(POSITION_T arr[], int lo, int hi) { | |||
return i + 1; | |||
} | |||
void PQCLEAN_LEDAKEMLT52_CLEAN_quicksort_sparse(POSITION_T Res[]) { | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_quicksort_sparse(POSITION_T Res[]) { | |||
int stack[DV * M]; | |||
int hi, lo, pivot, tos = -1; | |||
stack[++tos] = 0; | |||
@@ -176,7 +176,7 @@ static void left_DIGIT_shift_n(unsigned int length, DIGIT in[], unsigned int amo | |||
/* may shift by an arbitrary amount*/ | |||
static void left_bit_shift_wide_n(const int length, DIGIT in[], unsigned int amount) { | |||
left_DIGIT_shift_n(length, in, amount / DIGIT_SIZE_b); | |||
PQCLEAN_LEDAKEMLT52_CLEAN_left_bit_shift_n(length, in, amount % DIGIT_SIZE_b); | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_left_bit_shift_n(length, in, amount % DIGIT_SIZE_b); | |||
} | |||
/* Hackers delight, reverses a uint64_t */ | |||
@@ -194,7 +194,7 @@ static DIGIT reverse_digit(DIGIT x) { | |||
return x; | |||
} | |||
void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_transpose_in_place(DIGIT A[]) { | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_transpose_in_place(DIGIT A[]) { | |||
/* it keeps the lsb in the same position and | |||
* inverts the sequence of the remaining bits */ | |||
@@ -215,7 +215,7 @@ void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_transpose_in_place(DIGIT A[]) { | |||
// A[NUM_DIGITS_GF2X_ELEMENT / 2] = reverse_digit(A[NUM_DIGITS_GF2X_ELEMENT / 2]); // no middle digit | |||
if (slack_bits_amount) { | |||
PQCLEAN_LEDAKEMLT52_CLEAN_right_bit_shift_n(NUM_DIGITS_GF2X_ELEMENT, A, slack_bits_amount); | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_right_bit_shift_n(NUM_DIGITS_GF2X_ELEMENT, A, slack_bits_amount); | |||
} | |||
A[NUM_DIGITS_GF2X_ELEMENT - 1] = (A[NUM_DIGITS_GF2X_ELEMENT - 1] & (~mask)) | a00; | |||
} | |||
@@ -266,7 +266,7 @@ static void gf2x_swap(const int length, DIGIT f[], DIGIT s[]) { | |||
* (Chapter 11 -- Algorithm 11.44 -- pag 223) | |||
* | |||
*/ | |||
int PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_inverse(DIGIT out[], const DIGIT in[]) { /* in^{-1} mod x^P-1 */ | |||
int PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_inverse(DIGIT out[], const DIGIT in[]) { /* in^{-1} mod x^P-1 */ | |||
int i; | |||
int delta = 0; | |||
@@ -300,8 +300,8 @@ int PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_inverse(DIGIT out[], const DIGIT in[]) { | |||
delta += 1; | |||
} else { | |||
if ( (s[0] & mask) != 0) { | |||
PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_add(s, s, f, NUM_DIGITS_GF2X_MODULUS); | |||
PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_add(v, v, u); | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_add(s, s, f, NUM_DIGITS_GF2X_MODULUS); | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_add(v, v, u); | |||
} | |||
left_bit_shift(NUM_DIGITS_GF2X_MODULUS, s); | |||
if ( delta == 0 ) { | |||
@@ -323,7 +323,7 @@ int PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_inverse(DIGIT out[], const DIGIT in[]) { | |||
return (delta == 0); | |||
} | |||
void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_mul(DIGIT Res[], const DIGIT A[], const DIGIT B[]) { | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_mul(DIGIT Res[], const DIGIT A[], const DIGIT B[]) { | |||
DIGIT aux[2 * NUM_DIGITS_GF2X_ELEMENT]; | |||
GF2X_MUL(2 * NUM_DIGITS_GF2X_ELEMENT, aux, | |||
@@ -335,7 +335,7 @@ void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_mul(DIGIT Res[], const DIGIT A[], const | |||
/*PRE: the representation of the sparse coefficients is sorted in increasing | |||
order of the coefficients themselves */ | |||
void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_mul_dense_to_sparse( | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_mul_dense_to_sparse( | |||
DIGIT Res[], | |||
const DIGIT dense[], | |||
POSITION_T sparse[], unsigned int nPos) { | |||
@@ -353,7 +353,7 @@ void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_mul_dense_to_sparse( | |||
for (unsigned int i = 1; i < nPos; i++) { | |||
if (sparse[i] != INVALID_POS_VALUE) { | |||
left_bit_shift_wide_n(2 * NUM_DIGITS_GF2X_ELEMENT, aux, (sparse[i] - sparse[i - 1]) ); | |||
PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_add(resDouble, aux, resDouble, 2 * NUM_DIGITS_GF2X_ELEMENT); | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_add(resDouble, aux, resDouble, 2 * NUM_DIGITS_GF2X_ELEMENT); | |||
} | |||
} | |||
} | |||
@@ -362,7 +362,7 @@ void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_mul_dense_to_sparse( | |||
} | |||
void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_transpose_in_place_sparse(int sizeA, POSITION_T A[]) { | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_transpose_in_place_sparse(int sizeA, POSITION_T A[]) { | |||
POSITION_T t; | |||
int i = 0, j; | |||
@@ -384,7 +384,7 @@ void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_transpose_in_place_sparse(int sizeA, POSITIO | |||
} | |||
void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_mul_sparse(size_t sizeR, POSITION_T Res[], | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_mul_sparse(size_t sizeR, POSITION_T Res[], | |||
size_t sizeA, const POSITION_T A[], | |||
size_t sizeB, const POSITION_T B[]) { | |||
@@ -407,7 +407,7 @@ void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_mul_sparse(size_t sizeR, POSITION_T Res[ | |||
Res[lastFilledPos] = INVALID_POS_VALUE; | |||
lastFilledPos++; | |||
} | |||
PQCLEAN_LEDAKEMLT52_CLEAN_quicksort_sparse(Res); | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_quicksort_sparse(Res); | |||
/* eliminate duplicates */ | |||
POSITION_T lastReadPos = Res[0]; | |||
int duplicateCount; | |||
@@ -434,7 +434,7 @@ void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_mul_sparse(size_t sizeR, POSITION_T Res[ | |||
/* the implementation is safe even in case A or B alias with the result */ | |||
/* PRE: A and B should be sorted and have INVALID_POS_VALUE at the end */ | |||
void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_add_sparse( | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_add_sparse( | |||
int sizeR, POSITION_T Res[], | |||
int sizeA, const POSITION_T A[], | |||
int sizeB, const POSITION_T B[]) { | |||
@@ -493,7 +493,7 @@ static uint32_t rand_range(const unsigned int n, const int logn, AES_XOF_struct | |||
uint32_t mask = ( (uint32_t)1 << logn) - 1; | |||
do { | |||
PQCLEAN_LEDAKEMLT52_CLEAN_seedexpander(seed_expander_ctx, rnd_char_buffer, required_rnd_bytes); | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_seedexpander(seed_expander_ctx, rnd_char_buffer, required_rnd_bytes); | |||
/* obtain an endianness independent representation of the generated random | |||
bytes into an unsigned integer */ | |||
rnd_value = ((uint32_t)rnd_char_buffer[3] << 24) + | |||
@@ -508,7 +508,7 @@ static uint32_t rand_range(const unsigned int n, const int logn, AES_XOF_struct | |||
/* Obtains fresh randomness and seed-expands it until all the required positions | |||
* for the '1's in the circulant block are obtained */ | |||
void PQCLEAN_LEDAKEMLT52_CLEAN_rand_circulant_sparse_block(POSITION_T *pos_ones, | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_rand_circulant_sparse_block(POSITION_T *pos_ones, | |||
int countOnes, | |||
AES_XOF_struct *seed_expander_ctx) { | |||
@@ -533,7 +533,7 @@ void PQCLEAN_LEDAKEMLT52_CLEAN_rand_circulant_sparse_block(POSITION_T *pos_ones, | |||
} | |||
/* Returns random weight-t circulant block */ | |||
void PQCLEAN_LEDAKEMLT52_CLEAN_rand_circulant_blocks_sequence( | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_rand_circulant_blocks_sequence( | |||
DIGIT sequence[N0 * NUM_DIGITS_GF2X_ELEMENT], | |||
AES_XOF_struct *seed_expander_ctx) { | |||
@@ -559,13 +559,13 @@ void PQCLEAN_LEDAKEMLT52_CLEAN_rand_circulant_blocks_sequence( | |||
for (int j = 0; j < counter; j++) { | |||
polyIndex = rndPos[j] / P; | |||
exponent = rndPos[j] % P; | |||
PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_set_coeff( sequence + NUM_DIGITS_GF2X_ELEMENT * polyIndex, exponent, | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_set_coeff( sequence + NUM_DIGITS_GF2X_ELEMENT * polyIndex, exponent, | |||
( (DIGIT) 1)); | |||
} | |||
} | |||
void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_tobytes(uint8_t *bytes, const DIGIT *poly) { | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_tobytes(uint8_t *bytes, const DIGIT *poly) { | |||
size_t i, j; | |||
for (i = 0; i < NUM_DIGITS_GF2X_ELEMENT; i++) { | |||
for (j = 0; j < DIGIT_SIZE_B; j++) { | |||
@@ -574,7 +574,7 @@ void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_tobytes(uint8_t *bytes, const DIGIT *poly) { | |||
} | |||
} | |||
void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_frombytes(DIGIT *poly, const uint8_t *poly_bytes) { | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_frombytes(DIGIT *poly, const uint8_t *poly_bytes) { | |||
size_t i, j; | |||
for (i = 0; i < NUM_DIGITS_GF2X_ELEMENT; i++) { | |||
poly[i] = (DIGIT) 0; |
@@ -0,0 +1,37 @@ | |||
#ifndef GF2X_ARITH_MOD_XPLUSONE_H | |||
#define GF2X_ARITH_MOD_XPLUSONE_H | |||
#include "qc_ldpc_parameters.h" | |||
#include "gf2x_arith.h" | |||
#include "rng.h" | |||
#define NUM_BITS_GF2X_ELEMENT (P) // 152267 | |||
#define NUM_DIGITS_GF2X_ELEMENT ((P+DIGIT_SIZE_b-1)/DIGIT_SIZE_b) // 2380 | |||
#define MSb_POSITION_IN_MSB_DIGIT_OF_ELEMENT ((P % DIGIT_SIZE_b) ? (P % DIGIT_SIZE_b)-1 : DIGIT_SIZE_b-1) | |||
#define NUM_BITS_GF2X_MODULUS (P+1) | |||
#define NUM_DIGITS_GF2X_MODULUS ((P+1+DIGIT_SIZE_b-1)/DIGIT_SIZE_b) // 2380 | |||
#define MSb_POSITION_IN_MSB_DIGIT_OF_MODULUS (P-DIGIT_SIZE_b*(NUM_DIGITS_GF2X_MODULUS-1)) | |||
#define INVALID_POS_VALUE (P) | |||
#define P_BITS (18) // log_2(p) = 17.216243783 | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_copy(DIGIT dest[], const DIGIT in[]); | |||
DIGIT PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_get_coeff(const DIGIT poly[], unsigned int exponent); | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_set_coeff(DIGIT poly[], unsigned int exponent, DIGIT value); | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_toggle_coeff(DIGIT poly[], unsigned int exponent); | |||
int PQCLEAN_LEDAKEMLT52_LEAKTIME_population_count(DIGIT *poly); | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_add(DIGIT Res[], const DIGIT A[], const DIGIT B[]); | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_quicksort_sparse(POSITION_T Res[]); | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_mul(DIGIT Res[], const DIGIT A[], const DIGIT B[]); | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_transpose_in_place(DIGIT A[]); | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_rand_circulant_sparse_block(POSITION_T *pos_ones, int countOnes, AES_XOF_struct *seed_expander_ctx); | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_rand_circulant_blocks_sequence(DIGIT *sequence, AES_XOF_struct *seed_expander_ctx); | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_add_sparse(int sizeR, POSITION_T Res[], int sizeA, const POSITION_T A[], int sizeB, const POSITION_T B[]); | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_transpose_in_place_sparse(int sizeA, POSITION_T A[]); | |||
int PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_inverse(DIGIT out[], const DIGIT in[]); | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_mul_sparse(size_t sizeR, POSITION_T Res[], size_t sizeA, const POSITION_T A[], size_t sizeB, const POSITION_T B[]); | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_mul_dense_to_sparse(DIGIT Res[], const DIGIT dense[], POSITION_T sparse[], unsigned int nPos); | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_tobytes(uint8_t *bytes, const DIGIT *poly); | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_frombytes(DIGIT *poly, const uint8_t *poly_bytes); | |||
#endif |
@@ -8,43 +8,43 @@ | |||
static void pack_pk(uint8_t *pk_bytes, publicKeyNiederreiter_t *pk) { | |||
size_t i; | |||
for (i = 0; i < N0 - 1; i++) { | |||
PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_tobytes(pk_bytes + i * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B, | |||
pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT); | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_tobytes(pk_bytes + i * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B, | |||
pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT); | |||
} | |||
} | |||
static void unpack_pk(publicKeyNiederreiter_t *pk, const uint8_t *pk_bytes) { | |||
size_t i; | |||
for (i = 0; i < N0 - 1; i++) { | |||
PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_frombytes(pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT, | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_frombytes(pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT, | |||
pk_bytes + i * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B); | |||
} | |||
} | |||
static void pack_ct(uint8_t *sk_bytes, DIGIT *ct) { | |||
PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_tobytes(sk_bytes, ct); | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_tobytes(sk_bytes, ct); | |||
} | |||
static void unpack_ct(DIGIT *ct, const uint8_t *ct_bytes) { | |||
PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_frombytes(ct, ct_bytes); | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_frombytes(ct, ct_bytes); | |||
} | |||
static void pack_error(uint8_t *error_bytes, DIGIT *error_digits) { | |||
size_t i; | |||
for (i = 0; i < N0; i++) { | |||
PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_tobytes(error_bytes + i * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B, | |||
error_digits + i * NUM_DIGITS_GF2X_ELEMENT); | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_tobytes(error_bytes + i * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B, | |||
error_digits + i * NUM_DIGITS_GF2X_ELEMENT); | |||
} | |||
} | |||
/* Generates a keypair - pk is the public key and sk is the secret key. */ | |||
int PQCLEAN_LEDAKEMLT12_CLEAN_crypto_kem_keypair(unsigned char *pk, unsigned char *sk) { | |||
int PQCLEAN_LEDAKEMLT52_LEAKTIME_crypto_kem_keypair(unsigned char *pk, unsigned char *sk) { | |||
AES_XOF_struct niederreiter_keys_expander; | |||
publicKeyNiederreiter_t pk_nie; | |||
randombytes(((privateKeyNiederreiter_t *)sk)->prng_seed, TRNG_BYTE_LENGTH); | |||
PQCLEAN_LEDAKEMLT12_CLEAN_seedexpander_from_trng(&niederreiter_keys_expander, ((privateKeyNiederreiter_t *)sk)->prng_seed); | |||
PQCLEAN_LEDAKEMLT12_CLEAN_niederreiter_keygen(&pk_nie, (privateKeyNiederreiter_t *) sk, &niederreiter_keys_expander); | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_seedexpander_from_trng(&niederreiter_keys_expander, ((privateKeyNiederreiter_t *)sk)->prng_seed); | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_niederreiter_keygen(&pk_nie, (privateKeyNiederreiter_t *) sk, &niederreiter_keys_expander); | |||
pack_pk(pk, &pk_nie); | |||
@@ -53,7 +53,7 @@ int PQCLEAN_LEDAKEMLT12_CLEAN_crypto_kem_keypair(unsigned char *pk, unsigned cha | |||
/* Encrypt - pk is the public key, ct is a key encapsulation message | |||
(ciphertext), ss is the shared secret.*/ | |||
int PQCLEAN_LEDAKEMLT12_CLEAN_crypto_kem_enc(unsigned char *ct, unsigned char *ss, const unsigned char *pk) { | |||
int PQCLEAN_LEDAKEMLT52_LEAKTIME_crypto_kem_enc(unsigned char *ct, unsigned char *ss, const unsigned char *pk) { | |||
AES_XOF_struct niederreiter_encap_key_expander; | |||
unsigned char encapsulated_key_seed[TRNG_BYTE_LENGTH]; | |||
DIGIT error_vector[N0 * NUM_DIGITS_GF2X_ELEMENT]; | |||
@@ -64,11 +64,11 @@ int PQCLEAN_LEDAKEMLT12_CLEAN_crypto_kem_enc(unsigned char *ct, unsigned char *s | |||
randombytes(encapsulated_key_seed, TRNG_BYTE_LENGTH); | |||
unpack_pk(&pk_nie, pk); | |||
PQCLEAN_LEDAKEMLT12_CLEAN_seedexpander_from_trng(&niederreiter_encap_key_expander, encapsulated_key_seed); | |||
PQCLEAN_LEDAKEMLT12_CLEAN_rand_circulant_blocks_sequence(error_vector, &niederreiter_encap_key_expander); | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_seedexpander_from_trng(&niederreiter_encap_key_expander, encapsulated_key_seed); | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_rand_circulant_blocks_sequence(error_vector, &niederreiter_encap_key_expander); | |||
pack_error(error_bytes, error_vector); | |||
HASH_FUNCTION(ss, error_bytes, (N0 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B)); | |||
PQCLEAN_LEDAKEMLT12_CLEAN_niederreiter_encrypt(syndrome, &pk_nie, error_vector); | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_niederreiter_encrypt(syndrome, &pk_nie, error_vector); | |||
pack_ct(ct, syndrome); | |||
@@ -78,13 +78,13 @@ int PQCLEAN_LEDAKEMLT12_CLEAN_crypto_kem_enc(unsigned char *ct, unsigned char *s | |||
/* Decrypt - ct is a key encapsulation message (ciphertext), sk is the private | |||
key, ss is the shared secret */ | |||
int PQCLEAN_LEDAKEMLT12_CLEAN_crypto_kem_dec(unsigned char *ss, const unsigned char *ct, const unsigned char *sk) { | |||
int PQCLEAN_LEDAKEMLT52_LEAKTIME_crypto_kem_dec(unsigned char *ss, const unsigned char *ct, const unsigned char *sk) { | |||
DIGIT decoded_error_vector[N0 * NUM_DIGITS_GF2X_ELEMENT]; | |||
uint8_t decoded_error_bytes[N0 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B]; | |||
DIGIT syndrome[NUM_DIGITS_GF2X_ELEMENT]; | |||
unpack_ct(syndrome, ct); | |||
PQCLEAN_LEDAKEMLT12_CLEAN_niederreiter_decrypt(decoded_error_vector, (privateKeyNiederreiter_t *)sk, syndrome); | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_niederreiter_decrypt(decoded_error_vector, (privateKeyNiederreiter_t *)sk, syndrome); | |||
pack_error(decoded_error_bytes, decoded_error_vector); | |||
HASH_FUNCTION(ss, decoded_error_bytes, (N0 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B)); | |||
@@ -8,7 +8,7 @@ | |||
#include <string.h> | |||
void PQCLEAN_LEDAKEMLT32_CLEAN_niederreiter_keygen(publicKeyNiederreiter_t *pk, privateKeyNiederreiter_t *sk, AES_XOF_struct *keys_expander) { | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_niederreiter_keygen(publicKeyNiederreiter_t *pk, privateKeyNiederreiter_t *sk, AES_XOF_struct *keys_expander) { | |||
POSITION_T HPosOnes[N0][DV]; // sequence of N0 circ block matrices (p x p): Hi | |||
POSITION_T HtrPosOnes[N0][DV]; // Sparse tranposed circulant H | |||
@@ -23,8 +23,8 @@ void PQCLEAN_LEDAKEMLT32_CLEAN_niederreiter_keygen(publicKeyNiederreiter_t *pk, | |||
sk->rejections = (int8_t) 0; | |||
do { | |||
PQCLEAN_LEDAKEMLT32_CLEAN_generateHPosOnes_HtrPosOnes(HPosOnes, HtrPosOnes, keys_expander); | |||
PQCLEAN_LEDAKEMLT32_CLEAN_generateQsparse(QPosOnes, keys_expander); | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_generateHPosOnes_HtrPosOnes(HPosOnes, HtrPosOnes, keys_expander); | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_generateQsparse(QPosOnes, keys_expander); | |||
for (int i = 0; i < N0; i++) { | |||
for (int j = 0; j < DV * M; j++) { | |||
LPosOnes[i][j] = INVALID_POS_VALUE; | |||
@@ -34,10 +34,10 @@ void PQCLEAN_LEDAKEMLT32_CLEAN_niederreiter_keygen(publicKeyNiederreiter_t *pk, | |||
memset(processedQOnes, 0x00, sizeof(processedQOnes)); | |||
for (int colQ = 0; colQ < N0; colQ++) { | |||
for (int i = 0; i < N0; i++) { | |||
PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mod_mul_sparse(DV * M, auxPosOnes, | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_mul_sparse(DV * M, auxPosOnes, | |||
DV, HPosOnes[i], | |||
qBlockWeights[i][colQ], QPosOnes[i] + processedQOnes[i]); | |||
PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mod_add_sparse(DV * M, LPosOnes[colQ], | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_add_sparse(DV * M, LPosOnes[colQ], | |||
DV * M, LPosOnes[colQ], | |||
DV * M, auxPosOnes); | |||
processedQOnes[i] += qBlockWeights[i][colQ]; | |||
@@ -49,7 +49,7 @@ void PQCLEAN_LEDAKEMLT32_CLEAN_niederreiter_keygen(publicKeyNiederreiter_t *pk, | |||
} | |||
sk->rejections = sk->rejections + 1; | |||
if (is_L_full) { | |||
threshold = PQCLEAN_LEDAKEMLT32_CLEAN_DFR_test(LPosOnes); | |||
threshold = PQCLEAN_LEDAKEMLT52_LEAKTIME_DFR_test(LPosOnes); | |||
} | |||
} while (!is_L_full || threshold == DFR_TEST_FAIL); | |||
sk->rejections = sk->rejections - 1; | |||
@@ -58,41 +58,41 @@ void PQCLEAN_LEDAKEMLT32_CLEAN_niederreiter_keygen(publicKeyNiederreiter_t *pk, | |||
memset(Ln0dense, 0x00, sizeof(Ln0dense)); | |||
for (int j = 0; j < DV * M; j++) { | |||
if (LPosOnes[N0 - 1][j] != INVALID_POS_VALUE) { | |||
PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_set_coeff(Ln0dense, LPosOnes[N0 - 1][j], 1); | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_set_coeff(Ln0dense, LPosOnes[N0 - 1][j], 1); | |||
} | |||
} | |||
memset(Ln0Inv, 0x00, sizeof(Ln0Inv)); | |||
PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mod_inverse(Ln0Inv, Ln0dense); | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_inverse(Ln0Inv, Ln0dense); | |||
for (int i = 0; i < N0 - 1; i++) { | |||
PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mod_mul_dense_to_sparse(pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT, | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_mul_dense_to_sparse(pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT, | |||
Ln0Inv, | |||
LPosOnes[i], | |||
DV * M); | |||
} | |||
for (int i = 0; i < N0 - 1; i++) { | |||
PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_transpose_in_place(pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT); | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_transpose_in_place(pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT); | |||
} | |||
} | |||
void PQCLEAN_LEDAKEMLT32_CLEAN_niederreiter_encrypt(DIGIT *syndrome, const publicKeyNiederreiter_t *pk, const DIGIT *err) { | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_niederreiter_encrypt(DIGIT *syndrome, const publicKeyNiederreiter_t *pk, const DIGIT *err) { | |||
int i; | |||
DIGIT saux[NUM_DIGITS_GF2X_ELEMENT]; | |||
memset(syndrome, 0x00, NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B); | |||
for (i = 0; i < N0 - 1; i++) { | |||
PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mod_mul(saux, | |||
pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT, | |||
err + i * NUM_DIGITS_GF2X_ELEMENT); | |||
PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mod_add(syndrome, syndrome, saux); | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_mul(saux, | |||
pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT, | |||
err + i * NUM_DIGITS_GF2X_ELEMENT); | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_add(syndrome, syndrome, saux); | |||
} | |||
PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mod_add(syndrome, syndrome, err + (N0 - 1)*NUM_DIGITS_GF2X_ELEMENT); | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_add(syndrome, syndrome, err + (N0 - 1)*NUM_DIGITS_GF2X_ELEMENT); | |||
} | |||
int PQCLEAN_LEDAKEMLT32_CLEAN_niederreiter_decrypt(DIGIT *err, const privateKeyNiederreiter_t *sk, const DIGIT *syndrome) { | |||
int PQCLEAN_LEDAKEMLT52_LEAKTIME_niederreiter_decrypt(DIGIT *err, const privateKeyNiederreiter_t *sk, const DIGIT *syndrome) { | |||
AES_XOF_struct niederreiter_decrypt_expander; | |||
POSITION_T HPosOnes[N0][DV]; | |||
POSITION_T HtrPosOnes[N0][DV]; | |||
@@ -110,11 +110,11 @@ int PQCLEAN_LEDAKEMLT32_CLEAN_niederreiter_decrypt(DIGIT *err, const privateKeyN | |||
int currQoneIdx, endQblockIdx; | |||
int decryptOk, err_weight; | |||
PQCLEAN_LEDAKEMLT32_CLEAN_seedexpander_from_trng(&niederreiter_decrypt_expander, sk->prng_seed); | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_seedexpander_from_trng(&niederreiter_decrypt_expander, sk->prng_seed); | |||
do { | |||
PQCLEAN_LEDAKEMLT32_CLEAN_generateHPosOnes_HtrPosOnes(HPosOnes, HtrPosOnes, &niederreiter_decrypt_expander); | |||
PQCLEAN_LEDAKEMLT32_CLEAN_generateQsparse(QPosOnes, &niederreiter_decrypt_expander); | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_generateHPosOnes_HtrPosOnes(HPosOnes, HtrPosOnes, &niederreiter_decrypt_expander); | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_generateQsparse(QPosOnes, &niederreiter_decrypt_expander); | |||
for (int i = 0; i < N0; i++) { | |||
for (int j = 0; j < DV * M; j++) { | |||
LPosOnes[i][j] = INVALID_POS_VALUE; | |||
@@ -124,10 +124,10 @@ int PQCLEAN_LEDAKEMLT32_CLEAN_niederreiter_decrypt(DIGIT *err, const privateKeyN | |||
memset(processedQOnes, 0x00, sizeof(processedQOnes)); | |||
for (int colQ = 0; colQ < N0; colQ++) { | |||
for (int i = 0; i < N0; i++) { | |||
PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mod_mul_sparse(DV * M, auxPosOnes, | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_mul_sparse(DV * M, auxPosOnes, | |||
DV, HPosOnes[i], | |||
qBlockWeights[i][colQ], QPosOnes[i] + processedQOnes[i]); | |||
PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mod_add_sparse(DV * M, LPosOnes[colQ], | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_add_sparse(DV * M, LPosOnes[colQ], | |||
DV * M, LPosOnes[colQ], | |||
DV * M, auxPosOnes); | |||
processedQOnes[i] += qBlockWeights[i][colQ]; | |||
@@ -156,31 +156,31 @@ int PQCLEAN_LEDAKEMLT32_CLEAN_niederreiter_decrypt(DIGIT *err, const privateKeyN | |||
} | |||
for (int i = 0; i < N0; i++) { | |||
PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mod_mul_sparse(DV * M, auxSparse, | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_mul_sparse(DV * M, auxSparse, | |||
DV, HPosOnes[i], | |||
qBlockWeights[i][N0 - 1], &QPosOnes[i][ M - qBlockWeights[i][N0 - 1]]); | |||
PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mod_add_sparse(DV * M, Ln0trSparse, | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_add_sparse(DV * M, Ln0trSparse, | |||
DV * M, Ln0trSparse, | |||
DV * M, auxSparse); | |||
} | |||
PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_transpose_in_place_sparse(DV * M, Ln0trSparse); | |||
PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mod_mul_dense_to_sparse(privateSyndrome, syndrome, Ln0trSparse, DV * M); | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_transpose_in_place_sparse(DV * M, Ln0trSparse); | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_mul_dense_to_sparse(privateSyndrome, syndrome, Ln0trSparse, DV * M); | |||
/* prepare mockup error vector in case a decoding failure occurs */ | |||
memset(mockup_error_vector, 0x00, N0 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B); | |||
memcpy(mockup_error_vector, syndrome, NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B); | |||
PQCLEAN_LEDAKEMLT32_CLEAN_seedexpander(&niederreiter_decrypt_expander, | |||
((unsigned char *) mockup_error_vector) + (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B), | |||
TRNG_BYTE_LENGTH); | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_seedexpander(&niederreiter_decrypt_expander, | |||
((unsigned char *) mockup_error_vector) + (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B), | |||
TRNG_BYTE_LENGTH); | |||
memset(err, 0x00, N0 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B); | |||
decryptOk = PQCLEAN_LEDAKEMLT32_CLEAN_bf_decoding(err, (const POSITION_T (*)[DV]) HtrPosOnes, | |||
decryptOk = PQCLEAN_LEDAKEMLT52_LEAKTIME_bf_decoding(err, (const POSITION_T (*)[DV]) HtrPosOnes, | |||
(const POSITION_T (*)[M]) QtrPosOnes, privateSyndrome, sk->threshold); | |||
err_weight = 0; | |||
for (int i = 0 ; i < N0; i++) { | |||
err_weight += PQCLEAN_LEDAKEMLT32_CLEAN_population_count(err + (NUM_DIGITS_GF2X_ELEMENT * i)); | |||
err_weight += PQCLEAN_LEDAKEMLT52_LEAKTIME_population_count(err + (NUM_DIGITS_GF2X_ELEMENT * i)); | |||
} | |||
decryptOk = decryptOk && (err_weight == NUM_ERRORS_T); | |||
@@ -21,9 +21,9 @@ typedef struct { | |||
// with P coefficients. | |||
} publicKeyNiederreiter_t; | |||
void PQCLEAN_LEDAKEMLT32_CLEAN_niederreiter_keygen(publicKeyNiederreiter_t *pk, privateKeyNiederreiter_t *sk, AES_XOF_struct *keys_expander); | |||
void PQCLEAN_LEDAKEMLT32_CLEAN_niederreiter_encrypt(DIGIT syndrome[], const publicKeyNiederreiter_t *pk, const DIGIT *err); | |||
int PQCLEAN_LEDAKEMLT32_CLEAN_niederreiter_decrypt(DIGIT *err, const privateKeyNiederreiter_t *sk, const DIGIT *syndrome); | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_niederreiter_keygen(publicKeyNiederreiter_t *pk, privateKeyNiederreiter_t *sk, AES_XOF_struct *keys_expander); | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_niederreiter_encrypt(DIGIT syndrome[], const publicKeyNiederreiter_t *pk, const DIGIT *err); | |||
int PQCLEAN_LEDAKEMLT52_LEAKTIME_niederreiter_decrypt(DIGIT *err, const privateKeyNiederreiter_t *sk, const DIGIT *syndrome); | |||
#endif |
@@ -37,7 +37,7 @@ static void seedexpander_init(AES_XOF_struct *ctx, | |||
memset(ctx->buffer, 0x00, 16); | |||
} | |||
void PQCLEAN_LEDAKEMLT52_CLEAN_seedexpander_from_trng(AES_XOF_struct *ctx, | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_seedexpander_from_trng(AES_XOF_struct *ctx, | |||
const unsigned char *trng_entropy | |||
/* TRNG_BYTE_LENGTH wide buffer */) { | |||
@@ -61,7 +61,7 @@ void PQCLEAN_LEDAKEMLT52_CLEAN_seedexpander_from_trng(AES_XOF_struct *ctx, | |||
x - returns the XOF data | |||
xlen - number of bytes to return | |||
*/ | |||
int PQCLEAN_LEDAKEMLT52_CLEAN_seedexpander(AES_XOF_struct *ctx, unsigned char *x, size_t xlen) { | |||
int PQCLEAN_LEDAKEMLT52_LEAKTIME_seedexpander(AES_XOF_struct *ctx, unsigned char *x, size_t xlen) { | |||
size_t offset; | |||
aes256ctx ctx256; | |||
@@ -18,7 +18,7 @@ typedef struct { | |||
unsigned char ctr[16]; | |||
} AES_XOF_struct; | |||
int PQCLEAN_LEDAKEMLT32_CLEAN_seedexpander(AES_XOF_struct *ctx, unsigned char *x, size_t xlen); | |||
void PQCLEAN_LEDAKEMLT32_CLEAN_seedexpander_from_trng(AES_XOF_struct *ctx, const unsigned char *trng_entropy); | |||
int PQCLEAN_LEDAKEMLT52_LEAKTIME_seedexpander(AES_XOF_struct *ctx, unsigned char *x, size_t xlen); | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_seedexpander_from_trng(AES_XOF_struct *ctx, const unsigned char *trng_entropy); | |||
#endif |