rename impl to leaktime
This commit is contained in:
parent
db99d3ec09
commit
e5b9b13160
@ -14,5 +14,5 @@ auxiliary-submitters:
|
||||
- Gerardo Pelosi
|
||||
- Paolo Santini
|
||||
implementations:
|
||||
- name: clean
|
||||
- name: leaktime
|
||||
version: 2.?
|
||||
|
@ -1,11 +0,0 @@
|
||||
#ifndef H_Q_MATRICES_GENERATION_H
|
||||
#define H_Q_MATRICES_GENERATION_H
|
||||
|
||||
#include "gf2x_arith.h"
|
||||
#include "qc_ldpc_parameters.h"
|
||||
#include "rng.h"
|
||||
|
||||
void PQCLEAN_LEDAKEMLT12_CLEAN_generateHPosOnes_HtrPosOnes(POSITION_T HPosOnes[N0][DV], POSITION_T HtrPosOnes[N0][DV], AES_XOF_struct *niederreiter_keys_expander);
|
||||
void PQCLEAN_LEDAKEMLT12_CLEAN_generateQsparse(POSITION_T pos_ones[N0][M], AES_XOF_struct *niederreiter_keys_expander);
|
||||
|
||||
#endif
|
@ -1,18 +0,0 @@
|
||||
#ifndef PQCLEAN_LEDAKEMLT12_CLEAN_API_H
|
||||
#define PQCLEAN_LEDAKEMLT12_CLEAN_API_H
|
||||
|
||||
#include <stdint.h>
|
||||
|
||||
#define PQCLEAN_LEDAKEMLT12_CLEAN_CRYPTO_SECRETKEYBYTES 26
|
||||
#define PQCLEAN_LEDAKEMLT12_CLEAN_CRYPTO_PUBLICKEYBYTES 6520
|
||||
#define PQCLEAN_LEDAKEMLT12_CLEAN_CRYPTO_CIPHERTEXTBYTES 6520
|
||||
#define PQCLEAN_LEDAKEMLT12_CLEAN_CRYPTO_BYTES 32
|
||||
|
||||
#define PQCLEAN_LEDAKEMLT12_CLEAN_CRYPTO_ALGNAME "LEDAKEMLT12"
|
||||
|
||||
int PQCLEAN_LEDAKEMLT12_CLEAN_crypto_kem_keypair(uint8_t *pk, uint8_t *sk);
|
||||
int PQCLEAN_LEDAKEMLT12_CLEAN_crypto_kem_enc(uint8_t *ct, uint8_t *ss, const uint8_t *pk);
|
||||
int PQCLEAN_LEDAKEMLT12_CLEAN_crypto_kem_dec(uint8_t *ss, const uint8_t *ct, const uint8_t *sk);
|
||||
|
||||
|
||||
#endif
|
@ -1,8 +0,0 @@
|
||||
#ifndef DFR_TEST_H
|
||||
#define DFR_TEST_H
|
||||
|
||||
#define DFR_TEST_FAIL (255)
|
||||
|
||||
uint8_t PQCLEAN_LEDAKEMLT12_CLEAN_DFR_test(POSITION_T LSparse[N0][DV * M]);
|
||||
|
||||
#endif
|
@ -1,38 +0,0 @@
|
||||
#ifndef GF2X_ARITH_MOD_XPLUSONE_H
|
||||
#define GF2X_ARITH_MOD_XPLUSONE_H
|
||||
|
||||
#include "qc_ldpc_parameters.h"
|
||||
|
||||
#include "gf2x_arith.h"
|
||||
#include "rng.h"
|
||||
|
||||
#define NUM_BITS_GF2X_ELEMENT (P) // 52147
|
||||
#define NUM_DIGITS_GF2X_ELEMENT ((P+DIGIT_SIZE_b-1)/DIGIT_SIZE_b)
|
||||
#define MSb_POSITION_IN_MSB_DIGIT_OF_ELEMENT ((P % DIGIT_SIZE_b) ? (P % DIGIT_SIZE_b)-1 : DIGIT_SIZE_b-1)
|
||||
#define NUM_BITS_GF2X_MODULUS (P+1)
|
||||
#define NUM_DIGITS_GF2X_MODULUS ((P+1+DIGIT_SIZE_b-1)/DIGIT_SIZE_b)
|
||||
#define MSb_POSITION_IN_MSB_DIGIT_OF_MODULUS (P-DIGIT_SIZE_b*(NUM_DIGITS_GF2X_MODULUS-1))
|
||||
#define INVALID_POS_VALUE (P)
|
||||
#define P_BITS (16) // log_2(p) = 15.6703
|
||||
|
||||
void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_copy(DIGIT dest[], const DIGIT in[]);
|
||||
DIGIT PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_get_coeff(const DIGIT poly[], unsigned int exponent);
|
||||
void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_set_coeff(DIGIT poly[], unsigned int exponent, DIGIT value);
|
||||
void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_toggle_coeff(DIGIT poly[], unsigned int exponent);
|
||||
int PQCLEAN_LEDAKEMLT12_CLEAN_population_count(DIGIT *poly);
|
||||
void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mod_add(DIGIT Res[], const DIGIT A[], const DIGIT B[]);
|
||||
void PQCLEAN_LEDAKEMLT12_CLEAN_quicksort_sparse(POSITION_T Res[]);
|
||||
void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mod_mul(DIGIT Res[], const DIGIT A[], const DIGIT B[]);
|
||||
void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_transpose_in_place(DIGIT A[]);
|
||||
void PQCLEAN_LEDAKEMLT12_CLEAN_rand_circulant_sparse_block(POSITION_T *pos_ones, int countOnes, AES_XOF_struct *seed_expander_ctx);
|
||||
void PQCLEAN_LEDAKEMLT12_CLEAN_rand_circulant_blocks_sequence(DIGIT *sequence, AES_XOF_struct *seed_expander_ctx);
|
||||
void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mod_add_sparse(int sizeR, POSITION_T Res[], int sizeA, const POSITION_T A[], int sizeB, const POSITION_T B[]);
|
||||
void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_transpose_in_place_sparse(int sizeA, POSITION_T A[]);
|
||||
int PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mod_inverse(DIGIT out[], const DIGIT in[]);
|
||||
void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mod_mul_sparse(size_t sizeR, POSITION_T Res[], size_t sizeA, const POSITION_T A[], size_t sizeB, const POSITION_T B[]);
|
||||
void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mod_mul_dense_to_sparse(DIGIT Res[], const DIGIT dense[], POSITION_T sparse[], unsigned int nPos);
|
||||
void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_tobytes(uint8_t *bytes, const DIGIT *poly);
|
||||
void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_frombytes(DIGIT *poly, const uint8_t *poly_bytes);
|
||||
|
||||
|
||||
#endif
|
@ -1,13 +1,13 @@
|
||||
#include "H_Q_matrices_generation.h"
|
||||
#include "gf2x_arith_mod_xPplusOne.h"
|
||||
|
||||
void PQCLEAN_LEDAKEMLT12_CLEAN_generateHPosOnes_HtrPosOnes(
|
||||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_generateHPosOnes_HtrPosOnes(
|
||||
POSITION_T HPosOnes[N0][DV],
|
||||
POSITION_T HtrPosOnes[N0][DV],
|
||||
AES_XOF_struct *keys_expander) {
|
||||
for (int i = 0; i < N0; i++) {
|
||||
/* Generate a random block of Htr */
|
||||
PQCLEAN_LEDAKEMLT12_CLEAN_rand_circulant_sparse_block(&HtrPosOnes[i][0], DV, keys_expander);
|
||||
PQCLEAN_LEDAKEMLT12_LEAKTIME_rand_circulant_sparse_block(&HtrPosOnes[i][0], DV, keys_expander);
|
||||
}
|
||||
for (int i = 0; i < N0; i++) {
|
||||
/* Obtain directly the sparse representation of the block of H */
|
||||
@ -17,13 +17,13 @@ void PQCLEAN_LEDAKEMLT12_CLEAN_generateHPosOnes_HtrPosOnes(
|
||||
}
|
||||
}
|
||||
|
||||
void PQCLEAN_LEDAKEMLT12_CLEAN_generateQsparse(
|
||||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_generateQsparse(
|
||||
POSITION_T pos_ones[N0][M],
|
||||
AES_XOF_struct *keys_expander) {
|
||||
for (int i = 0; i < N0; i++) {
|
||||
int placed_ones = 0;
|
||||
for (int j = 0; j < N0; j++) {
|
||||
PQCLEAN_LEDAKEMLT12_CLEAN_rand_circulant_sparse_block(&pos_ones[i][placed_ones],
|
||||
PQCLEAN_LEDAKEMLT12_LEAKTIME_rand_circulant_sparse_block(&pos_ones[i][placed_ones],
|
||||
qBlockWeights[i][j],
|
||||
keys_expander);
|
||||
placed_ones += qBlockWeights[i][j];
|
11
crypto_kem/ledakemlt12/leaktime/H_Q_matrices_generation.h
Normal file
11
crypto_kem/ledakemlt12/leaktime/H_Q_matrices_generation.h
Normal file
@ -0,0 +1,11 @@
|
||||
#ifndef H_Q_MATRICES_GENERATION_H
|
||||
#define H_Q_MATRICES_GENERATION_H
|
||||
|
||||
#include "gf2x_arith.h"
|
||||
#include "qc_ldpc_parameters.h"
|
||||
#include "rng.h"
|
||||
|
||||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_generateHPosOnes_HtrPosOnes(POSITION_T HPosOnes[N0][DV], POSITION_T HtrPosOnes[N0][DV], AES_XOF_struct *niederreiter_keys_expander);
|
||||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_generateQsparse(POSITION_T pos_ones[N0][M], AES_XOF_struct *niederreiter_keys_expander);
|
||||
|
||||
#endif
|
@ -1,6 +1,6 @@
|
||||
# This Makefile can be used with GNU Make or BSD Make
|
||||
|
||||
LIB=libledakemlt52_clean.a
|
||||
LIB=libledakemlt12_leaktime.a
|
||||
HEADERS=api.h bf_decoding.h dfr_test.h gf2x_arith_mod_xPplusOne.h \
|
||||
gf2x_arith.h H_Q_matrices_generation.h \
|
||||
niederreiter.h qc_ldpc_parameters.h rng.h
|
@ -1,7 +1,7 @@
|
||||
# This Makefile can be used with Microsoft Visual Studio's nmake using the command:
|
||||
# nmake /f Makefile.Microsoft_nmake
|
||||
|
||||
LIBRARY=libledakemlt32_clean.lib
|
||||
LIBRARY=libledakemlt12_leaktime.lib
|
||||
OBJECTS=bf_decoding.obj dfr_test.obj gf2x_arith_mod_xPplusOne.obj gf2x_arith.obj H_Q_matrices_generation.obj kem.obj niederreiter.obj rng.obj
|
||||
|
||||
CFLAGS=/nologo /I ..\..\..\common /W4 /WX
|
18
crypto_kem/ledakemlt12/leaktime/api.h
Normal file
18
crypto_kem/ledakemlt12/leaktime/api.h
Normal file
@ -0,0 +1,18 @@
|
||||
#ifndef PQCLEAN_LEDAKEMLT12_LEAKTIME_API_H
|
||||
#define PQCLEAN_LEDAKEMLT12_LEAKTIME_API_H
|
||||
|
||||
#include <stdint.h>
|
||||
|
||||
#define PQCLEAN_LEDAKEMLT12_LEAKTIME_CRYPTO_SECRETKEYBYTES 26
|
||||
#define PQCLEAN_LEDAKEMLT12_LEAKTIME_CRYPTO_PUBLICKEYBYTES 6520
|
||||
#define PQCLEAN_LEDAKEMLT12_LEAKTIME_CRYPTO_CIPHERTEXTBYTES 6520
|
||||
#define PQCLEAN_LEDAKEMLT12_LEAKTIME_CRYPTO_BYTES 32
|
||||
|
||||
#define PQCLEAN_LEDAKEMLT12_LEAKTIME_CRYPTO_ALGNAME "LEDAKEMLT12"
|
||||
|
||||
int PQCLEAN_LEDAKEMLT12_LEAKTIME_crypto_kem_keypair(uint8_t *pk, uint8_t *sk);
|
||||
int PQCLEAN_LEDAKEMLT12_LEAKTIME_crypto_kem_enc(uint8_t *ct, uint8_t *ss, const uint8_t *pk);
|
||||
int PQCLEAN_LEDAKEMLT12_LEAKTIME_crypto_kem_dec(uint8_t *ss, const uint8_t *ct, const uint8_t *sk);
|
||||
|
||||
|
||||
#endif
|
@ -4,7 +4,7 @@
|
||||
#include <assert.h>
|
||||
#include <string.h>
|
||||
|
||||
int PQCLEAN_LEDAKEMLT12_CLEAN_bf_decoding(DIGIT err[],
|
||||
int PQCLEAN_LEDAKEMLT12_LEAKTIME_bf_decoding(DIGIT err[],
|
||||
const POSITION_T HtrPosOnes[N0][DV],
|
||||
const POSITION_T QtrPosOnes[N0][M],
|
||||
DIGIT privateSyndrome[],
|
||||
@ -18,13 +18,13 @@ int PQCLEAN_LEDAKEMLT12_CLEAN_bf_decoding(DIGIT err[],
|
||||
unsigned int corrt_syndrome_based;
|
||||
|
||||
do {
|
||||
PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_copy(currSyndrome, privateSyndrome);
|
||||
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_copy(currSyndrome, privateSyndrome);
|
||||
memset(unsatParityChecks, 0x00, N0 * P * sizeof(uint8_t));
|
||||
for (int i = 0; i < N0; i++) {
|
||||
for (int valueIdx = 0; valueIdx < P; valueIdx++) {
|
||||
for (int HtrOneIdx = 0; HtrOneIdx < DV; HtrOneIdx++) {
|
||||
POSITION_T tmp = (HtrPosOnes[i][HtrOneIdx] + valueIdx) >= P ? (HtrPosOnes[i][HtrOneIdx] + valueIdx) - P : (HtrPosOnes[i][HtrOneIdx] + valueIdx);
|
||||
if (PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_get_coeff(currSyndrome, tmp)) {
|
||||
if (PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_get_coeff(currSyndrome, tmp)) {
|
||||
unsatParityChecks[i * P + valueIdx]++;
|
||||
}
|
||||
}
|
||||
@ -54,13 +54,13 @@ int PQCLEAN_LEDAKEMLT12_CLEAN_bf_decoding(DIGIT err[],
|
||||
}
|
||||
/* Correlation based flipping */
|
||||
if (correlation >= corrt_syndrome_based) {
|
||||
PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_toggle_coeff(err + NUM_DIGITS_GF2X_ELEMENT * i, j);
|
||||
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_toggle_coeff(err + NUM_DIGITS_GF2X_ELEMENT * i, j);
|
||||
for (int v = 0; v < M; v++) {
|
||||
POSITION_T syndromePosToFlip;
|
||||
for (int HtrOneIdx = 0; HtrOneIdx < DV; HtrOneIdx++) {
|
||||
syndromePosToFlip = (HtrPosOnes[currQBlkPos[v]][HtrOneIdx] + currQBitPos[v] );
|
||||
syndromePosToFlip = syndromePosToFlip >= P ? syndromePosToFlip - P : syndromePosToFlip;
|
||||
PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_toggle_coeff(privateSyndrome, syndromePosToFlip);
|
||||
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_toggle_coeff(privateSyndrome, syndromePosToFlip);
|
||||
}
|
||||
} // end for v
|
||||
} // end if
|
@ -9,7 +9,7 @@
|
||||
#define B0 (43)
|
||||
#define T_BAR (4)
|
||||
|
||||
int PQCLEAN_LEDAKEMLT12_CLEAN_bf_decoding(DIGIT err[],
|
||||
int PQCLEAN_LEDAKEMLT12_LEAKTIME_bf_decoding(DIGIT err[],
|
||||
const POSITION_T HtrPosOnes[N0][DV],
|
||||
const POSITION_T QtrPosOnes[N0][M],
|
||||
DIGIT privateSyndrome[],
|
@ -9,7 +9,7 @@
|
||||
* computes the threshold for the second iteration of the decoder and returns this values
|
||||
* (max DV * M), on failure it returns 255 >> DV * M */
|
||||
|
||||
uint8_t PQCLEAN_LEDAKEMLT32_CLEAN_DFR_test(POSITION_T LSparse[N0][DV * M]) {
|
||||
uint8_t PQCLEAN_LEDAKEMLT12_LEAKTIME_DFR_test(POSITION_T LSparse[N0][DV * M]) {
|
||||
|
||||
POSITION_T LSparse_loc[N0][DV * M];
|
||||
POSITION_T rotated_column[DV * M];
|
||||
@ -31,7 +31,7 @@ uint8_t PQCLEAN_LEDAKEMLT32_CLEAN_DFR_test(POSITION_T LSparse[N0][DV * M]) {
|
||||
LSparse_loc[i][j] = (P - LSparse[i][j]);
|
||||
}
|
||||
}
|
||||
PQCLEAN_LEDAKEMLT32_CLEAN_quicksort_sparse(LSparse_loc[i]);
|
||||
PQCLEAN_LEDAKEMLT12_LEAKTIME_quicksort_sparse(LSparse_loc[i]);
|
||||
}
|
||||
|
||||
for (int i = 0; i < N0; i++ ) {
|
||||
@ -41,7 +41,7 @@ uint8_t PQCLEAN_LEDAKEMLT32_CLEAN_DFR_test(POSITION_T LSparse[N0][DV * M]) {
|
||||
for (int idxToRotate = 0; idxToRotate < (DV * M); idxToRotate++) {
|
||||
rotated_column[idxToRotate] = (LSparse_loc[j][idxToRotate] + k) % P;
|
||||
}
|
||||
PQCLEAN_LEDAKEMLT32_CLEAN_quicksort_sparse(rotated_column);
|
||||
PQCLEAN_LEDAKEMLT12_LEAKTIME_quicksort_sparse(rotated_column);
|
||||
/* compute the intersection amount */
|
||||
firstidx = 0, secondidx = 0;
|
||||
intersectionval = 0;
|
8
crypto_kem/ledakemlt12/leaktime/dfr_test.h
Normal file
8
crypto_kem/ledakemlt12/leaktime/dfr_test.h
Normal file
@ -0,0 +1,8 @@
|
||||
#ifndef DFR_TEST_H
|
||||
#define DFR_TEST_H
|
||||
|
||||
#define DFR_TEST_FAIL (255)
|
||||
|
||||
uint8_t PQCLEAN_LEDAKEMLT12_LEAKTIME_DFR_test(POSITION_T LSparse[N0][DV * M]);
|
||||
|
||||
#endif
|
@ -3,14 +3,14 @@
|
||||
#include <assert.h>
|
||||
#include <string.h> // memset(...)
|
||||
|
||||
void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_add(DIGIT Res[], const DIGIT A[], const DIGIT B[], int nr) {
|
||||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_add(DIGIT Res[], const DIGIT A[], const DIGIT B[], int nr) {
|
||||
for (int i = 0; i < nr; i++) {
|
||||
Res[i] = A[i] ^ B[i];
|
||||
}
|
||||
}
|
||||
|
||||
/* PRE: MAX ALLOWED ROTATION AMOUNT : DIGIT_SIZE_b */
|
||||
void PQCLEAN_LEDAKEMLT52_CLEAN_right_bit_shift_n(int length, DIGIT in[], unsigned int amount) {
|
||||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_right_bit_shift_n(int length, DIGIT in[], unsigned int amount) {
|
||||
assert(amount < DIGIT_SIZE_b);
|
||||
if ( amount == 0 ) {
|
||||
return;
|
||||
@ -26,7 +26,7 @@ void PQCLEAN_LEDAKEMLT52_CLEAN_right_bit_shift_n(int length, DIGIT in[], unsigne
|
||||
}
|
||||
|
||||
/* PRE: MAX ALLOWED ROTATION AMOUNT : DIGIT_SIZE_b */
|
||||
void PQCLEAN_LEDAKEMLT52_CLEAN_left_bit_shift_n(int length, DIGIT in[], unsigned int amount) {
|
||||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_left_bit_shift_n(int length, DIGIT in[], unsigned int amount) {
|
||||
assert(amount < DIGIT_SIZE_b);
|
||||
if ( amount == 0 ) {
|
||||
return;
|
||||
@ -41,7 +41,7 @@ void PQCLEAN_LEDAKEMLT52_CLEAN_left_bit_shift_n(int length, DIGIT in[], unsigned
|
||||
in[j] <<= amount;
|
||||
}
|
||||
|
||||
void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mul_comb(int nr, DIGIT Res[],
|
||||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mul_comb(int nr, DIGIT Res[],
|
||||
int na, const DIGIT A[],
|
||||
int nb, const DIGIT B[]) {
|
||||
int i, j, k;
|
@ -48,11 +48,11 @@ typedef uint64_t DIGIT;
|
||||
#define DIGIT_SIZE_b (DIGIT_SIZE_B << 3)
|
||||
#define POSITION_T uint32_t
|
||||
|
||||
#define GF2X_MUL PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mul_comb
|
||||
#define GF2X_MUL PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mul_comb
|
||||
|
||||
void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_add(DIGIT Res[], const DIGIT A[], const DIGIT B[], int nr);
|
||||
void PQCLEAN_LEDAKEMLT52_CLEAN_right_bit_shift_n(int length, DIGIT in[], unsigned int amount);
|
||||
void PQCLEAN_LEDAKEMLT52_CLEAN_left_bit_shift_n(int length, DIGIT in[], unsigned int amount);
|
||||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_add(DIGIT Res[], const DIGIT A[], const DIGIT B[], int nr);
|
||||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_right_bit_shift_n(int length, DIGIT in[], unsigned int amount);
|
||||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_left_bit_shift_n(int length, DIGIT in[], unsigned int amount);
|
||||
void GF2X_MUL(int nr, DIGIT Res[], int na, const DIGIT A[], int nb, const DIGIT B[]);
|
||||
|
||||
#endif
|
@ -4,14 +4,14 @@
|
||||
#include <assert.h>
|
||||
#include <string.h> // memcpy(...), memset(...)
|
||||
|
||||
void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_copy(DIGIT dest[], const DIGIT in[]) {
|
||||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_copy(DIGIT dest[], const DIGIT in[]) {
|
||||
for (int i = NUM_DIGITS_GF2X_ELEMENT - 1; i >= 0; i--) {
|
||||
dest[i] = in[i];
|
||||
}
|
||||
}
|
||||
|
||||
/* returns the coefficient of the x^exponent term as the LSB of a digit */
|
||||
DIGIT PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_get_coeff(const DIGIT poly[], unsigned int exponent) {
|
||||
DIGIT PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_get_coeff(const DIGIT poly[], unsigned int exponent) {
|
||||
unsigned int straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent;
|
||||
unsigned int digitIdx = straightIdx / DIGIT_SIZE_b;
|
||||
unsigned int inDigitIdx = straightIdx % DIGIT_SIZE_b;
|
||||
@ -19,7 +19,7 @@ DIGIT PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_get_coeff(const DIGIT poly[], unsigned int
|
||||
}
|
||||
|
||||
/* sets the coefficient of the x^exponent term as the LSB of a digit */
|
||||
void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_set_coeff(DIGIT poly[], unsigned int exponent, DIGIT value) {
|
||||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_set_coeff(DIGIT poly[], unsigned int exponent, DIGIT value) {
|
||||
unsigned int straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent;
|
||||
unsigned int digitIdx = straightIdx / DIGIT_SIZE_b;
|
||||
unsigned int inDigitIdx = straightIdx % DIGIT_SIZE_b;
|
||||
@ -31,7 +31,7 @@ void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_set_coeff(DIGIT poly[], unsigned int exponen
|
||||
}
|
||||
|
||||
/* toggles (flips) the coefficient of the x^exponent term as the LSB of a digit */
|
||||
void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_toggle_coeff(DIGIT poly[], unsigned int exponent) {
|
||||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_toggle_coeff(DIGIT poly[], unsigned int exponent) {
|
||||
unsigned int straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent;
|
||||
unsigned int digitIdx = straightIdx / DIGIT_SIZE_b;
|
||||
unsigned int inDigitIdx = straightIdx % DIGIT_SIZE_b;
|
||||
@ -51,7 +51,7 @@ static int popcount_uint64t(uint64_t x) {
|
||||
}
|
||||
|
||||
/* population count for a single polynomial */
|
||||
int PQCLEAN_LEDAKEMLT12_CLEAN_population_count(DIGIT *poly) {
|
||||
int PQCLEAN_LEDAKEMLT12_LEAKTIME_population_count(DIGIT *poly) {
|
||||
int ret = 0;
|
||||
for (int i = NUM_DIGITS_GF2X_ELEMENT - 1; i >= 0; i--) {
|
||||
ret += popcount_uint64t(poly[i]);
|
||||
@ -59,8 +59,8 @@ int PQCLEAN_LEDAKEMLT12_CLEAN_population_count(DIGIT *poly) {
|
||||
return ret;
|
||||
}
|
||||
|
||||
void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mod_add(DIGIT Res[], const DIGIT A[], const DIGIT B[]) {
|
||||
PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_add(Res, A, B, NUM_DIGITS_GF2X_ELEMENT);
|
||||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_add(DIGIT Res[], const DIGIT A[], const DIGIT B[]) {
|
||||
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_add(Res, A, B, NUM_DIGITS_GF2X_ELEMENT);
|
||||
}
|
||||
|
||||
static int partition(POSITION_T arr[], int lo, int hi) {
|
||||
@ -82,7 +82,7 @@ static int partition(POSITION_T arr[], int lo, int hi) {
|
||||
return i + 1;
|
||||
}
|
||||
|
||||
void PQCLEAN_LEDAKEMLT12_CLEAN_quicksort_sparse(POSITION_T Res[]) {
|
||||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_quicksort_sparse(POSITION_T Res[]) {
|
||||
int stack[DV * M];
|
||||
int hi, lo, pivot, tos = -1;
|
||||
stack[++tos] = 0;
|
||||
@ -175,7 +175,7 @@ static void left_DIGIT_shift_n(unsigned int length, DIGIT in[], unsigned int amo
|
||||
/* may shift by an arbitrary amount*/
|
||||
static void left_bit_shift_wide_n(const int length, DIGIT in[], unsigned int amount) {
|
||||
left_DIGIT_shift_n(length, in, amount / DIGIT_SIZE_b);
|
||||
PQCLEAN_LEDAKEMLT12_CLEAN_left_bit_shift_n(length, in, amount % DIGIT_SIZE_b);
|
||||
PQCLEAN_LEDAKEMLT12_LEAKTIME_left_bit_shift_n(length, in, amount % DIGIT_SIZE_b);
|
||||
}
|
||||
|
||||
/* Hackers delight, reverses a uint64_t */
|
||||
@ -193,7 +193,7 @@ static DIGIT reverse_digit(DIGIT x) {
|
||||
return x;
|
||||
}
|
||||
|
||||
void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_transpose_in_place(DIGIT A[]) {
|
||||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_transpose_in_place(DIGIT A[]) {
|
||||
/* it keeps the lsb in the same position and
|
||||
* inverts the sequence of the remaining bits */
|
||||
|
||||
@ -214,7 +214,7 @@ void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_transpose_in_place(DIGIT A[]) {
|
||||
A[NUM_DIGITS_GF2X_ELEMENT / 2] = reverse_digit(A[NUM_DIGITS_GF2X_ELEMENT / 2]);
|
||||
|
||||
if (slack_bits_amount) {
|
||||
PQCLEAN_LEDAKEMLT12_CLEAN_right_bit_shift_n(NUM_DIGITS_GF2X_ELEMENT, A, slack_bits_amount);
|
||||
PQCLEAN_LEDAKEMLT12_LEAKTIME_right_bit_shift_n(NUM_DIGITS_GF2X_ELEMENT, A, slack_bits_amount);
|
||||
}
|
||||
A[NUM_DIGITS_GF2X_ELEMENT - 1] = (A[NUM_DIGITS_GF2X_ELEMENT - 1] & (~mask)) | a00;
|
||||
}
|
||||
@ -265,7 +265,7 @@ static void gf2x_swap(const int length, DIGIT f[], DIGIT s[]) {
|
||||
* (Chapter 11 -- Algorithm 11.44 -- pag 223)
|
||||
*
|
||||
*/
|
||||
int PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mod_inverse(DIGIT out[], const DIGIT in[]) { /* in^{-1} mod x^P-1 */
|
||||
int PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_inverse(DIGIT out[], const DIGIT in[]) { /* in^{-1} mod x^P-1 */
|
||||
|
||||
int i;
|
||||
int delta = 0;
|
||||
@ -299,8 +299,8 @@ int PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mod_inverse(DIGIT out[], const DIGIT in[]) {
|
||||
delta += 1;
|
||||
} else {
|
||||
if ( (s[0] & mask) != 0) {
|
||||
PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_add(s, s, f, NUM_DIGITS_GF2X_MODULUS);
|
||||
PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mod_add(v, v, u);
|
||||
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_add(s, s, f, NUM_DIGITS_GF2X_MODULUS);
|
||||
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_add(v, v, u);
|
||||
}
|
||||
left_bit_shift(NUM_DIGITS_GF2X_MODULUS, s);
|
||||
if ( delta == 0 ) {
|
||||
@ -322,7 +322,7 @@ int PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mod_inverse(DIGIT out[], const DIGIT in[]) {
|
||||
return (delta == 0);
|
||||
}
|
||||
|
||||
void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mod_mul(DIGIT Res[], const DIGIT A[], const DIGIT B[]) {
|
||||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_mul(DIGIT Res[], const DIGIT A[], const DIGIT B[]) {
|
||||
|
||||
DIGIT aux[2 * NUM_DIGITS_GF2X_ELEMENT];
|
||||
GF2X_MUL(2 * NUM_DIGITS_GF2X_ELEMENT, aux,
|
||||
@ -334,7 +334,7 @@ void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mod_mul(DIGIT Res[], const DIGIT A[], const
|
||||
|
||||
/*PRE: the representation of the sparse coefficients is sorted in increasing
|
||||
order of the coefficients themselves */
|
||||
void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mod_mul_dense_to_sparse(
|
||||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_mul_dense_to_sparse(
|
||||
DIGIT Res[],
|
||||
const DIGIT dense[],
|
||||
POSITION_T sparse[], unsigned int nPos) {
|
||||
@ -352,7 +352,7 @@ void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mod_mul_dense_to_sparse(
|
||||
for (unsigned int i = 1; i < nPos; i++) {
|
||||
if (sparse[i] != INVALID_POS_VALUE) {
|
||||
left_bit_shift_wide_n(2 * NUM_DIGITS_GF2X_ELEMENT, aux, (sparse[i] - sparse[i - 1]) );
|
||||
PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_add(resDouble, aux, resDouble, 2 * NUM_DIGITS_GF2X_ELEMENT);
|
||||
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_add(resDouble, aux, resDouble, 2 * NUM_DIGITS_GF2X_ELEMENT);
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -361,7 +361,7 @@ void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mod_mul_dense_to_sparse(
|
||||
|
||||
}
|
||||
|
||||
void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_transpose_in_place_sparse(int sizeA, POSITION_T A[]) {
|
||||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_transpose_in_place_sparse(int sizeA, POSITION_T A[]) {
|
||||
|
||||
POSITION_T t;
|
||||
int i = 0, j;
|
||||
@ -383,7 +383,7 @@ void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_transpose_in_place_sparse(int sizeA, POSITIO
|
||||
|
||||
}
|
||||
|
||||
void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mod_mul_sparse(size_t sizeR, POSITION_T Res[],
|
||||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_mul_sparse(size_t sizeR, POSITION_T Res[],
|
||||
size_t sizeA, const POSITION_T A[],
|
||||
size_t sizeB, const POSITION_T B[]) {
|
||||
|
||||
@ -406,7 +406,7 @@ void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mod_mul_sparse(size_t sizeR, POSITION_T Res[
|
||||
Res[lastFilledPos] = INVALID_POS_VALUE;
|
||||
lastFilledPos++;
|
||||
}
|
||||
PQCLEAN_LEDAKEMLT12_CLEAN_quicksort_sparse(Res);
|
||||
PQCLEAN_LEDAKEMLT12_LEAKTIME_quicksort_sparse(Res);
|
||||
/* eliminate duplicates */
|
||||
POSITION_T lastReadPos = Res[0];
|
||||
int duplicateCount;
|
||||
@ -433,7 +433,7 @@ void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mod_mul_sparse(size_t sizeR, POSITION_T Res[
|
||||
|
||||
/* the implementation is safe even in case A or B alias with the result */
|
||||
/* PRE: A and B should be sorted and have INVALID_POS_VALUE at the end */
|
||||
void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mod_add_sparse(
|
||||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_add_sparse(
|
||||
int sizeR, POSITION_T Res[],
|
||||
int sizeA, const POSITION_T A[],
|
||||
int sizeB, const POSITION_T B[]) {
|
||||
@ -492,7 +492,7 @@ static uint32_t rand_range(const unsigned int n, const int logn, AES_XOF_struct
|
||||
uint32_t mask = ( (uint32_t)1 << logn) - 1;
|
||||
|
||||
do {
|
||||
PQCLEAN_LEDAKEMLT12_CLEAN_seedexpander(seed_expander_ctx, rnd_char_buffer, required_rnd_bytes);
|
||||
PQCLEAN_LEDAKEMLT12_LEAKTIME_seedexpander(seed_expander_ctx, rnd_char_buffer, required_rnd_bytes);
|
||||
/* obtain an endianness independent representation of the generated random
|
||||
bytes into an unsigned integer */
|
||||
rnd_value = ((uint32_t)rnd_char_buffer[3] << 24) +
|
||||
@ -507,7 +507,7 @@ static uint32_t rand_range(const unsigned int n, const int logn, AES_XOF_struct
|
||||
|
||||
/* Obtains fresh randomness and seed-expands it until all the required positions
|
||||
* for the '1's in the circulant block are obtained */
|
||||
void PQCLEAN_LEDAKEMLT12_CLEAN_rand_circulant_sparse_block(POSITION_T *pos_ones,
|
||||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_rand_circulant_sparse_block(POSITION_T *pos_ones,
|
||||
int countOnes,
|
||||
AES_XOF_struct *seed_expander_ctx) {
|
||||
|
||||
@ -532,7 +532,7 @@ void PQCLEAN_LEDAKEMLT12_CLEAN_rand_circulant_sparse_block(POSITION_T *pos_ones,
|
||||
}
|
||||
|
||||
/* Returns random weight-t circulant block */
|
||||
void PQCLEAN_LEDAKEMLT12_CLEAN_rand_circulant_blocks_sequence(
|
||||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_rand_circulant_blocks_sequence(
|
||||
DIGIT sequence[N0 * NUM_DIGITS_GF2X_ELEMENT],
|
||||
AES_XOF_struct *seed_expander_ctx) {
|
||||
|
||||
@ -558,13 +558,13 @@ void PQCLEAN_LEDAKEMLT12_CLEAN_rand_circulant_blocks_sequence(
|
||||
for (int j = 0; j < counter; j++) {
|
||||
polyIndex = rndPos[j] / P;
|
||||
exponent = rndPos[j] % P;
|
||||
PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_set_coeff( sequence + NUM_DIGITS_GF2X_ELEMENT * polyIndex, exponent,
|
||||
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_set_coeff( sequence + NUM_DIGITS_GF2X_ELEMENT * polyIndex, exponent,
|
||||
( (DIGIT) 1));
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_tobytes(uint8_t *bytes, const DIGIT *poly) {
|
||||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_tobytes(uint8_t *bytes, const DIGIT *poly) {
|
||||
size_t i, j;
|
||||
for (i = 0; i < NUM_DIGITS_GF2X_ELEMENT; i++) {
|
||||
for (j = 0; j < DIGIT_SIZE_B; j++) {
|
||||
@ -573,7 +573,7 @@ void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_tobytes(uint8_t *bytes, const DIGIT *poly) {
|
||||
}
|
||||
}
|
||||
|
||||
void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_frombytes(DIGIT *poly, const uint8_t *poly_bytes) {
|
||||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_frombytes(DIGIT *poly, const uint8_t *poly_bytes) {
|
||||
size_t i, j;
|
||||
for (i = 0; i < NUM_DIGITS_GF2X_ELEMENT; i++) {
|
||||
poly[i] = (DIGIT) 0;
|
38
crypto_kem/ledakemlt12/leaktime/gf2x_arith_mod_xPplusOne.h
Normal file
38
crypto_kem/ledakemlt12/leaktime/gf2x_arith_mod_xPplusOne.h
Normal file
@ -0,0 +1,38 @@
|
||||
#ifndef GF2X_ARITH_MOD_XPLUSONE_H
|
||||
#define GF2X_ARITH_MOD_XPLUSONE_H
|
||||
|
||||
#include "qc_ldpc_parameters.h"
|
||||
|
||||
#include "gf2x_arith.h"
|
||||
#include "rng.h"
|
||||
|
||||
#define NUM_BITS_GF2X_ELEMENT (P) // 52147
|
||||
#define NUM_DIGITS_GF2X_ELEMENT ((P+DIGIT_SIZE_b-1)/DIGIT_SIZE_b)
|
||||
#define MSb_POSITION_IN_MSB_DIGIT_OF_ELEMENT ((P % DIGIT_SIZE_b) ? (P % DIGIT_SIZE_b)-1 : DIGIT_SIZE_b-1)
|
||||
#define NUM_BITS_GF2X_MODULUS (P+1)
|
||||
#define NUM_DIGITS_GF2X_MODULUS ((P+1+DIGIT_SIZE_b-1)/DIGIT_SIZE_b)
|
||||
#define MSb_POSITION_IN_MSB_DIGIT_OF_MODULUS (P-DIGIT_SIZE_b*(NUM_DIGITS_GF2X_MODULUS-1))
|
||||
#define INVALID_POS_VALUE (P)
|
||||
#define P_BITS (16) // log_2(p) = 15.6703
|
||||
|
||||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_copy(DIGIT dest[], const DIGIT in[]);
|
||||
DIGIT PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_get_coeff(const DIGIT poly[], unsigned int exponent);
|
||||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_set_coeff(DIGIT poly[], unsigned int exponent, DIGIT value);
|
||||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_toggle_coeff(DIGIT poly[], unsigned int exponent);
|
||||
int PQCLEAN_LEDAKEMLT12_LEAKTIME_population_count(DIGIT *poly);
|
||||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_add(DIGIT Res[], const DIGIT A[], const DIGIT B[]);
|
||||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_quicksort_sparse(POSITION_T Res[]);
|
||||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_mul(DIGIT Res[], const DIGIT A[], const DIGIT B[]);
|
||||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_transpose_in_place(DIGIT A[]);
|
||||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_rand_circulant_sparse_block(POSITION_T *pos_ones, int countOnes, AES_XOF_struct *seed_expander_ctx);
|
||||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_rand_circulant_blocks_sequence(DIGIT *sequence, AES_XOF_struct *seed_expander_ctx);
|
||||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_add_sparse(int sizeR, POSITION_T Res[], int sizeA, const POSITION_T A[], int sizeB, const POSITION_T B[]);
|
||||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_transpose_in_place_sparse(int sizeA, POSITION_T A[]);
|
||||
int PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_inverse(DIGIT out[], const DIGIT in[]);
|
||||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_mul_sparse(size_t sizeR, POSITION_T Res[], size_t sizeA, const POSITION_T A[], size_t sizeB, const POSITION_T B[]);
|
||||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_mul_dense_to_sparse(DIGIT Res[], const DIGIT dense[], POSITION_T sparse[], unsigned int nPos);
|
||||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_tobytes(uint8_t *bytes, const DIGIT *poly);
|
||||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_frombytes(DIGIT *poly, const uint8_t *poly_bytes);
|
||||
|
||||
|
||||
#endif
|
@ -8,43 +8,43 @@
|
||||
static void pack_pk(uint8_t *pk_bytes, publicKeyNiederreiter_t *pk) {
|
||||
size_t i;
|
||||
for (i = 0; i < N0 - 1; i++) {
|
||||
PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_tobytes(pk_bytes + i * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B,
|
||||
pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT);
|
||||
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_tobytes(pk_bytes + i * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B,
|
||||
pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT);
|
||||
}
|
||||
}
|
||||
|
||||
static void unpack_pk(publicKeyNiederreiter_t *pk, const uint8_t *pk_bytes) {
|
||||
size_t i;
|
||||
for (i = 0; i < N0 - 1; i++) {
|
||||
PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_frombytes(pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT,
|
||||
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_frombytes(pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT,
|
||||
pk_bytes + i * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B);
|
||||
}
|
||||
}
|
||||
|
||||
static void pack_ct(uint8_t *sk_bytes, DIGIT *ct) {
|
||||
PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_tobytes(sk_bytes, ct);
|
||||
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_tobytes(sk_bytes, ct);
|
||||
}
|
||||
|
||||
static void unpack_ct(DIGIT *ct, const uint8_t *ct_bytes) {
|
||||
PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_frombytes(ct, ct_bytes);
|
||||
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_frombytes(ct, ct_bytes);
|
||||
}
|
||||
|
||||
static void pack_error(uint8_t *error_bytes, DIGIT *error_digits) {
|
||||
size_t i;
|
||||
for (i = 0; i < N0; i++) {
|
||||
PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_tobytes(error_bytes + i * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B,
|
||||
error_digits + i * NUM_DIGITS_GF2X_ELEMENT);
|
||||
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_tobytes(error_bytes + i * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B,
|
||||
error_digits + i * NUM_DIGITS_GF2X_ELEMENT);
|
||||
}
|
||||
}
|
||||
|
||||
/* Generates a keypair - pk is the public key and sk is the secret key. */
|
||||
int PQCLEAN_LEDAKEMLT32_CLEAN_crypto_kem_keypair(unsigned char *pk, unsigned char *sk) {
|
||||
int PQCLEAN_LEDAKEMLT12_LEAKTIME_crypto_kem_keypair(unsigned char *pk, unsigned char *sk) {
|
||||
AES_XOF_struct niederreiter_keys_expander;
|
||||
publicKeyNiederreiter_t pk_nie;
|
||||
|
||||
randombytes(((privateKeyNiederreiter_t *)sk)->prng_seed, TRNG_BYTE_LENGTH);
|
||||
PQCLEAN_LEDAKEMLT32_CLEAN_seedexpander_from_trng(&niederreiter_keys_expander, ((privateKeyNiederreiter_t *)sk)->prng_seed);
|
||||
PQCLEAN_LEDAKEMLT32_CLEAN_niederreiter_keygen(&pk_nie, (privateKeyNiederreiter_t *) sk, &niederreiter_keys_expander);
|
||||
PQCLEAN_LEDAKEMLT12_LEAKTIME_seedexpander_from_trng(&niederreiter_keys_expander, ((privateKeyNiederreiter_t *)sk)->prng_seed);
|
||||
PQCLEAN_LEDAKEMLT12_LEAKTIME_niederreiter_keygen(&pk_nie, (privateKeyNiederreiter_t *) sk, &niederreiter_keys_expander);
|
||||
|
||||
pack_pk(pk, &pk_nie);
|
||||
|
||||
@ -53,7 +53,7 @@ int PQCLEAN_LEDAKEMLT32_CLEAN_crypto_kem_keypair(unsigned char *pk, unsigned cha
|
||||
|
||||
/* Encrypt - pk is the public key, ct is a key encapsulation message
|
||||
(ciphertext), ss is the shared secret.*/
|
||||
int PQCLEAN_LEDAKEMLT32_CLEAN_crypto_kem_enc(unsigned char *ct, unsigned char *ss, const unsigned char *pk) {
|
||||
int PQCLEAN_LEDAKEMLT12_LEAKTIME_crypto_kem_enc(unsigned char *ct, unsigned char *ss, const unsigned char *pk) {
|
||||
AES_XOF_struct niederreiter_encap_key_expander;
|
||||
unsigned char encapsulated_key_seed[TRNG_BYTE_LENGTH];
|
||||
DIGIT error_vector[N0 * NUM_DIGITS_GF2X_ELEMENT];
|
||||
@ -64,11 +64,11 @@ int PQCLEAN_LEDAKEMLT32_CLEAN_crypto_kem_enc(unsigned char *ct, unsigned char *s
|
||||
randombytes(encapsulated_key_seed, TRNG_BYTE_LENGTH);
|
||||
unpack_pk(&pk_nie, pk);
|
||||
|
||||
PQCLEAN_LEDAKEMLT32_CLEAN_seedexpander_from_trng(&niederreiter_encap_key_expander, encapsulated_key_seed);
|
||||
PQCLEAN_LEDAKEMLT32_CLEAN_rand_circulant_blocks_sequence(error_vector, &niederreiter_encap_key_expander);
|
||||
PQCLEAN_LEDAKEMLT12_LEAKTIME_seedexpander_from_trng(&niederreiter_encap_key_expander, encapsulated_key_seed);
|
||||
PQCLEAN_LEDAKEMLT12_LEAKTIME_rand_circulant_blocks_sequence(error_vector, &niederreiter_encap_key_expander);
|
||||
pack_error(error_bytes, error_vector);
|
||||
HASH_FUNCTION(ss, error_bytes, (N0 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B));
|
||||
PQCLEAN_LEDAKEMLT32_CLEAN_niederreiter_encrypt(syndrome, &pk_nie, error_vector);
|
||||
PQCLEAN_LEDAKEMLT12_LEAKTIME_niederreiter_encrypt(syndrome, &pk_nie, error_vector);
|
||||
|
||||
pack_ct(ct, syndrome);
|
||||
|
||||
@ -78,13 +78,13 @@ int PQCLEAN_LEDAKEMLT32_CLEAN_crypto_kem_enc(unsigned char *ct, unsigned char *s
|
||||
|
||||
/* Decrypt - ct is a key encapsulation message (ciphertext), sk is the private
|
||||
key, ss is the shared secret */
|
||||
int PQCLEAN_LEDAKEMLT32_CLEAN_crypto_kem_dec(unsigned char *ss, const unsigned char *ct, const unsigned char *sk) {
|
||||
int PQCLEAN_LEDAKEMLT12_LEAKTIME_crypto_kem_dec(unsigned char *ss, const unsigned char *ct, const unsigned char *sk) {
|
||||
DIGIT decoded_error_vector[N0 * NUM_DIGITS_GF2X_ELEMENT];
|
||||
uint8_t decoded_error_bytes[N0 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B];
|
||||
DIGIT syndrome[NUM_DIGITS_GF2X_ELEMENT];
|
||||
|
||||
unpack_ct(syndrome, ct);
|
||||
PQCLEAN_LEDAKEMLT32_CLEAN_niederreiter_decrypt(decoded_error_vector, (privateKeyNiederreiter_t *)sk, syndrome);
|
||||
PQCLEAN_LEDAKEMLT12_LEAKTIME_niederreiter_decrypt(decoded_error_vector, (privateKeyNiederreiter_t *)sk, syndrome);
|
||||
pack_error(decoded_error_bytes, decoded_error_vector);
|
||||
HASH_FUNCTION(ss, decoded_error_bytes, (N0 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B));
|
||||
|
@ -8,7 +8,7 @@
|
||||
|
||||
#include <string.h>
|
||||
|
||||
void PQCLEAN_LEDAKEMLT52_CLEAN_niederreiter_keygen(publicKeyNiederreiter_t *pk, privateKeyNiederreiter_t *sk, AES_XOF_struct *keys_expander) {
|
||||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_niederreiter_keygen(publicKeyNiederreiter_t *pk, privateKeyNiederreiter_t *sk, AES_XOF_struct *keys_expander) {
|
||||
|
||||
POSITION_T HPosOnes[N0][DV]; // sequence of N0 circ block matrices (p x p): Hi
|
||||
POSITION_T HtrPosOnes[N0][DV]; // Sparse tranposed circulant H
|
||||
@ -23,8 +23,8 @@ void PQCLEAN_LEDAKEMLT52_CLEAN_niederreiter_keygen(publicKeyNiederreiter_t *pk,
|
||||
sk->rejections = (int8_t) 0;
|
||||
|
||||
do {
|
||||
PQCLEAN_LEDAKEMLT52_CLEAN_generateHPosOnes_HtrPosOnes(HPosOnes, HtrPosOnes, keys_expander);
|
||||
PQCLEAN_LEDAKEMLT52_CLEAN_generateQsparse(QPosOnes, keys_expander);
|
||||
PQCLEAN_LEDAKEMLT12_LEAKTIME_generateHPosOnes_HtrPosOnes(HPosOnes, HtrPosOnes, keys_expander);
|
||||
PQCLEAN_LEDAKEMLT12_LEAKTIME_generateQsparse(QPosOnes, keys_expander);
|
||||
for (int i = 0; i < N0; i++) {
|
||||
for (int j = 0; j < DV * M; j++) {
|
||||
LPosOnes[i][j] = INVALID_POS_VALUE;
|
||||
@ -34,10 +34,10 @@ void PQCLEAN_LEDAKEMLT52_CLEAN_niederreiter_keygen(publicKeyNiederreiter_t *pk,
|
||||
memset(processedQOnes, 0x00, sizeof(processedQOnes));
|
||||
for (int colQ = 0; colQ < N0; colQ++) {
|
||||
for (int i = 0; i < N0; i++) {
|
||||
PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_mul_sparse(DV * M, auxPosOnes,
|
||||
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_mul_sparse(DV * M, auxPosOnes,
|
||||
DV, HPosOnes[i],
|
||||
qBlockWeights[i][colQ], QPosOnes[i] + processedQOnes[i]);
|
||||
PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_add_sparse(DV * M, LPosOnes[colQ],
|
||||
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_add_sparse(DV * M, LPosOnes[colQ],
|
||||
DV * M, LPosOnes[colQ],
|
||||
DV * M, auxPosOnes);
|
||||
processedQOnes[i] += qBlockWeights[i][colQ];
|
||||
@ -49,7 +49,7 @@ void PQCLEAN_LEDAKEMLT52_CLEAN_niederreiter_keygen(publicKeyNiederreiter_t *pk,
|
||||
}
|
||||
sk->rejections = sk->rejections + 1;
|
||||
if (is_L_full) {
|
||||
threshold = PQCLEAN_LEDAKEMLT52_CLEAN_DFR_test(LPosOnes);
|
||||
threshold = PQCLEAN_LEDAKEMLT12_LEAKTIME_DFR_test(LPosOnes);
|
||||
}
|
||||
} while (!is_L_full || threshold == DFR_TEST_FAIL);
|
||||
sk->rejections = sk->rejections - 1;
|
||||
@ -58,41 +58,41 @@ void PQCLEAN_LEDAKEMLT52_CLEAN_niederreiter_keygen(publicKeyNiederreiter_t *pk,
|
||||
memset(Ln0dense, 0x00, sizeof(Ln0dense));
|
||||
for (int j = 0; j < DV * M; j++) {
|
||||
if (LPosOnes[N0 - 1][j] != INVALID_POS_VALUE) {
|
||||
PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_set_coeff(Ln0dense, LPosOnes[N0 - 1][j], 1);
|
||||
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_set_coeff(Ln0dense, LPosOnes[N0 - 1][j], 1);
|
||||
}
|
||||
}
|
||||
|
||||
memset(Ln0Inv, 0x00, sizeof(Ln0Inv));
|
||||
PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_inverse(Ln0Inv, Ln0dense);
|
||||
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_inverse(Ln0Inv, Ln0dense);
|
||||
for (int i = 0; i < N0 - 1; i++) {
|
||||
PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_mul_dense_to_sparse(pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT,
|
||||
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_mul_dense_to_sparse(pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT,
|
||||
Ln0Inv,
|
||||
LPosOnes[i],
|
||||
DV * M);
|
||||
}
|
||||
|
||||
for (int i = 0; i < N0 - 1; i++) {
|
||||
PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_transpose_in_place(pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT);
|
||||
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_transpose_in_place(pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void PQCLEAN_LEDAKEMLT52_CLEAN_niederreiter_encrypt(DIGIT *syndrome, const publicKeyNiederreiter_t *pk, const DIGIT *err) {
|
||||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_niederreiter_encrypt(DIGIT *syndrome, const publicKeyNiederreiter_t *pk, const DIGIT *err) {
|
||||
int i;
|
||||
DIGIT saux[NUM_DIGITS_GF2X_ELEMENT];
|
||||
|
||||
memset(syndrome, 0x00, NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B);
|
||||
for (i = 0; i < N0 - 1; i++) {
|
||||
PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_mul(saux,
|
||||
pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT,
|
||||
err + i * NUM_DIGITS_GF2X_ELEMENT);
|
||||
PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_add(syndrome, syndrome, saux);
|
||||
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_mul(saux,
|
||||
pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT,
|
||||
err + i * NUM_DIGITS_GF2X_ELEMENT);
|
||||
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_add(syndrome, syndrome, saux);
|
||||
}
|
||||
PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_add(syndrome, syndrome, err + (N0 - 1)*NUM_DIGITS_GF2X_ELEMENT);
|
||||
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_add(syndrome, syndrome, err + (N0 - 1)*NUM_DIGITS_GF2X_ELEMENT);
|
||||
}
|
||||
|
||||
|
||||
int PQCLEAN_LEDAKEMLT52_CLEAN_niederreiter_decrypt(DIGIT *err, const privateKeyNiederreiter_t *sk, const DIGIT *syndrome) {
|
||||
int PQCLEAN_LEDAKEMLT12_LEAKTIME_niederreiter_decrypt(DIGIT *err, const privateKeyNiederreiter_t *sk, const DIGIT *syndrome) {
|
||||
AES_XOF_struct niederreiter_decrypt_expander;
|
||||
POSITION_T HPosOnes[N0][DV];
|
||||
POSITION_T HtrPosOnes[N0][DV];
|
||||
@ -110,11 +110,11 @@ int PQCLEAN_LEDAKEMLT52_CLEAN_niederreiter_decrypt(DIGIT *err, const privateKeyN
|
||||
int currQoneIdx, endQblockIdx;
|
||||
int decryptOk, err_weight;
|
||||
|
||||
PQCLEAN_LEDAKEMLT52_CLEAN_seedexpander_from_trng(&niederreiter_decrypt_expander, sk->prng_seed);
|
||||
PQCLEAN_LEDAKEMLT12_LEAKTIME_seedexpander_from_trng(&niederreiter_decrypt_expander, sk->prng_seed);
|
||||
|
||||
do {
|
||||
PQCLEAN_LEDAKEMLT52_CLEAN_generateHPosOnes_HtrPosOnes(HPosOnes, HtrPosOnes, &niederreiter_decrypt_expander);
|
||||
PQCLEAN_LEDAKEMLT52_CLEAN_generateQsparse(QPosOnes, &niederreiter_decrypt_expander);
|
||||
PQCLEAN_LEDAKEMLT12_LEAKTIME_generateHPosOnes_HtrPosOnes(HPosOnes, HtrPosOnes, &niederreiter_decrypt_expander);
|
||||
PQCLEAN_LEDAKEMLT12_LEAKTIME_generateQsparse(QPosOnes, &niederreiter_decrypt_expander);
|
||||
for (int i = 0; i < N0; i++) {
|
||||
for (int j = 0; j < DV * M; j++) {
|
||||
LPosOnes[i][j] = INVALID_POS_VALUE;
|
||||
@ -124,10 +124,10 @@ int PQCLEAN_LEDAKEMLT52_CLEAN_niederreiter_decrypt(DIGIT *err, const privateKeyN
|
||||
memset(processedQOnes, 0x00, sizeof(processedQOnes));
|
||||
for (int colQ = 0; colQ < N0; colQ++) {
|
||||
for (int i = 0; i < N0; i++) {
|
||||
PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_mul_sparse(DV * M, auxPosOnes,
|
||||
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_mul_sparse(DV * M, auxPosOnes,
|
||||
DV, HPosOnes[i],
|
||||
qBlockWeights[i][colQ], QPosOnes[i] + processedQOnes[i]);
|
||||
PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_add_sparse(DV * M, LPosOnes[colQ],
|
||||
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_add_sparse(DV * M, LPosOnes[colQ],
|
||||
DV * M, LPosOnes[colQ],
|
||||
DV * M, auxPosOnes);
|
||||
processedQOnes[i] += qBlockWeights[i][colQ];
|
||||
@ -156,31 +156,31 @@ int PQCLEAN_LEDAKEMLT52_CLEAN_niederreiter_decrypt(DIGIT *err, const privateKeyN
|
||||
}
|
||||
|
||||
for (int i = 0; i < N0; i++) {
|
||||
PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_mul_sparse(DV * M, auxSparse,
|
||||
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_mul_sparse(DV * M, auxSparse,
|
||||
DV, HPosOnes[i],
|
||||
qBlockWeights[i][N0 - 1], &QPosOnes[i][ M - qBlockWeights[i][N0 - 1]]);
|
||||
PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_add_sparse(DV * M, Ln0trSparse,
|
||||
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_add_sparse(DV * M, Ln0trSparse,
|
||||
DV * M, Ln0trSparse,
|
||||
DV * M, auxSparse);
|
||||
}
|
||||
|
||||
PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_transpose_in_place_sparse(DV * M, Ln0trSparse);
|
||||
PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_mul_dense_to_sparse(privateSyndrome, syndrome, Ln0trSparse, DV * M);
|
||||
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_transpose_in_place_sparse(DV * M, Ln0trSparse);
|
||||
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_mul_dense_to_sparse(privateSyndrome, syndrome, Ln0trSparse, DV * M);
|
||||
|
||||
/* prepare mockup error vector in case a decoding failure occurs */
|
||||
memset(mockup_error_vector, 0x00, N0 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B);
|
||||
memcpy(mockup_error_vector, syndrome, NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B);
|
||||
PQCLEAN_LEDAKEMLT52_CLEAN_seedexpander(&niederreiter_decrypt_expander,
|
||||
((unsigned char *) mockup_error_vector) + (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B),
|
||||
TRNG_BYTE_LENGTH);
|
||||
PQCLEAN_LEDAKEMLT12_LEAKTIME_seedexpander(&niederreiter_decrypt_expander,
|
||||
((unsigned char *) mockup_error_vector) + (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B),
|
||||
TRNG_BYTE_LENGTH);
|
||||
|
||||
memset(err, 0x00, N0 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B);
|
||||
decryptOk = PQCLEAN_LEDAKEMLT52_CLEAN_bf_decoding(err, (const POSITION_T (*)[DV]) HtrPosOnes,
|
||||
decryptOk = PQCLEAN_LEDAKEMLT12_LEAKTIME_bf_decoding(err, (const POSITION_T (*)[DV]) HtrPosOnes,
|
||||
(const POSITION_T (*)[M]) QtrPosOnes, privateSyndrome, sk->threshold);
|
||||
|
||||
err_weight = 0;
|
||||
for (int i = 0 ; i < N0; i++) {
|
||||
err_weight += PQCLEAN_LEDAKEMLT52_CLEAN_population_count(err + (NUM_DIGITS_GF2X_ELEMENT * i));
|
||||
err_weight += PQCLEAN_LEDAKEMLT12_LEAKTIME_population_count(err + (NUM_DIGITS_GF2X_ELEMENT * i));
|
||||
}
|
||||
decryptOk = decryptOk && (err_weight == NUM_ERRORS_T);
|
||||
|
@ -21,9 +21,9 @@ typedef struct {
|
||||
// with P coefficients.
|
||||
} publicKeyNiederreiter_t;
|
||||
|
||||
void PQCLEAN_LEDAKEMLT12_CLEAN_niederreiter_keygen(publicKeyNiederreiter_t *pk, privateKeyNiederreiter_t *sk, AES_XOF_struct *keys_expander);
|
||||
void PQCLEAN_LEDAKEMLT12_CLEAN_niederreiter_encrypt(DIGIT syndrome[], const publicKeyNiederreiter_t *pk, const DIGIT *err);
|
||||
int PQCLEAN_LEDAKEMLT12_CLEAN_niederreiter_decrypt(DIGIT *err, const privateKeyNiederreiter_t *sk, const DIGIT *syndrome);
|
||||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_niederreiter_keygen(publicKeyNiederreiter_t *pk, privateKeyNiederreiter_t *sk, AES_XOF_struct *keys_expander);
|
||||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_niederreiter_encrypt(DIGIT syndrome[], const publicKeyNiederreiter_t *pk, const DIGIT *err);
|
||||
int PQCLEAN_LEDAKEMLT12_LEAKTIME_niederreiter_decrypt(DIGIT *err, const privateKeyNiederreiter_t *sk, const DIGIT *syndrome);
|
||||
|
||||
|
||||
#endif
|
@ -37,7 +37,7 @@ static void seedexpander_init(AES_XOF_struct *ctx,
|
||||
memset(ctx->buffer, 0x00, 16);
|
||||
}
|
||||
|
||||
void PQCLEAN_LEDAKEMLT12_CLEAN_seedexpander_from_trng(AES_XOF_struct *ctx,
|
||||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_seedexpander_from_trng(AES_XOF_struct *ctx,
|
||||
const unsigned char *trng_entropy
|
||||
/* TRNG_BYTE_LENGTH wide buffer */) {
|
||||
|
||||
@ -61,7 +61,7 @@ void PQCLEAN_LEDAKEMLT12_CLEAN_seedexpander_from_trng(AES_XOF_struct *ctx,
|
||||
x - returns the XOF data
|
||||
xlen - number of bytes to return
|
||||
*/
|
||||
int PQCLEAN_LEDAKEMLT12_CLEAN_seedexpander(AES_XOF_struct *ctx, unsigned char *x, size_t xlen) {
|
||||
int PQCLEAN_LEDAKEMLT12_LEAKTIME_seedexpander(AES_XOF_struct *ctx, unsigned char *x, size_t xlen) {
|
||||
size_t offset;
|
||||
aes256ctx ctx256;
|
||||
|
@ -18,7 +18,7 @@ typedef struct {
|
||||
unsigned char ctr[16];
|
||||
} AES_XOF_struct;
|
||||
|
||||
int PQCLEAN_LEDAKEMLT12_CLEAN_seedexpander(AES_XOF_struct *ctx, unsigned char *x, size_t xlen);
|
||||
void PQCLEAN_LEDAKEMLT12_CLEAN_seedexpander_from_trng(AES_XOF_struct *ctx, const unsigned char *trng_entropy);
|
||||
int PQCLEAN_LEDAKEMLT12_LEAKTIME_seedexpander(AES_XOF_struct *ctx, unsigned char *x, size_t xlen);
|
||||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_seedexpander_from_trng(AES_XOF_struct *ctx, const unsigned char *trng_entropy);
|
||||
|
||||
#endif
|
@ -14,5 +14,5 @@ auxiliary-submitters:
|
||||
- Gerardo Pelosi
|
||||
- Paolo Santini
|
||||
implementations:
|
||||
- name: clean
|
||||
- name: leaktime
|
||||
version: 2.?
|
||||
|
@ -1,11 +0,0 @@
|
||||
#ifndef H_Q_MATRICES_GENERATION_H
|
||||
#define H_Q_MATRICES_GENERATION_H
|
||||
|
||||
#include "gf2x_arith.h"
|
||||
#include "qc_ldpc_parameters.h"
|
||||
#include "rng.h"
|
||||
|
||||
void PQCLEAN_LEDAKEMLT32_CLEAN_generateHPosOnes_HtrPosOnes(POSITION_T HPosOnes[N0][DV], POSITION_T HtrPosOnes[N0][DV], AES_XOF_struct *niederreiter_keys_expander);
|
||||
void PQCLEAN_LEDAKEMLT32_CLEAN_generateQsparse(POSITION_T pos_ones[N0][M], AES_XOF_struct *niederreiter_keys_expander);
|
||||
|
||||
#endif
|
@ -1,18 +0,0 @@
|
||||
#ifndef PQCLEAN_LEDAKEMLT32_CLEAN_API_H
|
||||
#define PQCLEAN_LEDAKEMLT32_CLEAN_API_H
|
||||
|
||||
#include <stdint.h>
|
||||
|
||||
#define PQCLEAN_LEDAKEMLT32_CLEAN_CRYPTO_SECRETKEYBYTES 34
|
||||
#define PQCLEAN_LEDAKEMLT32_CLEAN_CRYPTO_PUBLICKEYBYTES 12032
|
||||
#define PQCLEAN_LEDAKEMLT32_CLEAN_CRYPTO_CIPHERTEXTBYTES 12032
|
||||
#define PQCLEAN_LEDAKEMLT32_CLEAN_CRYPTO_BYTES 48
|
||||
|
||||
#define PQCLEAN_LEDAKEMLT32_CLEAN_CRYPTO_ALGNAME "LEDAKEMLT32"
|
||||
|
||||
int PQCLEAN_LEDAKEMLT32_CLEAN_crypto_kem_keypair(uint8_t *pk, uint8_t *sk);
|
||||
int PQCLEAN_LEDAKEMLT32_CLEAN_crypto_kem_enc(uint8_t *ct, uint8_t *ss, const uint8_t *pk);
|
||||
int PQCLEAN_LEDAKEMLT32_CLEAN_crypto_kem_dec(uint8_t *ss, const uint8_t *ct, const uint8_t *sk);
|
||||
|
||||
|
||||
#endif
|
@ -1,8 +0,0 @@
|
||||
#ifndef DFR_TEST_H
|
||||
#define DFR_TEST_H
|
||||
|
||||
#define DFR_TEST_FAIL (255)
|
||||
|
||||
uint8_t PQCLEAN_LEDAKEMLT32_CLEAN_DFR_test(POSITION_T LSparse[N0][DV * M]);
|
||||
|
||||
#endif
|
@ -1,38 +0,0 @@
|
||||
#ifndef GF2X_ARITH_MOD_XPLUSONE_H
|
||||
#define GF2X_ARITH_MOD_XPLUSONE_H
|
||||
|
||||
#include "qc_ldpc_parameters.h"
|
||||
|
||||
#include "gf2x_arith.h"
|
||||
#include "rng.h"
|
||||
|
||||
#define NUM_BITS_GF2X_ELEMENT (P) // 96221
|
||||
#define NUM_DIGITS_GF2X_ELEMENT ((P+DIGIT_SIZE_b-1)/DIGIT_SIZE_b)
|
||||
#define MSb_POSITION_IN_MSB_DIGIT_OF_ELEMENT ((P % DIGIT_SIZE_b) ? (P % DIGIT_SIZE_b)-1 : DIGIT_SIZE_b-1)
|
||||
#define NUM_BITS_GF2X_MODULUS (P+1)
|
||||
#define NUM_DIGITS_GF2X_MODULUS ((P+1+DIGIT_SIZE_b-1)/DIGIT_SIZE_b)
|
||||
#define MSb_POSITION_IN_MSB_DIGIT_OF_MODULUS (P-DIGIT_SIZE_b*(NUM_DIGITS_GF2X_MODULUS-1))
|
||||
#define INVALID_POS_VALUE (P)
|
||||
#define P_BITS (17) // log_2(p) = 16.55406417
|
||||
|
||||
void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_copy(DIGIT dest[], const DIGIT in[]);
|
||||
DIGIT PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_get_coeff(const DIGIT poly[], unsigned int exponent);
|
||||
void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_set_coeff(DIGIT poly[], unsigned int exponent, DIGIT value);
|
||||
void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_toggle_coeff(DIGIT poly[], unsigned int exponent);
|
||||
int PQCLEAN_LEDAKEMLT32_CLEAN_population_count(DIGIT *poly);
|
||||
void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mod_add(DIGIT Res[], const DIGIT A[], const DIGIT B[]);
|
||||
void PQCLEAN_LEDAKEMLT32_CLEAN_quicksort_sparse(POSITION_T Res[]);
|
||||
void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mod_mul(DIGIT Res[], const DIGIT A[], const DIGIT B[]);
|
||||
void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_transpose_in_place(DIGIT A[]);
|
||||
void PQCLEAN_LEDAKEMLT32_CLEAN_rand_circulant_sparse_block(POSITION_T *pos_ones, int countOnes, AES_XOF_struct *seed_expander_ctx);
|
||||
void PQCLEAN_LEDAKEMLT32_CLEAN_rand_circulant_blocks_sequence(DIGIT *sequence, AES_XOF_struct *seed_expander_ctx);
|
||||
void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mod_add_sparse(int sizeR, POSITION_T Res[], int sizeA, const POSITION_T A[], int sizeB, const POSITION_T B[]);
|
||||
void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_transpose_in_place_sparse(int sizeA, POSITION_T A[]);
|
||||
int PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mod_inverse(DIGIT out[], const DIGIT in[]);
|
||||
void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mod_mul_sparse(size_t sizeR, POSITION_T Res[], size_t sizeA, const POSITION_T A[], size_t sizeB, const POSITION_T B[]);
|
||||
void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mod_mul_dense_to_sparse(DIGIT Res[], const DIGIT dense[], POSITION_T sparse[], unsigned int nPos);
|
||||
void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_tobytes(uint8_t *bytes, const DIGIT *poly);
|
||||
void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_frombytes(DIGIT *poly, const uint8_t *poly_bytes);
|
||||
|
||||
|
||||
#endif
|
@ -1,13 +1,13 @@
|
||||
#include "H_Q_matrices_generation.h"
|
||||
#include "gf2x_arith_mod_xPplusOne.h"
|
||||
|
||||
void PQCLEAN_LEDAKEMLT52_CLEAN_generateHPosOnes_HtrPosOnes(
|
||||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_generateHPosOnes_HtrPosOnes(
|
||||
POSITION_T HPosOnes[N0][DV],
|
||||
POSITION_T HtrPosOnes[N0][DV],
|
||||
AES_XOF_struct *keys_expander) {
|
||||
for (int i = 0; i < N0; i++) {
|
||||
/* Generate a random block of Htr */
|
||||
PQCLEAN_LEDAKEMLT52_CLEAN_rand_circulant_sparse_block(&HtrPosOnes[i][0], DV, keys_expander);
|
||||
PQCLEAN_LEDAKEMLT32_LEAKTIME_rand_circulant_sparse_block(&HtrPosOnes[i][0], DV, keys_expander);
|
||||
}
|
||||
for (int i = 0; i < N0; i++) {
|
||||
/* Obtain directly the sparse representation of the block of H */
|
||||
@ -17,13 +17,13 @@ void PQCLEAN_LEDAKEMLT52_CLEAN_generateHPosOnes_HtrPosOnes(
|
||||
}
|
||||
}
|
||||
|
||||
void PQCLEAN_LEDAKEMLT52_CLEAN_generateQsparse(
|
||||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_generateQsparse(
|
||||
POSITION_T pos_ones[N0][M],
|
||||
AES_XOF_struct *keys_expander) {
|
||||
for (int i = 0; i < N0; i++) {
|
||||
int placed_ones = 0;
|
||||
for (int j = 0; j < N0; j++) {
|
||||
PQCLEAN_LEDAKEMLT52_CLEAN_rand_circulant_sparse_block(&pos_ones[i][placed_ones],
|
||||
PQCLEAN_LEDAKEMLT32_LEAKTIME_rand_circulant_sparse_block(&pos_ones[i][placed_ones],
|
||||
qBlockWeights[i][j],
|
||||
keys_expander);
|
||||
placed_ones += qBlockWeights[i][j];
|
11
crypto_kem/ledakemlt32/leaktime/H_Q_matrices_generation.h
Normal file
11
crypto_kem/ledakemlt32/leaktime/H_Q_matrices_generation.h
Normal file
@ -0,0 +1,11 @@
|
||||
#ifndef H_Q_MATRICES_GENERATION_H
|
||||
#define H_Q_MATRICES_GENERATION_H
|
||||
|
||||
#include "gf2x_arith.h"
|
||||
#include "qc_ldpc_parameters.h"
|
||||
#include "rng.h"
|
||||
|
||||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_generateHPosOnes_HtrPosOnes(POSITION_T HPosOnes[N0][DV], POSITION_T HtrPosOnes[N0][DV], AES_XOF_struct *niederreiter_keys_expander);
|
||||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_generateQsparse(POSITION_T pos_ones[N0][M], AES_XOF_struct *niederreiter_keys_expander);
|
||||
|
||||
#endif
|
@ -1,6 +1,6 @@
|
||||
# This Makefile can be used with GNU Make or BSD Make
|
||||
|
||||
LIB=libledakemlt32_clean.a
|
||||
LIB=libledakemlt32_leaktime.a
|
||||
HEADERS=api.h bf_decoding.h dfr_test.h gf2x_arith_mod_xPplusOne.h \
|
||||
gf2x_arith.h H_Q_matrices_generation.h \
|
||||
niederreiter.h qc_ldpc_parameters.h rng.h
|
@ -1,7 +1,7 @@
|
||||
# This Makefile can be used with Microsoft Visual Studio's nmake using the command:
|
||||
# nmake /f Makefile.Microsoft_nmake
|
||||
|
||||
LIBRARY=libledakemlt52_clean.lib
|
||||
LIBRARY=libledakemlt32_leaktime.lib
|
||||
OBJECTS=bf_decoding.obj dfr_test.obj gf2x_arith_mod_xPplusOne.obj gf2x_arith.obj H_Q_matrices_generation.obj kem.obj niederreiter.obj rng.obj
|
||||
|
||||
CFLAGS=/nologo /I ..\..\..\common /W4 /WX
|
18
crypto_kem/ledakemlt32/leaktime/api.h
Normal file
18
crypto_kem/ledakemlt32/leaktime/api.h
Normal file
@ -0,0 +1,18 @@
|
||||
#ifndef PQCLEAN_LEDAKEMLT32_LEAKTIME_API_H
|
||||
#define PQCLEAN_LEDAKEMLT32_LEAKTIME_API_H
|
||||
|
||||
#include <stdint.h>
|
||||
|
||||
#define PQCLEAN_LEDAKEMLT32_LEAKTIME_CRYPTO_SECRETKEYBYTES 34
|
||||
#define PQCLEAN_LEDAKEMLT32_LEAKTIME_CRYPTO_PUBLICKEYBYTES 12032
|
||||
#define PQCLEAN_LEDAKEMLT32_LEAKTIME_CRYPTO_CIPHERTEXTBYTES 12032
|
||||
#define PQCLEAN_LEDAKEMLT32_LEAKTIME_CRYPTO_BYTES 48
|
||||
|
||||
#define PQCLEAN_LEDAKEMLT32_LEAKTIME_CRYPTO_ALGNAME "LEDAKEMLT32"
|
||||
|
||||
int PQCLEAN_LEDAKEMLT32_LEAKTIME_crypto_kem_keypair(uint8_t *pk, uint8_t *sk);
|
||||
int PQCLEAN_LEDAKEMLT32_LEAKTIME_crypto_kem_enc(uint8_t *ct, uint8_t *ss, const uint8_t *pk);
|
||||
int PQCLEAN_LEDAKEMLT32_LEAKTIME_crypto_kem_dec(uint8_t *ss, const uint8_t *ct, const uint8_t *sk);
|
||||
|
||||
|
||||
#endif
|
@ -4,7 +4,7 @@
|
||||
#include <assert.h>
|
||||
#include <string.h>
|
||||
|
||||
int PQCLEAN_LEDAKEMLT52_CLEAN_bf_decoding(DIGIT err[],
|
||||
int PQCLEAN_LEDAKEMLT32_LEAKTIME_bf_decoding(DIGIT err[],
|
||||
const POSITION_T HtrPosOnes[N0][DV],
|
||||
const POSITION_T QtrPosOnes[N0][M],
|
||||
DIGIT privateSyndrome[],
|
||||
@ -18,13 +18,13 @@ int PQCLEAN_LEDAKEMLT52_CLEAN_bf_decoding(DIGIT err[],
|
||||
unsigned int corrt_syndrome_based;
|
||||
|
||||
do {
|
||||
PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_copy(currSyndrome, privateSyndrome);
|
||||
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_copy(currSyndrome, privateSyndrome);
|
||||
memset(unsatParityChecks, 0x00, N0 * P * sizeof(uint8_t));
|
||||
for (int i = 0; i < N0; i++) {
|
||||
for (int valueIdx = 0; valueIdx < P; valueIdx++) {
|
||||
for (int HtrOneIdx = 0; HtrOneIdx < DV; HtrOneIdx++) {
|
||||
POSITION_T tmp = (HtrPosOnes[i][HtrOneIdx] + valueIdx) >= P ? (HtrPosOnes[i][HtrOneIdx] + valueIdx) - P : (HtrPosOnes[i][HtrOneIdx] + valueIdx);
|
||||
if (PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_get_coeff(currSyndrome, tmp)) {
|
||||
if (PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_get_coeff(currSyndrome, tmp)) {
|
||||
unsatParityChecks[i * P + valueIdx]++;
|
||||
}
|
||||
}
|
||||
@ -54,13 +54,13 @@ int PQCLEAN_LEDAKEMLT52_CLEAN_bf_decoding(DIGIT err[],
|
||||
}
|
||||
/* Correlation based flipping */
|
||||
if (correlation >= corrt_syndrome_based) {
|
||||
PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_toggle_coeff(err + NUM_DIGITS_GF2X_ELEMENT * i, j);
|
||||
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_toggle_coeff(err + NUM_DIGITS_GF2X_ELEMENT * i, j);
|
||||
for (int v = 0; v < M; v++) {
|
||||
POSITION_T syndromePosToFlip;
|
||||
for (int HtrOneIdx = 0; HtrOneIdx < DV; HtrOneIdx++) {
|
||||
syndromePosToFlip = (HtrPosOnes[currQBlkPos[v]][HtrOneIdx] + currQBitPos[v] );
|
||||
syndromePosToFlip = syndromePosToFlip >= P ? syndromePosToFlip - P : syndromePosToFlip;
|
||||
PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_toggle_coeff(privateSyndrome, syndromePosToFlip);
|
||||
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_toggle_coeff(privateSyndrome, syndromePosToFlip);
|
||||
}
|
||||
} // end for v
|
||||
} // end if
|
@ -9,7 +9,7 @@
|
||||
#define B0 (64)
|
||||
#define T_BAR (5)
|
||||
|
||||
int PQCLEAN_LEDAKEMLT32_CLEAN_bf_decoding(DIGIT err[],
|
||||
int PQCLEAN_LEDAKEMLT32_LEAKTIME_bf_decoding(DIGIT err[],
|
||||
const POSITION_T HtrPosOnes[N0][DV],
|
||||
const POSITION_T QtrPosOnes[N0][M],
|
||||
DIGIT privateSyndrome[],
|
@ -9,7 +9,7 @@
|
||||
* computes the threshold for the second iteration of the decoder and returns this values
|
||||
* (max DV * M), on failure it returns 255 >> DV * M */
|
||||
|
||||
uint8_t PQCLEAN_LEDAKEMLT12_CLEAN_DFR_test(POSITION_T LSparse[N0][DV * M]) {
|
||||
uint8_t PQCLEAN_LEDAKEMLT32_LEAKTIME_DFR_test(POSITION_T LSparse[N0][DV * M]) {
|
||||
|
||||
POSITION_T LSparse_loc[N0][DV * M];
|
||||
POSITION_T rotated_column[DV * M];
|
||||
@ -31,7 +31,7 @@ uint8_t PQCLEAN_LEDAKEMLT12_CLEAN_DFR_test(POSITION_T LSparse[N0][DV * M]) {
|
||||
LSparse_loc[i][j] = (P - LSparse[i][j]);
|
||||
}
|
||||
}
|
||||
PQCLEAN_LEDAKEMLT12_CLEAN_quicksort_sparse(LSparse_loc[i]);
|
||||
PQCLEAN_LEDAKEMLT32_LEAKTIME_quicksort_sparse(LSparse_loc[i]);
|
||||
}
|
||||
|
||||
for (int i = 0; i < N0; i++ ) {
|
||||
@ -41,7 +41,7 @@ uint8_t PQCLEAN_LEDAKEMLT12_CLEAN_DFR_test(POSITION_T LSparse[N0][DV * M]) {
|
||||
for (int idxToRotate = 0; idxToRotate < (DV * M); idxToRotate++) {
|
||||
rotated_column[idxToRotate] = (LSparse_loc[j][idxToRotate] + k) % P;
|
||||
}
|
||||
PQCLEAN_LEDAKEMLT12_CLEAN_quicksort_sparse(rotated_column);
|
||||
PQCLEAN_LEDAKEMLT32_LEAKTIME_quicksort_sparse(rotated_column);
|
||||
/* compute the intersection amount */
|
||||
firstidx = 0, secondidx = 0;
|
||||
intersectionval = 0;
|
8
crypto_kem/ledakemlt32/leaktime/dfr_test.h
Normal file
8
crypto_kem/ledakemlt32/leaktime/dfr_test.h
Normal file
@ -0,0 +1,8 @@
|
||||
#ifndef DFR_TEST_H
|
||||
#define DFR_TEST_H
|
||||
|
||||
#define DFR_TEST_FAIL (255)
|
||||
|
||||
uint8_t PQCLEAN_LEDAKEMLT32_LEAKTIME_DFR_test(POSITION_T LSparse[N0][DV * M]);
|
||||
|
||||
#endif
|
@ -3,14 +3,14 @@
|
||||
#include <assert.h>
|
||||
#include <string.h> // memset(...)
|
||||
|
||||
void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_add(DIGIT Res[], const DIGIT A[], const DIGIT B[], int nr) {
|
||||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_add(DIGIT Res[], const DIGIT A[], const DIGIT B[], int nr) {
|
||||
for (int i = 0; i < nr; i++) {
|
||||
Res[i] = A[i] ^ B[i];
|
||||
}
|
||||
}
|
||||
|
||||
/* PRE: MAX ALLOWED ROTATION AMOUNT : DIGIT_SIZE_b */
|
||||
void PQCLEAN_LEDAKEMLT12_CLEAN_right_bit_shift_n(int length, DIGIT in[], unsigned int amount) {
|
||||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_right_bit_shift_n(int length, DIGIT in[], unsigned int amount) {
|
||||
assert(amount < DIGIT_SIZE_b);
|
||||
if ( amount == 0 ) {
|
||||
return;
|
||||
@ -26,7 +26,7 @@ void PQCLEAN_LEDAKEMLT12_CLEAN_right_bit_shift_n(int length, DIGIT in[], unsigne
|
||||
}
|
||||
|
||||
/* PRE: MAX ALLOWED ROTATION AMOUNT : DIGIT_SIZE_b */
|
||||
void PQCLEAN_LEDAKEMLT12_CLEAN_left_bit_shift_n(int length, DIGIT in[], unsigned int amount) {
|
||||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_left_bit_shift_n(int length, DIGIT in[], unsigned int amount) {
|
||||
assert(amount < DIGIT_SIZE_b);
|
||||
if ( amount == 0 ) {
|
||||
return;
|
||||
@ -41,7 +41,7 @@ void PQCLEAN_LEDAKEMLT12_CLEAN_left_bit_shift_n(int length, DIGIT in[], unsigned
|
||||
in[j] <<= amount;
|
||||
}
|
||||
|
||||
void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mul_comb(int nr, DIGIT Res[],
|
||||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mul_comb(int nr, DIGIT Res[],
|
||||
int na, const DIGIT A[],
|
||||
int nb, const DIGIT B[]) {
|
||||
int i, j, k;
|
@ -48,11 +48,11 @@ typedef uint64_t DIGIT;
|
||||
#define DIGIT_SIZE_b (DIGIT_SIZE_B << 3)
|
||||
#define POSITION_T uint32_t
|
||||
|
||||
#define GF2X_MUL PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mul_comb
|
||||
#define GF2X_MUL PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mul_comb
|
||||
|
||||
void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_add(DIGIT Res[], const DIGIT A[], const DIGIT B[], int nr);
|
||||
void PQCLEAN_LEDAKEMLT32_CLEAN_right_bit_shift_n(int length, DIGIT in[], unsigned int amount);
|
||||
void PQCLEAN_LEDAKEMLT32_CLEAN_left_bit_shift_n(int length, DIGIT in[], unsigned int amount);
|
||||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_add(DIGIT Res[], const DIGIT A[], const DIGIT B[], int nr);
|
||||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_right_bit_shift_n(int length, DIGIT in[], unsigned int amount);
|
||||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_left_bit_shift_n(int length, DIGIT in[], unsigned int amount);
|
||||
void GF2X_MUL(int nr, DIGIT Res[], int na, const DIGIT A[], int nb, const DIGIT B[]);
|
||||
|
||||
#endif
|
@ -4,14 +4,14 @@
|
||||
#include <assert.h>
|
||||
#include <string.h> // memcpy(...), memset(...)
|
||||
|
||||
void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_copy(DIGIT dest[], const DIGIT in[]) {
|
||||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_copy(DIGIT dest[], const DIGIT in[]) {
|
||||
for (int i = NUM_DIGITS_GF2X_ELEMENT - 1; i >= 0; i--) {
|
||||
dest[i] = in[i];
|
||||
}
|
||||
}
|
||||
|
||||
/* returns the coefficient of the x^exponent term as the LSB of a digit */
|
||||
DIGIT PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_get_coeff(const DIGIT poly[], unsigned int exponent) {
|
||||
DIGIT PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_get_coeff(const DIGIT poly[], unsigned int exponent) {
|
||||
unsigned int straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent;
|
||||
unsigned int digitIdx = straightIdx / DIGIT_SIZE_b;
|
||||
unsigned int inDigitIdx = straightIdx % DIGIT_SIZE_b;
|
||||
@ -19,7 +19,7 @@ DIGIT PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_get_coeff(const DIGIT poly[], unsigned int
|
||||
}
|
||||
|
||||
/* sets the coefficient of the x^exponent term as the LSB of a digit */
|
||||
void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_set_coeff(DIGIT poly[], unsigned int exponent, DIGIT value) {
|
||||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_set_coeff(DIGIT poly[], unsigned int exponent, DIGIT value) {
|
||||
unsigned int straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent;
|
||||
unsigned int digitIdx = straightIdx / DIGIT_SIZE_b;
|
||||
unsigned int inDigitIdx = straightIdx % DIGIT_SIZE_b;
|
||||
@ -31,7 +31,7 @@ void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_set_coeff(DIGIT poly[], unsigned int exponen
|
||||
}
|
||||
|
||||
/* toggles (flips) the coefficient of the x^exponent term as the LSB of a digit */
|
||||
void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_toggle_coeff(DIGIT poly[], unsigned int exponent) {
|
||||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_toggle_coeff(DIGIT poly[], unsigned int exponent) {
|
||||
unsigned int straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent;
|
||||
unsigned int digitIdx = straightIdx / DIGIT_SIZE_b;
|
||||
unsigned int inDigitIdx = straightIdx % DIGIT_SIZE_b;
|
||||
@ -51,7 +51,7 @@ static int popcount_uint64t(uint64_t x) {
|
||||
}
|
||||
|
||||
/* population count for a single polynomial */
|
||||
int PQCLEAN_LEDAKEMLT32_CLEAN_population_count(DIGIT *poly) {
|
||||
int PQCLEAN_LEDAKEMLT32_LEAKTIME_population_count(DIGIT *poly) {
|
||||
int ret = 0;
|
||||
for (int i = NUM_DIGITS_GF2X_ELEMENT - 1; i >= 0; i--) {
|
||||
ret += popcount_uint64t(poly[i]);
|
||||
@ -59,8 +59,8 @@ int PQCLEAN_LEDAKEMLT32_CLEAN_population_count(DIGIT *poly) {
|
||||
return ret;
|
||||
}
|
||||
|
||||
void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mod_add(DIGIT Res[], const DIGIT A[], const DIGIT B[]) {
|
||||
PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_add(Res, A, B, NUM_DIGITS_GF2X_ELEMENT);
|
||||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_add(DIGIT Res[], const DIGIT A[], const DIGIT B[]) {
|
||||
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_add(Res, A, B, NUM_DIGITS_GF2X_ELEMENT);
|
||||
}
|
||||
|
||||
static int partition(POSITION_T arr[], int lo, int hi) {
|
||||
@ -82,7 +82,7 @@ static int partition(POSITION_T arr[], int lo, int hi) {
|
||||
return i + 1;
|
||||
}
|
||||
|
||||
void PQCLEAN_LEDAKEMLT32_CLEAN_quicksort_sparse(POSITION_T Res[]) {
|
||||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_quicksort_sparse(POSITION_T Res[]) {
|
||||
int stack[DV * M];
|
||||
int hi, lo, pivot, tos = -1;
|
||||
stack[++tos] = 0;
|
||||
@ -175,7 +175,7 @@ static void left_DIGIT_shift_n(unsigned int length, DIGIT in[], unsigned int amo
|
||||
/* may shift by an arbitrary amount*/
|
||||
static void left_bit_shift_wide_n(const int length, DIGIT in[], unsigned int amount) {
|
||||
left_DIGIT_shift_n(length, in, amount / DIGIT_SIZE_b);
|
||||
PQCLEAN_LEDAKEMLT32_CLEAN_left_bit_shift_n(length, in, amount % DIGIT_SIZE_b);
|
||||
PQCLEAN_LEDAKEMLT32_LEAKTIME_left_bit_shift_n(length, in, amount % DIGIT_SIZE_b);
|
||||
}
|
||||
|
||||
/* Hackers delight, reverses a uint64_t */
|
||||
@ -193,7 +193,7 @@ static DIGIT reverse_digit(DIGIT x) {
|
||||
return x;
|
||||
}
|
||||
|
||||
void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_transpose_in_place(DIGIT A[]) {
|
||||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_transpose_in_place(DIGIT A[]) {
|
||||
/* it keeps the lsb in the same position and
|
||||
* inverts the sequence of the remaining bits */
|
||||
|
||||
@ -214,7 +214,7 @@ void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_transpose_in_place(DIGIT A[]) {
|
||||
// A[NUM_DIGITS_GF2X_ELEMENT / 2] = reverse_digit(A[NUM_DIGITS_GF2X_ELEMENT / 2]); // no middle digit
|
||||
|
||||
if (slack_bits_amount) {
|
||||
PQCLEAN_LEDAKEMLT32_CLEAN_right_bit_shift_n(NUM_DIGITS_GF2X_ELEMENT, A, slack_bits_amount);
|
||||
PQCLEAN_LEDAKEMLT32_LEAKTIME_right_bit_shift_n(NUM_DIGITS_GF2X_ELEMENT, A, slack_bits_amount);
|
||||
}
|
||||
A[NUM_DIGITS_GF2X_ELEMENT - 1] = (A[NUM_DIGITS_GF2X_ELEMENT - 1] & (~mask)) | a00;
|
||||
}
|
||||
@ -265,7 +265,7 @@ static void gf2x_swap(const int length, DIGIT f[], DIGIT s[]) {
|
||||
* (Chapter 11 -- Algorithm 11.44 -- pag 223)
|
||||
*
|
||||
*/
|
||||
int PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mod_inverse(DIGIT out[], const DIGIT in[]) { /* in^{-1} mod x^P-1 */
|
||||
int PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_inverse(DIGIT out[], const DIGIT in[]) { /* in^{-1} mod x^P-1 */
|
||||
|
||||
int i;
|
||||
int delta = 0;
|
||||
@ -299,8 +299,8 @@ int PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mod_inverse(DIGIT out[], const DIGIT in[]) {
|
||||
delta += 1;
|
||||
} else {
|
||||
if ( (s[0] & mask) != 0) {
|
||||
PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_add(s, s, f, NUM_DIGITS_GF2X_MODULUS);
|
||||
PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mod_add(v, v, u);
|
||||
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_add(s, s, f, NUM_DIGITS_GF2X_MODULUS);
|
||||
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_add(v, v, u);
|
||||
}
|
||||
left_bit_shift(NUM_DIGITS_GF2X_MODULUS, s);
|
||||
if ( delta == 0 ) {
|
||||
@ -322,7 +322,7 @@ int PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mod_inverse(DIGIT out[], const DIGIT in[]) {
|
||||
return (delta == 0);
|
||||
}
|
||||
|
||||
void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mod_mul(DIGIT Res[], const DIGIT A[], const DIGIT B[]) {
|
||||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_mul(DIGIT Res[], const DIGIT A[], const DIGIT B[]) {
|
||||
|
||||
DIGIT aux[2 * NUM_DIGITS_GF2X_ELEMENT];
|
||||
GF2X_MUL(2 * NUM_DIGITS_GF2X_ELEMENT, aux,
|
||||
@ -334,7 +334,7 @@ void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mod_mul(DIGIT Res[], const DIGIT A[], const
|
||||
|
||||
/*PRE: the representation of the sparse coefficients is sorted in increasing
|
||||
order of the coefficients themselves */
|
||||
void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mod_mul_dense_to_sparse(
|
||||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_mul_dense_to_sparse(
|
||||
DIGIT Res[],
|
||||
const DIGIT dense[],
|
||||
POSITION_T sparse[], unsigned int nPos) {
|
||||
@ -352,7 +352,7 @@ void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mod_mul_dense_to_sparse(
|
||||
for (unsigned int i = 1; i < nPos; i++) {
|
||||
if (sparse[i] != INVALID_POS_VALUE) {
|
||||
left_bit_shift_wide_n(2 * NUM_DIGITS_GF2X_ELEMENT, aux, (sparse[i] - sparse[i - 1]) );
|
||||
PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_add(resDouble, aux, resDouble, 2 * NUM_DIGITS_GF2X_ELEMENT);
|
||||
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_add(resDouble, aux, resDouble, 2 * NUM_DIGITS_GF2X_ELEMENT);
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -361,7 +361,7 @@ void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mod_mul_dense_to_sparse(
|
||||
|
||||
}
|
||||
|
||||
void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_transpose_in_place_sparse(int sizeA, POSITION_T A[]) {
|
||||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_transpose_in_place_sparse(int sizeA, POSITION_T A[]) {
|
||||
|
||||
POSITION_T t;
|
||||
int i = 0, j;
|
||||
@ -383,7 +383,7 @@ void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_transpose_in_place_sparse(int sizeA, POSITIO
|
||||
|
||||
}
|
||||
|
||||
void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mod_mul_sparse(size_t sizeR, POSITION_T Res[],
|
||||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_mul_sparse(size_t sizeR, POSITION_T Res[],
|
||||
size_t sizeA, const POSITION_T A[],
|
||||
size_t sizeB, const POSITION_T B[]) {
|
||||
|
||||
@ -406,7 +406,7 @@ void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mod_mul_sparse(size_t sizeR, POSITION_T Res[
|
||||
Res[lastFilledPos] = INVALID_POS_VALUE;
|
||||
lastFilledPos++;
|
||||
}
|
||||
PQCLEAN_LEDAKEMLT32_CLEAN_quicksort_sparse(Res);
|
||||
PQCLEAN_LEDAKEMLT32_LEAKTIME_quicksort_sparse(Res);
|
||||
/* eliminate duplicates */
|
||||
POSITION_T lastReadPos = Res[0];
|
||||
int duplicateCount;
|
||||
@ -433,7 +433,7 @@ void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mod_mul_sparse(size_t sizeR, POSITION_T Res[
|
||||
|
||||
/* the implementation is safe even in case A or B alias with the result */
|
||||
/* PRE: A and B should be sorted and have INVALID_POS_VALUE at the end */
|
||||
void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mod_add_sparse(
|
||||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_add_sparse(
|
||||
int sizeR, POSITION_T Res[],
|
||||
int sizeA, const POSITION_T A[],
|
||||
int sizeB, const POSITION_T B[]) {
|
||||
@ -492,7 +492,7 @@ static uint32_t rand_range(const unsigned int n, const int logn, AES_XOF_struct
|
||||
uint32_t mask = ( (uint32_t)1 << logn) - 1;
|
||||
|
||||
do {
|
||||
PQCLEAN_LEDAKEMLT32_CLEAN_seedexpander(seed_expander_ctx, rnd_char_buffer, required_rnd_bytes);
|
||||
PQCLEAN_LEDAKEMLT32_LEAKTIME_seedexpander(seed_expander_ctx, rnd_char_buffer, required_rnd_bytes);
|
||||
/* obtain an endianness independent representation of the generated random
|
||||
bytes into an unsigned integer */
|
||||
rnd_value = ((uint32_t)rnd_char_buffer[3] << 24) +
|
||||
@ -507,7 +507,7 @@ static uint32_t rand_range(const unsigned int n, const int logn, AES_XOF_struct
|
||||
|
||||
/* Obtains fresh randomness and seed-expands it until all the required positions
|
||||
* for the '1's in the circulant block are obtained */
|
||||
void PQCLEAN_LEDAKEMLT32_CLEAN_rand_circulant_sparse_block(POSITION_T *pos_ones,
|
||||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_rand_circulant_sparse_block(POSITION_T *pos_ones,
|
||||
int countOnes,
|
||||
AES_XOF_struct *seed_expander_ctx) {
|
||||
|
||||
@ -532,7 +532,7 @@ void PQCLEAN_LEDAKEMLT32_CLEAN_rand_circulant_sparse_block(POSITION_T *pos_ones,
|
||||
}
|
||||
|
||||
/* Returns random weight-t circulant block */
|
||||
void PQCLEAN_LEDAKEMLT32_CLEAN_rand_circulant_blocks_sequence(
|
||||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_rand_circulant_blocks_sequence(
|
||||
DIGIT sequence[N0 * NUM_DIGITS_GF2X_ELEMENT],
|
||||
AES_XOF_struct *seed_expander_ctx) {
|
||||
|
||||
@ -558,13 +558,13 @@ void PQCLEAN_LEDAKEMLT32_CLEAN_rand_circulant_blocks_sequence(
|
||||
for (int j = 0; j < counter; j++) {
|
||||
polyIndex = rndPos[j] / P;
|
||||
exponent = rndPos[j] % P;
|
||||
PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_set_coeff( sequence + NUM_DIGITS_GF2X_ELEMENT * polyIndex, exponent,
|
||||
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_set_coeff( sequence + NUM_DIGITS_GF2X_ELEMENT * polyIndex, exponent,
|
||||
( (DIGIT) 1));
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_tobytes(uint8_t *bytes, const DIGIT *poly) {
|
||||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_tobytes(uint8_t *bytes, const DIGIT *poly) {
|
||||
size_t i, j;
|
||||
for (i = 0; i < NUM_DIGITS_GF2X_ELEMENT; i++) {
|
||||
for (j = 0; j < DIGIT_SIZE_B; j++) {
|
||||
@ -573,7 +573,7 @@ void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_tobytes(uint8_t *bytes, const DIGIT *poly) {
|
||||
}
|
||||
}
|
||||
|
||||
void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_frombytes(DIGIT *poly, const uint8_t *poly_bytes) {
|
||||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_frombytes(DIGIT *poly, const uint8_t *poly_bytes) {
|
||||
size_t i, j;
|
||||
for (i = 0; i < NUM_DIGITS_GF2X_ELEMENT; i++) {
|
||||
poly[i] = (DIGIT) 0;
|
38
crypto_kem/ledakemlt32/leaktime/gf2x_arith_mod_xPplusOne.h
Normal file
38
crypto_kem/ledakemlt32/leaktime/gf2x_arith_mod_xPplusOne.h
Normal file
@ -0,0 +1,38 @@
|
||||
#ifndef GF2X_ARITH_MOD_XPLUSONE_H
|
||||
#define GF2X_ARITH_MOD_XPLUSONE_H
|
||||
|
||||
#include "qc_ldpc_parameters.h"
|
||||
|
||||
#include "gf2x_arith.h"
|
||||
#include "rng.h"
|
||||
|
||||
#define NUM_BITS_GF2X_ELEMENT (P) // 96221
|
||||
#define NUM_DIGITS_GF2X_ELEMENT ((P+DIGIT_SIZE_b-1)/DIGIT_SIZE_b)
|
||||
#define MSb_POSITION_IN_MSB_DIGIT_OF_ELEMENT ((P % DIGIT_SIZE_b) ? (P % DIGIT_SIZE_b)-1 : DIGIT_SIZE_b-1)
|
||||
#define NUM_BITS_GF2X_MODULUS (P+1)
|
||||
#define NUM_DIGITS_GF2X_MODULUS ((P+1+DIGIT_SIZE_b-1)/DIGIT_SIZE_b)
|
||||
#define MSb_POSITION_IN_MSB_DIGIT_OF_MODULUS (P-DIGIT_SIZE_b*(NUM_DIGITS_GF2X_MODULUS-1))
|
||||
#define INVALID_POS_VALUE (P)
|
||||
#define P_BITS (17) // log_2(p) = 16.55406417
|
||||
|
||||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_copy(DIGIT dest[], const DIGIT in[]);
|
||||
DIGIT PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_get_coeff(const DIGIT poly[], unsigned int exponent);
|
||||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_set_coeff(DIGIT poly[], unsigned int exponent, DIGIT value);
|
||||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_toggle_coeff(DIGIT poly[], unsigned int exponent);
|
||||
int PQCLEAN_LEDAKEMLT32_LEAKTIME_population_count(DIGIT *poly);
|
||||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_add(DIGIT Res[], const DIGIT A[], const DIGIT B[]);
|
||||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_quicksort_sparse(POSITION_T Res[]);
|
||||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_mul(DIGIT Res[], const DIGIT A[], const DIGIT B[]);
|
||||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_transpose_in_place(DIGIT A[]);
|
||||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_rand_circulant_sparse_block(POSITION_T *pos_ones, int countOnes, AES_XOF_struct *seed_expander_ctx);
|
||||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_rand_circulant_blocks_sequence(DIGIT *sequence, AES_XOF_struct *seed_expander_ctx);
|
||||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_add_sparse(int sizeR, POSITION_T Res[], int sizeA, const POSITION_T A[], int sizeB, const POSITION_T B[]);
|
||||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_transpose_in_place_sparse(int sizeA, POSITION_T A[]);
|
||||
int PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_inverse(DIGIT out[], const DIGIT in[]);
|
||||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_mul_sparse(size_t sizeR, POSITION_T Res[], size_t sizeA, const POSITION_T A[], size_t sizeB, const POSITION_T B[]);
|
||||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_mul_dense_to_sparse(DIGIT Res[], const DIGIT dense[], POSITION_T sparse[], unsigned int nPos);
|
||||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_tobytes(uint8_t *bytes, const DIGIT *poly);
|
||||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_frombytes(DIGIT *poly, const uint8_t *poly_bytes);
|
||||
|
||||
|
||||
#endif
|
@ -8,43 +8,43 @@
|
||||
static void pack_pk(uint8_t *pk_bytes, publicKeyNiederreiter_t *pk) {
|
||||
size_t i;
|
||||
for (i = 0; i < N0 - 1; i++) {
|
||||
PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_tobytes(pk_bytes + i * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B,
|
||||
pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT);
|
||||
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_tobytes(pk_bytes + i * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B,
|
||||
pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT);
|
||||
}
|
||||
}
|
||||
|
||||
static void unpack_pk(publicKeyNiederreiter_t *pk, const uint8_t *pk_bytes) {
|
||||
size_t i;
|
||||
for (i = 0; i < N0 - 1; i++) {
|
||||
PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_frombytes(pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT,
|
||||
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_frombytes(pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT,
|
||||
pk_bytes + i * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B);
|
||||
}
|
||||
}
|
||||
|
||||
static void pack_ct(uint8_t *sk_bytes, DIGIT *ct) {
|
||||
PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_tobytes(sk_bytes, ct);
|
||||
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_tobytes(sk_bytes, ct);
|
||||
}
|
||||
|
||||
static void unpack_ct(DIGIT *ct, const uint8_t *ct_bytes) {
|
||||
PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_frombytes(ct, ct_bytes);
|
||||
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_frombytes(ct, ct_bytes);
|
||||
}
|
||||
|
||||
static void pack_error(uint8_t *error_bytes, DIGIT *error_digits) {
|
||||
size_t i;
|
||||
for (i = 0; i < N0; i++) {
|
||||
PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_tobytes(error_bytes + i * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B,
|
||||
error_digits + i * NUM_DIGITS_GF2X_ELEMENT);
|
||||
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_tobytes(error_bytes + i * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B,
|
||||
error_digits + i * NUM_DIGITS_GF2X_ELEMENT);
|
||||
}
|
||||
}
|
||||
|
||||
/* Generates a keypair - pk is the public key and sk is the secret key. */
|
||||
int PQCLEAN_LEDAKEMLT52_CLEAN_crypto_kem_keypair(unsigned char *pk, unsigned char *sk) {
|
||||
int PQCLEAN_LEDAKEMLT32_LEAKTIME_crypto_kem_keypair(unsigned char *pk, unsigned char *sk) {
|
||||
AES_XOF_struct niederreiter_keys_expander;
|
||||
publicKeyNiederreiter_t pk_nie;
|
||||
|
||||
randombytes(((privateKeyNiederreiter_t *)sk)->prng_seed, TRNG_BYTE_LENGTH);
|
||||
PQCLEAN_LEDAKEMLT52_CLEAN_seedexpander_from_trng(&niederreiter_keys_expander, ((privateKeyNiederreiter_t *)sk)->prng_seed);
|
||||
PQCLEAN_LEDAKEMLT52_CLEAN_niederreiter_keygen(&pk_nie, (privateKeyNiederreiter_t *) sk, &niederreiter_keys_expander);
|
||||
PQCLEAN_LEDAKEMLT32_LEAKTIME_seedexpander_from_trng(&niederreiter_keys_expander, ((privateKeyNiederreiter_t *)sk)->prng_seed);
|
||||
PQCLEAN_LEDAKEMLT32_LEAKTIME_niederreiter_keygen(&pk_nie, (privateKeyNiederreiter_t *) sk, &niederreiter_keys_expander);
|
||||
|
||||
pack_pk(pk, &pk_nie);
|
||||
|
||||
@ -53,7 +53,7 @@ int PQCLEAN_LEDAKEMLT52_CLEAN_crypto_kem_keypair(unsigned char *pk, unsigned cha
|
||||
|
||||
/* Encrypt - pk is the public key, ct is a key encapsulation message
|
||||
(ciphertext), ss is the shared secret.*/
|
||||
int PQCLEAN_LEDAKEMLT52_CLEAN_crypto_kem_enc(unsigned char *ct, unsigned char *ss, const unsigned char *pk) {
|
||||
int PQCLEAN_LEDAKEMLT32_LEAKTIME_crypto_kem_enc(unsigned char *ct, unsigned char *ss, const unsigned char *pk) {
|
||||
AES_XOF_struct niederreiter_encap_key_expander;
|
||||
unsigned char encapsulated_key_seed[TRNG_BYTE_LENGTH];
|
||||
DIGIT error_vector[N0 * NUM_DIGITS_GF2X_ELEMENT];
|
||||
@ -64,11 +64,11 @@ int PQCLEAN_LEDAKEMLT52_CLEAN_crypto_kem_enc(unsigned char *ct, unsigned char *s
|
||||
randombytes(encapsulated_key_seed, TRNG_BYTE_LENGTH);
|
||||
unpack_pk(&pk_nie, pk);
|
||||
|
||||
PQCLEAN_LEDAKEMLT52_CLEAN_seedexpander_from_trng(&niederreiter_encap_key_expander, encapsulated_key_seed);
|
||||
PQCLEAN_LEDAKEMLT52_CLEAN_rand_circulant_blocks_sequence(error_vector, &niederreiter_encap_key_expander);
|
||||
PQCLEAN_LEDAKEMLT32_LEAKTIME_seedexpander_from_trng(&niederreiter_encap_key_expander, encapsulated_key_seed);
|
||||
PQCLEAN_LEDAKEMLT32_LEAKTIME_rand_circulant_blocks_sequence(error_vector, &niederreiter_encap_key_expander);
|
||||
pack_error(error_bytes, error_vector);
|
||||
HASH_FUNCTION(ss, error_bytes, (N0 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B));
|
||||
PQCLEAN_LEDAKEMLT52_CLEAN_niederreiter_encrypt(syndrome, &pk_nie, error_vector);
|
||||
PQCLEAN_LEDAKEMLT32_LEAKTIME_niederreiter_encrypt(syndrome, &pk_nie, error_vector);
|
||||
|
||||
pack_ct(ct, syndrome);
|
||||
|
||||
@ -78,13 +78,13 @@ int PQCLEAN_LEDAKEMLT52_CLEAN_crypto_kem_enc(unsigned char *ct, unsigned char *s
|
||||
|
||||
/* Decrypt - ct is a key encapsulation message (ciphertext), sk is the private
|
||||
key, ss is the shared secret */
|
||||
int PQCLEAN_LEDAKEMLT52_CLEAN_crypto_kem_dec(unsigned char *ss, const unsigned char *ct, const unsigned char *sk) {
|
||||
int PQCLEAN_LEDAKEMLT32_LEAKTIME_crypto_kem_dec(unsigned char *ss, const unsigned char *ct, const unsigned char *sk) {
|
||||
DIGIT decoded_error_vector[N0 * NUM_DIGITS_GF2X_ELEMENT];
|
||||
uint8_t decoded_error_bytes[N0 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B];
|
||||
DIGIT syndrome[NUM_DIGITS_GF2X_ELEMENT];
|
||||
|
||||
unpack_ct(syndrome, ct);
|
||||
PQCLEAN_LEDAKEMLT52_CLEAN_niederreiter_decrypt(decoded_error_vector, (privateKeyNiederreiter_t *)sk, syndrome);
|
||||
PQCLEAN_LEDAKEMLT32_LEAKTIME_niederreiter_decrypt(decoded_error_vector, (privateKeyNiederreiter_t *)sk, syndrome);
|
||||
pack_error(decoded_error_bytes, decoded_error_vector);
|
||||
HASH_FUNCTION(ss, decoded_error_bytes, (N0 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B));
|
||||
|
@ -8,7 +8,7 @@
|
||||
|
||||
#include <string.h>
|
||||
|
||||
void PQCLEAN_LEDAKEMLT12_CLEAN_niederreiter_keygen(publicKeyNiederreiter_t *pk, privateKeyNiederreiter_t *sk, AES_XOF_struct *keys_expander) {
|
||||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_niederreiter_keygen(publicKeyNiederreiter_t *pk, privateKeyNiederreiter_t *sk, AES_XOF_struct *keys_expander) {
|
||||
|
||||
POSITION_T HPosOnes[N0][DV]; // sequence of N0 circ block matrices (p x p): Hi
|
||||
POSITION_T HtrPosOnes[N0][DV]; // Sparse tranposed circulant H
|
||||
@ -23,8 +23,8 @@ void PQCLEAN_LEDAKEMLT12_CLEAN_niederreiter_keygen(publicKeyNiederreiter_t *pk,
|
||||
sk->rejections = (int8_t) 0;
|
||||
|
||||
do {
|
||||
PQCLEAN_LEDAKEMLT12_CLEAN_generateHPosOnes_HtrPosOnes(HPosOnes, HtrPosOnes, keys_expander);
|
||||
PQCLEAN_LEDAKEMLT12_CLEAN_generateQsparse(QPosOnes, keys_expander);
|
||||
PQCLEAN_LEDAKEMLT32_LEAKTIME_generateHPosOnes_HtrPosOnes(HPosOnes, HtrPosOnes, keys_expander);
|
||||
PQCLEAN_LEDAKEMLT32_LEAKTIME_generateQsparse(QPosOnes, keys_expander);
|
||||
for (int i = 0; i < N0; i++) {
|
||||
for (int j = 0; j < DV * M; j++) {
|
||||
LPosOnes[i][j] = INVALID_POS_VALUE;
|
||||
@ -34,10 +34,10 @@ void PQCLEAN_LEDAKEMLT12_CLEAN_niederreiter_keygen(publicKeyNiederreiter_t *pk,
|
||||
memset(processedQOnes, 0x00, sizeof(processedQOnes));
|
||||
for (int colQ = 0; colQ < N0; colQ++) {
|
||||
for (int i = 0; i < N0; i++) {
|
||||
PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mod_mul_sparse(DV * M, auxPosOnes,
|
||||
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_mul_sparse(DV * M, auxPosOnes,
|
||||
DV, HPosOnes[i],
|
||||
qBlockWeights[i][colQ], QPosOnes[i] + processedQOnes[i]);
|
||||
PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mod_add_sparse(DV * M, LPosOnes[colQ],
|
||||
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_add_sparse(DV * M, LPosOnes[colQ],
|
||||
DV * M, LPosOnes[colQ],
|
||||
DV * M, auxPosOnes);
|
||||
processedQOnes[i] += qBlockWeights[i][colQ];
|
||||
@ -49,7 +49,7 @@ void PQCLEAN_LEDAKEMLT12_CLEAN_niederreiter_keygen(publicKeyNiederreiter_t *pk,
|
||||
}
|
||||
sk->rejections = sk->rejections + 1;
|
||||
if (is_L_full) {
|
||||
threshold = PQCLEAN_LEDAKEMLT12_CLEAN_DFR_test(LPosOnes);
|
||||
threshold = PQCLEAN_LEDAKEMLT32_LEAKTIME_DFR_test(LPosOnes);
|
||||
}
|
||||
} while (!is_L_full || threshold == DFR_TEST_FAIL);
|
||||
sk->rejections = sk->rejections - 1;
|
||||
@ -58,41 +58,41 @@ void PQCLEAN_LEDAKEMLT12_CLEAN_niederreiter_keygen(publicKeyNiederreiter_t *pk,
|
||||
memset(Ln0dense, 0x00, sizeof(Ln0dense));
|
||||
for (int j = 0; j < DV * M; j++) {
|
||||
if (LPosOnes[N0 - 1][j] != INVALID_POS_VALUE) {
|
||||
PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_set_coeff(Ln0dense, LPosOnes[N0 - 1][j], 1);
|
||||
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_set_coeff(Ln0dense, LPosOnes[N0 - 1][j], 1);
|
||||
}
|
||||
}
|
||||
|
||||
memset(Ln0Inv, 0x00, sizeof(Ln0Inv));
|
||||
PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mod_inverse(Ln0Inv, Ln0dense);
|
||||
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_inverse(Ln0Inv, Ln0dense);
|
||||
for (int i = 0; i < N0 - 1; i++) {
|
||||
PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mod_mul_dense_to_sparse(pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT,
|
||||
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_mul_dense_to_sparse(pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT,
|
||||
Ln0Inv,
|
||||
LPosOnes[i],
|
||||
DV * M);
|
||||
}
|
||||
|
||||
for (int i = 0; i < N0 - 1; i++) {
|
||||
PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_transpose_in_place(pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT);
|
||||
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_transpose_in_place(pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void PQCLEAN_LEDAKEMLT12_CLEAN_niederreiter_encrypt(DIGIT *syndrome, const publicKeyNiederreiter_t *pk, const DIGIT *err) {
|
||||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_niederreiter_encrypt(DIGIT *syndrome, const publicKeyNiederreiter_t *pk, const DIGIT *err) {
|
||||
int i;
|
||||
DIGIT saux[NUM_DIGITS_GF2X_ELEMENT];
|
||||
|
||||
memset(syndrome, 0x00, NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B);
|
||||
for (i = 0; i < N0 - 1; i++) {
|
||||
PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mod_mul(saux,
|
||||
pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT,
|
||||
err + i * NUM_DIGITS_GF2X_ELEMENT);
|
||||
PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mod_add(syndrome, syndrome, saux);
|
||||
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_mul(saux,
|
||||
pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT,
|
||||
err + i * NUM_DIGITS_GF2X_ELEMENT);
|
||||
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_add(syndrome, syndrome, saux);
|
||||
}
|
||||
PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mod_add(syndrome, syndrome, err + (N0 - 1)*NUM_DIGITS_GF2X_ELEMENT);
|
||||
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_add(syndrome, syndrome, err + (N0 - 1)*NUM_DIGITS_GF2X_ELEMENT);
|
||||
}
|
||||
|
||||
|
||||
int PQCLEAN_LEDAKEMLT12_CLEAN_niederreiter_decrypt(DIGIT *err, const privateKeyNiederreiter_t *sk, const DIGIT *syndrome) {
|
||||
int PQCLEAN_LEDAKEMLT32_LEAKTIME_niederreiter_decrypt(DIGIT *err, const privateKeyNiederreiter_t *sk, const DIGIT *syndrome) {
|
||||
AES_XOF_struct niederreiter_decrypt_expander;
|
||||
POSITION_T HPosOnes[N0][DV];
|
||||
POSITION_T HtrPosOnes[N0][DV];
|
||||
@ -110,11 +110,11 @@ int PQCLEAN_LEDAKEMLT12_CLEAN_niederreiter_decrypt(DIGIT *err, const privateKeyN
|
||||
int currQoneIdx, endQblockIdx;
|
||||
int decryptOk, err_weight;
|
||||
|
||||
PQCLEAN_LEDAKEMLT12_CLEAN_seedexpander_from_trng(&niederreiter_decrypt_expander, sk->prng_seed);
|
||||
PQCLEAN_LEDAKEMLT32_LEAKTIME_seedexpander_from_trng(&niederreiter_decrypt_expander, sk->prng_seed);
|
||||
|
||||
do {
|
||||
PQCLEAN_LEDAKEMLT12_CLEAN_generateHPosOnes_HtrPosOnes(HPosOnes, HtrPosOnes, &niederreiter_decrypt_expander);
|
||||
PQCLEAN_LEDAKEMLT12_CLEAN_generateQsparse(QPosOnes, &niederreiter_decrypt_expander);
|
||||
PQCLEAN_LEDAKEMLT32_LEAKTIME_generateHPosOnes_HtrPosOnes(HPosOnes, HtrPosOnes, &niederreiter_decrypt_expander);
|
||||
PQCLEAN_LEDAKEMLT32_LEAKTIME_generateQsparse(QPosOnes, &niederreiter_decrypt_expander);
|
||||
for (int i = 0; i < N0; i++) {
|
||||
for (int j = 0; j < DV * M; j++) {
|
||||
LPosOnes[i][j] = INVALID_POS_VALUE;
|
||||
@ -124,10 +124,10 @@ int PQCLEAN_LEDAKEMLT12_CLEAN_niederreiter_decrypt(DIGIT *err, const privateKeyN
|
||||
memset(processedQOnes, 0x00, sizeof(processedQOnes));
|
||||
for (int colQ = 0; colQ < N0; colQ++) {
|
||||
for (int i = 0; i < N0; i++) {
|
||||
PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mod_mul_sparse(DV * M, auxPosOnes,
|
||||
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_mul_sparse(DV * M, auxPosOnes,
|
||||
DV, HPosOnes[i],
|
||||
qBlockWeights[i][colQ], QPosOnes[i] + processedQOnes[i]);
|
||||
PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mod_add_sparse(DV * M, LPosOnes[colQ],
|
||||
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_add_sparse(DV * M, LPosOnes[colQ],
|
||||
DV * M, LPosOnes[colQ],
|
||||
DV * M, auxPosOnes);
|
||||
processedQOnes[i] += qBlockWeights[i][colQ];
|
||||
@ -156,31 +156,31 @@ int PQCLEAN_LEDAKEMLT12_CLEAN_niederreiter_decrypt(DIGIT *err, const privateKeyN
|
||||
}
|
||||
|
||||
for (int i = 0; i < N0; i++) {
|
||||
PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mod_mul_sparse(DV * M, auxSparse,
|
||||
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_mul_sparse(DV * M, auxSparse,
|
||||
DV, HPosOnes[i],
|
||||
qBlockWeights[i][N0 - 1], &QPosOnes[i][ M - qBlockWeights[i][N0 - 1]]);
|
||||
PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mod_add_sparse(DV * M, Ln0trSparse,
|
||||
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_add_sparse(DV * M, Ln0trSparse,
|
||||
DV * M, Ln0trSparse,
|
||||
DV * M, auxSparse);
|
||||
}
|
||||
|
||||
PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_transpose_in_place_sparse(DV * M, Ln0trSparse);
|
||||
PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mod_mul_dense_to_sparse(privateSyndrome, syndrome, Ln0trSparse, DV * M);
|
||||
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_transpose_in_place_sparse(DV * M, Ln0trSparse);
|
||||
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_mul_dense_to_sparse(privateSyndrome, syndrome, Ln0trSparse, DV * M);
|
||||
|
||||
/* prepare mockup error vector in case a decoding failure occurs */
|
||||
memset(mockup_error_vector, 0x00, N0 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B);
|
||||
memcpy(mockup_error_vector, syndrome, NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B);
|
||||
PQCLEAN_LEDAKEMLT12_CLEAN_seedexpander(&niederreiter_decrypt_expander,
|
||||
((unsigned char *) mockup_error_vector) + (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B),
|
||||
TRNG_BYTE_LENGTH);
|
||||
PQCLEAN_LEDAKEMLT32_LEAKTIME_seedexpander(&niederreiter_decrypt_expander,
|
||||
((unsigned char *) mockup_error_vector) + (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B),
|
||||
TRNG_BYTE_LENGTH);
|
||||
|
||||
memset(err, 0x00, N0 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B);
|
||||
decryptOk = PQCLEAN_LEDAKEMLT12_CLEAN_bf_decoding(err, (const POSITION_T (*)[DV]) HtrPosOnes,
|
||||
decryptOk = PQCLEAN_LEDAKEMLT32_LEAKTIME_bf_decoding(err, (const POSITION_T (*)[DV]) HtrPosOnes,
|
||||
(const POSITION_T (*)[M]) QtrPosOnes, privateSyndrome, sk->threshold);
|
||||
|
||||
err_weight = 0;
|
||||
for (int i = 0 ; i < N0; i++) {
|
||||
err_weight += PQCLEAN_LEDAKEMLT12_CLEAN_population_count(err + (NUM_DIGITS_GF2X_ELEMENT * i));
|
||||
err_weight += PQCLEAN_LEDAKEMLT32_LEAKTIME_population_count(err + (NUM_DIGITS_GF2X_ELEMENT * i));
|
||||
}
|
||||
decryptOk = decryptOk && (err_weight == NUM_ERRORS_T);
|
||||
|
@ -21,9 +21,9 @@ typedef struct {
|
||||
// with P coefficients.
|
||||
} publicKeyNiederreiter_t;
|
||||
|
||||
void PQCLEAN_LEDAKEMLT52_CLEAN_niederreiter_keygen(publicKeyNiederreiter_t *pk, privateKeyNiederreiter_t *sk, AES_XOF_struct *keys_expander);
|
||||
void PQCLEAN_LEDAKEMLT52_CLEAN_niederreiter_encrypt(DIGIT syndrome[], const publicKeyNiederreiter_t *pk, const DIGIT *err);
|
||||
int PQCLEAN_LEDAKEMLT52_CLEAN_niederreiter_decrypt(DIGIT *err, const privateKeyNiederreiter_t *sk, const DIGIT *syndrome);
|
||||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_niederreiter_keygen(publicKeyNiederreiter_t *pk, privateKeyNiederreiter_t *sk, AES_XOF_struct *keys_expander);
|
||||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_niederreiter_encrypt(DIGIT syndrome[], const publicKeyNiederreiter_t *pk, const DIGIT *err);
|
||||
int PQCLEAN_LEDAKEMLT32_LEAKTIME_niederreiter_decrypt(DIGIT *err, const privateKeyNiederreiter_t *sk, const DIGIT *syndrome);
|
||||
|
||||
|
||||
#endif
|
@ -37,7 +37,7 @@ static void seedexpander_init(AES_XOF_struct *ctx,
|
||||
memset(ctx->buffer, 0x00, 16);
|
||||
}
|
||||
|
||||
void PQCLEAN_LEDAKEMLT32_CLEAN_seedexpander_from_trng(AES_XOF_struct *ctx,
|
||||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_seedexpander_from_trng(AES_XOF_struct *ctx,
|
||||
const unsigned char *trng_entropy
|
||||
/* TRNG_BYTE_LENGTH wide buffer */) {
|
||||
|
||||
@ -61,7 +61,7 @@ void PQCLEAN_LEDAKEMLT32_CLEAN_seedexpander_from_trng(AES_XOF_struct *ctx,
|
||||
x - returns the XOF data
|
||||
xlen - number of bytes to return
|
||||
*/
|
||||
int PQCLEAN_LEDAKEMLT32_CLEAN_seedexpander(AES_XOF_struct *ctx, unsigned char *x, size_t xlen) {
|
||||
int PQCLEAN_LEDAKEMLT32_LEAKTIME_seedexpander(AES_XOF_struct *ctx, unsigned char *x, size_t xlen) {
|
||||
size_t offset;
|
||||
aes256ctx ctx256;
|
||||
|
@ -18,7 +18,7 @@ typedef struct {
|
||||
unsigned char ctr[16];
|
||||
} AES_XOF_struct;
|
||||
|
||||
int PQCLEAN_LEDAKEMLT52_CLEAN_seedexpander(AES_XOF_struct *ctx, unsigned char *x, size_t xlen);
|
||||
void PQCLEAN_LEDAKEMLT52_CLEAN_seedexpander_from_trng(AES_XOF_struct *ctx, const unsigned char *trng_entropy);
|
||||
int PQCLEAN_LEDAKEMLT32_LEAKTIME_seedexpander(AES_XOF_struct *ctx, unsigned char *x, size_t xlen);
|
||||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_seedexpander_from_trng(AES_XOF_struct *ctx, const unsigned char *trng_entropy);
|
||||
|
||||
#endif
|
@ -14,5 +14,5 @@ auxiliary-submitters:
|
||||
- Gerardo Pelosi
|
||||
- Paolo Santini
|
||||
implementations:
|
||||
- name: clean
|
||||
- name: leaktime
|
||||
version: 2.?
|
||||
|
@ -1,11 +0,0 @@
|
||||
#ifndef H_Q_MATRICES_GENERATION_H
|
||||
#define H_Q_MATRICES_GENERATION_H
|
||||
|
||||
#include "gf2x_arith.h"
|
||||
#include "qc_ldpc_parameters.h"
|
||||
#include "rng.h"
|
||||
|
||||
void PQCLEAN_LEDAKEMLT52_CLEAN_generateHPosOnes_HtrPosOnes(POSITION_T HPosOnes[N0][DV], POSITION_T HtrPosOnes[N0][DV], AES_XOF_struct *niederreiter_keys_expander);
|
||||
void PQCLEAN_LEDAKEMLT52_CLEAN_generateQsparse(POSITION_T pos_ones[N0][M], AES_XOF_struct *niederreiter_keys_expander);
|
||||
|
||||
#endif
|
@ -1,18 +0,0 @@
|
||||
#ifndef PQCLEAN_LEDAKEMLT52_CLEAN_API_H
|
||||
#define PQCLEAN_LEDAKEMLT52_CLEAN_API_H
|
||||
|
||||
#include <stdint.h>
|
||||
|
||||
#define PQCLEAN_LEDAKEMLT52_CLEAN_CRYPTO_SECRETKEYBYTES 42
|
||||
#define PQCLEAN_LEDAKEMLT52_CLEAN_CRYPTO_PUBLICKEYBYTES 19040
|
||||
#define PQCLEAN_LEDAKEMLT52_CLEAN_CRYPTO_CIPHERTEXTBYTES 19040
|
||||
#define PQCLEAN_LEDAKEMLT52_CLEAN_CRYPTO_BYTES 64
|
||||
|
||||
#define PQCLEAN_LEDAKEMLT52_CLEAN_CRYPTO_ALGNAME "LEDAKEMLT52"
|
||||
|
||||
int PQCLEAN_LEDAKEMLT52_CLEAN_crypto_kem_keypair(uint8_t *pk, uint8_t *sk);
|
||||
int PQCLEAN_LEDAKEMLT52_CLEAN_crypto_kem_enc(uint8_t *ct, uint8_t *ss, const uint8_t *pk);
|
||||
int PQCLEAN_LEDAKEMLT52_CLEAN_crypto_kem_dec(uint8_t *ss, const uint8_t *ct, const uint8_t *sk);
|
||||
|
||||
|
||||
#endif
|
@ -1,8 +0,0 @@
|
||||
#ifndef DFR_TEST_H
|
||||
#define DFR_TEST_H
|
||||
|
||||
#define DFR_TEST_FAIL (255)
|
||||
|
||||
uint8_t PQCLEAN_LEDAKEMLT52_CLEAN_DFR_test(POSITION_T LSparse[N0][DV * M]);
|
||||
|
||||
#endif
|
@ -1,37 +0,0 @@
|
||||
#ifndef GF2X_ARITH_MOD_XPLUSONE_H
|
||||
#define GF2X_ARITH_MOD_XPLUSONE_H
|
||||
|
||||
#include "qc_ldpc_parameters.h"
|
||||
|
||||
#include "gf2x_arith.h"
|
||||
#include "rng.h"
|
||||
|
||||
#define NUM_BITS_GF2X_ELEMENT (P) // 152267
|
||||
#define NUM_DIGITS_GF2X_ELEMENT ((P+DIGIT_SIZE_b-1)/DIGIT_SIZE_b) // 2380
|
||||
#define MSb_POSITION_IN_MSB_DIGIT_OF_ELEMENT ((P % DIGIT_SIZE_b) ? (P % DIGIT_SIZE_b)-1 : DIGIT_SIZE_b-1)
|
||||
#define NUM_BITS_GF2X_MODULUS (P+1)
|
||||
#define NUM_DIGITS_GF2X_MODULUS ((P+1+DIGIT_SIZE_b-1)/DIGIT_SIZE_b) // 2380
|
||||
#define MSb_POSITION_IN_MSB_DIGIT_OF_MODULUS (P-DIGIT_SIZE_b*(NUM_DIGITS_GF2X_MODULUS-1))
|
||||
#define INVALID_POS_VALUE (P)
|
||||
#define P_BITS (18) // log_2(p) = 17.216243783
|
||||
|
||||
void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_copy(DIGIT dest[], const DIGIT in[]);
|
||||
DIGIT PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_get_coeff(const DIGIT poly[], unsigned int exponent);
|
||||
void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_set_coeff(DIGIT poly[], unsigned int exponent, DIGIT value);
|
||||
void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_toggle_coeff(DIGIT poly[], unsigned int exponent);
|
||||
int PQCLEAN_LEDAKEMLT52_CLEAN_population_count(DIGIT *poly);
|
||||
void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_add(DIGIT Res[], const DIGIT A[], const DIGIT B[]);
|
||||
void PQCLEAN_LEDAKEMLT52_CLEAN_quicksort_sparse(POSITION_T Res[]);
|
||||
void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_mul(DIGIT Res[], const DIGIT A[], const DIGIT B[]);
|
||||
void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_transpose_in_place(DIGIT A[]);
|
||||
void PQCLEAN_LEDAKEMLT52_CLEAN_rand_circulant_sparse_block(POSITION_T *pos_ones, int countOnes, AES_XOF_struct *seed_expander_ctx);
|
||||
void PQCLEAN_LEDAKEMLT52_CLEAN_rand_circulant_blocks_sequence(DIGIT *sequence, AES_XOF_struct *seed_expander_ctx);
|
||||
void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_add_sparse(int sizeR, POSITION_T Res[], int sizeA, const POSITION_T A[], int sizeB, const POSITION_T B[]);
|
||||
void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_transpose_in_place_sparse(int sizeA, POSITION_T A[]);
|
||||
int PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_inverse(DIGIT out[], const DIGIT in[]);
|
||||
void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_mul_sparse(size_t sizeR, POSITION_T Res[], size_t sizeA, const POSITION_T A[], size_t sizeB, const POSITION_T B[]);
|
||||
void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_mul_dense_to_sparse(DIGIT Res[], const DIGIT dense[], POSITION_T sparse[], unsigned int nPos);
|
||||
void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_tobytes(uint8_t *bytes, const DIGIT *poly);
|
||||
void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_frombytes(DIGIT *poly, const uint8_t *poly_bytes);
|
||||
|
||||
#endif
|
@ -1,13 +1,13 @@
|
||||
#include "H_Q_matrices_generation.h"
|
||||
#include "gf2x_arith_mod_xPplusOne.h"
|
||||
|
||||
void PQCLEAN_LEDAKEMLT32_CLEAN_generateHPosOnes_HtrPosOnes(
|
||||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_generateHPosOnes_HtrPosOnes(
|
||||
POSITION_T HPosOnes[N0][DV],
|
||||
POSITION_T HtrPosOnes[N0][DV],
|
||||
AES_XOF_struct *keys_expander) {
|
||||
for (int i = 0; i < N0; i++) {
|
||||
/* Generate a random block of Htr */
|
||||
PQCLEAN_LEDAKEMLT32_CLEAN_rand_circulant_sparse_block(&HtrPosOnes[i][0], DV, keys_expander);
|
||||
PQCLEAN_LEDAKEMLT52_LEAKTIME_rand_circulant_sparse_block(&HtrPosOnes[i][0], DV, keys_expander);
|
||||
}
|
||||
for (int i = 0; i < N0; i++) {
|
||||
/* Obtain directly the sparse representation of the block of H */
|
||||
@ -17,13 +17,13 @@ void PQCLEAN_LEDAKEMLT32_CLEAN_generateHPosOnes_HtrPosOnes(
|
||||
}
|
||||
}
|
||||
|
||||
void PQCLEAN_LEDAKEMLT32_CLEAN_generateQsparse(
|
||||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_generateQsparse(
|
||||
POSITION_T pos_ones[N0][M],
|
||||
AES_XOF_struct *keys_expander) {
|
||||
for (int i = 0; i < N0; i++) {
|
||||
int placed_ones = 0;
|
||||
for (int j = 0; j < N0; j++) {
|
||||
PQCLEAN_LEDAKEMLT32_CLEAN_rand_circulant_sparse_block(&pos_ones[i][placed_ones],
|
||||
PQCLEAN_LEDAKEMLT52_LEAKTIME_rand_circulant_sparse_block(&pos_ones[i][placed_ones],
|
||||
qBlockWeights[i][j],
|
||||
keys_expander);
|
||||
placed_ones += qBlockWeights[i][j];
|
11
crypto_kem/ledakemlt52/leaktime/H_Q_matrices_generation.h
Normal file
11
crypto_kem/ledakemlt52/leaktime/H_Q_matrices_generation.h
Normal file
@ -0,0 +1,11 @@
|
||||
#ifndef H_Q_MATRICES_GENERATION_H
|
||||
#define H_Q_MATRICES_GENERATION_H
|
||||
|
||||
#include "gf2x_arith.h"
|
||||
#include "qc_ldpc_parameters.h"
|
||||
#include "rng.h"
|
||||
|
||||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_generateHPosOnes_HtrPosOnes(POSITION_T HPosOnes[N0][DV], POSITION_T HtrPosOnes[N0][DV], AES_XOF_struct *niederreiter_keys_expander);
|
||||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_generateQsparse(POSITION_T pos_ones[N0][M], AES_XOF_struct *niederreiter_keys_expander);
|
||||
|
||||
#endif
|
@ -1,6 +1,6 @@
|
||||
# This Makefile can be used with GNU Make or BSD Make
|
||||
|
||||
LIB=libledakemlt12_clean.a
|
||||
LIB=libledakemlt52_leaktime.a
|
||||
HEADERS=api.h bf_decoding.h dfr_test.h gf2x_arith_mod_xPplusOne.h \
|
||||
gf2x_arith.h H_Q_matrices_generation.h \
|
||||
niederreiter.h qc_ldpc_parameters.h rng.h
|
@ -1,7 +1,7 @@
|
||||
# This Makefile can be used with Microsoft Visual Studio's nmake using the command:
|
||||
# nmake /f Makefile.Microsoft_nmake
|
||||
|
||||
LIBRARY=libledakemlt12_clean.lib
|
||||
LIBRARY=libledakemlt52_leaktime.lib
|
||||
OBJECTS=bf_decoding.obj dfr_test.obj gf2x_arith_mod_xPplusOne.obj gf2x_arith.obj H_Q_matrices_generation.obj kem.obj niederreiter.obj rng.obj
|
||||
|
||||
CFLAGS=/nologo /I ..\..\..\common /W4 /WX
|
18
crypto_kem/ledakemlt52/leaktime/api.h
Normal file
18
crypto_kem/ledakemlt52/leaktime/api.h
Normal file
@ -0,0 +1,18 @@
|
||||
#ifndef PQCLEAN_LEDAKEMLT52_LEAKTIME_API_H
|
||||
#define PQCLEAN_LEDAKEMLT52_LEAKTIME_API_H
|
||||
|
||||
#include <stdint.h>
|
||||
|
||||
#define PQCLEAN_LEDAKEMLT52_LEAKTIME_CRYPTO_SECRETKEYBYTES 42
|
||||
#define PQCLEAN_LEDAKEMLT52_LEAKTIME_CRYPTO_PUBLICKEYBYTES 19040
|
||||
#define PQCLEAN_LEDAKEMLT52_LEAKTIME_CRYPTO_CIPHERTEXTBYTES 19040
|
||||
#define PQCLEAN_LEDAKEMLT52_LEAKTIME_CRYPTO_BYTES 64
|
||||
|
||||
#define PQCLEAN_LEDAKEMLT52_LEAKTIME_CRYPTO_ALGNAME "LEDAKEMLT52"
|
||||
|
||||
int PQCLEAN_LEDAKEMLT52_LEAKTIME_crypto_kem_keypair(uint8_t *pk, uint8_t *sk);
|
||||
int PQCLEAN_LEDAKEMLT52_LEAKTIME_crypto_kem_enc(uint8_t *ct, uint8_t *ss, const uint8_t *pk);
|
||||
int PQCLEAN_LEDAKEMLT52_LEAKTIME_crypto_kem_dec(uint8_t *ss, const uint8_t *ct, const uint8_t *sk);
|
||||
|
||||
|
||||
#endif
|
@ -4,7 +4,7 @@
|
||||
#include <assert.h>
|
||||
#include <string.h>
|
||||
|
||||
int PQCLEAN_LEDAKEMLT32_CLEAN_bf_decoding(DIGIT err[],
|
||||
int PQCLEAN_LEDAKEMLT52_LEAKTIME_bf_decoding(DIGIT err[],
|
||||
const POSITION_T HtrPosOnes[N0][DV],
|
||||
const POSITION_T QtrPosOnes[N0][M],
|
||||
DIGIT privateSyndrome[],
|
||||
@ -18,13 +18,13 @@ int PQCLEAN_LEDAKEMLT32_CLEAN_bf_decoding(DIGIT err[],
|
||||
unsigned int corrt_syndrome_based;
|
||||
|
||||
do {
|
||||
PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_copy(currSyndrome, privateSyndrome);
|
||||
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_copy(currSyndrome, privateSyndrome);
|
||||
memset(unsatParityChecks, 0x00, N0 * P * sizeof(uint8_t));
|
||||
for (int i = 0; i < N0; i++) {
|
||||
for (int valueIdx = 0; valueIdx < P; valueIdx++) {
|
||||
for (int HtrOneIdx = 0; HtrOneIdx < DV; HtrOneIdx++) {
|
||||
POSITION_T tmp = (HtrPosOnes[i][HtrOneIdx] + valueIdx) >= P ? (HtrPosOnes[i][HtrOneIdx] + valueIdx) - P : (HtrPosOnes[i][HtrOneIdx] + valueIdx);
|
||||
if (PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_get_coeff(currSyndrome, tmp)) {
|
||||
if (PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_get_coeff(currSyndrome, tmp)) {
|
||||
unsatParityChecks[i * P + valueIdx]++;
|
||||
}
|
||||
}
|
||||
@ -54,13 +54,13 @@ int PQCLEAN_LEDAKEMLT32_CLEAN_bf_decoding(DIGIT err[],
|
||||
}
|
||||
/* Correlation based flipping */
|
||||
if (correlation >= corrt_syndrome_based) {
|
||||
PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_toggle_coeff(err + NUM_DIGITS_GF2X_ELEMENT * i, j);
|
||||
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_toggle_coeff(err + NUM_DIGITS_GF2X_ELEMENT * i, j);
|
||||
for (int v = 0; v < M; v++) {
|
||||
POSITION_T syndromePosToFlip;
|
||||
for (int HtrOneIdx = 0; HtrOneIdx < DV; HtrOneIdx++) {
|
||||
syndromePosToFlip = (HtrPosOnes[currQBlkPos[v]][HtrOneIdx] + currQBitPos[v] );
|
||||
syndromePosToFlip = syndromePosToFlip >= P ? syndromePosToFlip - P : syndromePosToFlip;
|
||||
PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_toggle_coeff(privateSyndrome, syndromePosToFlip);
|
||||
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_toggle_coeff(privateSyndrome, syndromePosToFlip);
|
||||
}
|
||||
} // end for v
|
||||
} // end if
|
@ -9,7 +9,7 @@
|
||||
#define B0 (88)
|
||||
#define T_BAR (6)
|
||||
|
||||
int PQCLEAN_LEDAKEMLT52_CLEAN_bf_decoding(DIGIT err[],
|
||||
int PQCLEAN_LEDAKEMLT52_LEAKTIME_bf_decoding(DIGIT err[],
|
||||
const POSITION_T HtrPosOnes[N0][DV],
|
||||
const POSITION_T QtrPosOnes[N0][M],
|
||||
DIGIT privateSyndrome[],
|
@ -9,7 +9,7 @@
|
||||
* computes the threshold for the second iteration of the decoder and returns this values
|
||||
* (max DV * M), on failure it returns 255 >> DV * M */
|
||||
|
||||
uint8_t PQCLEAN_LEDAKEMLT52_CLEAN_DFR_test(POSITION_T LSparse[N0][DV * M]) {
|
||||
uint8_t PQCLEAN_LEDAKEMLT52_LEAKTIME_DFR_test(POSITION_T LSparse[N0][DV * M]) {
|
||||
|
||||
POSITION_T LSparse_loc[N0][DV * M];
|
||||
POSITION_T rotated_column[DV * M];
|
||||
@ -31,7 +31,7 @@ uint8_t PQCLEAN_LEDAKEMLT52_CLEAN_DFR_test(POSITION_T LSparse[N0][DV * M]) {
|
||||
LSparse_loc[i][j] = (P - LSparse[i][j]);
|
||||
}
|
||||
}
|
||||
PQCLEAN_LEDAKEMLT52_CLEAN_quicksort_sparse(LSparse_loc[i]);
|
||||
PQCLEAN_LEDAKEMLT52_LEAKTIME_quicksort_sparse(LSparse_loc[i]);
|
||||
}
|
||||
|
||||
for (int i = 0; i < N0; i++ ) {
|
||||
@ -41,7 +41,7 @@ uint8_t PQCLEAN_LEDAKEMLT52_CLEAN_DFR_test(POSITION_T LSparse[N0][DV * M]) {
|
||||
for (int idxToRotate = 0; idxToRotate < (DV * M); idxToRotate++) {
|
||||
rotated_column[idxToRotate] = (LSparse_loc[j][idxToRotate] + k) % P;
|
||||
}
|
||||
PQCLEAN_LEDAKEMLT52_CLEAN_quicksort_sparse(rotated_column);
|
||||
PQCLEAN_LEDAKEMLT52_LEAKTIME_quicksort_sparse(rotated_column);
|
||||
/* compute the intersection amount */
|
||||
firstidx = 0, secondidx = 0;
|
||||
intersectionval = 0;
|
8
crypto_kem/ledakemlt52/leaktime/dfr_test.h
Normal file
8
crypto_kem/ledakemlt52/leaktime/dfr_test.h
Normal file
@ -0,0 +1,8 @@
|
||||
#ifndef DFR_TEST_H
|
||||
#define DFR_TEST_H
|
||||
|
||||
#define DFR_TEST_FAIL (255)
|
||||
|
||||
uint8_t PQCLEAN_LEDAKEMLT52_LEAKTIME_DFR_test(POSITION_T LSparse[N0][DV * M]);
|
||||
|
||||
#endif
|
@ -3,14 +3,14 @@
|
||||
#include <assert.h>
|
||||
#include <string.h> // memset(...)
|
||||
|
||||
void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_add(DIGIT Res[], const DIGIT A[], const DIGIT B[], int nr) {
|
||||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_add(DIGIT Res[], const DIGIT A[], const DIGIT B[], int nr) {
|
||||
for (int i = 0; i < nr; i++) {
|
||||
Res[i] = A[i] ^ B[i];
|
||||
}
|
||||
}
|
||||
|
||||
/* PRE: MAX ALLOWED ROTATION AMOUNT : DIGIT_SIZE_b */
|
||||
void PQCLEAN_LEDAKEMLT32_CLEAN_right_bit_shift_n(int length, DIGIT in[], unsigned int amount) {
|
||||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_right_bit_shift_n(int length, DIGIT in[], unsigned int amount) {
|
||||
assert(amount < DIGIT_SIZE_b);
|
||||
if ( amount == 0 ) {
|
||||
return;
|
||||
@ -26,7 +26,7 @@ void PQCLEAN_LEDAKEMLT32_CLEAN_right_bit_shift_n(int length, DIGIT in[], unsigne
|
||||
}
|
||||
|
||||
/* PRE: MAX ALLOWED ROTATION AMOUNT : DIGIT_SIZE_b */
|
||||
void PQCLEAN_LEDAKEMLT32_CLEAN_left_bit_shift_n(int length, DIGIT in[], unsigned int amount) {
|
||||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_left_bit_shift_n(int length, DIGIT in[], unsigned int amount) {
|
||||
assert(amount < DIGIT_SIZE_b);
|
||||
if ( amount == 0 ) {
|
||||
return;
|
||||
@ -41,7 +41,7 @@ void PQCLEAN_LEDAKEMLT32_CLEAN_left_bit_shift_n(int length, DIGIT in[], unsigned
|
||||
in[j] <<= amount;
|
||||
}
|
||||
|
||||
void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mul_comb(int nr, DIGIT Res[],
|
||||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mul_comb(int nr, DIGIT Res[],
|
||||
int na, const DIGIT A[],
|
||||
int nb, const DIGIT B[]) {
|
||||
int i, j, k;
|
@ -48,11 +48,11 @@ typedef uint64_t DIGIT;
|
||||
#define DIGIT_SIZE_b (DIGIT_SIZE_B << 3)
|
||||
#define POSITION_T uint32_t
|
||||
|
||||
#define GF2X_MUL PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mul_comb
|
||||
#define GF2X_MUL PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mul_comb
|
||||
|
||||
void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_add(DIGIT Res[], const DIGIT A[], const DIGIT B[], int nr);
|
||||
void PQCLEAN_LEDAKEMLT12_CLEAN_right_bit_shift_n(int length, DIGIT in[], unsigned int amount);
|
||||
void PQCLEAN_LEDAKEMLT12_CLEAN_left_bit_shift_n(int length, DIGIT in[], unsigned int amount);
|
||||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_add(DIGIT Res[], const DIGIT A[], const DIGIT B[], int nr);
|
||||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_right_bit_shift_n(int length, DIGIT in[], unsigned int amount);
|
||||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_left_bit_shift_n(int length, DIGIT in[], unsigned int amount);
|
||||
void GF2X_MUL(int nr, DIGIT Res[], int na, const DIGIT A[], int nb, const DIGIT B[]);
|
||||
|
||||
#endif
|
@ -5,14 +5,14 @@
|
||||
#include <string.h> // memcpy(...), memset(...)
|
||||
|
||||
|
||||
void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_copy(DIGIT dest[], const DIGIT in[]) {
|
||||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_copy(DIGIT dest[], const DIGIT in[]) {
|
||||
for (int i = NUM_DIGITS_GF2X_ELEMENT - 1; i >= 0; i--) {
|
||||
dest[i] = in[i];
|
||||
}
|
||||
}
|
||||
|
||||
/* returns the coefficient of the x^exponent term as the LSB of a digit */
|
||||
DIGIT PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_get_coeff(const DIGIT poly[], unsigned int exponent) {
|
||||
DIGIT PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_get_coeff(const DIGIT poly[], unsigned int exponent) {
|
||||
unsigned int straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent;
|
||||
unsigned int digitIdx = straightIdx / DIGIT_SIZE_b;
|
||||
unsigned int inDigitIdx = straightIdx % DIGIT_SIZE_b;
|
||||
@ -20,7 +20,7 @@ DIGIT PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_get_coeff(const DIGIT poly[], unsigned int
|
||||
}
|
||||
|
||||
/* sets the coefficient of the x^exponent term as the LSB of a digit */
|
||||
void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_set_coeff(DIGIT poly[], unsigned int exponent, DIGIT value) {
|
||||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_set_coeff(DIGIT poly[], unsigned int exponent, DIGIT value) {
|
||||
unsigned int straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent;
|
||||
unsigned int digitIdx = straightIdx / DIGIT_SIZE_b;
|
||||
unsigned int inDigitIdx = straightIdx % DIGIT_SIZE_b;
|
||||
@ -32,7 +32,7 @@ void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_set_coeff(DIGIT poly[], unsigned int exponen
|
||||
}
|
||||
|
||||
/* toggles (flips) the coefficient of the x^exponent term as the LSB of a digit */
|
||||
void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_toggle_coeff(DIGIT poly[], unsigned int exponent) {
|
||||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_toggle_coeff(DIGIT poly[], unsigned int exponent) {
|
||||
unsigned int straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent;
|
||||
unsigned int digitIdx = straightIdx / DIGIT_SIZE_b;
|
||||
unsigned int inDigitIdx = straightIdx % DIGIT_SIZE_b;
|
||||
@ -52,7 +52,7 @@ static int popcount_uint64t(uint64_t x) {
|
||||
}
|
||||
|
||||
/* population count for a single polynomial */
|
||||
int PQCLEAN_LEDAKEMLT52_CLEAN_population_count(DIGIT *poly) {
|
||||
int PQCLEAN_LEDAKEMLT52_LEAKTIME_population_count(DIGIT *poly) {
|
||||
int ret = 0;
|
||||
for (int i = NUM_DIGITS_GF2X_ELEMENT - 1; i >= 0; i--) {
|
||||
ret += popcount_uint64t(poly[i]);
|
||||
@ -60,8 +60,8 @@ int PQCLEAN_LEDAKEMLT52_CLEAN_population_count(DIGIT *poly) {
|
||||
return ret;
|
||||
}
|
||||
|
||||
void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_add(DIGIT Res[], const DIGIT A[], const DIGIT B[]) {
|
||||
PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_add(Res, A, B, NUM_DIGITS_GF2X_ELEMENT);
|
||||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_add(DIGIT Res[], const DIGIT A[], const DIGIT B[]) {
|
||||
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_add(Res, A, B, NUM_DIGITS_GF2X_ELEMENT);
|
||||
}
|
||||
|
||||
static int partition(POSITION_T arr[], int lo, int hi) {
|
||||
@ -83,7 +83,7 @@ static int partition(POSITION_T arr[], int lo, int hi) {
|
||||
return i + 1;
|
||||
}
|
||||
|
||||
void PQCLEAN_LEDAKEMLT52_CLEAN_quicksort_sparse(POSITION_T Res[]) {
|
||||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_quicksort_sparse(POSITION_T Res[]) {
|
||||
int stack[DV * M];
|
||||
int hi, lo, pivot, tos = -1;
|
||||
stack[++tos] = 0;
|
||||
@ -176,7 +176,7 @@ static void left_DIGIT_shift_n(unsigned int length, DIGIT in[], unsigned int amo
|
||||
/* may shift by an arbitrary amount*/
|
||||
static void left_bit_shift_wide_n(const int length, DIGIT in[], unsigned int amount) {
|
||||
left_DIGIT_shift_n(length, in, amount / DIGIT_SIZE_b);
|
||||
PQCLEAN_LEDAKEMLT52_CLEAN_left_bit_shift_n(length, in, amount % DIGIT_SIZE_b);
|
||||
PQCLEAN_LEDAKEMLT52_LEAKTIME_left_bit_shift_n(length, in, amount % DIGIT_SIZE_b);
|
||||
}
|
||||
|
||||
/* Hackers delight, reverses a uint64_t */
|
||||
@ -194,7 +194,7 @@ static DIGIT reverse_digit(DIGIT x) {
|
||||
return x;
|
||||
}
|
||||
|
||||
void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_transpose_in_place(DIGIT A[]) {
|
||||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_transpose_in_place(DIGIT A[]) {
|
||||
/* it keeps the lsb in the same position and
|
||||
* inverts the sequence of the remaining bits */
|
||||
|
||||
@ -215,7 +215,7 @@ void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_transpose_in_place(DIGIT A[]) {
|
||||
// A[NUM_DIGITS_GF2X_ELEMENT / 2] = reverse_digit(A[NUM_DIGITS_GF2X_ELEMENT / 2]); // no middle digit
|
||||
|
||||
if (slack_bits_amount) {
|
||||
PQCLEAN_LEDAKEMLT52_CLEAN_right_bit_shift_n(NUM_DIGITS_GF2X_ELEMENT, A, slack_bits_amount);
|
||||
PQCLEAN_LEDAKEMLT52_LEAKTIME_right_bit_shift_n(NUM_DIGITS_GF2X_ELEMENT, A, slack_bits_amount);
|
||||
}
|
||||
A[NUM_DIGITS_GF2X_ELEMENT - 1] = (A[NUM_DIGITS_GF2X_ELEMENT - 1] & (~mask)) | a00;
|
||||
}
|
||||
@ -266,7 +266,7 @@ static void gf2x_swap(const int length, DIGIT f[], DIGIT s[]) {
|
||||
* (Chapter 11 -- Algorithm 11.44 -- pag 223)
|
||||
*
|
||||
*/
|
||||
int PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_inverse(DIGIT out[], const DIGIT in[]) { /* in^{-1} mod x^P-1 */
|
||||
int PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_inverse(DIGIT out[], const DIGIT in[]) { /* in^{-1} mod x^P-1 */
|
||||
|
||||
int i;
|
||||
int delta = 0;
|
||||
@ -300,8 +300,8 @@ int PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_inverse(DIGIT out[], const DIGIT in[]) {
|
||||
delta += 1;
|
||||
} else {
|
||||
if ( (s[0] & mask) != 0) {
|
||||
PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_add(s, s, f, NUM_DIGITS_GF2X_MODULUS);
|
||||
PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_add(v, v, u);
|
||||
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_add(s, s, f, NUM_DIGITS_GF2X_MODULUS);
|
||||
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_add(v, v, u);
|
||||
}
|
||||
left_bit_shift(NUM_DIGITS_GF2X_MODULUS, s);
|
||||
if ( delta == 0 ) {
|
||||
@ -323,7 +323,7 @@ int PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_inverse(DIGIT out[], const DIGIT in[]) {
|
||||
return (delta == 0);
|
||||
}
|
||||
|
||||
void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_mul(DIGIT Res[], const DIGIT A[], const DIGIT B[]) {
|
||||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_mul(DIGIT Res[], const DIGIT A[], const DIGIT B[]) {
|
||||
|
||||
DIGIT aux[2 * NUM_DIGITS_GF2X_ELEMENT];
|
||||
GF2X_MUL(2 * NUM_DIGITS_GF2X_ELEMENT, aux,
|
||||
@ -335,7 +335,7 @@ void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_mul(DIGIT Res[], const DIGIT A[], const
|
||||
|
||||
/*PRE: the representation of the sparse coefficients is sorted in increasing
|
||||
order of the coefficients themselves */
|
||||
void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_mul_dense_to_sparse(
|
||||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_mul_dense_to_sparse(
|
||||
DIGIT Res[],
|
||||
const DIGIT dense[],
|
||||
POSITION_T sparse[], unsigned int nPos) {
|
||||
@ -353,7 +353,7 @@ void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_mul_dense_to_sparse(
|
||||
for (unsigned int i = 1; i < nPos; i++) {
|
||||
if (sparse[i] != INVALID_POS_VALUE) {
|
||||
left_bit_shift_wide_n(2 * NUM_DIGITS_GF2X_ELEMENT, aux, (sparse[i] - sparse[i - 1]) );
|
||||
PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_add(resDouble, aux, resDouble, 2 * NUM_DIGITS_GF2X_ELEMENT);
|
||||
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_add(resDouble, aux, resDouble, 2 * NUM_DIGITS_GF2X_ELEMENT);
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -362,7 +362,7 @@ void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_mul_dense_to_sparse(
|
||||
|
||||
}
|
||||
|
||||
void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_transpose_in_place_sparse(int sizeA, POSITION_T A[]) {
|
||||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_transpose_in_place_sparse(int sizeA, POSITION_T A[]) {
|
||||
|
||||
POSITION_T t;
|
||||
int i = 0, j;
|
||||
@ -384,7 +384,7 @@ void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_transpose_in_place_sparse(int sizeA, POSITIO
|
||||
|
||||
}
|
||||
|
||||
void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_mul_sparse(size_t sizeR, POSITION_T Res[],
|
||||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_mul_sparse(size_t sizeR, POSITION_T Res[],
|
||||
size_t sizeA, const POSITION_T A[],
|
||||
size_t sizeB, const POSITION_T B[]) {
|
||||
|
||||
@ -407,7 +407,7 @@ void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_mul_sparse(size_t sizeR, POSITION_T Res[
|
||||
Res[lastFilledPos] = INVALID_POS_VALUE;
|
||||
lastFilledPos++;
|
||||
}
|
||||
PQCLEAN_LEDAKEMLT52_CLEAN_quicksort_sparse(Res);
|
||||
PQCLEAN_LEDAKEMLT52_LEAKTIME_quicksort_sparse(Res);
|
||||
/* eliminate duplicates */
|
||||
POSITION_T lastReadPos = Res[0];
|
||||
int duplicateCount;
|
||||
@ -434,7 +434,7 @@ void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_mul_sparse(size_t sizeR, POSITION_T Res[
|
||||
|
||||
/* the implementation is safe even in case A or B alias with the result */
|
||||
/* PRE: A and B should be sorted and have INVALID_POS_VALUE at the end */
|
||||
void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_add_sparse(
|
||||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_add_sparse(
|
||||
int sizeR, POSITION_T Res[],
|
||||
int sizeA, const POSITION_T A[],
|
||||
int sizeB, const POSITION_T B[]) {
|
||||
@ -493,7 +493,7 @@ static uint32_t rand_range(const unsigned int n, const int logn, AES_XOF_struct
|
||||
uint32_t mask = ( (uint32_t)1 << logn) - 1;
|
||||
|
||||
do {
|
||||
PQCLEAN_LEDAKEMLT52_CLEAN_seedexpander(seed_expander_ctx, rnd_char_buffer, required_rnd_bytes);
|
||||
PQCLEAN_LEDAKEMLT52_LEAKTIME_seedexpander(seed_expander_ctx, rnd_char_buffer, required_rnd_bytes);
|
||||
/* obtain an endianness independent representation of the generated random
|
||||
bytes into an unsigned integer */
|
||||
rnd_value = ((uint32_t)rnd_char_buffer[3] << 24) +
|
||||
@ -508,7 +508,7 @@ static uint32_t rand_range(const unsigned int n, const int logn, AES_XOF_struct
|
||||
|
||||
/* Obtains fresh randomness and seed-expands it until all the required positions
|
||||
* for the '1's in the circulant block are obtained */
|
||||
void PQCLEAN_LEDAKEMLT52_CLEAN_rand_circulant_sparse_block(POSITION_T *pos_ones,
|
||||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_rand_circulant_sparse_block(POSITION_T *pos_ones,
|
||||
int countOnes,
|
||||
AES_XOF_struct *seed_expander_ctx) {
|
||||
|
||||
@ -533,7 +533,7 @@ void PQCLEAN_LEDAKEMLT52_CLEAN_rand_circulant_sparse_block(POSITION_T *pos_ones,
|
||||
}
|
||||
|
||||
/* Returns random weight-t circulant block */
|
||||
void PQCLEAN_LEDAKEMLT52_CLEAN_rand_circulant_blocks_sequence(
|
||||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_rand_circulant_blocks_sequence(
|
||||
DIGIT sequence[N0 * NUM_DIGITS_GF2X_ELEMENT],
|
||||
AES_XOF_struct *seed_expander_ctx) {
|
||||
|
||||
@ -559,13 +559,13 @@ void PQCLEAN_LEDAKEMLT52_CLEAN_rand_circulant_blocks_sequence(
|
||||
for (int j = 0; j < counter; j++) {
|
||||
polyIndex = rndPos[j] / P;
|
||||
exponent = rndPos[j] % P;
|
||||
PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_set_coeff( sequence + NUM_DIGITS_GF2X_ELEMENT * polyIndex, exponent,
|
||||
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_set_coeff( sequence + NUM_DIGITS_GF2X_ELEMENT * polyIndex, exponent,
|
||||
( (DIGIT) 1));
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_tobytes(uint8_t *bytes, const DIGIT *poly) {
|
||||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_tobytes(uint8_t *bytes, const DIGIT *poly) {
|
||||
size_t i, j;
|
||||
for (i = 0; i < NUM_DIGITS_GF2X_ELEMENT; i++) {
|
||||
for (j = 0; j < DIGIT_SIZE_B; j++) {
|
||||
@ -574,7 +574,7 @@ void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_tobytes(uint8_t *bytes, const DIGIT *poly) {
|
||||
}
|
||||
}
|
||||
|
||||
void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_frombytes(DIGIT *poly, const uint8_t *poly_bytes) {
|
||||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_frombytes(DIGIT *poly, const uint8_t *poly_bytes) {
|
||||
size_t i, j;
|
||||
for (i = 0; i < NUM_DIGITS_GF2X_ELEMENT; i++) {
|
||||
poly[i] = (DIGIT) 0;
|
37
crypto_kem/ledakemlt52/leaktime/gf2x_arith_mod_xPplusOne.h
Normal file
37
crypto_kem/ledakemlt52/leaktime/gf2x_arith_mod_xPplusOne.h
Normal file
@ -0,0 +1,37 @@
|
||||
#ifndef GF2X_ARITH_MOD_XPLUSONE_H
|
||||
#define GF2X_ARITH_MOD_XPLUSONE_H
|
||||
|
||||
#include "qc_ldpc_parameters.h"
|
||||
|
||||
#include "gf2x_arith.h"
|
||||
#include "rng.h"
|
||||
|
||||
#define NUM_BITS_GF2X_ELEMENT (P) // 152267
|
||||
#define NUM_DIGITS_GF2X_ELEMENT ((P+DIGIT_SIZE_b-1)/DIGIT_SIZE_b) // 2380
|
||||
#define MSb_POSITION_IN_MSB_DIGIT_OF_ELEMENT ((P % DIGIT_SIZE_b) ? (P % DIGIT_SIZE_b)-1 : DIGIT_SIZE_b-1)
|
||||
#define NUM_BITS_GF2X_MODULUS (P+1)
|
||||
#define NUM_DIGITS_GF2X_MODULUS ((P+1+DIGIT_SIZE_b-1)/DIGIT_SIZE_b) // 2380
|
||||
#define MSb_POSITION_IN_MSB_DIGIT_OF_MODULUS (P-DIGIT_SIZE_b*(NUM_DIGITS_GF2X_MODULUS-1))
|
||||
#define INVALID_POS_VALUE (P)
|
||||
#define P_BITS (18) // log_2(p) = 17.216243783
|
||||
|
||||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_copy(DIGIT dest[], const DIGIT in[]);
|
||||
DIGIT PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_get_coeff(const DIGIT poly[], unsigned int exponent);
|
||||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_set_coeff(DIGIT poly[], unsigned int exponent, DIGIT value);
|
||||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_toggle_coeff(DIGIT poly[], unsigned int exponent);
|
||||
int PQCLEAN_LEDAKEMLT52_LEAKTIME_population_count(DIGIT *poly);
|
||||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_add(DIGIT Res[], const DIGIT A[], const DIGIT B[]);
|
||||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_quicksort_sparse(POSITION_T Res[]);
|
||||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_mul(DIGIT Res[], const DIGIT A[], const DIGIT B[]);
|
||||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_transpose_in_place(DIGIT A[]);
|
||||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_rand_circulant_sparse_block(POSITION_T *pos_ones, int countOnes, AES_XOF_struct *seed_expander_ctx);
|
||||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_rand_circulant_blocks_sequence(DIGIT *sequence, AES_XOF_struct *seed_expander_ctx);
|
||||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_add_sparse(int sizeR, POSITION_T Res[], int sizeA, const POSITION_T A[], int sizeB, const POSITION_T B[]);
|
||||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_transpose_in_place_sparse(int sizeA, POSITION_T A[]);
|
||||
int PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_inverse(DIGIT out[], const DIGIT in[]);
|
||||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_mul_sparse(size_t sizeR, POSITION_T Res[], size_t sizeA, const POSITION_T A[], size_t sizeB, const POSITION_T B[]);
|
||||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_mul_dense_to_sparse(DIGIT Res[], const DIGIT dense[], POSITION_T sparse[], unsigned int nPos);
|
||||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_tobytes(uint8_t *bytes, const DIGIT *poly);
|
||||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_frombytes(DIGIT *poly, const uint8_t *poly_bytes);
|
||||
|
||||
#endif
|
@ -8,43 +8,43 @@
|
||||
static void pack_pk(uint8_t *pk_bytes, publicKeyNiederreiter_t *pk) {
|
||||
size_t i;
|
||||
for (i = 0; i < N0 - 1; i++) {
|
||||
PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_tobytes(pk_bytes + i * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B,
|
||||
pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT);
|
||||
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_tobytes(pk_bytes + i * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B,
|
||||
pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT);
|
||||
}
|
||||
}
|
||||
|
||||
static void unpack_pk(publicKeyNiederreiter_t *pk, const uint8_t *pk_bytes) {
|
||||
size_t i;
|
||||
for (i = 0; i < N0 - 1; i++) {
|
||||
PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_frombytes(pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT,
|
||||
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_frombytes(pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT,
|
||||
pk_bytes + i * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B);
|
||||
}
|
||||
}
|
||||
|
||||
static void pack_ct(uint8_t *sk_bytes, DIGIT *ct) {
|
||||
PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_tobytes(sk_bytes, ct);
|
||||
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_tobytes(sk_bytes, ct);
|
||||
}
|
||||
|
||||
static void unpack_ct(DIGIT *ct, const uint8_t *ct_bytes) {
|
||||
PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_frombytes(ct, ct_bytes);
|
||||
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_frombytes(ct, ct_bytes);
|
||||
}
|
||||
|
||||
static void pack_error(uint8_t *error_bytes, DIGIT *error_digits) {
|
||||
size_t i;
|
||||
for (i = 0; i < N0; i++) {
|
||||
PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_tobytes(error_bytes + i * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B,
|
||||
error_digits + i * NUM_DIGITS_GF2X_ELEMENT);
|
||||
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_tobytes(error_bytes + i * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B,
|
||||
error_digits + i * NUM_DIGITS_GF2X_ELEMENT);
|
||||
}
|
||||
}
|
||||
|
||||
/* Generates a keypair - pk is the public key and sk is the secret key. */
|
||||
int PQCLEAN_LEDAKEMLT12_CLEAN_crypto_kem_keypair(unsigned char *pk, unsigned char *sk) {
|
||||
int PQCLEAN_LEDAKEMLT52_LEAKTIME_crypto_kem_keypair(unsigned char *pk, unsigned char *sk) {
|
||||
AES_XOF_struct niederreiter_keys_expander;
|
||||
publicKeyNiederreiter_t pk_nie;
|
||||
|
||||
randombytes(((privateKeyNiederreiter_t *)sk)->prng_seed, TRNG_BYTE_LENGTH);
|
||||
PQCLEAN_LEDAKEMLT12_CLEAN_seedexpander_from_trng(&niederreiter_keys_expander, ((privateKeyNiederreiter_t *)sk)->prng_seed);
|
||||
PQCLEAN_LEDAKEMLT12_CLEAN_niederreiter_keygen(&pk_nie, (privateKeyNiederreiter_t *) sk, &niederreiter_keys_expander);
|
||||
PQCLEAN_LEDAKEMLT52_LEAKTIME_seedexpander_from_trng(&niederreiter_keys_expander, ((privateKeyNiederreiter_t *)sk)->prng_seed);
|
||||
PQCLEAN_LEDAKEMLT52_LEAKTIME_niederreiter_keygen(&pk_nie, (privateKeyNiederreiter_t *) sk, &niederreiter_keys_expander);
|
||||
|
||||
pack_pk(pk, &pk_nie);
|
||||
|
||||
@ -53,7 +53,7 @@ int PQCLEAN_LEDAKEMLT12_CLEAN_crypto_kem_keypair(unsigned char *pk, unsigned cha
|
||||
|
||||
/* Encrypt - pk is the public key, ct is a key encapsulation message
|
||||
(ciphertext), ss is the shared secret.*/
|
||||
int PQCLEAN_LEDAKEMLT12_CLEAN_crypto_kem_enc(unsigned char *ct, unsigned char *ss, const unsigned char *pk) {
|
||||
int PQCLEAN_LEDAKEMLT52_LEAKTIME_crypto_kem_enc(unsigned char *ct, unsigned char *ss, const unsigned char *pk) {
|
||||
AES_XOF_struct niederreiter_encap_key_expander;
|
||||
unsigned char encapsulated_key_seed[TRNG_BYTE_LENGTH];
|
||||
DIGIT error_vector[N0 * NUM_DIGITS_GF2X_ELEMENT];
|
||||
@ -64,11 +64,11 @@ int PQCLEAN_LEDAKEMLT12_CLEAN_crypto_kem_enc(unsigned char *ct, unsigned char *s
|
||||
randombytes(encapsulated_key_seed, TRNG_BYTE_LENGTH);
|
||||
unpack_pk(&pk_nie, pk);
|
||||
|
||||
PQCLEAN_LEDAKEMLT12_CLEAN_seedexpander_from_trng(&niederreiter_encap_key_expander, encapsulated_key_seed);
|
||||
PQCLEAN_LEDAKEMLT12_CLEAN_rand_circulant_blocks_sequence(error_vector, &niederreiter_encap_key_expander);
|
||||
PQCLEAN_LEDAKEMLT52_LEAKTIME_seedexpander_from_trng(&niederreiter_encap_key_expander, encapsulated_key_seed);
|
||||
PQCLEAN_LEDAKEMLT52_LEAKTIME_rand_circulant_blocks_sequence(error_vector, &niederreiter_encap_key_expander);
|
||||
pack_error(error_bytes, error_vector);
|
||||
HASH_FUNCTION(ss, error_bytes, (N0 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B));
|
||||
PQCLEAN_LEDAKEMLT12_CLEAN_niederreiter_encrypt(syndrome, &pk_nie, error_vector);
|
||||
PQCLEAN_LEDAKEMLT52_LEAKTIME_niederreiter_encrypt(syndrome, &pk_nie, error_vector);
|
||||
|
||||
pack_ct(ct, syndrome);
|
||||
|
||||
@ -78,13 +78,13 @@ int PQCLEAN_LEDAKEMLT12_CLEAN_crypto_kem_enc(unsigned char *ct, unsigned char *s
|
||||
|
||||
/* Decrypt - ct is a key encapsulation message (ciphertext), sk is the private
|
||||
key, ss is the shared secret */
|
||||
int PQCLEAN_LEDAKEMLT12_CLEAN_crypto_kem_dec(unsigned char *ss, const unsigned char *ct, const unsigned char *sk) {
|
||||
int PQCLEAN_LEDAKEMLT52_LEAKTIME_crypto_kem_dec(unsigned char *ss, const unsigned char *ct, const unsigned char *sk) {
|
||||
DIGIT decoded_error_vector[N0 * NUM_DIGITS_GF2X_ELEMENT];
|
||||
uint8_t decoded_error_bytes[N0 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B];
|
||||
DIGIT syndrome[NUM_DIGITS_GF2X_ELEMENT];
|
||||
|
||||
unpack_ct(syndrome, ct);
|
||||
PQCLEAN_LEDAKEMLT12_CLEAN_niederreiter_decrypt(decoded_error_vector, (privateKeyNiederreiter_t *)sk, syndrome);
|
||||
PQCLEAN_LEDAKEMLT52_LEAKTIME_niederreiter_decrypt(decoded_error_vector, (privateKeyNiederreiter_t *)sk, syndrome);
|
||||
pack_error(decoded_error_bytes, decoded_error_vector);
|
||||
HASH_FUNCTION(ss, decoded_error_bytes, (N0 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B));
|
||||
|
@ -8,7 +8,7 @@
|
||||
|
||||
#include <string.h>
|
||||
|
||||
void PQCLEAN_LEDAKEMLT32_CLEAN_niederreiter_keygen(publicKeyNiederreiter_t *pk, privateKeyNiederreiter_t *sk, AES_XOF_struct *keys_expander) {
|
||||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_niederreiter_keygen(publicKeyNiederreiter_t *pk, privateKeyNiederreiter_t *sk, AES_XOF_struct *keys_expander) {
|
||||
|
||||
POSITION_T HPosOnes[N0][DV]; // sequence of N0 circ block matrices (p x p): Hi
|
||||
POSITION_T HtrPosOnes[N0][DV]; // Sparse tranposed circulant H
|
||||
@ -23,8 +23,8 @@ void PQCLEAN_LEDAKEMLT32_CLEAN_niederreiter_keygen(publicKeyNiederreiter_t *pk,
|
||||
sk->rejections = (int8_t) 0;
|
||||
|
||||
do {
|
||||
PQCLEAN_LEDAKEMLT32_CLEAN_generateHPosOnes_HtrPosOnes(HPosOnes, HtrPosOnes, keys_expander);
|
||||
PQCLEAN_LEDAKEMLT32_CLEAN_generateQsparse(QPosOnes, keys_expander);
|
||||
PQCLEAN_LEDAKEMLT52_LEAKTIME_generateHPosOnes_HtrPosOnes(HPosOnes, HtrPosOnes, keys_expander);
|
||||
PQCLEAN_LEDAKEMLT52_LEAKTIME_generateQsparse(QPosOnes, keys_expander);
|
||||
for (int i = 0; i < N0; i++) {
|
||||
for (int j = 0; j < DV * M; j++) {
|
||||
LPosOnes[i][j] = INVALID_POS_VALUE;
|
||||
@ -34,10 +34,10 @@ void PQCLEAN_LEDAKEMLT32_CLEAN_niederreiter_keygen(publicKeyNiederreiter_t *pk,
|
||||
memset(processedQOnes, 0x00, sizeof(processedQOnes));
|
||||
for (int colQ = 0; colQ < N0; colQ++) {
|
||||
for (int i = 0; i < N0; i++) {
|
||||
PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mod_mul_sparse(DV * M, auxPosOnes,
|
||||
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_mul_sparse(DV * M, auxPosOnes,
|
||||
DV, HPosOnes[i],
|
||||
qBlockWeights[i][colQ], QPosOnes[i] + processedQOnes[i]);
|
||||
PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mod_add_sparse(DV * M, LPosOnes[colQ],
|
||||
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_add_sparse(DV * M, LPosOnes[colQ],
|
||||
DV * M, LPosOnes[colQ],
|
||||
DV * M, auxPosOnes);
|
||||
processedQOnes[i] += qBlockWeights[i][colQ];
|
||||
@ -49,7 +49,7 @@ void PQCLEAN_LEDAKEMLT32_CLEAN_niederreiter_keygen(publicKeyNiederreiter_t *pk,
|
||||
}
|
||||
sk->rejections = sk->rejections + 1;
|
||||
if (is_L_full) {
|
||||
threshold = PQCLEAN_LEDAKEMLT32_CLEAN_DFR_test(LPosOnes);
|
||||
threshold = PQCLEAN_LEDAKEMLT52_LEAKTIME_DFR_test(LPosOnes);
|
||||
}
|
||||
} while (!is_L_full || threshold == DFR_TEST_FAIL);
|
||||
sk->rejections = sk->rejections - 1;
|
||||
@ -58,41 +58,41 @@ void PQCLEAN_LEDAKEMLT32_CLEAN_niederreiter_keygen(publicKeyNiederreiter_t *pk,
|
||||
memset(Ln0dense, 0x00, sizeof(Ln0dense));
|
||||
for (int j = 0; j < DV * M; j++) {
|
||||
if (LPosOnes[N0 - 1][j] != INVALID_POS_VALUE) {
|
||||
PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_set_coeff(Ln0dense, LPosOnes[N0 - 1][j], 1);
|
||||
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_set_coeff(Ln0dense, LPosOnes[N0 - 1][j], 1);
|
||||
}
|
||||
}
|
||||
|
||||
memset(Ln0Inv, 0x00, sizeof(Ln0Inv));
|
||||
PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mod_inverse(Ln0Inv, Ln0dense);
|
||||
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_inverse(Ln0Inv, Ln0dense);
|
||||
for (int i = 0; i < N0 - 1; i++) {
|
||||
PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mod_mul_dense_to_sparse(pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT,
|
||||
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_mul_dense_to_sparse(pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT,
|
||||
Ln0Inv,
|
||||
LPosOnes[i],
|
||||
DV * M);
|
||||
}
|
||||
|
||||
for (int i = 0; i < N0 - 1; i++) {
|
||||
PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_transpose_in_place(pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT);
|
||||
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_transpose_in_place(pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void PQCLEAN_LEDAKEMLT32_CLEAN_niederreiter_encrypt(DIGIT *syndrome, const publicKeyNiederreiter_t *pk, const DIGIT *err) {
|
||||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_niederreiter_encrypt(DIGIT *syndrome, const publicKeyNiederreiter_t *pk, const DIGIT *err) {
|
||||
int i;
|
||||
DIGIT saux[NUM_DIGITS_GF2X_ELEMENT];
|
||||
|
||||
memset(syndrome, 0x00, NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B);
|
||||
for (i = 0; i < N0 - 1; i++) {
|
||||
PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mod_mul(saux,
|
||||
pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT,
|
||||
err + i * NUM_DIGITS_GF2X_ELEMENT);
|
||||
PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mod_add(syndrome, syndrome, saux);
|
||||
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_mul(saux,
|
||||
pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT,
|
||||
err + i * NUM_DIGITS_GF2X_ELEMENT);
|
||||
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_add(syndrome, syndrome, saux);
|
||||
}
|
||||
PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mod_add(syndrome, syndrome, err + (N0 - 1)*NUM_DIGITS_GF2X_ELEMENT);
|
||||
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_add(syndrome, syndrome, err + (N0 - 1)*NUM_DIGITS_GF2X_ELEMENT);
|
||||
}
|
||||
|
||||
|
||||
int PQCLEAN_LEDAKEMLT32_CLEAN_niederreiter_decrypt(DIGIT *err, const privateKeyNiederreiter_t *sk, const DIGIT *syndrome) {
|
||||
int PQCLEAN_LEDAKEMLT52_LEAKTIME_niederreiter_decrypt(DIGIT *err, const privateKeyNiederreiter_t *sk, const DIGIT *syndrome) {
|
||||
AES_XOF_struct niederreiter_decrypt_expander;
|
||||
POSITION_T HPosOnes[N0][DV];
|
||||
POSITION_T HtrPosOnes[N0][DV];
|
||||
@ -110,11 +110,11 @@ int PQCLEAN_LEDAKEMLT32_CLEAN_niederreiter_decrypt(DIGIT *err, const privateKeyN
|
||||
int currQoneIdx, endQblockIdx;
|
||||
int decryptOk, err_weight;
|
||||
|
||||
PQCLEAN_LEDAKEMLT32_CLEAN_seedexpander_from_trng(&niederreiter_decrypt_expander, sk->prng_seed);
|
||||
PQCLEAN_LEDAKEMLT52_LEAKTIME_seedexpander_from_trng(&niederreiter_decrypt_expander, sk->prng_seed);
|
||||
|
||||
do {
|
||||
PQCLEAN_LEDAKEMLT32_CLEAN_generateHPosOnes_HtrPosOnes(HPosOnes, HtrPosOnes, &niederreiter_decrypt_expander);
|
||||
PQCLEAN_LEDAKEMLT32_CLEAN_generateQsparse(QPosOnes, &niederreiter_decrypt_expander);
|
||||
PQCLEAN_LEDAKEMLT52_LEAKTIME_generateHPosOnes_HtrPosOnes(HPosOnes, HtrPosOnes, &niederreiter_decrypt_expander);
|
||||
PQCLEAN_LEDAKEMLT52_LEAKTIME_generateQsparse(QPosOnes, &niederreiter_decrypt_expander);
|
||||
for (int i = 0; i < N0; i++) {
|
||||
for (int j = 0; j < DV * M; j++) {
|
||||
LPosOnes[i][j] = INVALID_POS_VALUE;
|
||||
@ -124,10 +124,10 @@ int PQCLEAN_LEDAKEMLT32_CLEAN_niederreiter_decrypt(DIGIT *err, const privateKeyN
|
||||
memset(processedQOnes, 0x00, sizeof(processedQOnes));
|
||||
for (int colQ = 0; colQ < N0; colQ++) {
|
||||
for (int i = 0; i < N0; i++) {
|
||||
PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mod_mul_sparse(DV * M, auxPosOnes,
|
||||
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_mul_sparse(DV * M, auxPosOnes,
|
||||
DV, HPosOnes[i],
|
||||
qBlockWeights[i][colQ], QPosOnes[i] + processedQOnes[i]);
|
||||
PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mod_add_sparse(DV * M, LPosOnes[colQ],
|
||||
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_add_sparse(DV * M, LPosOnes[colQ],
|
||||
DV * M, LPosOnes[colQ],
|
||||
DV * M, auxPosOnes);
|
||||
processedQOnes[i] += qBlockWeights[i][colQ];
|
||||
@ -156,31 +156,31 @@ int PQCLEAN_LEDAKEMLT32_CLEAN_niederreiter_decrypt(DIGIT *err, const privateKeyN
|
||||
}
|
||||
|
||||
for (int i = 0; i < N0; i++) {
|
||||
PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mod_mul_sparse(DV * M, auxSparse,
|
||||
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_mul_sparse(DV * M, auxSparse,
|
||||
DV, HPosOnes[i],
|
||||
qBlockWeights[i][N0 - 1], &QPosOnes[i][ M - qBlockWeights[i][N0 - 1]]);
|
||||
PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mod_add_sparse(DV * M, Ln0trSparse,
|
||||
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_add_sparse(DV * M, Ln0trSparse,
|
||||
DV * M, Ln0trSparse,
|
||||
DV * M, auxSparse);
|
||||
}
|
||||
|
||||
PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_transpose_in_place_sparse(DV * M, Ln0trSparse);
|
||||
PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mod_mul_dense_to_sparse(privateSyndrome, syndrome, Ln0trSparse, DV * M);
|
||||
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_transpose_in_place_sparse(DV * M, Ln0trSparse);
|
||||
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_mul_dense_to_sparse(privateSyndrome, syndrome, Ln0trSparse, DV * M);
|
||||
|
||||
/* prepare mockup error vector in case a decoding failure occurs */
|
||||
memset(mockup_error_vector, 0x00, N0 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B);
|
||||
memcpy(mockup_error_vector, syndrome, NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B);
|
||||
PQCLEAN_LEDAKEMLT32_CLEAN_seedexpander(&niederreiter_decrypt_expander,
|
||||
((unsigned char *) mockup_error_vector) + (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B),
|
||||
TRNG_BYTE_LENGTH);
|
||||
PQCLEAN_LEDAKEMLT52_LEAKTIME_seedexpander(&niederreiter_decrypt_expander,
|
||||
((unsigned char *) mockup_error_vector) + (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B),
|
||||
TRNG_BYTE_LENGTH);
|
||||
|
||||
memset(err, 0x00, N0 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B);
|
||||
decryptOk = PQCLEAN_LEDAKEMLT32_CLEAN_bf_decoding(err, (const POSITION_T (*)[DV]) HtrPosOnes,
|
||||
decryptOk = PQCLEAN_LEDAKEMLT52_LEAKTIME_bf_decoding(err, (const POSITION_T (*)[DV]) HtrPosOnes,
|
||||
(const POSITION_T (*)[M]) QtrPosOnes, privateSyndrome, sk->threshold);
|
||||
|
||||
err_weight = 0;
|
||||
for (int i = 0 ; i < N0; i++) {
|
||||
err_weight += PQCLEAN_LEDAKEMLT32_CLEAN_population_count(err + (NUM_DIGITS_GF2X_ELEMENT * i));
|
||||
err_weight += PQCLEAN_LEDAKEMLT52_LEAKTIME_population_count(err + (NUM_DIGITS_GF2X_ELEMENT * i));
|
||||
}
|
||||
decryptOk = decryptOk && (err_weight == NUM_ERRORS_T);
|
||||
|
@ -21,9 +21,9 @@ typedef struct {
|
||||
// with P coefficients.
|
||||
} publicKeyNiederreiter_t;
|
||||
|
||||
void PQCLEAN_LEDAKEMLT32_CLEAN_niederreiter_keygen(publicKeyNiederreiter_t *pk, privateKeyNiederreiter_t *sk, AES_XOF_struct *keys_expander);
|
||||
void PQCLEAN_LEDAKEMLT32_CLEAN_niederreiter_encrypt(DIGIT syndrome[], const publicKeyNiederreiter_t *pk, const DIGIT *err);
|
||||
int PQCLEAN_LEDAKEMLT32_CLEAN_niederreiter_decrypt(DIGIT *err, const privateKeyNiederreiter_t *sk, const DIGIT *syndrome);
|
||||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_niederreiter_keygen(publicKeyNiederreiter_t *pk, privateKeyNiederreiter_t *sk, AES_XOF_struct *keys_expander);
|
||||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_niederreiter_encrypt(DIGIT syndrome[], const publicKeyNiederreiter_t *pk, const DIGIT *err);
|
||||
int PQCLEAN_LEDAKEMLT52_LEAKTIME_niederreiter_decrypt(DIGIT *err, const privateKeyNiederreiter_t *sk, const DIGIT *syndrome);
|
||||
|
||||
|
||||
#endif
|
@ -37,7 +37,7 @@ static void seedexpander_init(AES_XOF_struct *ctx,
|
||||
memset(ctx->buffer, 0x00, 16);
|
||||
}
|
||||
|
||||
void PQCLEAN_LEDAKEMLT52_CLEAN_seedexpander_from_trng(AES_XOF_struct *ctx,
|
||||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_seedexpander_from_trng(AES_XOF_struct *ctx,
|
||||
const unsigned char *trng_entropy
|
||||
/* TRNG_BYTE_LENGTH wide buffer */) {
|
||||
|
||||
@ -61,7 +61,7 @@ void PQCLEAN_LEDAKEMLT52_CLEAN_seedexpander_from_trng(AES_XOF_struct *ctx,
|
||||
x - returns the XOF data
|
||||
xlen - number of bytes to return
|
||||
*/
|
||||
int PQCLEAN_LEDAKEMLT52_CLEAN_seedexpander(AES_XOF_struct *ctx, unsigned char *x, size_t xlen) {
|
||||
int PQCLEAN_LEDAKEMLT52_LEAKTIME_seedexpander(AES_XOF_struct *ctx, unsigned char *x, size_t xlen) {
|
||||
size_t offset;
|
||||
aes256ctx ctx256;
|
||||
|
@ -18,7 +18,7 @@ typedef struct {
|
||||
unsigned char ctr[16];
|
||||
} AES_XOF_struct;
|
||||
|
||||
int PQCLEAN_LEDAKEMLT32_CLEAN_seedexpander(AES_XOF_struct *ctx, unsigned char *x, size_t xlen);
|
||||
void PQCLEAN_LEDAKEMLT32_CLEAN_seedexpander_from_trng(AES_XOF_struct *ctx, const unsigned char *trng_entropy);
|
||||
int PQCLEAN_LEDAKEMLT52_LEAKTIME_seedexpander(AES_XOF_struct *ctx, unsigned char *x, size_t xlen);
|
||||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_seedexpander_from_trng(AES_XOF_struct *ctx, const unsigned char *trng_entropy);
|
||||
|
||||
#endif
|
Loading…
Reference in New Issue
Block a user