@@ -718,6 +718,49 @@ void sha3_256(uint8_t *output, const uint8_t *input, size_t inlen) { | |||
} | |||
} | |||
void sha3_384_inc_init(sha3_384incctx *state) { | |||
keccak_inc_init(state->ctx); | |||
} | |||
void sha3_384_inc_absorb(sha3_384incctx *state, const uint8_t *input, size_t inlen) { | |||
keccak_inc_absorb(state->ctx, SHA3_384_RATE, input, inlen); | |||
} | |||
void sha3_384_inc_finalize(uint8_t *output, sha3_384incctx *state) { | |||
uint8_t t[SHA3_384_RATE]; | |||
keccak_inc_finalize(state->ctx, SHA3_384_RATE, 0x06); | |||
keccak_squeezeblocks(t, 1, state->ctx, SHA3_384_RATE); | |||
for (size_t i = 0; i < 48; i++) { | |||
output[i] = t[i]; | |||
} | |||
} | |||
/************************************************* | |||
* Name: sha3_384 | |||
* | |||
* Description: SHA3-256 with non-incremental API | |||
* | |||
* Arguments: - uint8_t *output: pointer to output | |||
* - const uint8_t *input: pointer to input | |||
* - size_t inlen: length of input in bytes | |||
**************************************************/ | |||
void sha3_384(uint8_t *output, const uint8_t *input, size_t inlen) { | |||
uint64_t s[25]; | |||
uint8_t t[SHA3_384_RATE]; | |||
/* Absorb input */ | |||
keccak_absorb(s, SHA3_384_RATE, input, inlen, 0x06); | |||
/* Squeeze output */ | |||
keccak_squeezeblocks(t, 1, s, SHA3_384_RATE); | |||
for (size_t i = 0; i < 48; i++) { | |||
output[i] = t[i]; | |||
} | |||
} | |||
void sha3_512_inc_init(sha3_512incctx *state) { | |||
keccak_inc_init(state->ctx); | |||
} | |||
@@ -7,6 +7,7 @@ | |||
#define SHAKE128_RATE 168 | |||
#define SHAKE256_RATE 136 | |||
#define SHA3_256_RATE 136 | |||
#define SHA3_384_RATE 104 | |||
#define SHA3_512_RATE 72 | |||
@@ -35,6 +36,11 @@ typedef struct { | |||
uint64_t ctx[26]; | |||
} sha3_256incctx; | |||
// Context for incremental API | |||
typedef struct { | |||
uint64_t ctx[26]; | |||
} sha3_384incctx; | |||
// Context for incremental API | |||
typedef struct { | |||
uint64_t ctx[26]; | |||
@@ -69,6 +75,12 @@ void sha3_256_inc_finalize(uint8_t *output, sha3_256incctx *state); | |||
void sha3_256(uint8_t *output, const uint8_t *input, size_t inlen); | |||
void sha3_384_inc_init(sha3_384incctx *state); | |||
void sha3_384_inc_absorb(sha3_384incctx *state, const uint8_t *input, size_t inlen); | |||
void sha3_384_inc_finalize(uint8_t *output, sha3_384incctx *state); | |||
void sha3_384(uint8_t *output, const uint8_t *input, size_t inlen); | |||
void sha3_512_inc_init(sha3_512incctx *state); | |||
void sha3_512_inc_absorb(sha3_512incctx *state, const uint8_t *input, size_t inlen); | |||
void sha3_512_inc_finalize(uint8_t *output, sha3_512incctx *state); | |||
@@ -0,0 +1,18 @@ | |||
name: LEDAcryptKEMLT12 | |||
type: kem | |||
claimed-nist-level: 1 | |||
claimed-security: IND-CCA2 | |||
length-public-key: 6520 | |||
length-secret-key: 26 | |||
length-ciphertext: 6520 | |||
length-shared-secret: 32 | |||
nistkat-sha256: c49a3f0ff5f3e7d6b41995649d7003daf7c06d9539fc28cb3b93ed02dcbe09d4 | |||
principal-submitter: Marco Baldi | |||
auxiliary-submitters: | |||
- Alessandro Barenghi | |||
- Franco Chiaraluce | |||
- Gerardo Pelosi | |||
- Paolo Santini | |||
implementations: | |||
- name: leaktime | |||
version: 2.? |
@@ -0,0 +1,32 @@ | |||
#include "H_Q_matrices_generation.h" | |||
#include "gf2x_arith_mod_xPplusOne.h" | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_generateHPosOnes_HtrPosOnes( | |||
POSITION_T HPosOnes[N0][DV], | |||
POSITION_T HtrPosOnes[N0][DV], | |||
AES_XOF_struct *keys_expander) { | |||
for (int i = 0; i < N0; i++) { | |||
/* Generate a random block of Htr */ | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_rand_circulant_sparse_block(&HtrPosOnes[i][0], DV, keys_expander); | |||
} | |||
for (int i = 0; i < N0; i++) { | |||
/* Obtain directly the sparse representation of the block of H */ | |||
for (int k = 0; k < DV; k++) { | |||
HPosOnes[i][k] = (P - HtrPosOnes[i][k]) % P; /* transposes indexes */ | |||
} | |||
} | |||
} | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_generateQsparse( | |||
POSITION_T pos_ones[N0][M], | |||
AES_XOF_struct *keys_expander) { | |||
for (int i = 0; i < N0; i++) { | |||
int placed_ones = 0; | |||
for (int j = 0; j < N0; j++) { | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_rand_circulant_sparse_block(&pos_ones[i][placed_ones], | |||
qBlockWeights[i][j], | |||
keys_expander); | |||
placed_ones += qBlockWeights[i][j]; | |||
} | |||
} | |||
} |
@@ -0,0 +1,11 @@ | |||
#ifndef H_Q_MATRICES_GENERATION_H | |||
#define H_Q_MATRICES_GENERATION_H | |||
#include "gf2x_arith.h" | |||
#include "qc_ldpc_parameters.h" | |||
#include "rng.h" | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_generateHPosOnes_HtrPosOnes(POSITION_T HPosOnes[N0][DV], POSITION_T HtrPosOnes[N0][DV], AES_XOF_struct *niederreiter_keys_expander); | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_generateQsparse(POSITION_T pos_ones[N0][M], AES_XOF_struct *niederreiter_keys_expander); | |||
#endif |
@@ -0,0 +1,31 @@ | |||
/** | |||
* | |||
* LEDAcryptKEM | |||
* | |||
* @version 2.0 (March 2019) | |||
* | |||
* Adapted code from reference ISO-C11 Implementation of the LEDAcrypt KEM-LT cipher. | |||
* | |||
* In alphabetical order: | |||
* | |||
* @author Marco Baldi <m.baldi@univpm.it> | |||
* @author Alessandro Barenghi <alessandro.barenghi@polimi.it> | |||
* @author Franco Chiaraluce <f.chiaraluce@univpm.it> | |||
* @author Gerardo Pelosi <gerardo.pelosi@polimi.it> | |||
* @author Paolo Santini <p.santini@pm.univpm.it> | |||
* | |||
* This code is hereby placed in the public domain. | |||
* | |||
* THIS SOFTWARE IS PROVIDED BY THE AUTHORS ''AS IS'' AND ANY EXPRESS | |||
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED | |||
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |||
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE | |||
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | |||
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | |||
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR | |||
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, | |||
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE | |||
* OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, | |||
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |||
* | |||
**/ |
@@ -0,0 +1,24 @@ | |||
# This Makefile can be used with GNU Make or BSD Make | |||
LIB=libledakemlt12_leaktime.a | |||
HEADERS=api.h bf_decoding.h dfr_test.h gf2x_arith_mod_xPplusOne.h \ | |||
gf2x_arith.h H_Q_matrices_generation.h \ | |||
niederreiter.h qc_ldpc_parameters.h rng.h | |||
OBJECTS=bf_decoding.o dfr_test.o gf2x_arith_mod_xPplusOne.o \ | |||
gf2x_arith.o H_Q_matrices_generation.o kem.o niederreiter.o rng.o | |||
CFLAGS=-O3 -Wall -Werror -Wextra -Wvla -Wpedantic -Wmissing-prototypes -std=c99 \ | |||
-I../../../common $(EXTRAFLAGS) | |||
all: $(LIB) | |||
%.o: %.c $(HEADERS) | |||
$(CC) $(CFLAGS) -c -o $@ $< | |||
$(LIB): $(OBJECTS) | |||
$(AR) -r $@ $(OBJECTS) | |||
clean: | |||
$(RM) $(OBJECTS) | |||
$(RM) $(LIB) |
@@ -0,0 +1,19 @@ | |||
# This Makefile can be used with Microsoft Visual Studio's nmake using the command: | |||
# nmake /f Makefile.Microsoft_nmake | |||
LIBRARY=libledakemlt12_leaktime.lib | |||
OBJECTS=bf_decoding.obj dfr_test.obj gf2x_arith_mod_xPplusOne.obj gf2x_arith.obj H_Q_matrices_generation.obj kem.obj niederreiter.obj rng.obj | |||
CFLAGS=/nologo /I ..\..\..\common /W4 /WX | |||
all: $(LIBRARY) | |||
# Make sure objects are recompiled if headers change. | |||
$(OBJECTS): *.h | |||
$(LIBRARY): $(OBJECTS) | |||
LIB.EXE /NOLOGO /WX /OUT:$@ $** | |||
clean: | |||
-DEL $(OBJECTS) | |||
-DEL $(LIBRARY) |
@@ -0,0 +1,18 @@ | |||
#ifndef PQCLEAN_LEDAKEMLT12_LEAKTIME_API_H | |||
#define PQCLEAN_LEDAKEMLT12_LEAKTIME_API_H | |||
#include <stdint.h> | |||
#define PQCLEAN_LEDAKEMLT12_LEAKTIME_CRYPTO_SECRETKEYBYTES 26 | |||
#define PQCLEAN_LEDAKEMLT12_LEAKTIME_CRYPTO_PUBLICKEYBYTES 6520 | |||
#define PQCLEAN_LEDAKEMLT12_LEAKTIME_CRYPTO_CIPHERTEXTBYTES 6520 | |||
#define PQCLEAN_LEDAKEMLT12_LEAKTIME_CRYPTO_BYTES 32 | |||
#define PQCLEAN_LEDAKEMLT12_LEAKTIME_CRYPTO_ALGNAME "LEDAKEMLT12" | |||
int PQCLEAN_LEDAKEMLT12_LEAKTIME_crypto_kem_keypair(uint8_t *pk, uint8_t *sk); | |||
int PQCLEAN_LEDAKEMLT12_LEAKTIME_crypto_kem_enc(uint8_t *ct, uint8_t *ss, const uint8_t *pk); | |||
int PQCLEAN_LEDAKEMLT12_LEAKTIME_crypto_kem_dec(uint8_t *ss, const uint8_t *ct, const uint8_t *sk); | |||
#endif |
@@ -0,0 +1,76 @@ | |||
#include "bf_decoding.h" | |||
#include "gf2x_arith_mod_xPplusOne.h" | |||
#include <string.h> | |||
int PQCLEAN_LEDAKEMLT12_LEAKTIME_bf_decoding(DIGIT err[], | |||
const POSITION_T HtrPosOnes[N0][DV], | |||
const POSITION_T QtrPosOnes[N0][M], | |||
DIGIT privateSyndrome[], | |||
uint8_t threshold) { | |||
uint8_t unsatParityChecks[N0 * P]; | |||
POSITION_T currQBlkPos[M], currQBitPos[M]; | |||
DIGIT currSyndrome[NUM_DIGITS_GF2X_ELEMENT]; | |||
int check; | |||
int iteration = 0; | |||
unsigned int corrt_syndrome_based; | |||
do { | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_copy(currSyndrome, privateSyndrome); | |||
memset(unsatParityChecks, 0x00, N0 * P * sizeof(uint8_t)); | |||
for (int i = 0; i < N0; i++) { | |||
for (int valueIdx = 0; valueIdx < P; valueIdx++) { | |||
for (int HtrOneIdx = 0; HtrOneIdx < DV; HtrOneIdx++) { | |||
POSITION_T tmp = (HtrPosOnes[i][HtrOneIdx] + valueIdx) >= P ? (HtrPosOnes[i][HtrOneIdx] + valueIdx) - P : (HtrPosOnes[i][HtrOneIdx] + valueIdx); | |||
if (PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_get_coeff(currSyndrome, tmp)) { | |||
unsatParityChecks[i * P + valueIdx]++; | |||
} | |||
} | |||
} | |||
} | |||
/* iteration based threshold determination*/ | |||
corrt_syndrome_based = iteration ? (unsigned int) threshold : B0; | |||
//Computation of correlation with a full Q matrix | |||
for (int i = 0; i < N0; i++) { | |||
for (int j = 0; j < P; j++) { | |||
int currQoneIdx = 0; // position in the column of QtrPosOnes[][...] | |||
int endQblockIdx = 0; | |||
unsigned int correlation = 0; | |||
for (int blockIdx = 0; blockIdx < N0; blockIdx++) { | |||
endQblockIdx += qBlockWeights[blockIdx][i]; | |||
int currblockoffset = blockIdx * P; | |||
for (; currQoneIdx < endQblockIdx; currQoneIdx++) { | |||
POSITION_T tmp = QtrPosOnes[i][currQoneIdx] + j; | |||
tmp = tmp >= P ? tmp - P : tmp; | |||
currQBitPos[currQoneIdx] = tmp; | |||
currQBlkPos[currQoneIdx] = blockIdx; | |||
correlation += unsatParityChecks[tmp + currblockoffset]; | |||
} | |||
} | |||
/* Correlation based flipping */ | |||
if (correlation >= corrt_syndrome_based) { | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_toggle_coeff(err + NUM_DIGITS_GF2X_ELEMENT * i, j); | |||
for (int v = 0; v < M; v++) { | |||
POSITION_T syndromePosToFlip; | |||
for (int HtrOneIdx = 0; HtrOneIdx < DV; HtrOneIdx++) { | |||
syndromePosToFlip = (HtrPosOnes[currQBlkPos[v]][HtrOneIdx] + currQBitPos[v] ); | |||
syndromePosToFlip = syndromePosToFlip >= P ? syndromePosToFlip - P : syndromePosToFlip; | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_toggle_coeff(privateSyndrome, syndromePosToFlip); | |||
} | |||
} // end for v | |||
} // end if | |||
} // end for j | |||
} // end for i | |||
iteration = iteration + 1; | |||
check = 0; | |||
while (check < NUM_DIGITS_GF2X_ELEMENT && privateSyndrome[check++] == 0) {}; | |||
} while (iteration < ITERATIONS_MAX && check < NUM_DIGITS_GF2X_ELEMENT); | |||
return (check == NUM_DIGITS_GF2X_ELEMENT); | |||
} |
@@ -0,0 +1,18 @@ | |||
#ifndef BF_DECODING_H | |||
#define BF_DECODING_H | |||
#include "gf2x_arith.h" | |||
#include "qc_ldpc_parameters.h" | |||
/* Definitions for DFR level 2^-SL with SL=128 */ | |||
#define ITERATIONS_MAX (2) | |||
#define B0 (43) | |||
#define T_BAR (4) | |||
int PQCLEAN_LEDAKEMLT12_LEAKTIME_bf_decoding(DIGIT err[], | |||
const POSITION_T HtrPosOnes[N0][DV], | |||
const POSITION_T QtrPosOnes[N0][M], | |||
DIGIT privateSyndrome[], | |||
uint8_t threshold); // B2 | |||
#endif |
@@ -0,0 +1,112 @@ | |||
#include "bf_decoding.h" | |||
#include "dfr_test.h" | |||
#include "gf2x_arith_mod_xPplusOne.h" | |||
#include "qc_ldpc_parameters.h" | |||
#include <string.h> | |||
/* Tests if the current code attains the desired DFR. If that is the case, | |||
* computes the threshold for the second iteration of the decoder and returns this values | |||
* (max DV * M), on failure it returns 255 >> DV * M */ | |||
uint8_t PQCLEAN_LEDAKEMLT12_LEAKTIME_DFR_test(POSITION_T LSparse[N0][DV * M]) { | |||
POSITION_T LSparse_loc[N0][DV * M]; | |||
POSITION_T rotated_column[DV * M]; | |||
/* Gamma matrix: an N0 x N0 block circulant matrix with block size p | |||
* gamma[a][b][c] stores the intersection of the first column of the a-th | |||
* block of L with the c-th column of the b-th block of L. | |||
* Gamma computation can be accelerated employing symmetry and QC properties */ | |||
unsigned int gamma[N0][N0][P] = {{{0}}}; | |||
unsigned int gammaHist[N0][DV * M + 1] = {{0}}; | |||
unsigned int maxMut[N0], maxMutMinusOne[N0]; | |||
unsigned int firstidx, secondidx, intersectionval; | |||
unsigned int allBlockMaxSumst, allBlockMaxSumstMinusOne; | |||
unsigned int toAdd, histIdx; | |||
/*transpose blocks of L, we need its columns */ | |||
for (int i = 0; i < N0; i++) { | |||
for (int j = 0; j < DV * M; j++) { | |||
if (LSparse[i][j] != 0) { | |||
LSparse_loc[i][j] = (P - LSparse[i][j]); | |||
} | |||
} | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_quicksort_sparse(LSparse_loc[i]); | |||
} | |||
for (int i = 0; i < N0; i++ ) { | |||
for (int j = 0; j < N0; j++ ) { | |||
for (int k = 0; k < P; k++) { | |||
/* compute the rotated sparse column needed */ | |||
for (int idxToRotate = 0; idxToRotate < (DV * M); idxToRotate++) { | |||
rotated_column[idxToRotate] = (LSparse_loc[j][idxToRotate] + k) % P; | |||
} | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_quicksort_sparse(rotated_column); | |||
/* compute the intersection amount */ | |||
firstidx = 0, secondidx = 0; | |||
intersectionval = 0; | |||
while ( (firstidx < DV * M) && (secondidx < DV * M) ) { | |||
if ( LSparse_loc[i][firstidx] == rotated_column[secondidx] ) { | |||
intersectionval++; | |||
firstidx++; | |||
secondidx++; | |||
} else if ( LSparse_loc[i][firstidx] > rotated_column[secondidx] ) { | |||
secondidx++; | |||
} else { /*if ( LSparse_loc[i][firstidx] < rotated_column[secondidx] ) */ | |||
firstidx++; | |||
} | |||
} | |||
gamma[i][j][k] = intersectionval; | |||
} | |||
} | |||
} | |||
for (int i = 0; i < N0; i++ ) { | |||
for (int j = 0; j < N0; j++ ) { | |||
gamma[i][j][0] = 0; | |||
} | |||
} | |||
/* build histogram of values in gamma */ | |||
for (int i = 0; i < N0; i++ ) { | |||
for (int j = 0; j < N0; j++ ) { | |||
for (int k = 0; k < P; k++) { | |||
gammaHist[i][gamma[i][j][k]]++; | |||
} | |||
} | |||
} | |||
for (int gammaBlockRowIdx = 0; gammaBlockRowIdx < N0; gammaBlockRowIdx++) { | |||
toAdd = T_BAR - 1; | |||
maxMutMinusOne[gammaBlockRowIdx] = 0; | |||
histIdx = DV * M; | |||
while ( (histIdx > 0) && (toAdd > 0)) { | |||
if (gammaHist[gammaBlockRowIdx][histIdx] > toAdd ) { | |||
maxMutMinusOne[gammaBlockRowIdx] += histIdx * toAdd; | |||
toAdd = 0; | |||
} else { | |||
maxMutMinusOne[gammaBlockRowIdx] += histIdx * gammaHist[gammaBlockRowIdx][histIdx]; | |||
toAdd -= gammaHist[gammaBlockRowIdx][histIdx]; | |||
histIdx--; | |||
} | |||
} | |||
maxMut[gammaBlockRowIdx] = histIdx + maxMutMinusOne[gammaBlockRowIdx]; | |||
} | |||
/*seek max values across all gamma blocks */ | |||
allBlockMaxSumst = maxMut[0]; | |||
allBlockMaxSumstMinusOne = maxMutMinusOne[0]; | |||
for (int gammaBlockRowIdx = 0; gammaBlockRowIdx < N0 ; gammaBlockRowIdx++) { | |||
allBlockMaxSumst = allBlockMaxSumst < maxMut[gammaBlockRowIdx] ? | |||
maxMut[gammaBlockRowIdx] : | |||
allBlockMaxSumst; | |||
allBlockMaxSumstMinusOne = allBlockMaxSumstMinusOne < maxMutMinusOne[gammaBlockRowIdx] ? | |||
maxMutMinusOne[gammaBlockRowIdx] : | |||
allBlockMaxSumstMinusOne; | |||
} | |||
if (DV * M > (allBlockMaxSumstMinusOne + allBlockMaxSumst)) { | |||
return (uint8_t) allBlockMaxSumst + 1; | |||
} | |||
return DFR_TEST_FAIL; | |||
} |
@@ -0,0 +1,8 @@ | |||
#ifndef DFR_TEST_H | |||
#define DFR_TEST_H | |||
#define DFR_TEST_FAIL (255) | |||
uint8_t PQCLEAN_LEDAKEMLT12_LEAKTIME_DFR_test(POSITION_T LSparse[N0][DV * M]); | |||
#endif |
@@ -0,0 +1,73 @@ | |||
#include "gf2x_arith.h" | |||
#include <string.h> // memset(...) | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_add(DIGIT Res[], const DIGIT A[], const DIGIT B[], int nr) { | |||
for (int i = 0; i < nr; i++) { | |||
Res[i] = A[i] ^ B[i]; | |||
} | |||
} | |||
/* PRE: MAX ALLOWED ROTATION AMOUNT : DIGIT_SIZE_b */ | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_right_bit_shift_n(int length, DIGIT in[], unsigned int amount) { | |||
if ( amount == 0 ) { | |||
return; | |||
} | |||
unsigned int j; | |||
DIGIT mask; | |||
mask = ((DIGIT)0x01 << amount) - 1; | |||
for (j = length - 1; j > 0 ; j--) { | |||
in[j] >>= amount; | |||
in[j] |= (in[j - 1] & mask) << (DIGIT_SIZE_b - amount); | |||
} | |||
in[j] >>= amount; | |||
} | |||
/* PRE: MAX ALLOWED ROTATION AMOUNT : DIGIT_SIZE_b */ | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_left_bit_shift_n(int length, DIGIT in[], unsigned int amount) { | |||
if ( amount == 0 ) { | |||
return; | |||
} | |||
int j; | |||
DIGIT mask; | |||
mask = ~(((DIGIT)0x01 << (DIGIT_SIZE_b - amount)) - 1); | |||
for (j = 0 ; j < length - 1 ; j++) { | |||
in[j] <<= amount; | |||
in[j] |= (in[j + 1] & mask) >> (DIGIT_SIZE_b - amount); | |||
} | |||
in[j] <<= amount; | |||
} | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mul_comb(int nr, DIGIT Res[], | |||
int na, const DIGIT A[], | |||
int nb, const DIGIT B[]) { | |||
int i, j, k; | |||
DIGIT u, h; | |||
memset(Res, 0x00, nr * sizeof(DIGIT)); | |||
for (k = DIGIT_SIZE_b - 1; k > 0; k--) { | |||
for (i = na - 1; i >= 0; i--) { | |||
if ( A[i] & (((DIGIT)0x1) << k) ) { | |||
for (j = nb - 1; j >= 0; j--) { | |||
Res[i + j + 1] ^= B[j]; | |||
} | |||
} | |||
} | |||
u = Res[na + nb - 1]; | |||
Res[na + nb - 1] = u << 0x1; | |||
for (j = 1; j < na + nb; ++j) { | |||
h = u >> (DIGIT_SIZE_b - 1); | |||
u = Res[na + nb - 1 - j]; | |||
Res[na + nb - 1 - j] = h ^ (u << 0x1); | |||
} | |||
} | |||
for (i = na - 1; i >= 0; i--) { | |||
if ( A[i] & ((DIGIT)0x1) ) { | |||
for (j = nb - 1; j >= 0; j--) { | |||
Res[i + j + 1] ^= B[j]; | |||
} | |||
} | |||
} | |||
} |
@@ -0,0 +1,58 @@ | |||
#ifndef GF2X_ARITH_H | |||
#define GF2X_ARITH_H | |||
#include <inttypes.h> | |||
#include <stddef.h> | |||
/* | |||
* Elements of GF(2)[x] are stored in compact dense binary form. | |||
* | |||
* Each bit in a byte is assumed to be the coefficient of a binary | |||
* polynomial f(x), in Big-Endian format (i.e., reading everything from | |||
* left to right, the most significant element is met first): | |||
* | |||
* byte:(0000 0000) == 0x00 ... f(x) == 0 | |||
* byte:(0000 0001) == 0x01 ... f(x) == 1 | |||
* byte:(0000 0010) == 0x02 ... f(x) == x | |||
* byte:(0000 0011) == 0x03 ... f(x) == x+1 | |||
* ... ... ... | |||
* byte:(0000 1111) == 0x0F ... f(x) == x^{3}+x^{2}+x+1 | |||
* ... ... ... | |||
* byte:(1111 1111) == 0xFF ... f(x) == x^{7}+x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+1 | |||
* | |||
* | |||
* A "machine word" (A_i) is considered as a DIGIT. | |||
* Bytes in a DIGIT are assumed in Big-Endian format: | |||
* E.g., if sizeof(DIGIT) == 4: | |||
* A_i: A_{i,3} A_{i,2} A_{i,1} A_{i,0}. | |||
* A_{i,3} denotes the most significant byte, A_{i,0} the least significant one. | |||
* f(x) == x^{31} + ... + x^{24} + | |||
* + x^{23} + ... + x^{16} + | |||
* + x^{15} + ... + x^{8} + | |||
* + x^{7} + ... + x^{0} | |||
* | |||
* | |||
* Multi-precision elements (i.e., with multiple DIGITs) are stored in | |||
* Big-endian format: | |||
* A = A_{n-1} A_{n-2} ... A_1 A_0 | |||
* | |||
* position[A_{n-1}] == 0 | |||
* position[A_{n-2}] == 1 | |||
* ... | |||
* position[A_{1}] == n-2 | |||
* position[A_{0}] == n-1 | |||
*/ | |||
typedef uint64_t DIGIT; | |||
#define DIGIT_SIZE_B (8) | |||
#define DIGIT_SIZE_b (DIGIT_SIZE_B << 3) | |||
#define POSITION_T uint32_t | |||
#define GF2X_MUL PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mul_comb | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_add(DIGIT Res[], const DIGIT A[], const DIGIT B[], int nr); | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_right_bit_shift_n(int length, DIGIT in[], unsigned int amount); | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_left_bit_shift_n(int length, DIGIT in[], unsigned int amount); | |||
void GF2X_MUL(int nr, DIGIT Res[], int na, const DIGIT A[], int nb, const DIGIT B[]); | |||
#endif |
@@ -0,0 +1,583 @@ | |||
#include "gf2x_arith_mod_xPplusOne.h" | |||
#include "rng.h" | |||
#include <string.h> // memcpy(...), memset(...) | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_copy(DIGIT dest[], const DIGIT in[]) { | |||
for (int i = NUM_DIGITS_GF2X_ELEMENT - 1; i >= 0; i--) { | |||
dest[i] = in[i]; | |||
} | |||
} | |||
/* returns the coefficient of the x^exponent term as the LSB of a digit */ | |||
DIGIT PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_get_coeff(const DIGIT poly[], unsigned int exponent) { | |||
unsigned int straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent; | |||
unsigned int digitIdx = straightIdx / DIGIT_SIZE_b; | |||
unsigned int inDigitIdx = straightIdx % DIGIT_SIZE_b; | |||
return (poly[digitIdx] >> (DIGIT_SIZE_b - 1 - inDigitIdx)) & ((DIGIT) 1) ; | |||
} | |||
/* sets the coefficient of the x^exponent term as the LSB of a digit */ | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_set_coeff(DIGIT poly[], unsigned int exponent, DIGIT value) { | |||
unsigned int straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent; | |||
unsigned int digitIdx = straightIdx / DIGIT_SIZE_b; | |||
unsigned int inDigitIdx = straightIdx % DIGIT_SIZE_b; | |||
/* clear given coefficient */ | |||
DIGIT mask = ~( ((DIGIT) 1) << (DIGIT_SIZE_b - 1 - inDigitIdx)); | |||
poly[digitIdx] = poly[digitIdx] & mask; | |||
poly[digitIdx] = poly[digitIdx] | (( value & ((DIGIT) 1)) << (DIGIT_SIZE_b - 1 - inDigitIdx)); | |||
} | |||
/* toggles (flips) the coefficient of the x^exponent term as the LSB of a digit */ | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_toggle_coeff(DIGIT poly[], unsigned int exponent) { | |||
unsigned int straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent; | |||
unsigned int digitIdx = straightIdx / DIGIT_SIZE_b; | |||
unsigned int inDigitIdx = straightIdx % DIGIT_SIZE_b; | |||
/* clear given coefficient */ | |||
DIGIT mask = ( ((DIGIT) 1) << (DIGIT_SIZE_b - 1 - inDigitIdx)); | |||
poly[digitIdx] = poly[digitIdx] ^ mask; | |||
} | |||
/* population count for an unsigned 64-bit integer | |||
Source: Hacker's delight, p.66 */ | |||
static int popcount_uint64t(uint64_t x) { | |||
x -= (x >> 1) & 0x5555555555555555; | |||
x = (x & 0x3333333333333333) + ((x >> 2) & 0x3333333333333333); | |||
x = (x + (x >> 4)) & 0x0f0f0f0f0f0f0f0f; | |||
return (int)((x * 0x0101010101010101) >> 56); | |||
} | |||
/* population count for a single polynomial */ | |||
int PQCLEAN_LEDAKEMLT12_LEAKTIME_population_count(DIGIT *poly) { | |||
int ret = 0; | |||
for (int i = NUM_DIGITS_GF2X_ELEMENT - 1; i >= 0; i--) { | |||
ret += popcount_uint64t(poly[i]); | |||
} | |||
return ret; | |||
} | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_add(DIGIT Res[], const DIGIT A[], const DIGIT B[]) { | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_add(Res, A, B, NUM_DIGITS_GF2X_ELEMENT); | |||
} | |||
static int partition(POSITION_T arr[], int lo, int hi) { | |||
POSITION_T x = arr[hi]; | |||
POSITION_T tmp; | |||
int i = (lo - 1); | |||
for (int j = lo; j <= hi - 1; j++) { | |||
if (arr[j] <= x) { | |||
i++; | |||
tmp = arr[i]; | |||
arr[i] = arr[j]; | |||
arr[j] = tmp; | |||
} | |||
} | |||
tmp = arr[i + 1]; | |||
arr[i + 1] = arr[hi]; | |||
arr[hi] = tmp; | |||
return i + 1; | |||
} | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_quicksort_sparse(POSITION_T Res[]) { | |||
int stack[DV * M]; | |||
int hi, lo, pivot, tos = -1; | |||
stack[++tos] = 0; | |||
stack[++tos] = (DV * M) - 1; | |||
while (tos >= 0 ) { | |||
hi = stack[tos--]; | |||
lo = stack[tos--]; | |||
pivot = partition(Res, lo, hi); | |||
if ( (pivot - 1) > lo) { | |||
stack[++tos] = lo; | |||
stack[++tos] = pivot - 1; | |||
} | |||
if ( (pivot + 1) < hi) { | |||
stack[++tos] = pivot + 1; | |||
stack[++tos] = hi; | |||
} | |||
} | |||
} | |||
static void gf2x_mod(DIGIT out[], const DIGIT in[]) { | |||
int i, j, posTrailingBit, maskOffset; | |||
DIGIT mask, aux[2 * NUM_DIGITS_GF2X_ELEMENT]; | |||
memcpy(aux, in, 2 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B); | |||
memset(out, 0x00, NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B); | |||
for (i = 0; i < (2 * NUM_DIGITS_GF2X_ELEMENT) - NUM_DIGITS_GF2X_MODULUS; i += 1) { | |||
for (j = DIGIT_SIZE_b - 1; j >= 0; j--) { | |||
mask = ((DIGIT)0x1) << j; | |||
if (aux[i] & mask) { | |||
aux[i] ^= mask; | |||
posTrailingBit = (DIGIT_SIZE_b - 1 - j) + i * DIGIT_SIZE_b + P; | |||
maskOffset = (DIGIT_SIZE_b - 1 - (posTrailingBit % DIGIT_SIZE_b)); | |||
mask = (DIGIT) 0x1 << maskOffset; | |||
aux[posTrailingBit / DIGIT_SIZE_b] ^= mask; | |||
} | |||
} | |||
} | |||
for (j = DIGIT_SIZE_b - 1; j >= MSb_POSITION_IN_MSB_DIGIT_OF_MODULUS; j--) { | |||
mask = ((DIGIT)0x1) << j; | |||
if (aux[i] & mask) { | |||
aux[i] ^= mask; | |||
posTrailingBit = (DIGIT_SIZE_b - 1 - j) + i * DIGIT_SIZE_b + P; | |||
maskOffset = (DIGIT_SIZE_b - 1 - (posTrailingBit % DIGIT_SIZE_b)); | |||
mask = (DIGIT) 0x1 << maskOffset; | |||
aux[posTrailingBit / DIGIT_SIZE_b] ^= mask; | |||
} | |||
} | |||
for (i = 0; i < NUM_DIGITS_GF2X_ELEMENT; i++) { | |||
out[NUM_DIGITS_GF2X_ELEMENT - 1 - i] = aux[2 * NUM_DIGITS_GF2X_ELEMENT - 1 - i]; | |||
} | |||
} | |||
static void left_bit_shift(const int length, DIGIT in[]) { | |||
int j; | |||
for (j = 0; j < length - 1; j++) { | |||
in[j] <<= 1; /* logical shift does not need clearing */ | |||
in[j] |= in[j + 1] >> (DIGIT_SIZE_b - 1); | |||
} | |||
in[j] <<= 1; | |||
} | |||
static void right_bit_shift(unsigned int length, DIGIT in[]) { | |||
unsigned int j; | |||
for (j = length - 1; j > 0 ; j--) { | |||
in[j] >>= 1; | |||
in[j] |= (in[j - 1] & (DIGIT)0x01) << (DIGIT_SIZE_b - 1); | |||
} | |||
in[j] >>= 1; | |||
} | |||
/* shifts by whole digits */ | |||
static void left_DIGIT_shift_n(unsigned int length, DIGIT in[], unsigned int amount) { | |||
unsigned int j; | |||
for (j = 0; (j + amount) < length; j++) { | |||
in[j] = in[j + amount]; | |||
} | |||
for (; j < length; j++) { | |||
in[j] = (DIGIT)0; | |||
} | |||
} | |||
/* may shift by an arbitrary amount*/ | |||
static void left_bit_shift_wide_n(const int length, DIGIT in[], unsigned int amount) { | |||
left_DIGIT_shift_n(length, in, amount / DIGIT_SIZE_b); | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_left_bit_shift_n(length, in, amount % DIGIT_SIZE_b); | |||
} | |||
/* Hackers delight, reverses a uint64_t */ | |||
static DIGIT reverse_digit(DIGIT x) { | |||
uint64_t t; | |||
x = (x << 31) | (x >> 33); | |||
t = (x ^ (x >> 20)) & 0x00000FFF800007FFLL; | |||
x = (t | (t << 20)) ^ x; | |||
t = (x ^ (x >> 8)) & 0x00F8000F80700807LL; | |||
x = (t | (t << 8)) ^ x; | |||
t = (x ^ (x >> 4)) & 0x0808708080807008LL; | |||
x = (t | (t << 4)) ^ x; | |||
t = (x ^ (x >> 2)) & 0x1111111111111111LL; | |||
x = (t | (t << 2)) ^ x; | |||
return x; | |||
} | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_transpose_in_place(DIGIT A[]) { | |||
/* it keeps the lsb in the same position and | |||
* inverts the sequence of the remaining bits */ | |||
DIGIT mask = (DIGIT)0x1; | |||
DIGIT rev1, rev2, a00; | |||
int i, slack_bits_amount = NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - P; | |||
a00 = A[NUM_DIGITS_GF2X_ELEMENT - 1] & mask; | |||
right_bit_shift(NUM_DIGITS_GF2X_ELEMENT, A); | |||
for (i = NUM_DIGITS_GF2X_ELEMENT - 1; i >= (NUM_DIGITS_GF2X_ELEMENT + 1) / 2; i--) { | |||
rev1 = reverse_digit(A[i]); | |||
rev2 = reverse_digit(A[NUM_DIGITS_GF2X_ELEMENT - 1 - i]); | |||
A[i] = rev2; | |||
A[NUM_DIGITS_GF2X_ELEMENT - 1 - i] = rev1; | |||
} | |||
A[NUM_DIGITS_GF2X_ELEMENT / 2] = reverse_digit(A[NUM_DIGITS_GF2X_ELEMENT / 2]); | |||
if (slack_bits_amount) { | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_right_bit_shift_n(NUM_DIGITS_GF2X_ELEMENT, A, slack_bits_amount); | |||
} | |||
A[NUM_DIGITS_GF2X_ELEMENT - 1] = (A[NUM_DIGITS_GF2X_ELEMENT - 1] & (~mask)) | a00; | |||
} | |||
static void rotate_bit_left(DIGIT in[]) { /* equivalent to x * in(x) mod x^P+1 */ | |||
DIGIT mask, rotated_bit; | |||
int msb_offset_in_digit = MSb_POSITION_IN_MSB_DIGIT_OF_MODULUS - 1; | |||
mask = ((DIGIT)0x1) << msb_offset_in_digit; | |||
rotated_bit = !!(in[0] & mask); | |||
in[0] &= ~mask; | |||
left_bit_shift(NUM_DIGITS_GF2X_ELEMENT, in); | |||
in[NUM_DIGITS_GF2X_ELEMENT - 1] |= rotated_bit; | |||
} | |||
static void rotate_bit_right(DIGIT in[]) { /* x^{-1} * in(x) mod x^P+1 */ | |||
DIGIT rotated_bit = in[NUM_DIGITS_GF2X_ELEMENT - 1] & ((DIGIT)0x1); | |||
right_bit_shift(NUM_DIGITS_GF2X_ELEMENT, in); | |||
int msb_offset_in_digit = MSb_POSITION_IN_MSB_DIGIT_OF_MODULUS - 1; | |||
rotated_bit = rotated_bit << msb_offset_in_digit; | |||
in[0] |= rotated_bit; | |||
} | |||
static void gf2x_swap(const int length, DIGIT f[], DIGIT s[]) { | |||
DIGIT t; | |||
for (int i = length - 1; i >= 0; i--) { | |||
t = f[i]; | |||
f[i] = s[i]; | |||
s[i] = t; | |||
} | |||
} | |||
/* | |||
* Optimized extended GCD algorithm to compute the multiplicative inverse of | |||
* a non-zero element in GF(2)[x] mod x^P+1, in polyn. representation. | |||
* | |||
* H. Brunner, A. Curiger, and M. Hofstetter. 1993. | |||
* On Computing Multiplicative Inverses in GF(2^m). | |||
* IEEE Trans. Comput. 42, 8 (August 1993), 1010-1015. | |||
* DOI=http://dx.doi.org/10.1109/12.238496 | |||
* | |||
* | |||
* Henri Cohen, Gerhard Frey, Roberto Avanzi, Christophe Doche, Tanja Lange, | |||
* Kim Nguyen, and Frederik Vercauteren. 2012. | |||
* Handbook of Elliptic and Hyperelliptic Curve Cryptography, | |||
* Second Edition (2nd ed.). Chapman & Hall/CRC. | |||
* (Chapter 11 -- Algorithm 11.44 -- pag 223) | |||
* | |||
*/ | |||
int PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_inverse(DIGIT out[], const DIGIT in[]) { /* in^{-1} mod x^P-1 */ | |||
int i; | |||
int delta = 0; | |||
DIGIT u[NUM_DIGITS_GF2X_ELEMENT] = {0}; | |||
DIGIT v[NUM_DIGITS_GF2X_ELEMENT] = {0}; | |||
DIGIT s[NUM_DIGITS_GF2X_MODULUS] = {0}; | |||
DIGIT f[NUM_DIGITS_GF2X_MODULUS] = {0}; // alignas(32)? | |||
DIGIT mask; | |||
u[NUM_DIGITS_GF2X_ELEMENT - 1] = 0x1; | |||
v[NUM_DIGITS_GF2X_ELEMENT - 1] = 0x0; | |||
s[NUM_DIGITS_GF2X_MODULUS - 1] = 0x1; | |||
mask = (((DIGIT)0x1) << MSb_POSITION_IN_MSB_DIGIT_OF_MODULUS); | |||
s[0] |= mask; | |||
for (i = NUM_DIGITS_GF2X_ELEMENT - 1; i >= 0 && in[i] == 0; i--) { }; | |||
if (i < 0) { | |||
return 0; | |||
} | |||
for (i = NUM_DIGITS_GF2X_MODULUS - 1; i >= 0 ; i--) { | |||
f[i] = in[i]; | |||
} | |||
for (i = 1; i <= 2 * P; i++) { | |||
if ( (f[0] & mask) == 0 ) { | |||
left_bit_shift(NUM_DIGITS_GF2X_MODULUS, f); | |||
rotate_bit_left(u); | |||
delta += 1; | |||
} else { | |||
if ( (s[0] & mask) != 0) { | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_add(s, s, f, NUM_DIGITS_GF2X_MODULUS); | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_add(v, v, u); | |||
} | |||
left_bit_shift(NUM_DIGITS_GF2X_MODULUS, s); | |||
if ( delta == 0 ) { | |||
gf2x_swap(NUM_DIGITS_GF2X_MODULUS, f, s); | |||
gf2x_swap(NUM_DIGITS_GF2X_ELEMENT, u, v); | |||
rotate_bit_left(u); | |||
delta = 1; | |||
} else { | |||
rotate_bit_right(u); | |||
delta = delta - 1; | |||
} | |||
} | |||
} | |||
for (i = NUM_DIGITS_GF2X_ELEMENT - 1; i >= 0 ; i--) { | |||
out[i] = u[i]; | |||
} | |||
return (delta == 0); | |||
} | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_mul(DIGIT Res[], const DIGIT A[], const DIGIT B[]) { | |||
DIGIT aux[2 * NUM_DIGITS_GF2X_ELEMENT]; | |||
GF2X_MUL(2 * NUM_DIGITS_GF2X_ELEMENT, aux, | |||
NUM_DIGITS_GF2X_ELEMENT, A, | |||
NUM_DIGITS_GF2X_ELEMENT, B); | |||
gf2x_mod(Res, aux); | |||
} | |||
/*PRE: the representation of the sparse coefficients is sorted in increasing | |||
order of the coefficients themselves */ | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_mul_dense_to_sparse( | |||
DIGIT Res[], | |||
const DIGIT dense[], | |||
POSITION_T sparse[], unsigned int nPos) { | |||
DIGIT aux[2 * NUM_DIGITS_GF2X_ELEMENT] = {0x00}; | |||
DIGIT resDouble[2 * NUM_DIGITS_GF2X_ELEMENT] = {0x00}; | |||
memcpy(aux + NUM_DIGITS_GF2X_ELEMENT, dense, NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B); | |||
memcpy(resDouble + NUM_DIGITS_GF2X_ELEMENT, dense, | |||
NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B); | |||
if (sparse[0] != INVALID_POS_VALUE) { | |||
left_bit_shift_wide_n(2 * NUM_DIGITS_GF2X_ELEMENT, resDouble, sparse[0]); | |||
left_bit_shift_wide_n(2 * NUM_DIGITS_GF2X_ELEMENT, aux, sparse[0]); | |||
for (unsigned int i = 1; i < nPos; i++) { | |||
if (sparse[i] != INVALID_POS_VALUE) { | |||
left_bit_shift_wide_n(2 * NUM_DIGITS_GF2X_ELEMENT, aux, (sparse[i] - sparse[i - 1]) ); | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_add(resDouble, aux, resDouble, 2 * NUM_DIGITS_GF2X_ELEMENT); | |||
} | |||
} | |||
} | |||
gf2x_mod(Res, resDouble); | |||
} | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_transpose_in_place_sparse(int sizeA, POSITION_T A[]) { | |||
POSITION_T t; | |||
int i = 0, j; | |||
if (A[i] == 0) { | |||
i = 1; | |||
} | |||
j = i; | |||
for (; i < sizeA && A[i] != INVALID_POS_VALUE; i++) { | |||
A[i] = P - A[i]; | |||
} | |||
for (i -= 1; j < i; j++, i--) { | |||
t = A[j]; | |||
A[j] = A[i]; | |||
A[i] = t; | |||
} | |||
} | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_mul_sparse(size_t sizeR, POSITION_T Res[], | |||
size_t sizeA, const POSITION_T A[], | |||
size_t sizeB, const POSITION_T B[]) { | |||
/* compute all the coefficients, filling invalid positions with P*/ | |||
size_t lastFilledPos = 0; | |||
for (size_t i = 0 ; i < sizeA ; i++) { | |||
for (size_t j = 0 ; j < sizeB ; j++) { | |||
uint32_t prod = A[i] + B[j]; | |||
prod = ( (prod >= P) ? prod - P : prod); | |||
if ((A[i] != INVALID_POS_VALUE) && | |||
(B[j] != INVALID_POS_VALUE)) { | |||
Res[lastFilledPos] = prod; | |||
} else { | |||
Res[lastFilledPos] = INVALID_POS_VALUE; | |||
} | |||
lastFilledPos++; | |||
} | |||
} | |||
while (lastFilledPos < sizeR) { | |||
Res[lastFilledPos] = INVALID_POS_VALUE; | |||
lastFilledPos++; | |||
} | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_quicksort_sparse(Res); | |||
/* eliminate duplicates */ | |||
POSITION_T lastReadPos = Res[0]; | |||
int duplicateCount; | |||
size_t write_idx = 0; | |||
size_t read_idx = 0; | |||
while (read_idx < sizeR && Res[read_idx] != INVALID_POS_VALUE) { | |||
lastReadPos = Res[read_idx]; | |||
read_idx++; | |||
duplicateCount = 1; | |||
while ( (Res[read_idx] == lastReadPos) && (Res[read_idx] != INVALID_POS_VALUE)) { | |||
read_idx++; | |||
duplicateCount++; | |||
} | |||
if (duplicateCount % 2) { | |||
Res[write_idx] = lastReadPos; | |||
write_idx++; | |||
} | |||
} | |||
/* fill remaining cells with INVALID_POS_VALUE */ | |||
for (; write_idx < sizeR; write_idx++) { | |||
Res[write_idx] = INVALID_POS_VALUE; | |||
} | |||
} | |||
/* the implementation is safe even in case A or B alias with the result | |||
* PRE: A and B should be sorted, disjunct arrays ending with INVALID_POS_VALUE */ | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_add_sparse( | |||
int sizeR, POSITION_T Res[], | |||
int sizeA, const POSITION_T A[], | |||
int sizeB, const POSITION_T B[]) { | |||
POSITION_T tmpRes[DV * M]; | |||
int idxA = 0, idxB = 0, idxR = 0; | |||
while ( idxA < sizeA && | |||
idxB < sizeB && | |||
A[idxA] != INVALID_POS_VALUE && | |||
B[idxB] != INVALID_POS_VALUE ) { | |||
if (A[idxA] == B[idxB]) { | |||
idxA++; | |||
idxB++; | |||
} else { | |||
if (A[idxA] < B[idxB]) { | |||
tmpRes[idxR] = A[idxA]; | |||
idxA++; | |||
} else { | |||
tmpRes[idxR] = B[idxB]; | |||
idxB++; | |||
} | |||
idxR++; | |||
} | |||
} | |||
while (idxA < sizeA && A[idxA] != INVALID_POS_VALUE) { | |||
tmpRes[idxR] = A[idxA]; | |||
idxA++; | |||
idxR++; | |||
} | |||
while (idxB < sizeB && B[idxB] != INVALID_POS_VALUE) { | |||
tmpRes[idxR] = B[idxB]; | |||
idxB++; | |||
idxR++; | |||
} | |||
while (idxR < sizeR) { | |||
tmpRes[idxR] = INVALID_POS_VALUE; | |||
idxR++; | |||
} | |||
memcpy(Res, tmpRes, sizeof(POSITION_T)*sizeR); | |||
} | |||
/* Return a uniform random value in the range 0..n-1 inclusive, | |||
* applying a rejection sampling strategy and exploiting as a random source | |||
* the NIST seedexpander seeded with the proper key. | |||
* Assumes that the maximum value for the range n is 2^32-1 | |||
*/ | |||
static uint32_t rand_range(const unsigned int n, const int logn, AES_XOF_struct *seed_expander_ctx) { | |||
unsigned long required_rnd_bytes = (logn + 7) / 8; | |||
unsigned char rnd_char_buffer[4]; | |||
uint32_t rnd_value; | |||
uint32_t mask = ( (uint32_t)1 << logn) - 1; | |||
do { | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_seedexpander(seed_expander_ctx, rnd_char_buffer, required_rnd_bytes); | |||
/* obtain an endianness independent representation of the generated random | |||
bytes into an unsigned integer */ | |||
rnd_value = ((uint32_t)rnd_char_buffer[3] << 24) + | |||
((uint32_t)rnd_char_buffer[2] << 16) + | |||
((uint32_t)rnd_char_buffer[1] << 8) + | |||
((uint32_t)rnd_char_buffer[0] << 0) ; | |||
rnd_value = mask & rnd_value; | |||
} while (rnd_value >= n); | |||
return rnd_value; | |||
} | |||
/* Obtains fresh randomness and seed-expands it until all the required positions | |||
* for the '1's in the circulant block are obtained */ | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_rand_circulant_sparse_block(POSITION_T *pos_ones, | |||
int countOnes, | |||
AES_XOF_struct *seed_expander_ctx) { | |||
int duplicated, placedOnes = 0; | |||
uint32_t p; | |||
while (placedOnes < countOnes) { | |||
p = rand_range(NUM_BITS_GF2X_ELEMENT, | |||
P_BITS, | |||
seed_expander_ctx); | |||
duplicated = 0; | |||
for (int j = 0; j < placedOnes; j++) { | |||
if (pos_ones[j] == p) { | |||
duplicated = 1; | |||
} | |||
} | |||
if (duplicated == 0) { | |||
pos_ones[placedOnes] = p; | |||
placedOnes++; | |||
} | |||
} | |||
} | |||
/* Returns random weight-t circulant block */ | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_rand_circulant_blocks_sequence( | |||
DIGIT sequence[N0 * NUM_DIGITS_GF2X_ELEMENT], | |||
AES_XOF_struct *seed_expander_ctx) { | |||
int rndPos[NUM_ERRORS_T], duplicated, counter = 0; | |||
int p, polyIndex, exponent; | |||
memset(sequence, 0x00, N0 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B); | |||
while (counter < NUM_ERRORS_T) { | |||
p = rand_range(N0 * NUM_BITS_GF2X_ELEMENT, P_BITS, | |||
seed_expander_ctx); | |||
duplicated = 0; | |||
for (int j = 0; j < counter; j++) { | |||
if (rndPos[j] == p) { | |||
duplicated = 1; | |||
} | |||
} | |||
if (duplicated == 0) { | |||
rndPos[counter] = p; | |||
counter++; | |||
} | |||
} | |||
for (int j = 0; j < counter; j++) { | |||
polyIndex = rndPos[j] / P; | |||
exponent = rndPos[j] % P; | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_set_coeff( sequence + NUM_DIGITS_GF2X_ELEMENT * polyIndex, exponent, | |||
( (DIGIT) 1)); | |||
} | |||
} | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_tobytes(uint8_t *bytes, const DIGIT *poly) { | |||
size_t i, j; | |||
for (i = 0; i < NUM_DIGITS_GF2X_ELEMENT; i++) { | |||
for (j = 0; j < DIGIT_SIZE_B; j++) { | |||
bytes[i * DIGIT_SIZE_B + j] = (uint8_t) (poly[i] >> 8 * j); | |||
} | |||
} | |||
} | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_frombytes(DIGIT *poly, const uint8_t *poly_bytes) { | |||
size_t i, j; | |||
for (i = 0; i < NUM_DIGITS_GF2X_ELEMENT; i++) { | |||
poly[i] = (DIGIT) 0; | |||
for (j = 0; j < DIGIT_SIZE_B; j++) { | |||
poly[i] |= (DIGIT) poly_bytes[i * DIGIT_SIZE_B + j] << 8 * j; | |||
} | |||
} | |||
} |
@@ -0,0 +1,38 @@ | |||
#ifndef GF2X_ARITH_MOD_XPLUSONE_H | |||
#define GF2X_ARITH_MOD_XPLUSONE_H | |||
#include "qc_ldpc_parameters.h" | |||
#include "gf2x_arith.h" | |||
#include "rng.h" | |||
#define NUM_BITS_GF2X_ELEMENT (P) // 52147 | |||
#define NUM_DIGITS_GF2X_ELEMENT ((P+DIGIT_SIZE_b-1)/DIGIT_SIZE_b) | |||
#define MSb_POSITION_IN_MSB_DIGIT_OF_ELEMENT ((P % DIGIT_SIZE_b) ? (P % DIGIT_SIZE_b)-1 : DIGIT_SIZE_b-1) | |||
#define NUM_BITS_GF2X_MODULUS (P+1) | |||
#define NUM_DIGITS_GF2X_MODULUS ((P+1+DIGIT_SIZE_b-1)/DIGIT_SIZE_b) | |||
#define MSb_POSITION_IN_MSB_DIGIT_OF_MODULUS (P-DIGIT_SIZE_b*(NUM_DIGITS_GF2X_MODULUS-1)) | |||
#define INVALID_POS_VALUE (P) | |||
#define P_BITS (16) // log_2(p) = 15.6703 | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_copy(DIGIT dest[], const DIGIT in[]); | |||
DIGIT PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_get_coeff(const DIGIT poly[], unsigned int exponent); | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_set_coeff(DIGIT poly[], unsigned int exponent, DIGIT value); | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_toggle_coeff(DIGIT poly[], unsigned int exponent); | |||
int PQCLEAN_LEDAKEMLT12_LEAKTIME_population_count(DIGIT *poly); | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_add(DIGIT Res[], const DIGIT A[], const DIGIT B[]); | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_quicksort_sparse(POSITION_T Res[]); | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_mul(DIGIT Res[], const DIGIT A[], const DIGIT B[]); | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_transpose_in_place(DIGIT A[]); | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_rand_circulant_sparse_block(POSITION_T *pos_ones, int countOnes, AES_XOF_struct *seed_expander_ctx); | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_rand_circulant_blocks_sequence(DIGIT *sequence, AES_XOF_struct *seed_expander_ctx); | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_add_sparse(int sizeR, POSITION_T Res[], int sizeA, const POSITION_T A[], int sizeB, const POSITION_T B[]); | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_transpose_in_place_sparse(int sizeA, POSITION_T A[]); | |||
int PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_inverse(DIGIT out[], const DIGIT in[]); | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_mul_sparse(size_t sizeR, POSITION_T Res[], size_t sizeA, const POSITION_T A[], size_t sizeB, const POSITION_T B[]); | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_mul_dense_to_sparse(DIGIT Res[], const DIGIT dense[], POSITION_T sparse[], unsigned int nPos); | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_tobytes(uint8_t *bytes, const DIGIT *poly); | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_frombytes(DIGIT *poly, const uint8_t *poly_bytes); | |||
#endif |
@@ -0,0 +1,92 @@ | |||
#include "api.h" | |||
#include "niederreiter.h" | |||
#include "randombytes.h" | |||
#include "rng.h" | |||
#include <string.h> | |||
static void pack_pk(uint8_t *pk_bytes, publicKeyNiederreiter_t *pk) { | |||
size_t i; | |||
for (i = 0; i < N0 - 1; i++) { | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_tobytes(pk_bytes + i * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B, | |||
pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT); | |||
} | |||
} | |||
static void unpack_pk(publicKeyNiederreiter_t *pk, const uint8_t *pk_bytes) { | |||
size_t i; | |||
for (i = 0; i < N0 - 1; i++) { | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_frombytes(pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT, | |||
pk_bytes + i * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B); | |||
} | |||
} | |||
static void pack_ct(uint8_t *sk_bytes, DIGIT *ct) { | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_tobytes(sk_bytes, ct); | |||
} | |||
static void unpack_ct(DIGIT *ct, const uint8_t *ct_bytes) { | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_frombytes(ct, ct_bytes); | |||
} | |||
static void pack_error(uint8_t *error_bytes, DIGIT *error_digits) { | |||
size_t i; | |||
for (i = 0; i < N0; i++) { | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_tobytes(error_bytes + i * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B, | |||
error_digits + i * NUM_DIGITS_GF2X_ELEMENT); | |||
} | |||
} | |||
/* Generates a keypair - pk is the public key and sk is the secret key. */ | |||
int PQCLEAN_LEDAKEMLT12_LEAKTIME_crypto_kem_keypair(unsigned char *pk, unsigned char *sk) { | |||
AES_XOF_struct niederreiter_keys_expander; | |||
publicKeyNiederreiter_t pk_nie; | |||
randombytes(((privateKeyNiederreiter_t *)sk)->prng_seed, TRNG_BYTE_LENGTH); | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_seedexpander_from_trng(&niederreiter_keys_expander, ((privateKeyNiederreiter_t *)sk)->prng_seed); | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_niederreiter_keygen(&pk_nie, (privateKeyNiederreiter_t *) sk, &niederreiter_keys_expander); | |||
pack_pk(pk, &pk_nie); | |||
return 0; | |||
} | |||
/* Encrypt - pk is the public key, ct is a key encapsulation message | |||
(ciphertext), ss is the shared secret.*/ | |||
int PQCLEAN_LEDAKEMLT12_LEAKTIME_crypto_kem_enc(unsigned char *ct, unsigned char *ss, const unsigned char *pk) { | |||
AES_XOF_struct niederreiter_encap_key_expander; | |||
unsigned char encapsulated_key_seed[TRNG_BYTE_LENGTH]; | |||
DIGIT error_vector[N0 * NUM_DIGITS_GF2X_ELEMENT]; | |||
uint8_t error_bytes[N0 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B]; | |||
DIGIT syndrome[NUM_DIGITS_GF2X_ELEMENT]; | |||
publicKeyNiederreiter_t pk_nie; | |||
randombytes(encapsulated_key_seed, TRNG_BYTE_LENGTH); | |||
unpack_pk(&pk_nie, pk); | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_seedexpander_from_trng(&niederreiter_encap_key_expander, encapsulated_key_seed); | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_rand_circulant_blocks_sequence(error_vector, &niederreiter_encap_key_expander); | |||
pack_error(error_bytes, error_vector); | |||
HASH_FUNCTION(ss, error_bytes, (N0 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B)); | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_niederreiter_encrypt(syndrome, &pk_nie, error_vector); | |||
pack_ct(ct, syndrome); | |||
return 0; | |||
} | |||
/* Decrypt - ct is a key encapsulation message (ciphertext), sk is the private | |||
key, ss is the shared secret */ | |||
int PQCLEAN_LEDAKEMLT12_LEAKTIME_crypto_kem_dec(unsigned char *ss, const unsigned char *ct, const unsigned char *sk) { | |||
DIGIT decoded_error_vector[N0 * NUM_DIGITS_GF2X_ELEMENT]; | |||
uint8_t decoded_error_bytes[N0 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B]; | |||
DIGIT syndrome[NUM_DIGITS_GF2X_ELEMENT]; | |||
unpack_ct(syndrome, ct); | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_niederreiter_decrypt(decoded_error_vector, (privateKeyNiederreiter_t *)sk, syndrome); | |||
pack_error(decoded_error_bytes, decoded_error_vector); | |||
HASH_FUNCTION(ss, decoded_error_bytes, (N0 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B)); | |||
return 0; | |||
} |
@@ -0,0 +1,192 @@ | |||
#include "H_Q_matrices_generation.h" | |||
#include "bf_decoding.h" | |||
#include "dfr_test.h" | |||
#include "gf2x_arith_mod_xPplusOne.h" | |||
#include "niederreiter.h" | |||
#include "qc_ldpc_parameters.h" | |||
#include "rng.h" | |||
#include <string.h> | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_niederreiter_keygen(publicKeyNiederreiter_t *pk, privateKeyNiederreiter_t *sk, AES_XOF_struct *keys_expander) { | |||
POSITION_T HPosOnes[N0][DV]; // sequence of N0 circ block matrices (p x p): Hi | |||
POSITION_T HtrPosOnes[N0][DV]; // Sparse tranposed circulant H | |||
POSITION_T QPosOnes[N0][M]; // Sparse Q, Each row contains the position of the ones of all the blocks of a row of Q as exponent+P*block_position | |||
POSITION_T LPosOnes[N0][DV * M]; | |||
POSITION_T auxPosOnes[DV * M]; | |||
unsigned char processedQOnes[N0]; | |||
DIGIT Ln0dense[NUM_DIGITS_GF2X_ELEMENT]; | |||
DIGIT Ln0Inv[NUM_DIGITS_GF2X_ELEMENT]; | |||
int is_L_full = 0; | |||
uint8_t threshold = (DV * M) / 2 + 1; // threshold for round 2 | |||
sk->rejections = (int8_t) 0; | |||
do { | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_generateHPosOnes_HtrPosOnes(HPosOnes, HtrPosOnes, keys_expander); | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_generateQsparse(QPosOnes, keys_expander); | |||
for (int i = 0; i < N0; i++) { | |||
for (int j = 0; j < DV * M; j++) { | |||
LPosOnes[i][j] = INVALID_POS_VALUE; | |||
} | |||
} | |||
memset(processedQOnes, 0x00, sizeof(processedQOnes)); | |||
for (int colQ = 0; colQ < N0; colQ++) { | |||
for (int i = 0; i < N0; i++) { | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_mul_sparse(DV * M, auxPosOnes, | |||
DV, HPosOnes[i], | |||
qBlockWeights[i][colQ], QPosOnes[i] + processedQOnes[i]); | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_add_sparse(DV * M, LPosOnes[colQ], | |||
DV * M, LPosOnes[colQ], | |||
DV * M, auxPosOnes); | |||
processedQOnes[i] += qBlockWeights[i][colQ]; | |||
} | |||
} | |||
is_L_full = 1; | |||
for (int i = 0; i < N0; i++) { | |||
is_L_full = is_L_full && (LPosOnes[i][DV * M - 1] != INVALID_POS_VALUE); | |||
} | |||
sk->rejections = sk->rejections + 1; | |||
if (is_L_full) { | |||
threshold = PQCLEAN_LEDAKEMLT12_LEAKTIME_DFR_test(LPosOnes); | |||
} | |||
} while (!is_L_full || threshold == DFR_TEST_FAIL); | |||
sk->rejections = sk->rejections - 1; | |||
sk->threshold = threshold; | |||
memset(Ln0dense, 0x00, sizeof(Ln0dense)); | |||
for (int j = 0; j < DV * M; j++) { | |||
if (LPosOnes[N0 - 1][j] != INVALID_POS_VALUE) { | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_set_coeff(Ln0dense, LPosOnes[N0 - 1][j], 1); | |||
} | |||
} | |||
memset(Ln0Inv, 0x00, sizeof(Ln0Inv)); | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_inverse(Ln0Inv, Ln0dense); | |||
for (int i = 0; i < N0 - 1; i++) { | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_mul_dense_to_sparse(pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT, | |||
Ln0Inv, | |||
LPosOnes[i], | |||
DV * M); | |||
} | |||
for (int i = 0; i < N0 - 1; i++) { | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_transpose_in_place(pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT); | |||
} | |||
} | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_niederreiter_encrypt(DIGIT *syndrome, const publicKeyNiederreiter_t *pk, const DIGIT *err) { | |||
int i; | |||
DIGIT saux[NUM_DIGITS_GF2X_ELEMENT]; | |||
memset(syndrome, 0x00, NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B); | |||
for (i = 0; i < N0 - 1; i++) { | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_mul(saux, | |||
pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT, | |||
err + i * NUM_DIGITS_GF2X_ELEMENT); | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_add(syndrome, syndrome, saux); | |||
} | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_add(syndrome, syndrome, err + (N0 - 1)*NUM_DIGITS_GF2X_ELEMENT); | |||
} | |||
int PQCLEAN_LEDAKEMLT12_LEAKTIME_niederreiter_decrypt(DIGIT *err, const privateKeyNiederreiter_t *sk, const DIGIT *syndrome) { | |||
AES_XOF_struct niederreiter_decrypt_expander; | |||
POSITION_T HPosOnes[N0][DV]; | |||
POSITION_T HtrPosOnes[N0][DV]; | |||
POSITION_T QPosOnes[N0][M]; | |||
POSITION_T QtrPosOnes[N0][M]; | |||
POSITION_T auxPosOnes[DV * M]; | |||
POSITION_T LPosOnes[N0][DV * M]; | |||
POSITION_T auxSparse[DV * M]; | |||
POSITION_T Ln0trSparse[DV * M]; | |||
unsigned char processedQOnes[N0]; | |||
unsigned transposed_ones_idx[N0]; | |||
DIGIT privateSyndrome[NUM_DIGITS_GF2X_ELEMENT]; | |||
DIGIT mockup_error_vector[N0 * NUM_DIGITS_GF2X_ELEMENT]; | |||
int rejections = sk->rejections; | |||
int currQoneIdx, endQblockIdx; | |||
int decryptOk, err_weight; | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_seedexpander_from_trng(&niederreiter_decrypt_expander, sk->prng_seed); | |||
do { | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_generateHPosOnes_HtrPosOnes(HPosOnes, HtrPosOnes, &niederreiter_decrypt_expander); | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_generateQsparse(QPosOnes, &niederreiter_decrypt_expander); | |||
for (int i = 0; i < N0; i++) { | |||
for (int j = 0; j < DV * M; j++) { | |||
LPosOnes[i][j] = INVALID_POS_VALUE; | |||
} | |||
} | |||
memset(processedQOnes, 0x00, sizeof(processedQOnes)); | |||
for (int colQ = 0; colQ < N0; colQ++) { | |||
for (int i = 0; i < N0; i++) { | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_mul_sparse(DV * M, auxPosOnes, | |||
DV, HPosOnes[i], | |||
qBlockWeights[i][colQ], QPosOnes[i] + processedQOnes[i]); | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_add_sparse(DV * M, LPosOnes[colQ], | |||
DV * M, LPosOnes[colQ], | |||
DV * M, auxPosOnes); | |||
processedQOnes[i] += qBlockWeights[i][colQ]; | |||
} | |||
} | |||
rejections--; | |||
} while (rejections >= 0); | |||
memset(transposed_ones_idx, 0x00, sizeof(transposed_ones_idx)); | |||
for (unsigned source_row_idx = 0; source_row_idx < N0 ; source_row_idx++) { | |||
currQoneIdx = 0; // position in the column of QtrPosOnes[][...] | |||
endQblockIdx = 0; | |||
for (int blockIdx = 0; blockIdx < N0; blockIdx++) { | |||
endQblockIdx += qBlockWeights[source_row_idx][blockIdx]; | |||
for (; currQoneIdx < endQblockIdx; currQoneIdx++) { | |||
QtrPosOnes[blockIdx][transposed_ones_idx[blockIdx]] = (P - | |||
QPosOnes[source_row_idx][currQoneIdx]) % P; | |||
transposed_ones_idx[blockIdx]++; | |||
} | |||
} | |||
} | |||
for (int i = 0; i < DV * M; i++) { | |||
Ln0trSparse[i] = INVALID_POS_VALUE; | |||
auxSparse[i] = INVALID_POS_VALUE; | |||
} | |||
for (int i = 0; i < N0; i++) { | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_mul_sparse(DV * M, auxSparse, | |||
DV, HPosOnes[i], | |||
qBlockWeights[i][N0 - 1], &QPosOnes[i][ M - qBlockWeights[i][N0 - 1]]); | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_add_sparse(DV * M, Ln0trSparse, | |||
DV * M, Ln0trSparse, | |||
DV * M, auxSparse); | |||
} | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_transpose_in_place_sparse(DV * M, Ln0trSparse); | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_mul_dense_to_sparse(privateSyndrome, syndrome, Ln0trSparse, DV * M); | |||
/* prepare mockup error vector in case a decoding failure occurs */ | |||
memset(mockup_error_vector, 0x00, N0 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B); | |||
memcpy(mockup_error_vector, syndrome, NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B); | |||
PQCLEAN_LEDAKEMLT12_LEAKTIME_seedexpander(&niederreiter_decrypt_expander, | |||
((unsigned char *) mockup_error_vector) + (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B), | |||
TRNG_BYTE_LENGTH); | |||
memset(err, 0x00, N0 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B); | |||
decryptOk = PQCLEAN_LEDAKEMLT12_LEAKTIME_bf_decoding(err, (const POSITION_T (*)[DV]) HtrPosOnes, | |||
(const POSITION_T (*)[M]) QtrPosOnes, privateSyndrome, sk->threshold); | |||
err_weight = 0; | |||
for (int i = 0 ; i < N0; i++) { | |||
err_weight += PQCLEAN_LEDAKEMLT12_LEAKTIME_population_count(err + (NUM_DIGITS_GF2X_ELEMENT * i)); | |||
} | |||
decryptOk = decryptOk && (err_weight == NUM_ERRORS_T); | |||
if (!decryptOk) { // TODO: not constant time, replace with cmov? | |||
memcpy(err, mockup_error_vector, N0 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B); | |||
} | |||
return decryptOk; | |||
} |
@@ -0,0 +1,29 @@ | |||
#ifndef NIEDERREITER_H | |||
#define NIEDERREITER_H | |||
#include "gf2x_arith_mod_xPplusOne.h" | |||
#include "qc_ldpc_parameters.h" | |||
#include "rng.h" | |||
typedef struct { | |||
/* raw entropy extracted from TRNG, will be deterministically expanded into | |||
* H and Q during decryption */ | |||
unsigned char prng_seed[TRNG_BYTE_LENGTH]; | |||
int8_t rejections; | |||
uint8_t threshold; // for round 2 | |||
} privateKeyNiederreiter_t; | |||
typedef struct { | |||
DIGIT Mtr[(N0 - 1)*NUM_DIGITS_GF2X_ELEMENT]; | |||
// Dense representation of the matrix M=Ln0*L, | |||
// An array including a sequence of (N0-1) gf2x elements; | |||
// each gf2x element is stored as a binary polynomial(mod x^P+1) | |||
// with P coefficients. | |||
} publicKeyNiederreiter_t; | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_niederreiter_keygen(publicKeyNiederreiter_t *pk, privateKeyNiederreiter_t *sk, AES_XOF_struct *keys_expander); | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_niederreiter_encrypt(DIGIT syndrome[], const publicKeyNiederreiter_t *pk, const DIGIT *err); | |||
int PQCLEAN_LEDAKEMLT12_LEAKTIME_niederreiter_decrypt(DIGIT *err, const privateKeyNiederreiter_t *sk, const DIGIT *syndrome); | |||
#endif |
@@ -0,0 +1,27 @@ | |||
#ifndef QC_LDPC_PARAMETERS_H | |||
#define QC_LDPC_PARAMETERS_H | |||
#include "fips202.h" | |||
#define TRNG_BYTE_LENGTH (24) | |||
#define HASH_BYTE_LENGTH (32) | |||
#define HASH_FUNCTION sha3_256 | |||
#define N0 (2) | |||
#define P (52147) // modulus(x) = x^P-1 | |||
#define DV (9) // odd number | |||
#define M (9) | |||
#define M0 (5) | |||
#define M1 (4) | |||
#define NUM_ERRORS_T (136) | |||
// Derived parameters, they are useful for QC-LDPC algorithms | |||
#define HASH_BIT_LENGTH (HASH_BYTE_LENGTH << 3) | |||
#define K ((N0-1)*P) | |||
#define N (N0*P) | |||
#define DC (N0*DV) | |||
#define Q_BLOCK_WEIGHTS {{M0,M1},{M1,M0}} | |||
static const unsigned char qBlockWeights[N0][N0] = Q_BLOCK_WEIGHTS; | |||
#endif |
@@ -0,0 +1,108 @@ | |||
#include "rng.h" | |||
#include <string.h> // void *memset(void *s, int c, size_t n); | |||
#include "aes.h" | |||
#include "qc_ldpc_parameters.h" | |||
/* | |||
seedexpander_init() | |||
ctx - stores the current state of an instance of the seed expander | |||
seed - a 32 byte random value | |||
diversifier - an 8 byte diversifier | |||
maxlen - maximum number of bytes (less than 2**32) generated under this seed and diversifier | |||
*/ | |||
static void seedexpander_init(AES_XOF_struct *ctx, | |||
unsigned char *seed, | |||
unsigned char *diversifier, | |||
size_t maxlen) { | |||
ctx->length_remaining = maxlen; | |||
memset(ctx->key, 0, 32); | |||
int max_accessible_seed_len = TRNG_BYTE_LENGTH < 32 ? 32 : TRNG_BYTE_LENGTH; | |||
memcpy(ctx->key, seed, max_accessible_seed_len); | |||
memcpy(ctx->ctr, diversifier, 8); | |||
ctx->ctr[11] = maxlen % 256; | |||
maxlen >>= 8; | |||
ctx->ctr[10] = maxlen % 256; | |||
maxlen >>= 8; | |||
ctx->ctr[9] = maxlen % 256; | |||
maxlen >>= 8; | |||
ctx->ctr[8] = maxlen % 256; | |||
memset(ctx->ctr + 12, 0x00, 4); | |||
ctx->buffer_pos = 16; | |||
memset(ctx->buffer, 0x00, 16); | |||
} | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_seedexpander_from_trng(AES_XOF_struct *ctx, | |||
const unsigned char *trng_entropy | |||
/* TRNG_BYTE_LENGTH wide buffer */) { | |||
/*the NIST seedexpander will however access 32B from this buffer */ | |||
unsigned int prng_buffer_size = TRNG_BYTE_LENGTH < 32 ? 32 : TRNG_BYTE_LENGTH; | |||
unsigned char prng_buffer[TRNG_BYTE_LENGTH < 32 ? 32 : TRNG_BYTE_LENGTH] = { 0x00 }; | |||
unsigned char diversifier[8] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}; | |||
memcpy(prng_buffer, | |||
trng_entropy, | |||
TRNG_BYTE_LENGTH < prng_buffer_size ? TRNG_BYTE_LENGTH : prng_buffer_size); | |||
/* the required seed expansion will be quite small, set the max number of | |||
* bytes conservatively to 10 MiB*/ | |||
seedexpander_init(ctx, prng_buffer, diversifier, RNG_MAXLEN); | |||
} | |||
/* | |||
seedexpander() | |||
ctx - stores the current state of an instance of the seed expander | |||
x - returns the XOF data | |||
xlen - number of bytes to return | |||
*/ | |||
int PQCLEAN_LEDAKEMLT12_LEAKTIME_seedexpander(AES_XOF_struct *ctx, unsigned char *x, size_t xlen) { | |||
size_t offset; | |||
aes256ctx ctx256; | |||
if ( x == NULL ) { | |||
return RNG_BAD_OUTBUF; | |||
} | |||
if ( xlen >= ctx->length_remaining ) { | |||
return RNG_BAD_REQ_LEN; | |||
} | |||
aes256_keyexp(&ctx256, ctx->key); | |||
ctx->length_remaining -= xlen; | |||
offset = 0; | |||
while ( xlen > 0 ) { | |||
if ( xlen <= (16 - ctx->buffer_pos) ) { // buffer has what we need | |||
memcpy(x + offset, ctx->buffer + ctx->buffer_pos, xlen); | |||
ctx->buffer_pos += xlen; | |||
return RNG_SUCCESS; | |||
} | |||
// take what's in the buffer | |||
memcpy(x + offset, ctx->buffer + ctx->buffer_pos, 16 - ctx->buffer_pos); | |||
xlen -= 16 - ctx->buffer_pos; | |||
offset += 16 - ctx->buffer_pos; | |||
aes256_ecb(ctx->buffer, ctx->ctr, 16 / AES_BLOCKBYTES, &ctx256); | |||
ctx->buffer_pos = 0; | |||
//increment the counter | |||
for (int i = 15; i >= 12; i--) { | |||
if ( ctx->ctr[i] == 0xff ) { | |||
ctx->ctr[i] = 0x00; | |||
} else { | |||
ctx->ctr[i]++; | |||
break; | |||
} | |||
} | |||
} | |||
return RNG_SUCCESS; | |||
} |
@@ -0,0 +1,24 @@ | |||
#ifndef RNG_H | |||
#define RNG_H | |||
#include <stddef.h> | |||
#include <stdint.h> | |||
#define RNG_SUCCESS ( 0) | |||
#define RNG_BAD_MAXLEN (-1) | |||
#define RNG_BAD_OUTBUF (-2) | |||
#define RNG_BAD_REQ_LEN (-3) | |||
#define RNG_MAXLEN (10 * 1024 * 1024) | |||
typedef struct { | |||
unsigned char buffer[16]; | |||
size_t buffer_pos; | |||
size_t length_remaining; | |||
unsigned char key[32]; | |||
unsigned char ctr[16]; | |||
} AES_XOF_struct; | |||
int PQCLEAN_LEDAKEMLT12_LEAKTIME_seedexpander(AES_XOF_struct *ctx, unsigned char *x, size_t xlen); | |||
void PQCLEAN_LEDAKEMLT12_LEAKTIME_seedexpander_from_trng(AES_XOF_struct *ctx, const unsigned char *trng_entropy); | |||
#endif |
@@ -0,0 +1,18 @@ | |||
name: LEDAcryptKEMLT32 | |||
type: kem | |||
claimed-nist-level: 3 | |||
claimed-security: IND-CCA2 | |||
length-public-key: 12032 | |||
length-secret-key: 34 | |||
length-ciphertext: 12032 | |||
length-shared-secret: 48 | |||
nistkat-sha256: 455dc69ee95196fe0526c3289fe46792acd55ac380b3c66be48eb3e3e10ad4e6 | |||
principal-submitter: Marco Baldi | |||
auxiliary-submitters: | |||
- Alessandro Barenghi | |||
- Franco Chiaraluce | |||
- Gerardo Pelosi | |||
- Paolo Santini | |||
implementations: | |||
- name: leaktime | |||
version: 2.? |
@@ -0,0 +1,32 @@ | |||
#include "H_Q_matrices_generation.h" | |||
#include "gf2x_arith_mod_xPplusOne.h" | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_generateHPosOnes_HtrPosOnes( | |||
POSITION_T HPosOnes[N0][DV], | |||
POSITION_T HtrPosOnes[N0][DV], | |||
AES_XOF_struct *keys_expander) { | |||
for (int i = 0; i < N0; i++) { | |||
/* Generate a random block of Htr */ | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_rand_circulant_sparse_block(&HtrPosOnes[i][0], DV, keys_expander); | |||
} | |||
for (int i = 0; i < N0; i++) { | |||
/* Obtain directly the sparse representation of the block of H */ | |||
for (int k = 0; k < DV; k++) { | |||
HPosOnes[i][k] = (P - HtrPosOnes[i][k]) % P; /* transposes indexes */ | |||
} | |||
} | |||
} | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_generateQsparse( | |||
POSITION_T pos_ones[N0][M], | |||
AES_XOF_struct *keys_expander) { | |||
for (int i = 0; i < N0; i++) { | |||
int placed_ones = 0; | |||
for (int j = 0; j < N0; j++) { | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_rand_circulant_sparse_block(&pos_ones[i][placed_ones], | |||
qBlockWeights[i][j], | |||
keys_expander); | |||
placed_ones += qBlockWeights[i][j]; | |||
} | |||
} | |||
} |
@@ -0,0 +1,11 @@ | |||
#ifndef H_Q_MATRICES_GENERATION_H | |||
#define H_Q_MATRICES_GENERATION_H | |||
#include "gf2x_arith.h" | |||
#include "qc_ldpc_parameters.h" | |||
#include "rng.h" | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_generateHPosOnes_HtrPosOnes(POSITION_T HPosOnes[N0][DV], POSITION_T HtrPosOnes[N0][DV], AES_XOF_struct *niederreiter_keys_expander); | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_generateQsparse(POSITION_T pos_ones[N0][M], AES_XOF_struct *niederreiter_keys_expander); | |||
#endif |
@@ -0,0 +1,31 @@ | |||
/** | |||
* | |||
* LEDAcryptKEM | |||
* | |||
* @version 2.0 (March 2019) | |||
* | |||
* Adapted code from reference ISO-C11 Implementation of the LEDAcrypt KEM-LT cipher. | |||
* | |||
* In alphabetical order: | |||
* | |||
* @author Marco Baldi <m.baldi@univpm.it> | |||
* @author Alessandro Barenghi <alessandro.barenghi@polimi.it> | |||
* @author Franco Chiaraluce <f.chiaraluce@univpm.it> | |||
* @author Gerardo Pelosi <gerardo.pelosi@polimi.it> | |||
* @author Paolo Santini <p.santini@pm.univpm.it> | |||
* | |||
* This code is hereby placed in the public domain. | |||
* | |||
* THIS SOFTWARE IS PROVIDED BY THE AUTHORS ''AS IS'' AND ANY EXPRESS | |||
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED | |||
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |||
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE | |||
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | |||
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | |||
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR | |||
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, | |||
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE | |||
* OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, | |||
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |||
* | |||
**/ |
@@ -0,0 +1,24 @@ | |||
# This Makefile can be used with GNU Make or BSD Make | |||
LIB=libledakemlt32_leaktime.a | |||
HEADERS=api.h bf_decoding.h dfr_test.h gf2x_arith_mod_xPplusOne.h \ | |||
gf2x_arith.h H_Q_matrices_generation.h \ | |||
niederreiter.h qc_ldpc_parameters.h rng.h | |||
OBJECTS=bf_decoding.o dfr_test.o gf2x_arith_mod_xPplusOne.o \ | |||
gf2x_arith.o H_Q_matrices_generation.o kem.o niederreiter.o rng.o | |||
CFLAGS=-O3 -Wall -Werror -Wextra -Wvla -Wpedantic -Wmissing-prototypes -std=c99 \ | |||
-I../../../common $(EXTRAFLAGS) | |||
all: $(LIB) | |||
%.o: %.c $(HEADERS) | |||
$(CC) $(CFLAGS) -c -o $@ $< | |||
$(LIB): $(OBJECTS) | |||
$(AR) -r $@ $(OBJECTS) | |||
clean: | |||
$(RM) $(OBJECTS) | |||
$(RM) $(LIB) |
@@ -0,0 +1,19 @@ | |||
# This Makefile can be used with Microsoft Visual Studio's nmake using the command: | |||
# nmake /f Makefile.Microsoft_nmake | |||
LIBRARY=libledakemlt32_leaktime.lib | |||
OBJECTS=bf_decoding.obj dfr_test.obj gf2x_arith_mod_xPplusOne.obj gf2x_arith.obj H_Q_matrices_generation.obj kem.obj niederreiter.obj rng.obj | |||
CFLAGS=/nologo /I ..\..\..\common /W4 /WX | |||
all: $(LIBRARY) | |||
# Make sure objects are recompiled if headers change. | |||
$(OBJECTS): *.h | |||
$(LIBRARY): $(OBJECTS) | |||
LIB.EXE /NOLOGO /WX /OUT:$@ $** | |||
clean: | |||
-DEL $(OBJECTS) | |||
-DEL $(LIBRARY) |
@@ -0,0 +1,18 @@ | |||
#ifndef PQCLEAN_LEDAKEMLT32_LEAKTIME_API_H | |||
#define PQCLEAN_LEDAKEMLT32_LEAKTIME_API_H | |||
#include <stdint.h> | |||
#define PQCLEAN_LEDAKEMLT32_LEAKTIME_CRYPTO_SECRETKEYBYTES 34 | |||
#define PQCLEAN_LEDAKEMLT32_LEAKTIME_CRYPTO_PUBLICKEYBYTES 12032 | |||
#define PQCLEAN_LEDAKEMLT32_LEAKTIME_CRYPTO_CIPHERTEXTBYTES 12032 | |||
#define PQCLEAN_LEDAKEMLT32_LEAKTIME_CRYPTO_BYTES 48 | |||
#define PQCLEAN_LEDAKEMLT32_LEAKTIME_CRYPTO_ALGNAME "LEDAKEMLT32" | |||
int PQCLEAN_LEDAKEMLT32_LEAKTIME_crypto_kem_keypair(uint8_t *pk, uint8_t *sk); | |||
int PQCLEAN_LEDAKEMLT32_LEAKTIME_crypto_kem_enc(uint8_t *ct, uint8_t *ss, const uint8_t *pk); | |||
int PQCLEAN_LEDAKEMLT32_LEAKTIME_crypto_kem_dec(uint8_t *ss, const uint8_t *ct, const uint8_t *sk); | |||
#endif |
@@ -0,0 +1,76 @@ | |||
#include "bf_decoding.h" | |||
#include "gf2x_arith_mod_xPplusOne.h" | |||
#include <string.h> | |||
int PQCLEAN_LEDAKEMLT32_LEAKTIME_bf_decoding(DIGIT err[], | |||
const POSITION_T HtrPosOnes[N0][DV], | |||
const POSITION_T QtrPosOnes[N0][M], | |||
DIGIT privateSyndrome[], | |||
uint8_t threshold) { | |||
uint8_t unsatParityChecks[N0 * P]; | |||
POSITION_T currQBlkPos[M], currQBitPos[M]; | |||
DIGIT currSyndrome[NUM_DIGITS_GF2X_ELEMENT]; | |||
int check; | |||
int iteration = 0; | |||
unsigned int corrt_syndrome_based; | |||
do { | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_copy(currSyndrome, privateSyndrome); | |||
memset(unsatParityChecks, 0x00, N0 * P * sizeof(uint8_t)); | |||
for (int i = 0; i < N0; i++) { | |||
for (int valueIdx = 0; valueIdx < P; valueIdx++) { | |||
for (int HtrOneIdx = 0; HtrOneIdx < DV; HtrOneIdx++) { | |||
POSITION_T tmp = (HtrPosOnes[i][HtrOneIdx] + valueIdx) >= P ? (HtrPosOnes[i][HtrOneIdx] + valueIdx) - P : (HtrPosOnes[i][HtrOneIdx] + valueIdx); | |||
if (PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_get_coeff(currSyndrome, tmp)) { | |||
unsatParityChecks[i * P + valueIdx]++; | |||
} | |||
} | |||
} | |||
} | |||
/* iteration based threshold determination*/ | |||
corrt_syndrome_based = iteration ? (unsigned int) threshold : B0; | |||
//Computation of correlation with a full Q matrix | |||
for (int i = 0; i < N0; i++) { | |||
for (int j = 0; j < P; j++) { | |||
int currQoneIdx = 0; // position in the column of QtrPosOnes[][...] | |||
int endQblockIdx = 0; | |||
unsigned int correlation = 0; | |||
for (int blockIdx = 0; blockIdx < N0; blockIdx++) { | |||
endQblockIdx += qBlockWeights[blockIdx][i]; | |||
int currblockoffset = blockIdx * P; | |||
for (; currQoneIdx < endQblockIdx; currQoneIdx++) { | |||
POSITION_T tmp = QtrPosOnes[i][currQoneIdx] + j; | |||
tmp = tmp >= P ? tmp - P : tmp; | |||
currQBitPos[currQoneIdx] = tmp; | |||
currQBlkPos[currQoneIdx] = blockIdx; | |||
correlation += unsatParityChecks[tmp + currblockoffset]; | |||
} | |||
} | |||
/* Correlation based flipping */ | |||
if (correlation >= corrt_syndrome_based) { | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_toggle_coeff(err + NUM_DIGITS_GF2X_ELEMENT * i, j); | |||
for (int v = 0; v < M; v++) { | |||
POSITION_T syndromePosToFlip; | |||
for (int HtrOneIdx = 0; HtrOneIdx < DV; HtrOneIdx++) { | |||
syndromePosToFlip = (HtrPosOnes[currQBlkPos[v]][HtrOneIdx] + currQBitPos[v] ); | |||
syndromePosToFlip = syndromePosToFlip >= P ? syndromePosToFlip - P : syndromePosToFlip; | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_toggle_coeff(privateSyndrome, syndromePosToFlip); | |||
} | |||
} // end for v | |||
} // end if | |||
} // end for j | |||
} // end for i | |||
iteration = iteration + 1; | |||
check = 0; | |||
while (check < NUM_DIGITS_GF2X_ELEMENT && privateSyndrome[check++] == 0) {}; | |||
} while (iteration < ITERATIONS_MAX && check < NUM_DIGITS_GF2X_ELEMENT); | |||
return (check == NUM_DIGITS_GF2X_ELEMENT); | |||
} |
@@ -0,0 +1,18 @@ | |||
#ifndef BF_DECODING_H | |||
#define BF_DECODING_H | |||
#include "gf2x_arith.h" | |||
#include "qc_ldpc_parameters.h" | |||
/* Definitions for DFR level 2^-SL with SL=128 */ | |||
#define ITERATIONS_MAX (2) | |||
#define B0 (64) | |||
#define T_BAR (5) | |||
int PQCLEAN_LEDAKEMLT32_LEAKTIME_bf_decoding(DIGIT err[], | |||
const POSITION_T HtrPosOnes[N0][DV], | |||
const POSITION_T QtrPosOnes[N0][M], | |||
DIGIT privateSyndrome[], | |||
uint8_t threshold); | |||
#endif |
@@ -0,0 +1,112 @@ | |||
#include "bf_decoding.h" | |||
#include "dfr_test.h" | |||
#include "gf2x_arith_mod_xPplusOne.h" | |||
#include "qc_ldpc_parameters.h" | |||
#include <string.h> | |||
/* Tests if the current code attains the desired DFR. If that is the case, | |||
* computes the threshold for the second iteration of the decoder and returns this values | |||
* (max DV * M), on failure it returns 255 >> DV * M */ | |||
uint8_t PQCLEAN_LEDAKEMLT32_LEAKTIME_DFR_test(POSITION_T LSparse[N0][DV * M]) { | |||
POSITION_T LSparse_loc[N0][DV * M]; | |||
POSITION_T rotated_column[DV * M]; | |||
/* Gamma matrix: an N0 x N0 block circulant matrix with block size p | |||
* gamma[a][b][c] stores the intersection of the first column of the a-th | |||
* block of L with the c-th column of the b-th block of L. | |||
* Gamma computation can be accelerated employing symmetry and QC properties */ | |||
unsigned int gamma[N0][N0][P] = {{{0}}}; | |||
unsigned int gammaHist[N0][DV * M + 1] = {{0}}; | |||
unsigned int maxMut[N0], maxMutMinusOne[N0]; | |||
unsigned int firstidx, secondidx, intersectionval; | |||
unsigned int allBlockMaxSumst, allBlockMaxSumstMinusOne; | |||
unsigned int toAdd, histIdx; | |||
/*transpose blocks of L, we need its columns */ | |||
for (int i = 0; i < N0; i++) { | |||
for (int j = 0; j < DV * M; j++) { | |||
if (LSparse[i][j] != 0) { | |||
LSparse_loc[i][j] = (P - LSparse[i][j]); | |||
} | |||
} | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_quicksort_sparse(LSparse_loc[i]); | |||
} | |||
for (int i = 0; i < N0; i++ ) { | |||
for (int j = 0; j < N0; j++ ) { | |||
for (int k = 0; k < P; k++) { | |||
/* compute the rotated sparse column needed */ | |||
for (int idxToRotate = 0; idxToRotate < (DV * M); idxToRotate++) { | |||
rotated_column[idxToRotate] = (LSparse_loc[j][idxToRotate] + k) % P; | |||
} | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_quicksort_sparse(rotated_column); | |||
/* compute the intersection amount */ | |||
firstidx = 0, secondidx = 0; | |||
intersectionval = 0; | |||
while ( (firstidx < DV * M) && (secondidx < DV * M) ) { | |||
if ( LSparse_loc[i][firstidx] == rotated_column[secondidx] ) { | |||
intersectionval++; | |||
firstidx++; | |||
secondidx++; | |||
} else if ( LSparse_loc[i][firstidx] > rotated_column[secondidx] ) { | |||
secondidx++; | |||
} else { /*if ( LSparse_loc[i][firstidx] < rotated_column[secondidx] ) */ | |||
firstidx++; | |||
} | |||
} | |||
gamma[i][j][k] = intersectionval; | |||
} | |||
} | |||
} | |||
for (int i = 0; i < N0; i++ ) { | |||
for (int j = 0; j < N0; j++ ) { | |||
gamma[i][j][0] = 0; | |||
} | |||
} | |||
/* build histogram of values in gamma */ | |||
for (int i = 0; i < N0; i++ ) { | |||
for (int j = 0; j < N0; j++ ) { | |||
for (int k = 0; k < P; k++) { | |||
gammaHist[i][gamma[i][j][k]]++; | |||
} | |||
} | |||
} | |||
for (int gammaBlockRowIdx = 0; gammaBlockRowIdx < N0; gammaBlockRowIdx++) { | |||
toAdd = T_BAR - 1; | |||
maxMutMinusOne[gammaBlockRowIdx] = 0; | |||
histIdx = DV * M; | |||
while ( (histIdx > 0) && (toAdd > 0)) { | |||
if (gammaHist[gammaBlockRowIdx][histIdx] > toAdd ) { | |||
maxMutMinusOne[gammaBlockRowIdx] += histIdx * toAdd; | |||
toAdd = 0; | |||
} else { | |||
maxMutMinusOne[gammaBlockRowIdx] += histIdx * gammaHist[gammaBlockRowIdx][histIdx]; | |||
toAdd -= gammaHist[gammaBlockRowIdx][histIdx]; | |||
histIdx--; | |||
} | |||
} | |||
maxMut[gammaBlockRowIdx] = histIdx + maxMutMinusOne[gammaBlockRowIdx]; | |||
} | |||
/*seek max values across all gamma blocks */ | |||
allBlockMaxSumst = maxMut[0]; | |||
allBlockMaxSumstMinusOne = maxMutMinusOne[0]; | |||
for (int gammaBlockRowIdx = 0; gammaBlockRowIdx < N0 ; gammaBlockRowIdx++) { | |||
allBlockMaxSumst = allBlockMaxSumst < maxMut[gammaBlockRowIdx] ? | |||
maxMut[gammaBlockRowIdx] : | |||
allBlockMaxSumst; | |||
allBlockMaxSumstMinusOne = allBlockMaxSumstMinusOne < maxMutMinusOne[gammaBlockRowIdx] ? | |||
maxMutMinusOne[gammaBlockRowIdx] : | |||
allBlockMaxSumstMinusOne; | |||
} | |||
if (DV * M > (allBlockMaxSumstMinusOne + allBlockMaxSumst)) { | |||
return (uint8_t) allBlockMaxSumst + 1; | |||
} | |||
return DFR_TEST_FAIL; | |||
} |
@@ -0,0 +1,8 @@ | |||
#ifndef DFR_TEST_H | |||
#define DFR_TEST_H | |||
#define DFR_TEST_FAIL (255) | |||
uint8_t PQCLEAN_LEDAKEMLT32_LEAKTIME_DFR_test(POSITION_T LSparse[N0][DV * M]); | |||
#endif |
@@ -0,0 +1,73 @@ | |||
#include "gf2x_arith.h" | |||
#include <string.h> // memset(...) | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_add(DIGIT Res[], const DIGIT A[], const DIGIT B[], int nr) { | |||
for (int i = 0; i < nr; i++) { | |||
Res[i] = A[i] ^ B[i]; | |||
} | |||
} | |||
/* PRE: MAX ALLOWED ROTATION AMOUNT : DIGIT_SIZE_b */ | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_right_bit_shift_n(int length, DIGIT in[], unsigned int amount) { | |||
if ( amount == 0 ) { | |||
return; | |||
} | |||
unsigned int j; | |||
DIGIT mask; | |||
mask = ((DIGIT)0x01 << amount) - 1; | |||
for (j = length - 1; j > 0 ; j--) { | |||
in[j] >>= amount; | |||
in[j] |= (in[j - 1] & mask) << (DIGIT_SIZE_b - amount); | |||
} | |||
in[j] >>= amount; | |||
} | |||
/* PRE: MAX ALLOWED ROTATION AMOUNT : DIGIT_SIZE_b */ | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_left_bit_shift_n(int length, DIGIT in[], unsigned int amount) { | |||
if ( amount == 0 ) { | |||
return; | |||
} | |||
int j; | |||
DIGIT mask; | |||
mask = ~(((DIGIT)0x01 << (DIGIT_SIZE_b - amount)) - 1); | |||
for (j = 0 ; j < length - 1 ; j++) { | |||
in[j] <<= amount; | |||
in[j] |= (in[j + 1] & mask) >> (DIGIT_SIZE_b - amount); | |||
} | |||
in[j] <<= amount; | |||
} | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mul_comb(int nr, DIGIT Res[], | |||
int na, const DIGIT A[], | |||
int nb, const DIGIT B[]) { | |||
int i, j, k; | |||
DIGIT u, h; | |||
memset(Res, 0x00, nr * sizeof(DIGIT)); | |||
for (k = DIGIT_SIZE_b - 1; k > 0; k--) { | |||
for (i = na - 1; i >= 0; i--) { | |||
if ( A[i] & (((DIGIT)0x1) << k) ) { | |||
for (j = nb - 1; j >= 0; j--) { | |||
Res[i + j + 1] ^= B[j]; | |||
} | |||
} | |||
} | |||
u = Res[na + nb - 1]; | |||
Res[na + nb - 1] = u << 0x1; | |||
for (j = 1; j < na + nb; ++j) { | |||
h = u >> (DIGIT_SIZE_b - 1); | |||
u = Res[na + nb - 1 - j]; | |||
Res[na + nb - 1 - j] = h ^ (u << 0x1); | |||
} | |||
} | |||
for (i = na - 1; i >= 0; i--) { | |||
if ( A[i] & ((DIGIT)0x1) ) { | |||
for (j = nb - 1; j >= 0; j--) { | |||
Res[i + j + 1] ^= B[j]; | |||
} | |||
} | |||
} | |||
} |
@@ -0,0 +1,58 @@ | |||
#ifndef GF2X_ARITH_H | |||
#define GF2X_ARITH_H | |||
#include <inttypes.h> | |||
#include <stddef.h> | |||
/* | |||
* Elements of GF(2)[x] are stored in compact dense binary form. | |||
* | |||
* Each bit in a byte is assumed to be the coefficient of a binary | |||
* polynomial f(x), in Big-Endian format (i.e., reading everything from | |||
* left to right, the most significant element is met first): | |||
* | |||
* byte:(0000 0000) == 0x00 ... f(x) == 0 | |||
* byte:(0000 0001) == 0x01 ... f(x) == 1 | |||
* byte:(0000 0010) == 0x02 ... f(x) == x | |||
* byte:(0000 0011) == 0x03 ... f(x) == x+1 | |||
* ... ... ... | |||
* byte:(0000 1111) == 0x0F ... f(x) == x^{3}+x^{2}+x+1 | |||
* ... ... ... | |||
* byte:(1111 1111) == 0xFF ... f(x) == x^{7}+x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+1 | |||
* | |||
* | |||
* A "machine word" (A_i) is considered as a DIGIT. | |||
* Bytes in a DIGIT are assumed in Big-Endian format: | |||
* E.g., if sizeof(DIGIT) == 4: | |||
* A_i: A_{i,3} A_{i,2} A_{i,1} A_{i,0}. | |||
* A_{i,3} denotes the most significant byte, A_{i,0} the least significant one. | |||
* f(x) == x^{31} + ... + x^{24} + | |||
* + x^{23} + ... + x^{16} + | |||
* + x^{15} + ... + x^{8} + | |||
* + x^{7} + ... + x^{0} | |||
* | |||
* | |||
* Multi-precision elements (i.e., with multiple DIGITs) are stored in | |||
* Big-endian format: | |||
* A = A_{n-1} A_{n-2} ... A_1 A_0 | |||
* | |||
* position[A_{n-1}] == 0 | |||
* position[A_{n-2}] == 1 | |||
* ... | |||
* position[A_{1}] == n-2 | |||
* position[A_{0}] == n-1 | |||
*/ | |||
typedef uint64_t DIGIT; | |||
#define DIGIT_SIZE_B (8) | |||
#define DIGIT_SIZE_b (DIGIT_SIZE_B << 3) | |||
#define POSITION_T uint32_t | |||
#define GF2X_MUL PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mul_comb | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_add(DIGIT Res[], const DIGIT A[], const DIGIT B[], int nr); | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_right_bit_shift_n(int length, DIGIT in[], unsigned int amount); | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_left_bit_shift_n(int length, DIGIT in[], unsigned int amount); | |||
void GF2X_MUL(int nr, DIGIT Res[], int na, const DIGIT A[], int nb, const DIGIT B[]); | |||
#endif |
@@ -0,0 +1,581 @@ | |||
#include "gf2x_arith_mod_xPplusOne.h" | |||
#include "rng.h" | |||
#include <string.h> // memcpy(...), memset(...) | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_copy(DIGIT dest[], const DIGIT in[]) { | |||
for (int i = NUM_DIGITS_GF2X_ELEMENT - 1; i >= 0; i--) { | |||
dest[i] = in[i]; | |||
} | |||
} | |||
/* returns the coefficient of the x^exponent term as the LSB of a digit */ | |||
DIGIT PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_get_coeff(const DIGIT poly[], unsigned int exponent) { | |||
unsigned int straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent; | |||
unsigned int digitIdx = straightIdx / DIGIT_SIZE_b; | |||
unsigned int inDigitIdx = straightIdx % DIGIT_SIZE_b; | |||
return (poly[digitIdx] >> (DIGIT_SIZE_b - 1 - inDigitIdx)) & ((DIGIT) 1) ; | |||
} | |||
/* sets the coefficient of the x^exponent term as the LSB of a digit */ | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_set_coeff(DIGIT poly[], unsigned int exponent, DIGIT value) { | |||
unsigned int straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent; | |||
unsigned int digitIdx = straightIdx / DIGIT_SIZE_b; | |||
unsigned int inDigitIdx = straightIdx % DIGIT_SIZE_b; | |||
/* clear given coefficient */ | |||
DIGIT mask = ~( ((DIGIT) 1) << (DIGIT_SIZE_b - 1 - inDigitIdx)); | |||
poly[digitIdx] = poly[digitIdx] & mask; | |||
poly[digitIdx] = poly[digitIdx] | (( value & ((DIGIT) 1)) << (DIGIT_SIZE_b - 1 - inDigitIdx)); | |||
} | |||
/* toggles (flips) the coefficient of the x^exponent term as the LSB of a digit */ | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_toggle_coeff(DIGIT poly[], unsigned int exponent) { | |||
unsigned int straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent; | |||
unsigned int digitIdx = straightIdx / DIGIT_SIZE_b; | |||
unsigned int inDigitIdx = straightIdx % DIGIT_SIZE_b; | |||
/* clear given coefficient */ | |||
DIGIT mask = ( ((DIGIT) 1) << (DIGIT_SIZE_b - 1 - inDigitIdx)); | |||
poly[digitIdx] = poly[digitIdx] ^ mask; | |||
} | |||
/* population count for an unsigned 64-bit integer | |||
Source: Hacker's delight, p.66 */ | |||
static int popcount_uint64t(uint64_t x) { | |||
x -= (x >> 1) & 0x5555555555555555; | |||
x = (x & 0x3333333333333333) + ((x >> 2) & 0x3333333333333333); | |||
x = (x + (x >> 4)) & 0x0f0f0f0f0f0f0f0f; | |||
return (int)((x * 0x0101010101010101) >> 56); | |||
} | |||
/* population count for a single polynomial */ | |||
int PQCLEAN_LEDAKEMLT32_LEAKTIME_population_count(DIGIT *poly) { | |||
int ret = 0; | |||
for (int i = NUM_DIGITS_GF2X_ELEMENT - 1; i >= 0; i--) { | |||
ret += popcount_uint64t(poly[i]); | |||
} | |||
return ret; | |||
} | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_add(DIGIT Res[], const DIGIT A[], const DIGIT B[]) { | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_add(Res, A, B, NUM_DIGITS_GF2X_ELEMENT); | |||
} | |||
static int partition(POSITION_T arr[], int lo, int hi) { | |||
POSITION_T x = arr[hi]; | |||
POSITION_T tmp; | |||
int i = (lo - 1); | |||
for (int j = lo; j <= hi - 1; j++) { | |||
if (arr[j] <= x) { | |||
i++; | |||
tmp = arr[i]; | |||
arr[i] = arr[j]; | |||
arr[j] = tmp; | |||
} | |||
} | |||
tmp = arr[i + 1]; | |||
arr[i + 1] = arr[hi]; | |||
arr[hi] = tmp; | |||
return i + 1; | |||
} | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_quicksort_sparse(POSITION_T Res[]) { | |||
int stack[DV * M]; | |||
int hi, lo, pivot, tos = -1; | |||
stack[++tos] = 0; | |||
stack[++tos] = (DV * M) - 1; | |||
while (tos >= 0 ) { | |||
hi = stack[tos--]; | |||
lo = stack[tos--]; | |||
pivot = partition(Res, lo, hi); | |||
if ( (pivot - 1) > lo) { | |||
stack[++tos] = lo; | |||
stack[++tos] = pivot - 1; | |||
} | |||
if ( (pivot + 1) < hi) { | |||
stack[++tos] = pivot + 1; | |||
stack[++tos] = hi; | |||
} | |||
} | |||
} | |||
static void gf2x_mod(DIGIT out[], const DIGIT in[]) { | |||
int i, j, posTrailingBit, maskOffset; | |||
DIGIT mask, aux[2 * NUM_DIGITS_GF2X_ELEMENT]; | |||
memcpy(aux, in, 2 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B); | |||
memset(out, 0x00, NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B); | |||
for (i = 0; i < (2 * NUM_DIGITS_GF2X_ELEMENT) - NUM_DIGITS_GF2X_MODULUS; i += 1) { | |||
for (j = DIGIT_SIZE_b - 1; j >= 0; j--) { | |||
mask = ((DIGIT)0x1) << j; | |||
if (aux[i] & mask) { | |||
aux[i] ^= mask; | |||
posTrailingBit = (DIGIT_SIZE_b - 1 - j) + i * DIGIT_SIZE_b + P; | |||
maskOffset = (DIGIT_SIZE_b - 1 - (posTrailingBit % DIGIT_SIZE_b)); | |||
mask = (DIGIT) 0x1 << maskOffset; | |||
aux[posTrailingBit / DIGIT_SIZE_b] ^= mask; | |||
} | |||
} | |||
} | |||
for (j = DIGIT_SIZE_b - 1; j >= MSb_POSITION_IN_MSB_DIGIT_OF_MODULUS; j--) { | |||
mask = ((DIGIT)0x1) << j; | |||
if (aux[i] & mask) { | |||
aux[i] ^= mask; | |||
posTrailingBit = (DIGIT_SIZE_b - 1 - j) + i * DIGIT_SIZE_b + P; | |||
maskOffset = (DIGIT_SIZE_b - 1 - (posTrailingBit % DIGIT_SIZE_b)); | |||
mask = (DIGIT) 0x1 << maskOffset; | |||
aux[posTrailingBit / DIGIT_SIZE_b] ^= mask; | |||
} | |||
} | |||
for (i = 0; i < NUM_DIGITS_GF2X_ELEMENT; i++) { | |||
out[NUM_DIGITS_GF2X_ELEMENT - 1 - i] = aux[2 * NUM_DIGITS_GF2X_ELEMENT - 1 - i]; | |||
} | |||
} | |||
static void left_bit_shift(const int length, DIGIT in[]) { | |||
int j; | |||
for (j = 0; j < length - 1; j++) { | |||
in[j] <<= 1; /* logical shift does not need clearing */ | |||
in[j] |= in[j + 1] >> (DIGIT_SIZE_b - 1); | |||
} | |||
in[j] <<= 1; | |||
} | |||
static void right_bit_shift(unsigned int length, DIGIT in[]) { | |||
unsigned int j; | |||
for (j = length - 1; j > 0 ; j--) { | |||
in[j] >>= 1; | |||
in[j] |= (in[j - 1] & (DIGIT)0x01) << (DIGIT_SIZE_b - 1); | |||
} | |||
in[j] >>= 1; | |||
} | |||
/* shifts by whole digits */ | |||
static void left_DIGIT_shift_n(unsigned int length, DIGIT in[], unsigned int amount) { | |||
unsigned int j; | |||
for (j = 0; (j + amount) < length; j++) { | |||
in[j] = in[j + amount]; | |||
} | |||
for (; j < length; j++) { | |||
in[j] = (DIGIT)0; | |||
} | |||
} | |||
/* may shift by an arbitrary amount*/ | |||
static void left_bit_shift_wide_n(const int length, DIGIT in[], unsigned int amount) { | |||
left_DIGIT_shift_n(length, in, amount / DIGIT_SIZE_b); | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_left_bit_shift_n(length, in, amount % DIGIT_SIZE_b); | |||
} | |||
/* Hackers delight, reverses a uint64_t */ | |||
static DIGIT reverse_digit(DIGIT x) { | |||
uint64_t t; | |||
x = (x << 31) | (x >> 33); | |||
t = (x ^ (x >> 20)) & 0x00000FFF800007FFLL; | |||
x = (t | (t << 20)) ^ x; | |||
t = (x ^ (x >> 8)) & 0x00F8000F80700807LL; | |||
x = (t | (t << 8)) ^ x; | |||
t = (x ^ (x >> 4)) & 0x0808708080807008LL; | |||
x = (t | (t << 4)) ^ x; | |||
t = (x ^ (x >> 2)) & 0x1111111111111111LL; | |||
x = (t | (t << 2)) ^ x; | |||
return x; | |||
} | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_transpose_in_place(DIGIT A[]) { | |||
/* it keeps the lsb in the same position and | |||
* inverts the sequence of the remaining bits */ | |||
DIGIT mask = (DIGIT)0x1; | |||
DIGIT rev1, rev2, a00; | |||
int i, slack_bits_amount = NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - P; | |||
a00 = A[NUM_DIGITS_GF2X_ELEMENT - 1] & mask; | |||
right_bit_shift(NUM_DIGITS_GF2X_ELEMENT, A); | |||
for (i = NUM_DIGITS_GF2X_ELEMENT - 1; i >= (NUM_DIGITS_GF2X_ELEMENT + 1) / 2; i--) { | |||
rev1 = reverse_digit(A[i]); | |||
rev2 = reverse_digit(A[NUM_DIGITS_GF2X_ELEMENT - 1 - i]); | |||
A[i] = rev2; | |||
A[NUM_DIGITS_GF2X_ELEMENT - 1 - i] = rev1; | |||
} | |||
if (slack_bits_amount) { | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_right_bit_shift_n(NUM_DIGITS_GF2X_ELEMENT, A, slack_bits_amount); | |||
} | |||
A[NUM_DIGITS_GF2X_ELEMENT - 1] = (A[NUM_DIGITS_GF2X_ELEMENT - 1] & (~mask)) | a00; | |||
} | |||
static void rotate_bit_left(DIGIT in[]) { /* equivalent to x * in(x) mod x^P+1 */ | |||
DIGIT mask, rotated_bit; | |||
int msb_offset_in_digit = MSb_POSITION_IN_MSB_DIGIT_OF_MODULUS - 1; | |||
mask = ((DIGIT)0x1) << msb_offset_in_digit; | |||
rotated_bit = !!(in[0] & mask); | |||
in[0] &= ~mask; | |||
left_bit_shift(NUM_DIGITS_GF2X_ELEMENT, in); | |||
in[NUM_DIGITS_GF2X_ELEMENT - 1] |= rotated_bit; | |||
} | |||
static void rotate_bit_right(DIGIT in[]) { /* x^{-1} * in(x) mod x^P+1 */ | |||
DIGIT rotated_bit = in[NUM_DIGITS_GF2X_ELEMENT - 1] & ((DIGIT)0x1); | |||
right_bit_shift(NUM_DIGITS_GF2X_ELEMENT, in); | |||
int msb_offset_in_digit = MSb_POSITION_IN_MSB_DIGIT_OF_MODULUS - 1; | |||
rotated_bit = rotated_bit << msb_offset_in_digit; | |||
in[0] |= rotated_bit; | |||
} | |||
static void gf2x_swap(const int length, DIGIT f[], DIGIT s[]) { | |||
DIGIT t; | |||
for (int i = length - 1; i >= 0; i--) { | |||
t = f[i]; | |||
f[i] = s[i]; | |||
s[i] = t; | |||
} | |||
} | |||
/* | |||
* Optimized extended GCD algorithm to compute the multiplicative inverse of | |||
* a non-zero element in GF(2)[x] mod x^P+1, in polyn. representation. | |||
* | |||
* H. Brunner, A. Curiger, and M. Hofstetter. 1993. | |||
* On Computing Multiplicative Inverses in GF(2^m). | |||
* IEEE Trans. Comput. 42, 8 (August 1993), 1010-1015. | |||
* DOI=http://dx.doi.org/10.1109/12.238496 | |||
* | |||
* | |||
* Henri Cohen, Gerhard Frey, Roberto Avanzi, Christophe Doche, Tanja Lange, | |||
* Kim Nguyen, and Frederik Vercauteren. 2012. | |||
* Handbook of Elliptic and Hyperelliptic Curve Cryptography, | |||
* Second Edition (2nd ed.). Chapman & Hall/CRC. | |||
* (Chapter 11 -- Algorithm 11.44 -- pag 223) | |||
* | |||
*/ | |||
int PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_inverse(DIGIT out[], const DIGIT in[]) { /* in^{-1} mod x^P-1 */ | |||
int i; | |||
int delta = 0; | |||
DIGIT u[NUM_DIGITS_GF2X_ELEMENT] = {0}; | |||
DIGIT v[NUM_DIGITS_GF2X_ELEMENT] = {0}; | |||
DIGIT s[NUM_DIGITS_GF2X_MODULUS] = {0}; | |||
DIGIT f[NUM_DIGITS_GF2X_MODULUS] = {0}; // alignas(32)? | |||
DIGIT mask; | |||
u[NUM_DIGITS_GF2X_ELEMENT - 1] = 0x1; | |||
v[NUM_DIGITS_GF2X_ELEMENT - 1] = 0x0; | |||
s[NUM_DIGITS_GF2X_MODULUS - 1] = 0x1; | |||
mask = (((DIGIT)0x1) << MSb_POSITION_IN_MSB_DIGIT_OF_MODULUS); | |||
s[0] |= mask; | |||
for (i = NUM_DIGITS_GF2X_ELEMENT - 1; i >= 0 && in[i] == 0; i--) { }; | |||
if (i < 0) { | |||
return 0; | |||
} | |||
for (i = NUM_DIGITS_GF2X_MODULUS - 1; i >= 0 ; i--) { | |||
f[i] = in[i]; | |||
} | |||
for (i = 1; i <= 2 * P; i++) { | |||
if ( (f[0] & mask) == 0 ) { | |||
left_bit_shift(NUM_DIGITS_GF2X_MODULUS, f); | |||
rotate_bit_left(u); | |||
delta += 1; | |||
} else { | |||
if ( (s[0] & mask) != 0) { | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_add(s, s, f, NUM_DIGITS_GF2X_MODULUS); | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_add(v, v, u); | |||
} | |||
left_bit_shift(NUM_DIGITS_GF2X_MODULUS, s); | |||
if ( delta == 0 ) { | |||
gf2x_swap(NUM_DIGITS_GF2X_MODULUS, f, s); | |||
gf2x_swap(NUM_DIGITS_GF2X_ELEMENT, u, v); | |||
rotate_bit_left(u); | |||
delta = 1; | |||
} else { | |||
rotate_bit_right(u); | |||
delta = delta - 1; | |||
} | |||
} | |||
} | |||
for (i = NUM_DIGITS_GF2X_ELEMENT - 1; i >= 0 ; i--) { | |||
out[i] = u[i]; | |||
} | |||
return (delta == 0); | |||
} | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_mul(DIGIT Res[], const DIGIT A[], const DIGIT B[]) { | |||
DIGIT aux[2 * NUM_DIGITS_GF2X_ELEMENT]; | |||
GF2X_MUL(2 * NUM_DIGITS_GF2X_ELEMENT, aux, | |||
NUM_DIGITS_GF2X_ELEMENT, A, | |||
NUM_DIGITS_GF2X_ELEMENT, B); | |||
gf2x_mod(Res, aux); | |||
} | |||
/*PRE: the representation of the sparse coefficients is sorted in increasing | |||
order of the coefficients themselves */ | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_mul_dense_to_sparse( | |||
DIGIT Res[], | |||
const DIGIT dense[], | |||
POSITION_T sparse[], unsigned int nPos) { | |||
DIGIT aux[2 * NUM_DIGITS_GF2X_ELEMENT] = {0x00}; | |||
DIGIT resDouble[2 * NUM_DIGITS_GF2X_ELEMENT] = {0x00}; | |||
memcpy(aux + NUM_DIGITS_GF2X_ELEMENT, dense, NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B); | |||
memcpy(resDouble + NUM_DIGITS_GF2X_ELEMENT, dense, | |||
NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B); | |||
if (sparse[0] != INVALID_POS_VALUE) { | |||
left_bit_shift_wide_n(2 * NUM_DIGITS_GF2X_ELEMENT, resDouble, sparse[0]); | |||
left_bit_shift_wide_n(2 * NUM_DIGITS_GF2X_ELEMENT, aux, sparse[0]); | |||
for (unsigned int i = 1; i < nPos; i++) { | |||
if (sparse[i] != INVALID_POS_VALUE) { | |||
left_bit_shift_wide_n(2 * NUM_DIGITS_GF2X_ELEMENT, aux, (sparse[i] - sparse[i - 1]) ); | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_add(resDouble, aux, resDouble, 2 * NUM_DIGITS_GF2X_ELEMENT); | |||
} | |||
} | |||
} | |||
gf2x_mod(Res, resDouble); | |||
} | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_transpose_in_place_sparse(int sizeA, POSITION_T A[]) { | |||
POSITION_T t; | |||
int i = 0, j; | |||
if (A[i] == 0) { | |||
i = 1; | |||
} | |||
j = i; | |||
for (; i < sizeA && A[i] != INVALID_POS_VALUE; i++) { | |||
A[i] = P - A[i]; | |||
} | |||
for (i -= 1; j < i; j++, i--) { | |||
t = A[j]; | |||
A[j] = A[i]; | |||
A[i] = t; | |||
} | |||
} | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_mul_sparse(size_t sizeR, POSITION_T Res[], | |||
size_t sizeA, const POSITION_T A[], | |||
size_t sizeB, const POSITION_T B[]) { | |||
/* compute all the coefficients, filling invalid positions with P*/ | |||
size_t lastFilledPos = 0; | |||
for (size_t i = 0 ; i < sizeA ; i++) { | |||
for (size_t j = 0 ; j < sizeB ; j++) { | |||
uint32_t prod = A[i] + B[j]; | |||
prod = ( (prod >= P) ? prod - P : prod); | |||
if ((A[i] != INVALID_POS_VALUE) && | |||
(B[j] != INVALID_POS_VALUE)) { | |||
Res[lastFilledPos] = prod; | |||
} else { | |||
Res[lastFilledPos] = INVALID_POS_VALUE; | |||
} | |||
lastFilledPos++; | |||
} | |||
} | |||
while (lastFilledPos < sizeR) { | |||
Res[lastFilledPos] = INVALID_POS_VALUE; | |||
lastFilledPos++; | |||
} | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_quicksort_sparse(Res); | |||
/* eliminate duplicates */ | |||
POSITION_T lastReadPos = Res[0]; | |||
int duplicateCount; | |||
size_t write_idx = 0; | |||
size_t read_idx = 0; | |||
while (read_idx < sizeR && Res[read_idx] != INVALID_POS_VALUE) { | |||
lastReadPos = Res[read_idx]; | |||
read_idx++; | |||
duplicateCount = 1; | |||
while ( (Res[read_idx] == lastReadPos) && (Res[read_idx] != INVALID_POS_VALUE)) { | |||
read_idx++; | |||
duplicateCount++; | |||
} | |||
if (duplicateCount % 2) { | |||
Res[write_idx] = lastReadPos; | |||
write_idx++; | |||
} | |||
} | |||
/* fill remaining cells with INVALID_POS_VALUE */ | |||
for (; write_idx < sizeR; write_idx++) { | |||
Res[write_idx] = INVALID_POS_VALUE; | |||
} | |||
} | |||
/* the implementation is safe even in case A or B alias with the result | |||
* PRE: A and B should be sorted, disjunct arrays ending with INVALID_POS_VALUE */ | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_add_sparse( | |||
int sizeR, POSITION_T Res[], | |||
int sizeA, const POSITION_T A[], | |||
int sizeB, const POSITION_T B[]) { | |||
POSITION_T tmpRes[DV * M]; | |||
int idxA = 0, idxB = 0, idxR = 0; | |||
while ( idxA < sizeA && | |||
idxB < sizeB && | |||
A[idxA] != INVALID_POS_VALUE && | |||
B[idxB] != INVALID_POS_VALUE ) { | |||
if (A[idxA] == B[idxB]) { | |||
idxA++; | |||
idxB++; | |||
} else { | |||
if (A[idxA] < B[idxB]) { | |||
tmpRes[idxR] = A[idxA]; | |||
idxA++; | |||
} else { | |||
tmpRes[idxR] = B[idxB]; | |||
idxB++; | |||
} | |||
idxR++; | |||
} | |||
} | |||
while (idxA < sizeA && A[idxA] != INVALID_POS_VALUE) { | |||
tmpRes[idxR] = A[idxA]; | |||
idxA++; | |||
idxR++; | |||
} | |||
while (idxB < sizeB && B[idxB] != INVALID_POS_VALUE) { | |||
tmpRes[idxR] = B[idxB]; | |||
idxB++; | |||
idxR++; | |||
} | |||
while (idxR < sizeR) { | |||
tmpRes[idxR] = INVALID_POS_VALUE; | |||
idxR++; | |||
} | |||
memcpy(Res, tmpRes, sizeof(POSITION_T)*sizeR); | |||
} | |||
/* Return a uniform random value in the range 0..n-1 inclusive, | |||
* applying a rejection sampling strategy and exploiting as a random source | |||
* the NIST seedexpander seeded with the proper key. | |||
* Assumes that the maximum value for the range n is 2^32-1 | |||
*/ | |||
static uint32_t rand_range(const unsigned int n, const int logn, AES_XOF_struct *seed_expander_ctx) { | |||
unsigned long required_rnd_bytes = (logn + 7) / 8; | |||
unsigned char rnd_char_buffer[4]; | |||
uint32_t rnd_value; | |||
uint32_t mask = ( (uint32_t)1 << logn) - 1; | |||
do { | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_seedexpander(seed_expander_ctx, rnd_char_buffer, required_rnd_bytes); | |||
/* obtain an endianness independent representation of the generated random | |||
bytes into an unsigned integer */ | |||
rnd_value = ((uint32_t)rnd_char_buffer[3] << 24) + | |||
((uint32_t)rnd_char_buffer[2] << 16) + | |||
((uint32_t)rnd_char_buffer[1] << 8) + | |||
((uint32_t)rnd_char_buffer[0] << 0) ; | |||
rnd_value = mask & rnd_value; | |||
} while (rnd_value >= n); | |||
return rnd_value; | |||
} | |||
/* Obtains fresh randomness and seed-expands it until all the required positions | |||
* for the '1's in the circulant block are obtained */ | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_rand_circulant_sparse_block(POSITION_T *pos_ones, | |||
int countOnes, | |||
AES_XOF_struct *seed_expander_ctx) { | |||
int duplicated, placedOnes = 0; | |||
uint32_t p; | |||
while (placedOnes < countOnes) { | |||
p = rand_range(NUM_BITS_GF2X_ELEMENT, | |||
P_BITS, | |||
seed_expander_ctx); | |||
duplicated = 0; | |||
for (int j = 0; j < placedOnes; j++) { | |||
if (pos_ones[j] == p) { | |||
duplicated = 1; | |||
} | |||
} | |||
if (duplicated == 0) { | |||
pos_ones[placedOnes] = p; | |||
placedOnes++; | |||
} | |||
} | |||
} | |||
/* Returns random weight-t circulant block */ | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_rand_circulant_blocks_sequence( | |||
DIGIT sequence[N0 * NUM_DIGITS_GF2X_ELEMENT], | |||
AES_XOF_struct *seed_expander_ctx) { | |||
int rndPos[NUM_ERRORS_T], duplicated, counter = 0; | |||
int p, polyIndex, exponent; | |||
memset(sequence, 0x00, N0 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B); | |||
while (counter < NUM_ERRORS_T) { | |||
p = rand_range(N0 * NUM_BITS_GF2X_ELEMENT, P_BITS, | |||
seed_expander_ctx); | |||
duplicated = 0; | |||
for (int j = 0; j < counter; j++) { | |||
if (rndPos[j] == p) { | |||
duplicated = 1; | |||
} | |||
} | |||
if (duplicated == 0) { | |||
rndPos[counter] = p; | |||
counter++; | |||
} | |||
} | |||
for (int j = 0; j < counter; j++) { | |||
polyIndex = rndPos[j] / P; | |||
exponent = rndPos[j] % P; | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_set_coeff( sequence + NUM_DIGITS_GF2X_ELEMENT * polyIndex, exponent, | |||
( (DIGIT) 1)); | |||
} | |||
} | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_tobytes(uint8_t *bytes, const DIGIT *poly) { | |||
size_t i, j; | |||
for (i = 0; i < NUM_DIGITS_GF2X_ELEMENT; i++) { | |||
for (j = 0; j < DIGIT_SIZE_B; j++) { | |||
bytes[i * DIGIT_SIZE_B + j] = (uint8_t) (poly[i] >> 8 * j); | |||
} | |||
} | |||
} | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_frombytes(DIGIT *poly, const uint8_t *poly_bytes) { | |||
size_t i, j; | |||
for (i = 0; i < NUM_DIGITS_GF2X_ELEMENT; i++) { | |||
poly[i] = (DIGIT) 0; | |||
for (j = 0; j < DIGIT_SIZE_B; j++) { | |||
poly[i] |= (DIGIT) poly_bytes[i * DIGIT_SIZE_B + j] << 8 * j; | |||
} | |||
} | |||
} |
@@ -0,0 +1,38 @@ | |||
#ifndef GF2X_ARITH_MOD_XPLUSONE_H | |||
#define GF2X_ARITH_MOD_XPLUSONE_H | |||
#include "qc_ldpc_parameters.h" | |||
#include "gf2x_arith.h" | |||
#include "rng.h" | |||
#define NUM_BITS_GF2X_ELEMENT (P) // 96221 | |||
#define NUM_DIGITS_GF2X_ELEMENT ((P+DIGIT_SIZE_b-1)/DIGIT_SIZE_b) | |||
#define MSb_POSITION_IN_MSB_DIGIT_OF_ELEMENT ((P % DIGIT_SIZE_b) ? (P % DIGIT_SIZE_b)-1 : DIGIT_SIZE_b-1) | |||
#define NUM_BITS_GF2X_MODULUS (P+1) | |||
#define NUM_DIGITS_GF2X_MODULUS ((P+1+DIGIT_SIZE_b-1)/DIGIT_SIZE_b) | |||
#define MSb_POSITION_IN_MSB_DIGIT_OF_MODULUS (P-DIGIT_SIZE_b*(NUM_DIGITS_GF2X_MODULUS-1)) | |||
#define INVALID_POS_VALUE (P) | |||
#define P_BITS (17) // log_2(p) = 16.55406417 | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_copy(DIGIT dest[], const DIGIT in[]); | |||
DIGIT PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_get_coeff(const DIGIT poly[], unsigned int exponent); | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_set_coeff(DIGIT poly[], unsigned int exponent, DIGIT value); | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_toggle_coeff(DIGIT poly[], unsigned int exponent); | |||
int PQCLEAN_LEDAKEMLT32_LEAKTIME_population_count(DIGIT *poly); | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_add(DIGIT Res[], const DIGIT A[], const DIGIT B[]); | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_quicksort_sparse(POSITION_T Res[]); | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_mul(DIGIT Res[], const DIGIT A[], const DIGIT B[]); | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_transpose_in_place(DIGIT A[]); | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_rand_circulant_sparse_block(POSITION_T *pos_ones, int countOnes, AES_XOF_struct *seed_expander_ctx); | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_rand_circulant_blocks_sequence(DIGIT *sequence, AES_XOF_struct *seed_expander_ctx); | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_add_sparse(int sizeR, POSITION_T Res[], int sizeA, const POSITION_T A[], int sizeB, const POSITION_T B[]); | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_transpose_in_place_sparse(int sizeA, POSITION_T A[]); | |||
int PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_inverse(DIGIT out[], const DIGIT in[]); | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_mul_sparse(size_t sizeR, POSITION_T Res[], size_t sizeA, const POSITION_T A[], size_t sizeB, const POSITION_T B[]); | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_mul_dense_to_sparse(DIGIT Res[], const DIGIT dense[], POSITION_T sparse[], unsigned int nPos); | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_tobytes(uint8_t *bytes, const DIGIT *poly); | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_frombytes(DIGIT *poly, const uint8_t *poly_bytes); | |||
#endif |
@@ -0,0 +1,92 @@ | |||
#include "api.h" | |||
#include "niederreiter.h" | |||
#include "randombytes.h" | |||
#include "rng.h" | |||
#include <string.h> | |||
static void pack_pk(uint8_t *pk_bytes, publicKeyNiederreiter_t *pk) { | |||
size_t i; | |||
for (i = 0; i < N0 - 1; i++) { | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_tobytes(pk_bytes + i * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B, | |||
pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT); | |||
} | |||
} | |||
static void unpack_pk(publicKeyNiederreiter_t *pk, const uint8_t *pk_bytes) { | |||
size_t i; | |||
for (i = 0; i < N0 - 1; i++) { | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_frombytes(pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT, | |||
pk_bytes + i * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B); | |||
} | |||
} | |||
static void pack_ct(uint8_t *sk_bytes, DIGIT *ct) { | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_tobytes(sk_bytes, ct); | |||
} | |||
static void unpack_ct(DIGIT *ct, const uint8_t *ct_bytes) { | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_frombytes(ct, ct_bytes); | |||
} | |||
static void pack_error(uint8_t *error_bytes, DIGIT *error_digits) { | |||
size_t i; | |||
for (i = 0; i < N0; i++) { | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_tobytes(error_bytes + i * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B, | |||
error_digits + i * NUM_DIGITS_GF2X_ELEMENT); | |||
} | |||
} | |||
/* Generates a keypair - pk is the public key and sk is the secret key. */ | |||
int PQCLEAN_LEDAKEMLT32_LEAKTIME_crypto_kem_keypair(unsigned char *pk, unsigned char *sk) { | |||
AES_XOF_struct niederreiter_keys_expander; | |||
publicKeyNiederreiter_t pk_nie; | |||
randombytes(((privateKeyNiederreiter_t *)sk)->prng_seed, TRNG_BYTE_LENGTH); | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_seedexpander_from_trng(&niederreiter_keys_expander, ((privateKeyNiederreiter_t *)sk)->prng_seed); | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_niederreiter_keygen(&pk_nie, (privateKeyNiederreiter_t *) sk, &niederreiter_keys_expander); | |||
pack_pk(pk, &pk_nie); | |||
return 0; | |||
} | |||
/* Encrypt - pk is the public key, ct is a key encapsulation message | |||
(ciphertext), ss is the shared secret.*/ | |||
int PQCLEAN_LEDAKEMLT32_LEAKTIME_crypto_kem_enc(unsigned char *ct, unsigned char *ss, const unsigned char *pk) { | |||
AES_XOF_struct niederreiter_encap_key_expander; | |||
unsigned char encapsulated_key_seed[TRNG_BYTE_LENGTH]; | |||
DIGIT error_vector[N0 * NUM_DIGITS_GF2X_ELEMENT]; | |||
uint8_t error_bytes[N0 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B]; | |||
DIGIT syndrome[NUM_DIGITS_GF2X_ELEMENT]; | |||
publicKeyNiederreiter_t pk_nie; | |||
randombytes(encapsulated_key_seed, TRNG_BYTE_LENGTH); | |||
unpack_pk(&pk_nie, pk); | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_seedexpander_from_trng(&niederreiter_encap_key_expander, encapsulated_key_seed); | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_rand_circulant_blocks_sequence(error_vector, &niederreiter_encap_key_expander); | |||
pack_error(error_bytes, error_vector); | |||
HASH_FUNCTION(ss, error_bytes, (N0 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B)); | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_niederreiter_encrypt(syndrome, &pk_nie, error_vector); | |||
pack_ct(ct, syndrome); | |||
return 0; | |||
} | |||
/* Decrypt - ct is a key encapsulation message (ciphertext), sk is the private | |||
key, ss is the shared secret */ | |||
int PQCLEAN_LEDAKEMLT32_LEAKTIME_crypto_kem_dec(unsigned char *ss, const unsigned char *ct, const unsigned char *sk) { | |||
DIGIT decoded_error_vector[N0 * NUM_DIGITS_GF2X_ELEMENT]; | |||
uint8_t decoded_error_bytes[N0 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B]; | |||
DIGIT syndrome[NUM_DIGITS_GF2X_ELEMENT]; | |||
unpack_ct(syndrome, ct); | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_niederreiter_decrypt(decoded_error_vector, (privateKeyNiederreiter_t *)sk, syndrome); | |||
pack_error(decoded_error_bytes, decoded_error_vector); | |||
HASH_FUNCTION(ss, decoded_error_bytes, (N0 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B)); | |||
return 0; | |||
} |
@@ -0,0 +1,192 @@ | |||
#include "H_Q_matrices_generation.h" | |||
#include "bf_decoding.h" | |||
#include "dfr_test.h" | |||
#include "gf2x_arith_mod_xPplusOne.h" | |||
#include "niederreiter.h" | |||
#include "qc_ldpc_parameters.h" | |||
#include "rng.h" | |||
#include <string.h> | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_niederreiter_keygen(publicKeyNiederreiter_t *pk, privateKeyNiederreiter_t *sk, AES_XOF_struct *keys_expander) { | |||
POSITION_T HPosOnes[N0][DV]; // sequence of N0 circ block matrices (p x p): Hi | |||
POSITION_T HtrPosOnes[N0][DV]; // Sparse tranposed circulant H | |||
POSITION_T QPosOnes[N0][M]; // Sparse Q, Each row contains the position of the ones of all the blocks of a row of Q as exponent+P*block_position | |||
POSITION_T LPosOnes[N0][DV * M]; | |||
POSITION_T auxPosOnes[DV * M]; | |||
unsigned char processedQOnes[N0]; | |||
DIGIT Ln0dense[NUM_DIGITS_GF2X_ELEMENT]; | |||
DIGIT Ln0Inv[NUM_DIGITS_GF2X_ELEMENT]; | |||
int is_L_full = 0; | |||
uint8_t threshold = (DV * M) / 2 + 1; // threshold for round 2 | |||
sk->rejections = (int8_t) 0; | |||
do { | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_generateHPosOnes_HtrPosOnes(HPosOnes, HtrPosOnes, keys_expander); | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_generateQsparse(QPosOnes, keys_expander); | |||
for (int i = 0; i < N0; i++) { | |||
for (int j = 0; j < DV * M; j++) { | |||
LPosOnes[i][j] = INVALID_POS_VALUE; | |||
} | |||
} | |||
memset(processedQOnes, 0x00, sizeof(processedQOnes)); | |||
for (int colQ = 0; colQ < N0; colQ++) { | |||
for (int i = 0; i < N0; i++) { | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_mul_sparse(DV * M, auxPosOnes, | |||
DV, HPosOnes[i], | |||
qBlockWeights[i][colQ], QPosOnes[i] + processedQOnes[i]); | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_add_sparse(DV * M, LPosOnes[colQ], | |||
DV * M, LPosOnes[colQ], | |||
DV * M, auxPosOnes); | |||
processedQOnes[i] += qBlockWeights[i][colQ]; | |||
} | |||
} | |||
is_L_full = 1; | |||
for (int i = 0; i < N0; i++) { | |||
is_L_full = is_L_full && (LPosOnes[i][DV * M - 1] != INVALID_POS_VALUE); | |||
} | |||
sk->rejections = sk->rejections + 1; | |||
if (is_L_full) { | |||
threshold = PQCLEAN_LEDAKEMLT32_LEAKTIME_DFR_test(LPosOnes); | |||
} | |||
} while (!is_L_full || threshold == DFR_TEST_FAIL); | |||
sk->rejections = sk->rejections - 1; | |||
sk->threshold = threshold; | |||
memset(Ln0dense, 0x00, sizeof(Ln0dense)); | |||
for (int j = 0; j < DV * M; j++) { | |||
if (LPosOnes[N0 - 1][j] != INVALID_POS_VALUE) { | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_set_coeff(Ln0dense, LPosOnes[N0 - 1][j], 1); | |||
} | |||
} | |||
memset(Ln0Inv, 0x00, sizeof(Ln0Inv)); | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_inverse(Ln0Inv, Ln0dense); | |||
for (int i = 0; i < N0 - 1; i++) { | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_mul_dense_to_sparse(pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT, | |||
Ln0Inv, | |||
LPosOnes[i], | |||
DV * M); | |||
} | |||
for (int i = 0; i < N0 - 1; i++) { | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_transpose_in_place(pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT); | |||
} | |||
} | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_niederreiter_encrypt(DIGIT *syndrome, const publicKeyNiederreiter_t *pk, const DIGIT *err) { | |||
int i; | |||
DIGIT saux[NUM_DIGITS_GF2X_ELEMENT]; | |||
memset(syndrome, 0x00, NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B); | |||
for (i = 0; i < N0 - 1; i++) { | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_mul(saux, | |||
pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT, | |||
err + i * NUM_DIGITS_GF2X_ELEMENT); | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_add(syndrome, syndrome, saux); | |||
} | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_add(syndrome, syndrome, err + (N0 - 1)*NUM_DIGITS_GF2X_ELEMENT); | |||
} | |||
int PQCLEAN_LEDAKEMLT32_LEAKTIME_niederreiter_decrypt(DIGIT *err, const privateKeyNiederreiter_t *sk, const DIGIT *syndrome) { | |||
AES_XOF_struct niederreiter_decrypt_expander; | |||
POSITION_T HPosOnes[N0][DV]; | |||
POSITION_T HtrPosOnes[N0][DV]; | |||
POSITION_T QPosOnes[N0][M]; | |||
POSITION_T QtrPosOnes[N0][M]; | |||
POSITION_T auxPosOnes[DV * M]; | |||
POSITION_T LPosOnes[N0][DV * M]; | |||
POSITION_T auxSparse[DV * M]; | |||
POSITION_T Ln0trSparse[DV * M]; | |||
unsigned char processedQOnes[N0]; | |||
unsigned transposed_ones_idx[N0]; | |||
DIGIT privateSyndrome[NUM_DIGITS_GF2X_ELEMENT]; | |||
DIGIT mockup_error_vector[N0 * NUM_DIGITS_GF2X_ELEMENT]; | |||
int rejections = sk->rejections; | |||
int currQoneIdx, endQblockIdx; | |||
int decryptOk, err_weight; | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_seedexpander_from_trng(&niederreiter_decrypt_expander, sk->prng_seed); | |||
do { | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_generateHPosOnes_HtrPosOnes(HPosOnes, HtrPosOnes, &niederreiter_decrypt_expander); | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_generateQsparse(QPosOnes, &niederreiter_decrypt_expander); | |||
for (int i = 0; i < N0; i++) { | |||
for (int j = 0; j < DV * M; j++) { | |||
LPosOnes[i][j] = INVALID_POS_VALUE; | |||
} | |||
} | |||
memset(processedQOnes, 0x00, sizeof(processedQOnes)); | |||
for (int colQ = 0; colQ < N0; colQ++) { | |||
for (int i = 0; i < N0; i++) { | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_mul_sparse(DV * M, auxPosOnes, | |||
DV, HPosOnes[i], | |||
qBlockWeights[i][colQ], QPosOnes[i] + processedQOnes[i]); | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_add_sparse(DV * M, LPosOnes[colQ], | |||
DV * M, LPosOnes[colQ], | |||
DV * M, auxPosOnes); | |||
processedQOnes[i] += qBlockWeights[i][colQ]; | |||
} | |||
} | |||
rejections--; | |||
} while (rejections >= 0); | |||
memset(transposed_ones_idx, 0x00, sizeof(transposed_ones_idx)); | |||
for (unsigned source_row_idx = 0; source_row_idx < N0 ; source_row_idx++) { | |||
currQoneIdx = 0; // position in the column of QtrPosOnes[][...] | |||
endQblockIdx = 0; | |||
for (int blockIdx = 0; blockIdx < N0; blockIdx++) { | |||
endQblockIdx += qBlockWeights[source_row_idx][blockIdx]; | |||
for (; currQoneIdx < endQblockIdx; currQoneIdx++) { | |||
QtrPosOnes[blockIdx][transposed_ones_idx[blockIdx]] = (P - | |||
QPosOnes[source_row_idx][currQoneIdx]) % P; | |||
transposed_ones_idx[blockIdx]++; | |||
} | |||
} | |||
} | |||
for (int i = 0; i < DV * M; i++) { | |||
Ln0trSparse[i] = INVALID_POS_VALUE; | |||
auxSparse[i] = INVALID_POS_VALUE; | |||
} | |||
for (int i = 0; i < N0; i++) { | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_mul_sparse(DV * M, auxSparse, | |||
DV, HPosOnes[i], | |||
qBlockWeights[i][N0 - 1], &QPosOnes[i][ M - qBlockWeights[i][N0 - 1]]); | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_add_sparse(DV * M, Ln0trSparse, | |||
DV * M, Ln0trSparse, | |||
DV * M, auxSparse); | |||
} | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_transpose_in_place_sparse(DV * M, Ln0trSparse); | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_mul_dense_to_sparse(privateSyndrome, syndrome, Ln0trSparse, DV * M); | |||
/* prepare mockup error vector in case a decoding failure occurs */ | |||
memset(mockup_error_vector, 0x00, N0 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B); | |||
memcpy(mockup_error_vector, syndrome, NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B); | |||
PQCLEAN_LEDAKEMLT32_LEAKTIME_seedexpander(&niederreiter_decrypt_expander, | |||
((unsigned char *) mockup_error_vector) + (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B), | |||
TRNG_BYTE_LENGTH); | |||
memset(err, 0x00, N0 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B); | |||
decryptOk = PQCLEAN_LEDAKEMLT32_LEAKTIME_bf_decoding(err, (const POSITION_T (*)[DV]) HtrPosOnes, | |||
(const POSITION_T (*)[M]) QtrPosOnes, privateSyndrome, sk->threshold); | |||
err_weight = 0; | |||
for (int i = 0 ; i < N0; i++) { | |||
err_weight += PQCLEAN_LEDAKEMLT32_LEAKTIME_population_count(err + (NUM_DIGITS_GF2X_ELEMENT * i)); | |||
} | |||
decryptOk = decryptOk && (err_weight == NUM_ERRORS_T); | |||
if (!decryptOk) { // TODO: not constant time, replace with cmov? | |||
memcpy(err, mockup_error_vector, N0 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B); | |||
} | |||
return decryptOk; | |||
} |
@@ -0,0 +1,29 @@ | |||
#ifndef NIEDERREITER_H | |||
#define NIEDERREITER_H | |||
#include "gf2x_arith_mod_xPplusOne.h" | |||
#include "qc_ldpc_parameters.h" | |||
#include "rng.h" | |||
typedef struct { | |||
/* raw entropy extracted from TRNG, will be deterministically expanded into | |||
* H and Q during decryption */ | |||
unsigned char prng_seed[TRNG_BYTE_LENGTH]; | |||
int8_t rejections; | |||
uint8_t threshold; // for round 2 | |||
} privateKeyNiederreiter_t; | |||
typedef struct { | |||
DIGIT Mtr[(N0 - 1)*NUM_DIGITS_GF2X_ELEMENT]; | |||
// Dense representation of the matrix M=Ln0*L, | |||
// An array including a sequence of (N0-1) gf2x elements; | |||
// each gf2x element is stored as a binary polynomial(mod x^P+1) | |||
// with P coefficients. | |||
} publicKeyNiederreiter_t; | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_niederreiter_keygen(publicKeyNiederreiter_t *pk, privateKeyNiederreiter_t *sk, AES_XOF_struct *keys_expander); | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_niederreiter_encrypt(DIGIT syndrome[], const publicKeyNiederreiter_t *pk, const DIGIT *err); | |||
int PQCLEAN_LEDAKEMLT32_LEAKTIME_niederreiter_decrypt(DIGIT *err, const privateKeyNiederreiter_t *sk, const DIGIT *syndrome); | |||
#endif |
@@ -0,0 +1,27 @@ | |||
#ifndef QC_LDPC_PARAMETERS_H | |||
#define QC_LDPC_PARAMETERS_H | |||
#include "fips202.h" | |||
#define TRNG_BYTE_LENGTH (32) | |||
#define HASH_BYTE_LENGTH (48) | |||
#define HASH_FUNCTION sha3_384 | |||
#define N0 (2) | |||
#define P (96221) // modulus(x) = x^P-1 | |||
#define DV (11) // odd number | |||
#define M (11) | |||
#define M0 (6) | |||
#define M1 (5) | |||
#define NUM_ERRORS_T (199) | |||
// Derived parameters, they are useful for QC-LDPC algorithms | |||
#define HASH_BIT_LENGTH (HASH_BYTE_LENGTH << 3) | |||
#define K ((N0-1)*P) | |||
#define N (N0*P) | |||
#define DC (N0*DV) | |||
#define Q_BLOCK_WEIGHTS {{M0,M1},{M1,M0}} | |||
static const unsigned char qBlockWeights[N0][N0] = Q_BLOCK_WEIGHTS; | |||
#endif |
@@ -0,0 +1,108 @@ | |||
#include "rng.h" | |||
#include <string.h> // void *memset(void *s, int c, size_t n); | |||
#include "aes.h" | |||
#include "qc_ldpc_parameters.h" | |||
/* | |||
seedexpander_init() | |||
ctx - stores the current state of an instance of the seed expander | |||
seed - a 32 byte random value | |||
diversifier - an 8 byte diversifier | |||
maxlen - maximum number of bytes (less than 2**32) generated under this seed and diversifier | |||
*/ | |||
static void seedexpander_init(AES_XOF_struct *ctx, | |||
unsigned char *seed, | |||
unsigned char *diversifier, | |||
size_t maxlen) { | |||
ctx->length_remaining = maxlen; | |||
memset(ctx->key, 0, 32); | |||
int max_accessible_seed_len = TRNG_BYTE_LENGTH < 32 ? 32 : TRNG_BYTE_LENGTH; | |||
memcpy(ctx->key, seed, max_accessible_seed_len); | |||
memcpy(ctx->ctr, diversifier, 8); | |||
ctx->ctr[11] = maxlen % 256; | |||
maxlen >>= 8; | |||
ctx->ctr[10] = maxlen % 256; | |||
maxlen >>= 8; | |||
ctx->ctr[9] = maxlen % 256; | |||
maxlen >>= 8; | |||
ctx->ctr[8] = maxlen % 256; | |||
memset(ctx->ctr + 12, 0x00, 4); | |||
ctx->buffer_pos = 16; | |||
memset(ctx->buffer, 0x00, 16); | |||
} | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_seedexpander_from_trng(AES_XOF_struct *ctx, | |||
const unsigned char *trng_entropy | |||
/* TRNG_BYTE_LENGTH wide buffer */) { | |||
/*the NIST seedexpander will however access 32B from this buffer */ | |||
unsigned int prng_buffer_size = TRNG_BYTE_LENGTH < 32 ? 32 : TRNG_BYTE_LENGTH; | |||
unsigned char prng_buffer[TRNG_BYTE_LENGTH < 32 ? 32 : TRNG_BYTE_LENGTH] = { 0x00 }; | |||
unsigned char diversifier[8] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}; | |||
memcpy(prng_buffer, | |||
trng_entropy, | |||
TRNG_BYTE_LENGTH < prng_buffer_size ? TRNG_BYTE_LENGTH : prng_buffer_size); | |||
/* the required seed expansion will be quite small, set the max number of | |||
* bytes conservatively to 10 MiB*/ | |||
seedexpander_init(ctx, prng_buffer, diversifier, RNG_MAXLEN); | |||
} | |||
/* | |||
seedexpander() | |||
ctx - stores the current state of an instance of the seed expander | |||
x - returns the XOF data | |||
xlen - number of bytes to return | |||
*/ | |||
int PQCLEAN_LEDAKEMLT32_LEAKTIME_seedexpander(AES_XOF_struct *ctx, unsigned char *x, size_t xlen) { | |||
size_t offset; | |||
aes256ctx ctx256; | |||
if ( x == NULL ) { | |||
return RNG_BAD_OUTBUF; | |||
} | |||
if ( xlen >= ctx->length_remaining ) { | |||
return RNG_BAD_REQ_LEN; | |||
} | |||
aes256_keyexp(&ctx256, ctx->key); | |||
ctx->length_remaining -= xlen; | |||
offset = 0; | |||
while ( xlen > 0 ) { | |||
if ( xlen <= (16 - ctx->buffer_pos) ) { // buffer has what we need | |||
memcpy(x + offset, ctx->buffer + ctx->buffer_pos, xlen); | |||
ctx->buffer_pos += xlen; | |||
return RNG_SUCCESS; | |||
} | |||
// take what's in the buffer | |||
memcpy(x + offset, ctx->buffer + ctx->buffer_pos, 16 - ctx->buffer_pos); | |||
xlen -= 16 - ctx->buffer_pos; | |||
offset += 16 - ctx->buffer_pos; | |||
aes256_ecb(ctx->buffer, ctx->ctr, 16 / AES_BLOCKBYTES, &ctx256); | |||
ctx->buffer_pos = 0; | |||
//increment the counter | |||
for (int i = 15; i >= 12; i--) { | |||
if ( ctx->ctr[i] == 0xff ) { | |||
ctx->ctr[i] = 0x00; | |||
} else { | |||
ctx->ctr[i]++; | |||
break; | |||
} | |||
} | |||
} | |||
return RNG_SUCCESS; | |||
} |
@@ -0,0 +1,24 @@ | |||
#ifndef RNG_H | |||
#define RNG_H | |||
#include <stddef.h> | |||
#include <stdint.h> | |||
#define RNG_SUCCESS ( 0) | |||
#define RNG_BAD_MAXLEN (-1) | |||
#define RNG_BAD_OUTBUF (-2) | |||
#define RNG_BAD_REQ_LEN (-3) | |||
#define RNG_MAXLEN (10 * 1024 * 1024) | |||
typedef struct { | |||
unsigned char buffer[16]; | |||
size_t buffer_pos; | |||
size_t length_remaining; | |||
unsigned char key[32]; | |||
unsigned char ctr[16]; | |||
} AES_XOF_struct; | |||
int PQCLEAN_LEDAKEMLT32_LEAKTIME_seedexpander(AES_XOF_struct *ctx, unsigned char *x, size_t xlen); | |||
void PQCLEAN_LEDAKEMLT32_LEAKTIME_seedexpander_from_trng(AES_XOF_struct *ctx, const unsigned char *trng_entropy); | |||
#endif |
@@ -0,0 +1,18 @@ | |||
name: LEDAcryptKEMLT52 | |||
type: kem | |||
claimed-nist-level: 5 | |||
claimed-security: IND-CCA2 | |||
length-public-key: 19040 | |||
length-secret-key: 42 | |||
length-ciphertext: 19040 | |||
length-shared-secret: 64 | |||
nistkat-sha256: 9cd9299d20a1c8c242730d3795683a9e87c6bcd0e691dc1fd54cd6a418266c36 | |||
principal-submitter: Marco Baldi | |||
auxiliary-submitters: | |||
- Alessandro Barenghi | |||
- Franco Chiaraluce | |||
- Gerardo Pelosi | |||
- Paolo Santini | |||
implementations: | |||
- name: leaktime | |||
version: 2.? |
@@ -0,0 +1,32 @@ | |||
#include "H_Q_matrices_generation.h" | |||
#include "gf2x_arith_mod_xPplusOne.h" | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_generateHPosOnes_HtrPosOnes( | |||
POSITION_T HPosOnes[N0][DV], | |||
POSITION_T HtrPosOnes[N0][DV], | |||
AES_XOF_struct *keys_expander) { | |||
for (int i = 0; i < N0; i++) { | |||
/* Generate a random block of Htr */ | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_rand_circulant_sparse_block(&HtrPosOnes[i][0], DV, keys_expander); | |||
} | |||
for (int i = 0; i < N0; i++) { | |||
/* Obtain directly the sparse representation of the block of H */ | |||
for (int k = 0; k < DV; k++) { | |||
HPosOnes[i][k] = (P - HtrPosOnes[i][k]) % P; /* transposes indexes */ | |||
} | |||
} | |||
} | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_generateQsparse( | |||
POSITION_T pos_ones[N0][M], | |||
AES_XOF_struct *keys_expander) { | |||
for (int i = 0; i < N0; i++) { | |||
int placed_ones = 0; | |||
for (int j = 0; j < N0; j++) { | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_rand_circulant_sparse_block(&pos_ones[i][placed_ones], | |||
qBlockWeights[i][j], | |||
keys_expander); | |||
placed_ones += qBlockWeights[i][j]; | |||
} | |||
} | |||
} |
@@ -0,0 +1,11 @@ | |||
#ifndef H_Q_MATRICES_GENERATION_H | |||
#define H_Q_MATRICES_GENERATION_H | |||
#include "gf2x_arith.h" | |||
#include "qc_ldpc_parameters.h" | |||
#include "rng.h" | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_generateHPosOnes_HtrPosOnes(POSITION_T HPosOnes[N0][DV], POSITION_T HtrPosOnes[N0][DV], AES_XOF_struct *niederreiter_keys_expander); | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_generateQsparse(POSITION_T pos_ones[N0][M], AES_XOF_struct *niederreiter_keys_expander); | |||
#endif |
@@ -0,0 +1,31 @@ | |||
/** | |||
* | |||
* LEDAcryptKEM | |||
* | |||
* @version 2.0 (March 2019) | |||
* | |||
* Adapted code from reference ISO-C11 Implementation of the LEDAcrypt KEM-LT cipher. | |||
* | |||
* In alphabetical order: | |||
* | |||
* @author Marco Baldi <m.baldi@univpm.it> | |||
* @author Alessandro Barenghi <alessandro.barenghi@polimi.it> | |||
* @author Franco Chiaraluce <f.chiaraluce@univpm.it> | |||
* @author Gerardo Pelosi <gerardo.pelosi@polimi.it> | |||
* @author Paolo Santini <p.santini@pm.univpm.it> | |||
* | |||
* This code is hereby placed in the public domain. | |||
* | |||
* THIS SOFTWARE IS PROVIDED BY THE AUTHORS ''AS IS'' AND ANY EXPRESS | |||
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED | |||
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |||
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE | |||
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | |||
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | |||
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR | |||
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, | |||
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE | |||
* OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, | |||
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |||
* | |||
**/ |
@@ -0,0 +1,24 @@ | |||
# This Makefile can be used with GNU Make or BSD Make | |||
LIB=libledakemlt52_leaktime.a | |||
HEADERS=api.h bf_decoding.h dfr_test.h gf2x_arith_mod_xPplusOne.h \ | |||
gf2x_arith.h H_Q_matrices_generation.h \ | |||
niederreiter.h qc_ldpc_parameters.h rng.h | |||
OBJECTS=bf_decoding.o dfr_test.o gf2x_arith_mod_xPplusOne.o \ | |||
gf2x_arith.o H_Q_matrices_generation.o kem.o niederreiter.o rng.o | |||
CFLAGS=-O3 -Wall -Werror -Wextra -Wvla -Wpedantic -Wmissing-prototypes -std=c99 \ | |||
-I../../../common $(EXTRAFLAGS) | |||
all: $(LIB) | |||
%.o: %.c $(HEADERS) | |||
$(CC) $(CFLAGS) -c -o $@ $< | |||
$(LIB): $(OBJECTS) | |||
$(AR) -r $@ $(OBJECTS) | |||
clean: | |||
$(RM) $(OBJECTS) | |||
$(RM) $(LIB) |
@@ -0,0 +1,19 @@ | |||
# This Makefile can be used with Microsoft Visual Studio's nmake using the command: | |||
# nmake /f Makefile.Microsoft_nmake | |||
LIBRARY=libledakemlt52_leaktime.lib | |||
OBJECTS=bf_decoding.obj dfr_test.obj gf2x_arith_mod_xPplusOne.obj gf2x_arith.obj H_Q_matrices_generation.obj kem.obj niederreiter.obj rng.obj | |||
CFLAGS=/nologo /I ..\..\..\common /W4 /WX | |||
all: $(LIBRARY) | |||
# Make sure objects are recompiled if headers change. | |||
$(OBJECTS): *.h | |||
$(LIBRARY): $(OBJECTS) | |||
LIB.EXE /NOLOGO /WX /OUT:$@ $** | |||
clean: | |||
-DEL $(OBJECTS) | |||
-DEL $(LIBRARY) |
@@ -0,0 +1,18 @@ | |||
#ifndef PQCLEAN_LEDAKEMLT52_LEAKTIME_API_H | |||
#define PQCLEAN_LEDAKEMLT52_LEAKTIME_API_H | |||
#include <stdint.h> | |||
#define PQCLEAN_LEDAKEMLT52_LEAKTIME_CRYPTO_SECRETKEYBYTES 42 | |||
#define PQCLEAN_LEDAKEMLT52_LEAKTIME_CRYPTO_PUBLICKEYBYTES 19040 | |||
#define PQCLEAN_LEDAKEMLT52_LEAKTIME_CRYPTO_CIPHERTEXTBYTES 19040 | |||
#define PQCLEAN_LEDAKEMLT52_LEAKTIME_CRYPTO_BYTES 64 | |||
#define PQCLEAN_LEDAKEMLT52_LEAKTIME_CRYPTO_ALGNAME "LEDAKEMLT52" | |||
int PQCLEAN_LEDAKEMLT52_LEAKTIME_crypto_kem_keypair(uint8_t *pk, uint8_t *sk); | |||
int PQCLEAN_LEDAKEMLT52_LEAKTIME_crypto_kem_enc(uint8_t *ct, uint8_t *ss, const uint8_t *pk); | |||
int PQCLEAN_LEDAKEMLT52_LEAKTIME_crypto_kem_dec(uint8_t *ss, const uint8_t *ct, const uint8_t *sk); | |||
#endif |
@@ -0,0 +1,76 @@ | |||
#include "bf_decoding.h" | |||
#include "gf2x_arith_mod_xPplusOne.h" | |||
#include <string.h> | |||
int PQCLEAN_LEDAKEMLT52_LEAKTIME_bf_decoding(DIGIT err[], | |||
const POSITION_T HtrPosOnes[N0][DV], | |||
const POSITION_T QtrPosOnes[N0][M], | |||
DIGIT privateSyndrome[], | |||
uint8_t threshold) { | |||
uint8_t unsatParityChecks[N0 * P]; | |||
POSITION_T currQBlkPos[M], currQBitPos[M]; | |||
DIGIT currSyndrome[NUM_DIGITS_GF2X_ELEMENT]; | |||
int check; | |||
int iteration = 0; | |||
unsigned int corrt_syndrome_based; | |||
do { | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_copy(currSyndrome, privateSyndrome); | |||
memset(unsatParityChecks, 0x00, N0 * P * sizeof(uint8_t)); | |||
for (int i = 0; i < N0; i++) { | |||
for (int valueIdx = 0; valueIdx < P; valueIdx++) { | |||
for (int HtrOneIdx = 0; HtrOneIdx < DV; HtrOneIdx++) { | |||
POSITION_T tmp = (HtrPosOnes[i][HtrOneIdx] + valueIdx) >= P ? (HtrPosOnes[i][HtrOneIdx] + valueIdx) - P : (HtrPosOnes[i][HtrOneIdx] + valueIdx); | |||
if (PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_get_coeff(currSyndrome, tmp)) { | |||
unsatParityChecks[i * P + valueIdx]++; | |||
} | |||
} | |||
} | |||
} | |||
/* iteration based threshold determination*/ | |||
corrt_syndrome_based = iteration ? (unsigned int) threshold : B0; | |||
//Computation of correlation with a full Q matrix | |||
for (int i = 0; i < N0; i++) { | |||
for (int j = 0; j < P; j++) { | |||
int currQoneIdx = 0; // position in the column of QtrPosOnes[][...] | |||
int endQblockIdx = 0; | |||
unsigned int correlation = 0; | |||
for (int blockIdx = 0; blockIdx < N0; blockIdx++) { | |||
endQblockIdx += qBlockWeights[blockIdx][i]; | |||
int currblockoffset = blockIdx * P; | |||
for (; currQoneIdx < endQblockIdx; currQoneIdx++) { | |||
POSITION_T tmp = QtrPosOnes[i][currQoneIdx] + j; | |||
tmp = tmp >= P ? tmp - P : tmp; | |||
currQBitPos[currQoneIdx] = tmp; | |||
currQBlkPos[currQoneIdx] = blockIdx; | |||
correlation += unsatParityChecks[tmp + currblockoffset]; | |||
} | |||
} | |||
/* Correlation based flipping */ | |||
if (correlation >= corrt_syndrome_based) { | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_toggle_coeff(err + NUM_DIGITS_GF2X_ELEMENT * i, j); | |||
for (int v = 0; v < M; v++) { | |||
POSITION_T syndromePosToFlip; | |||
for (int HtrOneIdx = 0; HtrOneIdx < DV; HtrOneIdx++) { | |||
syndromePosToFlip = (HtrPosOnes[currQBlkPos[v]][HtrOneIdx] + currQBitPos[v] ); | |||
syndromePosToFlip = syndromePosToFlip >= P ? syndromePosToFlip - P : syndromePosToFlip; | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_toggle_coeff(privateSyndrome, syndromePosToFlip); | |||
} | |||
} // end for v | |||
} // end if | |||
} // end for j | |||
} // end for i | |||
iteration = iteration + 1; | |||
check = 0; | |||
while (check < NUM_DIGITS_GF2X_ELEMENT && privateSyndrome[check++] == 0) {}; | |||
} while (iteration < ITERATIONS_MAX && check < NUM_DIGITS_GF2X_ELEMENT); | |||
return (check == NUM_DIGITS_GF2X_ELEMENT); | |||
} |
@@ -0,0 +1,18 @@ | |||
#ifndef BF_DECODING_H | |||
#define BF_DECODING_H | |||
#include "gf2x_arith.h" | |||
#include "qc_ldpc_parameters.h" | |||
/* Definitions for DFR level 2^-SL with SL=128 */ | |||
#define ITERATIONS_MAX (2) | |||
#define B0 (88) | |||
#define T_BAR (6) | |||
int PQCLEAN_LEDAKEMLT52_LEAKTIME_bf_decoding(DIGIT err[], | |||
const POSITION_T HtrPosOnes[N0][DV], | |||
const POSITION_T QtrPosOnes[N0][M], | |||
DIGIT privateSyndrome[], | |||
uint8_t threshold); | |||
#endif |
@@ -0,0 +1,112 @@ | |||
#include "bf_decoding.h" | |||
#include "dfr_test.h" | |||
#include "gf2x_arith_mod_xPplusOne.h" | |||
#include "qc_ldpc_parameters.h" | |||
#include <string.h> | |||
/* Tests if the current code attains the desired DFR. If that is the case, | |||
* computes the threshold for the second iteration of the decoder and returns this values | |||
* (max DV * M), on failure it returns 255 >> DV * M */ | |||
uint8_t PQCLEAN_LEDAKEMLT52_LEAKTIME_DFR_test(POSITION_T LSparse[N0][DV * M]) { | |||
POSITION_T LSparse_loc[N0][DV * M]; | |||
POSITION_T rotated_column[DV * M]; | |||
/* Gamma matrix: an N0 x N0 block circulant matrix with block size p | |||
* gamma[a][b][c] stores the intersection of the first column of the a-th | |||
* block of L with the c-th column of the b-th block of L. | |||
* Gamma computation can be accelerated employing symmetry and QC properties */ | |||
unsigned int gamma[N0][N0][P] = {{{0}}}; | |||
unsigned int gammaHist[N0][DV * M + 1] = {{0}}; | |||
unsigned int maxMut[N0], maxMutMinusOne[N0]; | |||
unsigned int firstidx, secondidx, intersectionval; | |||
unsigned int allBlockMaxSumst, allBlockMaxSumstMinusOne; | |||
unsigned int toAdd, histIdx; | |||
/*transpose blocks of L, we need its columns */ | |||
for (int i = 0; i < N0; i++) { | |||
for (int j = 0; j < DV * M; j++) { | |||
if (LSparse[i][j] != 0) { | |||
LSparse_loc[i][j] = (P - LSparse[i][j]); | |||
} | |||
} | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_quicksort_sparse(LSparse_loc[i]); | |||
} | |||
for (int i = 0; i < N0; i++ ) { | |||
for (int j = 0; j < N0; j++ ) { | |||
for (int k = 0; k < P; k++) { | |||
/* compute the rotated sparse column needed */ | |||
for (int idxToRotate = 0; idxToRotate < (DV * M); idxToRotate++) { | |||
rotated_column[idxToRotate] = (LSparse_loc[j][idxToRotate] + k) % P; | |||
} | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_quicksort_sparse(rotated_column); | |||
/* compute the intersection amount */ | |||
firstidx = 0, secondidx = 0; | |||
intersectionval = 0; | |||
while ( (firstidx < DV * M) && (secondidx < DV * M) ) { | |||
if ( LSparse_loc[i][firstidx] == rotated_column[secondidx] ) { | |||
intersectionval++; | |||
firstidx++; | |||
secondidx++; | |||
} else if ( LSparse_loc[i][firstidx] > rotated_column[secondidx] ) { | |||
secondidx++; | |||
} else { /*if ( LSparse_loc[i][firstidx] < rotated_column[secondidx] ) */ | |||
firstidx++; | |||
} | |||
} | |||
gamma[i][j][k] = intersectionval; | |||
} | |||
} | |||
} | |||
for (int i = 0; i < N0; i++ ) { | |||
for (int j = 0; j < N0; j++ ) { | |||
gamma[i][j][0] = 0; | |||
} | |||
} | |||
/* build histogram of values in gamma */ | |||
for (int i = 0; i < N0; i++ ) { | |||
for (int j = 0; j < N0; j++ ) { | |||
for (int k = 0; k < P; k++) { | |||
gammaHist[i][gamma[i][j][k]]++; | |||
} | |||
} | |||
} | |||
for (int gammaBlockRowIdx = 0; gammaBlockRowIdx < N0; gammaBlockRowIdx++) { | |||
toAdd = T_BAR - 1; | |||
maxMutMinusOne[gammaBlockRowIdx] = 0; | |||
histIdx = DV * M; | |||
while ( (histIdx > 0) && (toAdd > 0)) { | |||
if (gammaHist[gammaBlockRowIdx][histIdx] > toAdd ) { | |||
maxMutMinusOne[gammaBlockRowIdx] += histIdx * toAdd; | |||
toAdd = 0; | |||
} else { | |||
maxMutMinusOne[gammaBlockRowIdx] += histIdx * gammaHist[gammaBlockRowIdx][histIdx]; | |||
toAdd -= gammaHist[gammaBlockRowIdx][histIdx]; | |||
histIdx--; | |||
} | |||
} | |||
maxMut[gammaBlockRowIdx] = histIdx + maxMutMinusOne[gammaBlockRowIdx]; | |||
} | |||
/*seek max values across all gamma blocks */ | |||
allBlockMaxSumst = maxMut[0]; | |||
allBlockMaxSumstMinusOne = maxMutMinusOne[0]; | |||
for (int gammaBlockRowIdx = 0; gammaBlockRowIdx < N0 ; gammaBlockRowIdx++) { | |||
allBlockMaxSumst = allBlockMaxSumst < maxMut[gammaBlockRowIdx] ? | |||
maxMut[gammaBlockRowIdx] : | |||
allBlockMaxSumst; | |||
allBlockMaxSumstMinusOne = allBlockMaxSumstMinusOne < maxMutMinusOne[gammaBlockRowIdx] ? | |||
maxMutMinusOne[gammaBlockRowIdx] : | |||
allBlockMaxSumstMinusOne; | |||
} | |||
if (DV * M > (allBlockMaxSumstMinusOne + allBlockMaxSumst)) { | |||
return (uint8_t) allBlockMaxSumst + 1; | |||
} | |||
return DFR_TEST_FAIL; | |||
} |
@@ -0,0 +1,8 @@ | |||
#ifndef DFR_TEST_H | |||
#define DFR_TEST_H | |||
#define DFR_TEST_FAIL (255) | |||
uint8_t PQCLEAN_LEDAKEMLT52_LEAKTIME_DFR_test(POSITION_T LSparse[N0][DV * M]); | |||
#endif |
@@ -0,0 +1,73 @@ | |||
#include "gf2x_arith.h" | |||
#include <string.h> // memset(...) | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_add(DIGIT Res[], const DIGIT A[], const DIGIT B[], int nr) { | |||
for (int i = 0; i < nr; i++) { | |||
Res[i] = A[i] ^ B[i]; | |||
} | |||
} | |||
/* PRE: MAX ALLOWED ROTATION AMOUNT : DIGIT_SIZE_b */ | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_right_bit_shift_n(int length, DIGIT in[], unsigned int amount) { | |||
if ( amount == 0 ) { | |||
return; | |||
} | |||
unsigned int j; | |||
DIGIT mask; | |||
mask = ((DIGIT)0x01 << amount) - 1; | |||
for (j = length - 1; j > 0 ; j--) { | |||
in[j] >>= amount; | |||
in[j] |= (in[j - 1] & mask) << (DIGIT_SIZE_b - amount); | |||
} | |||
in[j] >>= amount; | |||
} | |||
/* PRE: MAX ALLOWED ROTATION AMOUNT : DIGIT_SIZE_b */ | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_left_bit_shift_n(int length, DIGIT in[], unsigned int amount) { | |||
if ( amount == 0 ) { | |||
return; | |||
} | |||
int j; | |||
DIGIT mask; | |||
mask = ~(((DIGIT)0x01 << (DIGIT_SIZE_b - amount)) - 1); | |||
for (j = 0 ; j < length - 1 ; j++) { | |||
in[j] <<= amount; | |||
in[j] |= (in[j + 1] & mask) >> (DIGIT_SIZE_b - amount); | |||
} | |||
in[j] <<= amount; | |||
} | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mul_comb(int nr, DIGIT Res[], | |||
int na, const DIGIT A[], | |||
int nb, const DIGIT B[]) { | |||
int i, j, k; | |||
DIGIT u, h; | |||
memset(Res, 0x00, nr * sizeof(DIGIT)); | |||
for (k = DIGIT_SIZE_b - 1; k > 0; k--) { | |||
for (i = na - 1; i >= 0; i--) { | |||
if ( A[i] & (((DIGIT)0x1) << k) ) { | |||
for (j = nb - 1; j >= 0; j--) { | |||
Res[i + j + 1] ^= B[j]; | |||
} | |||
} | |||
} | |||
u = Res[na + nb - 1]; | |||
Res[na + nb - 1] = u << 0x1; | |||
for (j = 1; j < na + nb; ++j) { | |||
h = u >> (DIGIT_SIZE_b - 1); | |||
u = Res[na + nb - 1 - j]; | |||
Res[na + nb - 1 - j] = h ^ (u << 0x1); | |||
} | |||
} | |||
for (i = na - 1; i >= 0; i--) { | |||
if ( A[i] & ((DIGIT)0x1) ) { | |||
for (j = nb - 1; j >= 0; j--) { | |||
Res[i + j + 1] ^= B[j]; | |||
} | |||
} | |||
} | |||
} |
@@ -0,0 +1,58 @@ | |||
#ifndef GF2X_ARITH_H | |||
#define GF2X_ARITH_H | |||
#include <inttypes.h> | |||
#include <stddef.h> | |||
/* | |||
* Elements of GF(2)[x] are stored in compact dense binary form. | |||
* | |||
* Each bit in a byte is assumed to be the coefficient of a binary | |||
* polynomial f(x), in Big-Endian format (i.e., reading everything from | |||
* left to right, the most significant element is met first): | |||
* | |||
* byte:(0000 0000) == 0x00 ... f(x) == 0 | |||
* byte:(0000 0001) == 0x01 ... f(x) == 1 | |||
* byte:(0000 0010) == 0x02 ... f(x) == x | |||
* byte:(0000 0011) == 0x03 ... f(x) == x+1 | |||
* ... ... ... | |||
* byte:(0000 1111) == 0x0F ... f(x) == x^{3}+x^{2}+x+1 | |||
* ... ... ... | |||
* byte:(1111 1111) == 0xFF ... f(x) == x^{7}+x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+1 | |||
* | |||
* | |||
* A "machine word" (A_i) is considered as a DIGIT. | |||
* Bytes in a DIGIT are assumed in Big-Endian format: | |||
* E.g., if sizeof(DIGIT) == 4: | |||
* A_i: A_{i,3} A_{i,2} A_{i,1} A_{i,0}. | |||
* A_{i,3} denotes the most significant byte, A_{i,0} the least significant one. | |||
* f(x) == x^{31} + ... + x^{24} + | |||
* + x^{23} + ... + x^{16} + | |||
* + x^{15} + ... + x^{8} + | |||
* + x^{7} + ... + x^{0} | |||
* | |||
* | |||
* Multi-precision elements (i.e., with multiple DIGITs) are stored in | |||
* Big-endian format: | |||
* A = A_{n-1} A_{n-2} ... A_1 A_0 | |||
* | |||
* position[A_{n-1}] == 0 | |||
* position[A_{n-2}] == 1 | |||
* ... | |||
* position[A_{1}] == n-2 | |||
* position[A_{0}] == n-1 | |||
*/ | |||
typedef uint64_t DIGIT; | |||
#define DIGIT_SIZE_B (8) | |||
#define DIGIT_SIZE_b (DIGIT_SIZE_B << 3) | |||
#define POSITION_T uint32_t | |||
#define GF2X_MUL PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mul_comb | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_add(DIGIT Res[], const DIGIT A[], const DIGIT B[], int nr); | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_right_bit_shift_n(int length, DIGIT in[], unsigned int amount); | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_left_bit_shift_n(int length, DIGIT in[], unsigned int amount); | |||
void GF2X_MUL(int nr, DIGIT Res[], int na, const DIGIT A[], int nb, const DIGIT B[]); | |||
#endif |
@@ -0,0 +1,581 @@ | |||
#include "gf2x_arith_mod_xPplusOne.h" | |||
#include "rng.h" | |||
#include <string.h> // memcpy(...), memset(...) | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_copy(DIGIT dest[], const DIGIT in[]) { | |||
for (int i = NUM_DIGITS_GF2X_ELEMENT - 1; i >= 0; i--) { | |||
dest[i] = in[i]; | |||
} | |||
} | |||
/* returns the coefficient of the x^exponent term as the LSB of a digit */ | |||
DIGIT PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_get_coeff(const DIGIT poly[], unsigned int exponent) { | |||
unsigned int straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent; | |||
unsigned int digitIdx = straightIdx / DIGIT_SIZE_b; | |||
unsigned int inDigitIdx = straightIdx % DIGIT_SIZE_b; | |||
return (poly[digitIdx] >> (DIGIT_SIZE_b - 1 - inDigitIdx)) & ((DIGIT) 1) ; | |||
} | |||
/* sets the coefficient of the x^exponent term as the LSB of a digit */ | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_set_coeff(DIGIT poly[], unsigned int exponent, DIGIT value) { | |||
unsigned int straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent; | |||
unsigned int digitIdx = straightIdx / DIGIT_SIZE_b; | |||
unsigned int inDigitIdx = straightIdx % DIGIT_SIZE_b; | |||
/* clear given coefficient */ | |||
DIGIT mask = ~( ((DIGIT) 1) << (DIGIT_SIZE_b - 1 - inDigitIdx)); | |||
poly[digitIdx] = poly[digitIdx] & mask; | |||
poly[digitIdx] = poly[digitIdx] | (( value & ((DIGIT) 1)) << (DIGIT_SIZE_b - 1 - inDigitIdx)); | |||
} | |||
/* toggles (flips) the coefficient of the x^exponent term as the LSB of a digit */ | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_toggle_coeff(DIGIT poly[], unsigned int exponent) { | |||
unsigned int straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent; | |||
unsigned int digitIdx = straightIdx / DIGIT_SIZE_b; | |||
unsigned int inDigitIdx = straightIdx % DIGIT_SIZE_b; | |||
/* clear given coefficient */ | |||
DIGIT mask = ( ((DIGIT) 1) << (DIGIT_SIZE_b - 1 - inDigitIdx)); | |||
poly[digitIdx] = poly[digitIdx] ^ mask; | |||
} | |||
/* population count for an unsigned 64-bit integer | |||
Source: Hacker's delight, p.66 */ | |||
static int popcount_uint64t(uint64_t x) { | |||
x -= (x >> 1) & 0x5555555555555555; | |||
x = (x & 0x3333333333333333) + ((x >> 2) & 0x3333333333333333); | |||
x = (x + (x >> 4)) & 0x0f0f0f0f0f0f0f0f; | |||
return (int)((x * 0x0101010101010101) >> 56); | |||
} | |||
/* population count for a single polynomial */ | |||
int PQCLEAN_LEDAKEMLT52_LEAKTIME_population_count(DIGIT *poly) { | |||
int ret = 0; | |||
for (int i = NUM_DIGITS_GF2X_ELEMENT - 1; i >= 0; i--) { | |||
ret += popcount_uint64t(poly[i]); | |||
} | |||
return ret; | |||
} | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_add(DIGIT Res[], const DIGIT A[], const DIGIT B[]) { | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_add(Res, A, B, NUM_DIGITS_GF2X_ELEMENT); | |||
} | |||
static int partition(POSITION_T arr[], int lo, int hi) { | |||
POSITION_T x = arr[hi]; | |||
POSITION_T tmp; | |||
int i = (lo - 1); | |||
for (int j = lo; j <= hi - 1; j++) { | |||
if (arr[j] <= x) { | |||
i++; | |||
tmp = arr[i]; | |||
arr[i] = arr[j]; | |||
arr[j] = tmp; | |||
} | |||
} | |||
tmp = arr[i + 1]; | |||
arr[i + 1] = arr[hi]; | |||
arr[hi] = tmp; | |||
return i + 1; | |||
} | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_quicksort_sparse(POSITION_T Res[]) { | |||
int stack[DV * M]; | |||
int hi, lo, pivot, tos = -1; | |||
stack[++tos] = 0; | |||
stack[++tos] = (DV * M) - 1; | |||
while (tos >= 0 ) { | |||
hi = stack[tos--]; | |||
lo = stack[tos--]; | |||
pivot = partition(Res, lo, hi); | |||
if ( (pivot - 1) > lo) { | |||
stack[++tos] = lo; | |||
stack[++tos] = pivot - 1; | |||
} | |||
if ( (pivot + 1) < hi) { | |||
stack[++tos] = pivot + 1; | |||
stack[++tos] = hi; | |||
} | |||
} | |||
} | |||
static void gf2x_mod(DIGIT out[], const DIGIT in[]) { | |||
int i, j, posTrailingBit, maskOffset; | |||
DIGIT mask, aux[2 * NUM_DIGITS_GF2X_ELEMENT]; | |||
memcpy(aux, in, 2 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B); | |||
memset(out, 0x00, NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B); | |||
for (i = 0; i < (2 * NUM_DIGITS_GF2X_ELEMENT) - NUM_DIGITS_GF2X_MODULUS; i += 1) { | |||
for (j = DIGIT_SIZE_b - 1; j >= 0; j--) { | |||
mask = ((DIGIT)0x1) << j; | |||
if (aux[i] & mask) { | |||
aux[i] ^= mask; | |||
posTrailingBit = (DIGIT_SIZE_b - 1 - j) + i * DIGIT_SIZE_b + P; | |||
maskOffset = (DIGIT_SIZE_b - 1 - (posTrailingBit % DIGIT_SIZE_b)); | |||
mask = (DIGIT) 0x1 << maskOffset; | |||
aux[posTrailingBit / DIGIT_SIZE_b] ^= mask; | |||
} | |||
} | |||
} | |||
for (j = DIGIT_SIZE_b - 1; j >= MSb_POSITION_IN_MSB_DIGIT_OF_MODULUS; j--) { | |||
mask = ((DIGIT)0x1) << j; | |||
if (aux[i] & mask) { | |||
aux[i] ^= mask; | |||
posTrailingBit = (DIGIT_SIZE_b - 1 - j) + i * DIGIT_SIZE_b + P; | |||
maskOffset = (DIGIT_SIZE_b - 1 - (posTrailingBit % DIGIT_SIZE_b)); | |||
mask = (DIGIT) 0x1 << maskOffset; | |||
aux[posTrailingBit / DIGIT_SIZE_b] ^= mask; | |||
} | |||
} | |||
for (i = 0; i < NUM_DIGITS_GF2X_ELEMENT; i++) { | |||
out[NUM_DIGITS_GF2X_ELEMENT - 1 - i] = aux[2 * NUM_DIGITS_GF2X_ELEMENT - 1 - i]; | |||
} | |||
} | |||
static void left_bit_shift(const int length, DIGIT in[]) { | |||
int j; | |||
for (j = 0; j < length - 1; j++) { | |||
in[j] <<= 1; /* logical shift does not need clearing */ | |||
in[j] |= in[j + 1] >> (DIGIT_SIZE_b - 1); | |||
} | |||
in[j] <<= 1; | |||
} | |||
static void right_bit_shift(unsigned int length, DIGIT in[]) { | |||
unsigned int j; | |||
for (j = length - 1; j > 0 ; j--) { | |||
in[j] >>= 1; | |||
in[j] |= (in[j - 1] & (DIGIT)0x01) << (DIGIT_SIZE_b - 1); | |||
} | |||
in[j] >>= 1; | |||
} | |||
/* shifts by whole digits */ | |||
static void left_DIGIT_shift_n(unsigned int length, DIGIT in[], unsigned int amount) { | |||
unsigned int j; | |||
for (j = 0; (j + amount) < length; j++) { | |||
in[j] = in[j + amount]; | |||
} | |||
for (; j < length; j++) { | |||
in[j] = (DIGIT)0; | |||
} | |||
} | |||
/* may shift by an arbitrary amount*/ | |||
static void left_bit_shift_wide_n(const int length, DIGIT in[], unsigned int amount) { | |||
left_DIGIT_shift_n(length, in, amount / DIGIT_SIZE_b); | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_left_bit_shift_n(length, in, amount % DIGIT_SIZE_b); | |||
} | |||
/* Hackers delight, reverses a uint64_t */ | |||
static DIGIT reverse_digit(DIGIT x) { | |||
uint64_t t; | |||
x = (x << 31) | (x >> 33); | |||
t = (x ^ (x >> 20)) & 0x00000FFF800007FFLL; | |||
x = (t | (t << 20)) ^ x; | |||
t = (x ^ (x >> 8)) & 0x00F8000F80700807LL; | |||
x = (t | (t << 8)) ^ x; | |||
t = (x ^ (x >> 4)) & 0x0808708080807008LL; | |||
x = (t | (t << 4)) ^ x; | |||
t = (x ^ (x >> 2)) & 0x1111111111111111LL; | |||
x = (t | (t << 2)) ^ x; | |||
return x; | |||
} | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_transpose_in_place(DIGIT A[]) { | |||
/* it keeps the lsb in the same position and | |||
* inverts the sequence of the remaining bits */ | |||
DIGIT mask = (DIGIT)0x1; | |||
DIGIT rev1, rev2, a00; | |||
int i, slack_bits_amount = NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - P; | |||
a00 = A[NUM_DIGITS_GF2X_ELEMENT - 1] & mask; | |||
right_bit_shift(NUM_DIGITS_GF2X_ELEMENT, A); | |||
for (i = NUM_DIGITS_GF2X_ELEMENT - 1; i >= (NUM_DIGITS_GF2X_ELEMENT + 1) / 2; i--) { | |||
rev1 = reverse_digit(A[i]); | |||
rev2 = reverse_digit(A[NUM_DIGITS_GF2X_ELEMENT - 1 - i]); | |||
A[i] = rev2; | |||
A[NUM_DIGITS_GF2X_ELEMENT - 1 - i] = rev1; | |||
} | |||
if (slack_bits_amount) { | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_right_bit_shift_n(NUM_DIGITS_GF2X_ELEMENT, A, slack_bits_amount); | |||
} | |||
A[NUM_DIGITS_GF2X_ELEMENT - 1] = (A[NUM_DIGITS_GF2X_ELEMENT - 1] & (~mask)) | a00; | |||
} | |||
static void rotate_bit_left(DIGIT in[]) { /* equivalent to x * in(x) mod x^P+1 */ | |||
DIGIT mask, rotated_bit; | |||
int msb_offset_in_digit = MSb_POSITION_IN_MSB_DIGIT_OF_MODULUS - 1; | |||
mask = ((DIGIT)0x1) << msb_offset_in_digit; | |||
rotated_bit = !!(in[0] & mask); | |||
in[0] &= ~mask; | |||
left_bit_shift(NUM_DIGITS_GF2X_ELEMENT, in); | |||
in[NUM_DIGITS_GF2X_ELEMENT - 1] |= rotated_bit; | |||
} | |||
static void rotate_bit_right(DIGIT in[]) { /* x^{-1} * in(x) mod x^P+1 */ | |||
DIGIT rotated_bit = in[NUM_DIGITS_GF2X_ELEMENT - 1] & ((DIGIT)0x1); | |||
right_bit_shift(NUM_DIGITS_GF2X_ELEMENT, in); | |||
int msb_offset_in_digit = MSb_POSITION_IN_MSB_DIGIT_OF_MODULUS - 1; | |||
rotated_bit = rotated_bit << msb_offset_in_digit; | |||
in[0] |= rotated_bit; | |||
} | |||
static void gf2x_swap(const int length, DIGIT f[], DIGIT s[]) { | |||
DIGIT t; | |||
for (int i = length - 1; i >= 0; i--) { | |||
t = f[i]; | |||
f[i] = s[i]; | |||
s[i] = t; | |||
} | |||
} | |||
/* | |||
* Optimized extended GCD algorithm to compute the multiplicative inverse of | |||
* a non-zero element in GF(2)[x] mod x^P+1, in polyn. representation. | |||
* | |||
* H. Brunner, A. Curiger, and M. Hofstetter. 1993. | |||
* On Computing Multiplicative Inverses in GF(2^m). | |||
* IEEE Trans. Comput. 42, 8 (August 1993), 1010-1015. | |||
* DOI=http://dx.doi.org/10.1109/12.238496 | |||
* | |||
* | |||
* Henri Cohen, Gerhard Frey, Roberto Avanzi, Christophe Doche, Tanja Lange, | |||
* Kim Nguyen, and Frederik Vercauteren. 2012. | |||
* Handbook of Elliptic and Hyperelliptic Curve Cryptography, | |||
* Second Edition (2nd ed.). Chapman & Hall/CRC. | |||
* (Chapter 11 -- Algorithm 11.44 -- pag 223) | |||
* | |||
*/ | |||
int PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_inverse(DIGIT out[], const DIGIT in[]) { /* in^{-1} mod x^P-1 */ | |||
int i; | |||
int delta = 0; | |||
DIGIT u[NUM_DIGITS_GF2X_ELEMENT] = {0}; | |||
DIGIT v[NUM_DIGITS_GF2X_ELEMENT] = {0}; | |||
DIGIT s[NUM_DIGITS_GF2X_MODULUS] = {0}; | |||
DIGIT f[NUM_DIGITS_GF2X_MODULUS] = {0}; // alignas(32)? | |||
DIGIT mask; | |||
u[NUM_DIGITS_GF2X_ELEMENT - 1] = 0x1; | |||
v[NUM_DIGITS_GF2X_ELEMENT - 1] = 0x0; | |||
s[NUM_DIGITS_GF2X_MODULUS - 1] = 0x1; | |||
mask = (((DIGIT)0x1) << MSb_POSITION_IN_MSB_DIGIT_OF_MODULUS); | |||
s[0] |= mask; | |||
for (i = NUM_DIGITS_GF2X_ELEMENT - 1; i >= 0 && in[i] == 0; i--) { }; | |||
if (i < 0) { | |||
return 0; | |||
} | |||
for (i = NUM_DIGITS_GF2X_MODULUS - 1; i >= 0 ; i--) { | |||
f[i] = in[i]; | |||
} | |||
for (i = 1; i <= 2 * P; i++) { | |||
if ( (f[0] & mask) == 0 ) { | |||
left_bit_shift(NUM_DIGITS_GF2X_MODULUS, f); | |||
rotate_bit_left(u); | |||
delta += 1; | |||
} else { | |||
if ( (s[0] & mask) != 0) { | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_add(s, s, f, NUM_DIGITS_GF2X_MODULUS); | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_add(v, v, u); | |||
} | |||
left_bit_shift(NUM_DIGITS_GF2X_MODULUS, s); | |||
if ( delta == 0 ) { | |||
gf2x_swap(NUM_DIGITS_GF2X_MODULUS, f, s); | |||
gf2x_swap(NUM_DIGITS_GF2X_ELEMENT, u, v); | |||
rotate_bit_left(u); | |||
delta = 1; | |||
} else { | |||
rotate_bit_right(u); | |||
delta = delta - 1; | |||
} | |||
} | |||
} | |||
for (i = NUM_DIGITS_GF2X_ELEMENT - 1; i >= 0 ; i--) { | |||
out[i] = u[i]; | |||
} | |||
return (delta == 0); | |||
} | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_mul(DIGIT Res[], const DIGIT A[], const DIGIT B[]) { | |||
DIGIT aux[2 * NUM_DIGITS_GF2X_ELEMENT]; | |||
GF2X_MUL(2 * NUM_DIGITS_GF2X_ELEMENT, aux, | |||
NUM_DIGITS_GF2X_ELEMENT, A, | |||
NUM_DIGITS_GF2X_ELEMENT, B); | |||
gf2x_mod(Res, aux); | |||
} | |||
/*PRE: the representation of the sparse coefficients is sorted in increasing | |||
order of the coefficients themselves */ | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_mul_dense_to_sparse( | |||
DIGIT Res[], | |||
const DIGIT dense[], | |||
POSITION_T sparse[], unsigned int nPos) { | |||
DIGIT aux[2 * NUM_DIGITS_GF2X_ELEMENT] = {0x00}; | |||
DIGIT resDouble[2 * NUM_DIGITS_GF2X_ELEMENT] = {0x00}; | |||
memcpy(aux + NUM_DIGITS_GF2X_ELEMENT, dense, NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B); | |||
memcpy(resDouble + NUM_DIGITS_GF2X_ELEMENT, dense, | |||
NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B); | |||
if (sparse[0] != INVALID_POS_VALUE) { | |||
left_bit_shift_wide_n(2 * NUM_DIGITS_GF2X_ELEMENT, resDouble, sparse[0]); | |||
left_bit_shift_wide_n(2 * NUM_DIGITS_GF2X_ELEMENT, aux, sparse[0]); | |||
for (unsigned int i = 1; i < nPos; i++) { | |||
if (sparse[i] != INVALID_POS_VALUE) { | |||
left_bit_shift_wide_n(2 * NUM_DIGITS_GF2X_ELEMENT, aux, (sparse[i] - sparse[i - 1]) ); | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_add(resDouble, aux, resDouble, 2 * NUM_DIGITS_GF2X_ELEMENT); | |||
} | |||
} | |||
} | |||
gf2x_mod(Res, resDouble); | |||
} | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_transpose_in_place_sparse(int sizeA, POSITION_T A[]) { | |||
POSITION_T t; | |||
int i = 0, j; | |||
if (A[i] == 0) { | |||
i = 1; | |||
} | |||
j = i; | |||
for (; i < sizeA && A[i] != INVALID_POS_VALUE; i++) { | |||
A[i] = P - A[i]; | |||
} | |||
for (i -= 1; j < i; j++, i--) { | |||
t = A[j]; | |||
A[j] = A[i]; | |||
A[i] = t; | |||
} | |||
} | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_mul_sparse(size_t sizeR, POSITION_T Res[], | |||
size_t sizeA, const POSITION_T A[], | |||
size_t sizeB, const POSITION_T B[]) { | |||
/* compute all the coefficients, filling invalid positions with P*/ | |||
size_t lastFilledPos = 0; | |||
for (size_t i = 0 ; i < sizeA ; i++) { | |||
for (size_t j = 0 ; j < sizeB ; j++) { | |||
uint32_t prod = A[i] + B[j]; | |||
prod = ( (prod >= P) ? prod - P : prod); | |||
if ((A[i] != INVALID_POS_VALUE) && | |||
(B[j] != INVALID_POS_VALUE)) { | |||
Res[lastFilledPos] = prod; | |||
} else { | |||
Res[lastFilledPos] = INVALID_POS_VALUE; | |||
} | |||
lastFilledPos++; | |||
} | |||
} | |||
while (lastFilledPos < sizeR) { | |||
Res[lastFilledPos] = INVALID_POS_VALUE; | |||
lastFilledPos++; | |||
} | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_quicksort_sparse(Res); | |||
/* eliminate duplicates */ | |||
POSITION_T lastReadPos = Res[0]; | |||
int duplicateCount; | |||
size_t write_idx = 0; | |||
size_t read_idx = 0; | |||
while (read_idx < sizeR && Res[read_idx] != INVALID_POS_VALUE) { | |||
lastReadPos = Res[read_idx]; | |||
read_idx++; | |||
duplicateCount = 1; | |||
while ( (Res[read_idx] == lastReadPos) && (Res[read_idx] != INVALID_POS_VALUE)) { | |||
read_idx++; | |||
duplicateCount++; | |||
} | |||
if (duplicateCount % 2) { | |||
Res[write_idx] = lastReadPos; | |||
write_idx++; | |||
} | |||
} | |||
/* fill remaining cells with INVALID_POS_VALUE */ | |||
for (; write_idx < sizeR; write_idx++) { | |||
Res[write_idx] = INVALID_POS_VALUE; | |||
} | |||
} | |||
/* the implementation is safe even in case A or B alias with the result | |||
* PRE: A and B should be sorted, disjunct arrays ending with INVALID_POS_VALUE */ | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_add_sparse( | |||
int sizeR, POSITION_T Res[], | |||
int sizeA, const POSITION_T A[], | |||
int sizeB, const POSITION_T B[]) { | |||
POSITION_T tmpRes[DV * M]; | |||
int idxA = 0, idxB = 0, idxR = 0; | |||
while ( idxA < sizeA && | |||
idxB < sizeB && | |||
A[idxA] != INVALID_POS_VALUE && | |||
B[idxB] != INVALID_POS_VALUE ) { | |||
if (A[idxA] == B[idxB]) { | |||
idxA++; | |||
idxB++; | |||
} else { | |||
if (A[idxA] < B[idxB]) { | |||
tmpRes[idxR] = A[idxA]; | |||
idxA++; | |||
} else { | |||
tmpRes[idxR] = B[idxB]; | |||
idxB++; | |||
} | |||
idxR++; | |||
} | |||
} | |||
while (idxA < sizeA && A[idxA] != INVALID_POS_VALUE) { | |||
tmpRes[idxR] = A[idxA]; | |||
idxA++; | |||
idxR++; | |||
} | |||
while (idxB < sizeB && B[idxB] != INVALID_POS_VALUE) { | |||
tmpRes[idxR] = B[idxB]; | |||
idxB++; | |||
idxR++; | |||
} | |||
while (idxR < sizeR) { | |||
tmpRes[idxR] = INVALID_POS_VALUE; | |||
idxR++; | |||
} | |||
memcpy(Res, tmpRes, sizeof(POSITION_T)*sizeR); | |||
} | |||
/* Return a uniform random value in the range 0..n-1 inclusive, | |||
* applying a rejection sampling strategy and exploiting as a random source | |||
* the NIST seedexpander seeded with the proper key. | |||
* Assumes that the maximum value for the range n is 2^32-1 | |||
*/ | |||
static uint32_t rand_range(const unsigned int n, const int logn, AES_XOF_struct *seed_expander_ctx) { | |||
unsigned long required_rnd_bytes = (logn + 7) / 8; | |||
unsigned char rnd_char_buffer[4]; | |||
uint32_t rnd_value; | |||
uint32_t mask = ( (uint32_t)1 << logn) - 1; | |||
do { | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_seedexpander(seed_expander_ctx, rnd_char_buffer, required_rnd_bytes); | |||
/* obtain an endianness independent representation of the generated random | |||
bytes into an unsigned integer */ | |||
rnd_value = ((uint32_t)rnd_char_buffer[3] << 24) + | |||
((uint32_t)rnd_char_buffer[2] << 16) + | |||
((uint32_t)rnd_char_buffer[1] << 8) + | |||
((uint32_t)rnd_char_buffer[0] << 0) ; | |||
rnd_value = mask & rnd_value; | |||
} while (rnd_value >= n); | |||
return rnd_value; | |||
} | |||
/* Obtains fresh randomness and seed-expands it until all the required positions | |||
* for the '1's in the circulant block are obtained */ | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_rand_circulant_sparse_block(POSITION_T *pos_ones, | |||
int countOnes, | |||
AES_XOF_struct *seed_expander_ctx) { | |||
int duplicated, placedOnes = 0; | |||
uint32_t p; | |||
while (placedOnes < countOnes) { | |||
p = rand_range(NUM_BITS_GF2X_ELEMENT, | |||
P_BITS, | |||
seed_expander_ctx); | |||
duplicated = 0; | |||
for (int j = 0; j < placedOnes; j++) { | |||
if (pos_ones[j] == p) { | |||
duplicated = 1; | |||
} | |||
} | |||
if (duplicated == 0) { | |||
pos_ones[placedOnes] = p; | |||
placedOnes++; | |||
} | |||
} | |||
} | |||
/* Returns random weight-t circulant block */ | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_rand_circulant_blocks_sequence( | |||
DIGIT sequence[N0 * NUM_DIGITS_GF2X_ELEMENT], | |||
AES_XOF_struct *seed_expander_ctx) { | |||
int rndPos[NUM_ERRORS_T], duplicated, counter = 0; | |||
int p, polyIndex, exponent; | |||
memset(sequence, 0x00, N0 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B); | |||
while (counter < NUM_ERRORS_T) { | |||
p = rand_range(N0 * NUM_BITS_GF2X_ELEMENT, P_BITS, | |||
seed_expander_ctx); | |||
duplicated = 0; | |||
for (int j = 0; j < counter; j++) { | |||
if (rndPos[j] == p) { | |||
duplicated = 1; | |||
} | |||
} | |||
if (duplicated == 0) { | |||
rndPos[counter] = p; | |||
counter++; | |||
} | |||
} | |||
for (int j = 0; j < counter; j++) { | |||
polyIndex = rndPos[j] / P; | |||
exponent = rndPos[j] % P; | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_set_coeff( sequence + NUM_DIGITS_GF2X_ELEMENT * polyIndex, exponent, | |||
( (DIGIT) 1)); | |||
} | |||
} | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_tobytes(uint8_t *bytes, const DIGIT *poly) { | |||
size_t i, j; | |||
for (i = 0; i < NUM_DIGITS_GF2X_ELEMENT; i++) { | |||
for (j = 0; j < DIGIT_SIZE_B; j++) { | |||
bytes[i * DIGIT_SIZE_B + j] = (uint8_t) (poly[i] >> 8 * j); | |||
} | |||
} | |||
} | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_frombytes(DIGIT *poly, const uint8_t *poly_bytes) { | |||
size_t i, j; | |||
for (i = 0; i < NUM_DIGITS_GF2X_ELEMENT; i++) { | |||
poly[i] = (DIGIT) 0; | |||
for (j = 0; j < DIGIT_SIZE_B; j++) { | |||
poly[i] |= (DIGIT) poly_bytes[i * DIGIT_SIZE_B + j] << 8 * j; | |||
} | |||
} | |||
} |
@@ -0,0 +1,37 @@ | |||
#ifndef GF2X_ARITH_MOD_XPLUSONE_H | |||
#define GF2X_ARITH_MOD_XPLUSONE_H | |||
#include "qc_ldpc_parameters.h" | |||
#include "gf2x_arith.h" | |||
#include "rng.h" | |||
#define NUM_BITS_GF2X_ELEMENT (P) // 152267 | |||
#define NUM_DIGITS_GF2X_ELEMENT ((P+DIGIT_SIZE_b-1)/DIGIT_SIZE_b) // 2380 | |||
#define MSb_POSITION_IN_MSB_DIGIT_OF_ELEMENT ((P % DIGIT_SIZE_b) ? (P % DIGIT_SIZE_b)-1 : DIGIT_SIZE_b-1) | |||
#define NUM_BITS_GF2X_MODULUS (P+1) | |||
#define NUM_DIGITS_GF2X_MODULUS ((P+1+DIGIT_SIZE_b-1)/DIGIT_SIZE_b) // 2380 | |||
#define MSb_POSITION_IN_MSB_DIGIT_OF_MODULUS (P-DIGIT_SIZE_b*(NUM_DIGITS_GF2X_MODULUS-1)) | |||
#define INVALID_POS_VALUE (P) | |||
#define P_BITS (18) // log_2(p) = 17.216243783 | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_copy(DIGIT dest[], const DIGIT in[]); | |||
DIGIT PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_get_coeff(const DIGIT poly[], unsigned int exponent); | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_set_coeff(DIGIT poly[], unsigned int exponent, DIGIT value); | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_toggle_coeff(DIGIT poly[], unsigned int exponent); | |||
int PQCLEAN_LEDAKEMLT52_LEAKTIME_population_count(DIGIT *poly); | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_add(DIGIT Res[], const DIGIT A[], const DIGIT B[]); | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_quicksort_sparse(POSITION_T Res[]); | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_mul(DIGIT Res[], const DIGIT A[], const DIGIT B[]); | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_transpose_in_place(DIGIT A[]); | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_rand_circulant_sparse_block(POSITION_T *pos_ones, int countOnes, AES_XOF_struct *seed_expander_ctx); | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_rand_circulant_blocks_sequence(DIGIT *sequence, AES_XOF_struct *seed_expander_ctx); | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_add_sparse(int sizeR, POSITION_T Res[], int sizeA, const POSITION_T A[], int sizeB, const POSITION_T B[]); | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_transpose_in_place_sparse(int sizeA, POSITION_T A[]); | |||
int PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_inverse(DIGIT out[], const DIGIT in[]); | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_mul_sparse(size_t sizeR, POSITION_T Res[], size_t sizeA, const POSITION_T A[], size_t sizeB, const POSITION_T B[]); | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_mul_dense_to_sparse(DIGIT Res[], const DIGIT dense[], POSITION_T sparse[], unsigned int nPos); | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_tobytes(uint8_t *bytes, const DIGIT *poly); | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_frombytes(DIGIT *poly, const uint8_t *poly_bytes); | |||
#endif |
@@ -0,0 +1,92 @@ | |||
#include "api.h" | |||
#include "niederreiter.h" | |||
#include "randombytes.h" | |||
#include "rng.h" | |||
#include <string.h> | |||
static void pack_pk(uint8_t *pk_bytes, publicKeyNiederreiter_t *pk) { | |||
size_t i; | |||
for (i = 0; i < N0 - 1; i++) { | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_tobytes(pk_bytes + i * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B, | |||
pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT); | |||
} | |||
} | |||
static void unpack_pk(publicKeyNiederreiter_t *pk, const uint8_t *pk_bytes) { | |||
size_t i; | |||
for (i = 0; i < N0 - 1; i++) { | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_frombytes(pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT, | |||
pk_bytes + i * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B); | |||
} | |||
} | |||
static void pack_ct(uint8_t *sk_bytes, DIGIT *ct) { | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_tobytes(sk_bytes, ct); | |||
} | |||
static void unpack_ct(DIGIT *ct, const uint8_t *ct_bytes) { | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_frombytes(ct, ct_bytes); | |||
} | |||
static void pack_error(uint8_t *error_bytes, DIGIT *error_digits) { | |||
size_t i; | |||
for (i = 0; i < N0; i++) { | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_tobytes(error_bytes + i * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B, | |||
error_digits + i * NUM_DIGITS_GF2X_ELEMENT); | |||
} | |||
} | |||
/* Generates a keypair - pk is the public key and sk is the secret key. */ | |||
int PQCLEAN_LEDAKEMLT52_LEAKTIME_crypto_kem_keypair(unsigned char *pk, unsigned char *sk) { | |||
AES_XOF_struct niederreiter_keys_expander; | |||
publicKeyNiederreiter_t pk_nie; | |||
randombytes(((privateKeyNiederreiter_t *)sk)->prng_seed, TRNG_BYTE_LENGTH); | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_seedexpander_from_trng(&niederreiter_keys_expander, ((privateKeyNiederreiter_t *)sk)->prng_seed); | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_niederreiter_keygen(&pk_nie, (privateKeyNiederreiter_t *) sk, &niederreiter_keys_expander); | |||
pack_pk(pk, &pk_nie); | |||
return 0; | |||
} | |||
/* Encrypt - pk is the public key, ct is a key encapsulation message | |||
(ciphertext), ss is the shared secret.*/ | |||
int PQCLEAN_LEDAKEMLT52_LEAKTIME_crypto_kem_enc(unsigned char *ct, unsigned char *ss, const unsigned char *pk) { | |||
AES_XOF_struct niederreiter_encap_key_expander; | |||
unsigned char encapsulated_key_seed[TRNG_BYTE_LENGTH]; | |||
DIGIT error_vector[N0 * NUM_DIGITS_GF2X_ELEMENT]; | |||
uint8_t error_bytes[N0 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B]; | |||
DIGIT syndrome[NUM_DIGITS_GF2X_ELEMENT]; | |||
publicKeyNiederreiter_t pk_nie; | |||
randombytes(encapsulated_key_seed, TRNG_BYTE_LENGTH); | |||
unpack_pk(&pk_nie, pk); | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_seedexpander_from_trng(&niederreiter_encap_key_expander, encapsulated_key_seed); | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_rand_circulant_blocks_sequence(error_vector, &niederreiter_encap_key_expander); | |||
pack_error(error_bytes, error_vector); | |||
HASH_FUNCTION(ss, error_bytes, (N0 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B)); | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_niederreiter_encrypt(syndrome, &pk_nie, error_vector); | |||
pack_ct(ct, syndrome); | |||
return 0; | |||
} | |||
/* Decrypt - ct is a key encapsulation message (ciphertext), sk is the private | |||
key, ss is the shared secret */ | |||
int PQCLEAN_LEDAKEMLT52_LEAKTIME_crypto_kem_dec(unsigned char *ss, const unsigned char *ct, const unsigned char *sk) { | |||
DIGIT decoded_error_vector[N0 * NUM_DIGITS_GF2X_ELEMENT]; | |||
uint8_t decoded_error_bytes[N0 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B]; | |||
DIGIT syndrome[NUM_DIGITS_GF2X_ELEMENT]; | |||
unpack_ct(syndrome, ct); | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_niederreiter_decrypt(decoded_error_vector, (privateKeyNiederreiter_t *)sk, syndrome); | |||
pack_error(decoded_error_bytes, decoded_error_vector); | |||
HASH_FUNCTION(ss, decoded_error_bytes, (N0 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B)); | |||
return 0; | |||
} |
@@ -0,0 +1,192 @@ | |||
#include "H_Q_matrices_generation.h" | |||
#include "bf_decoding.h" | |||
#include "dfr_test.h" | |||
#include "gf2x_arith_mod_xPplusOne.h" | |||
#include "niederreiter.h" | |||
#include "qc_ldpc_parameters.h" | |||
#include "rng.h" | |||
#include <string.h> | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_niederreiter_keygen(publicKeyNiederreiter_t *pk, privateKeyNiederreiter_t *sk, AES_XOF_struct *keys_expander) { | |||
POSITION_T HPosOnes[N0][DV]; // sequence of N0 circ block matrices (p x p): Hi | |||
POSITION_T HtrPosOnes[N0][DV]; // Sparse tranposed circulant H | |||
POSITION_T QPosOnes[N0][M]; // Sparse Q, Each row contains the position of the ones of all the blocks of a row of Q as exponent+P*block_position | |||
POSITION_T LPosOnes[N0][DV * M]; | |||
POSITION_T auxPosOnes[DV * M]; | |||
unsigned char processedQOnes[N0]; | |||
DIGIT Ln0dense[NUM_DIGITS_GF2X_ELEMENT]; | |||
DIGIT Ln0Inv[NUM_DIGITS_GF2X_ELEMENT]; | |||
int is_L_full = 0; | |||
uint8_t threshold = (DV * M) / 2 + 1; // threshold for round 2 | |||
sk->rejections = (int8_t) 0; | |||
do { | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_generateHPosOnes_HtrPosOnes(HPosOnes, HtrPosOnes, keys_expander); | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_generateQsparse(QPosOnes, keys_expander); | |||
for (int i = 0; i < N0; i++) { | |||
for (int j = 0; j < DV * M; j++) { | |||
LPosOnes[i][j] = INVALID_POS_VALUE; | |||
} | |||
} | |||
memset(processedQOnes, 0x00, sizeof(processedQOnes)); | |||
for (int colQ = 0; colQ < N0; colQ++) { | |||
for (int i = 0; i < N0; i++) { | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_mul_sparse(DV * M, auxPosOnes, | |||
DV, HPosOnes[i], | |||
qBlockWeights[i][colQ], QPosOnes[i] + processedQOnes[i]); | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_add_sparse(DV * M, LPosOnes[colQ], | |||
DV * M, LPosOnes[colQ], | |||
DV * M, auxPosOnes); | |||
processedQOnes[i] += qBlockWeights[i][colQ]; | |||
} | |||
} | |||
is_L_full = 1; | |||
for (int i = 0; i < N0; i++) { | |||
is_L_full = is_L_full && (LPosOnes[i][DV * M - 1] != INVALID_POS_VALUE); | |||
} | |||
sk->rejections = sk->rejections + 1; | |||
if (is_L_full) { | |||
threshold = PQCLEAN_LEDAKEMLT52_LEAKTIME_DFR_test(LPosOnes); | |||
} | |||
} while (!is_L_full || threshold == DFR_TEST_FAIL); | |||
sk->rejections = sk->rejections - 1; | |||
sk->threshold = threshold; | |||
memset(Ln0dense, 0x00, sizeof(Ln0dense)); | |||
for (int j = 0; j < DV * M; j++) { | |||
if (LPosOnes[N0 - 1][j] != INVALID_POS_VALUE) { | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_set_coeff(Ln0dense, LPosOnes[N0 - 1][j], 1); | |||
} | |||
} | |||
memset(Ln0Inv, 0x00, sizeof(Ln0Inv)); | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_inverse(Ln0Inv, Ln0dense); | |||
for (int i = 0; i < N0 - 1; i++) { | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_mul_dense_to_sparse(pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT, | |||
Ln0Inv, | |||
LPosOnes[i], | |||
DV * M); | |||
} | |||
for (int i = 0; i < N0 - 1; i++) { | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_transpose_in_place(pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT); | |||
} | |||
} | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_niederreiter_encrypt(DIGIT *syndrome, const publicKeyNiederreiter_t *pk, const DIGIT *err) { | |||
int i; | |||
DIGIT saux[NUM_DIGITS_GF2X_ELEMENT]; | |||
memset(syndrome, 0x00, NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B); | |||
for (i = 0; i < N0 - 1; i++) { | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_mul(saux, | |||
pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT, | |||
err + i * NUM_DIGITS_GF2X_ELEMENT); | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_add(syndrome, syndrome, saux); | |||
} | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_add(syndrome, syndrome, err + (N0 - 1)*NUM_DIGITS_GF2X_ELEMENT); | |||
} | |||
int PQCLEAN_LEDAKEMLT52_LEAKTIME_niederreiter_decrypt(DIGIT *err, const privateKeyNiederreiter_t *sk, const DIGIT *syndrome) { | |||
AES_XOF_struct niederreiter_decrypt_expander; | |||
POSITION_T HPosOnes[N0][DV]; | |||
POSITION_T HtrPosOnes[N0][DV]; | |||
POSITION_T QPosOnes[N0][M]; | |||
POSITION_T QtrPosOnes[N0][M]; | |||
POSITION_T auxPosOnes[DV * M]; | |||
POSITION_T LPosOnes[N0][DV * M]; | |||
POSITION_T auxSparse[DV * M]; | |||
POSITION_T Ln0trSparse[DV * M]; | |||
unsigned char processedQOnes[N0]; | |||
unsigned transposed_ones_idx[N0]; | |||
DIGIT privateSyndrome[NUM_DIGITS_GF2X_ELEMENT]; | |||
DIGIT mockup_error_vector[N0 * NUM_DIGITS_GF2X_ELEMENT]; | |||
int rejections = sk->rejections; | |||
int currQoneIdx, endQblockIdx; | |||
int decryptOk, err_weight; | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_seedexpander_from_trng(&niederreiter_decrypt_expander, sk->prng_seed); | |||
do { | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_generateHPosOnes_HtrPosOnes(HPosOnes, HtrPosOnes, &niederreiter_decrypt_expander); | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_generateQsparse(QPosOnes, &niederreiter_decrypt_expander); | |||
for (int i = 0; i < N0; i++) { | |||
for (int j = 0; j < DV * M; j++) { | |||
LPosOnes[i][j] = INVALID_POS_VALUE; | |||
} | |||
} | |||
memset(processedQOnes, 0x00, sizeof(processedQOnes)); | |||
for (int colQ = 0; colQ < N0; colQ++) { | |||
for (int i = 0; i < N0; i++) { | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_mul_sparse(DV * M, auxPosOnes, | |||
DV, HPosOnes[i], | |||
qBlockWeights[i][colQ], QPosOnes[i] + processedQOnes[i]); | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_add_sparse(DV * M, LPosOnes[colQ], | |||
DV * M, LPosOnes[colQ], | |||
DV * M, auxPosOnes); | |||
processedQOnes[i] += qBlockWeights[i][colQ]; | |||
} | |||
} | |||
rejections--; | |||
} while (rejections >= 0); | |||
memset(transposed_ones_idx, 0x00, sizeof(transposed_ones_idx)); | |||
for (unsigned source_row_idx = 0; source_row_idx < N0 ; source_row_idx++) { | |||
currQoneIdx = 0; // position in the column of QtrPosOnes[][...] | |||
endQblockIdx = 0; | |||
for (int blockIdx = 0; blockIdx < N0; blockIdx++) { | |||
endQblockIdx += qBlockWeights[source_row_idx][blockIdx]; | |||
for (; currQoneIdx < endQblockIdx; currQoneIdx++) { | |||
QtrPosOnes[blockIdx][transposed_ones_idx[blockIdx]] = (P - | |||
QPosOnes[source_row_idx][currQoneIdx]) % P; | |||
transposed_ones_idx[blockIdx]++; | |||
} | |||
} | |||
} | |||
for (int i = 0; i < DV * M; i++) { | |||
Ln0trSparse[i] = INVALID_POS_VALUE; | |||
auxSparse[i] = INVALID_POS_VALUE; | |||
} | |||
for (int i = 0; i < N0; i++) { | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_mul_sparse(DV * M, auxSparse, | |||
DV, HPosOnes[i], | |||
qBlockWeights[i][N0 - 1], &QPosOnes[i][ M - qBlockWeights[i][N0 - 1]]); | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_add_sparse(DV * M, Ln0trSparse, | |||
DV * M, Ln0trSparse, | |||
DV * M, auxSparse); | |||
} | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_transpose_in_place_sparse(DV * M, Ln0trSparse); | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_mul_dense_to_sparse(privateSyndrome, syndrome, Ln0trSparse, DV * M); | |||
/* prepare mockup error vector in case a decoding failure occurs */ | |||
memset(mockup_error_vector, 0x00, N0 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B); | |||
memcpy(mockup_error_vector, syndrome, NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B); | |||
PQCLEAN_LEDAKEMLT52_LEAKTIME_seedexpander(&niederreiter_decrypt_expander, | |||
((unsigned char *) mockup_error_vector) + (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B), | |||
TRNG_BYTE_LENGTH); | |||
memset(err, 0x00, N0 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B); | |||
decryptOk = PQCLEAN_LEDAKEMLT52_LEAKTIME_bf_decoding(err, (const POSITION_T (*)[DV]) HtrPosOnes, | |||
(const POSITION_T (*)[M]) QtrPosOnes, privateSyndrome, sk->threshold); | |||
err_weight = 0; | |||
for (int i = 0 ; i < N0; i++) { | |||
err_weight += PQCLEAN_LEDAKEMLT52_LEAKTIME_population_count(err + (NUM_DIGITS_GF2X_ELEMENT * i)); | |||
} | |||
decryptOk = decryptOk && (err_weight == NUM_ERRORS_T); | |||
if (!decryptOk) { // TODO: not constant time, replace with cmov? | |||
memcpy(err, mockup_error_vector, N0 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B); | |||
} | |||
return decryptOk; | |||
} |
@@ -0,0 +1,29 @@ | |||
#ifndef NIEDERREITER_H | |||
#define NIEDERREITER_H | |||
#include "gf2x_arith_mod_xPplusOne.h" | |||
#include "qc_ldpc_parameters.h" | |||
#include "rng.h" | |||
typedef struct { | |||
/* raw entropy extracted from TRNG, will be deterministically expanded into | |||
* H and Q during decryption */ | |||
unsigned char prng_seed[TRNG_BYTE_LENGTH]; | |||
int8_t rejections; | |||
uint8_t threshold; // for round 2 | |||
} privateKeyNiederreiter_t; | |||
typedef struct { | |||
DIGIT Mtr[(N0 - 1)*NUM_DIGITS_GF2X_ELEMENT]; | |||
// Dense representation of the matrix M=Ln0*L, | |||
// An array including a sequence of (N0-1) gf2x elements; | |||
// each gf2x element is stored as a binary polynomial(mod x^P+1) | |||
// with P coefficients. | |||
} publicKeyNiederreiter_t; | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_niederreiter_keygen(publicKeyNiederreiter_t *pk, privateKeyNiederreiter_t *sk, AES_XOF_struct *keys_expander); | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_niederreiter_encrypt(DIGIT syndrome[], const publicKeyNiederreiter_t *pk, const DIGIT *err); | |||
int PQCLEAN_LEDAKEMLT52_LEAKTIME_niederreiter_decrypt(DIGIT *err, const privateKeyNiederreiter_t *sk, const DIGIT *syndrome); | |||
#endif |
@@ -0,0 +1,27 @@ | |||
#ifndef QC_LDPC_PARAMETERS_H | |||
#define QC_LDPC_PARAMETERS_H | |||
#include "fips202.h" | |||
#define TRNG_BYTE_LENGTH (40) | |||
#define HASH_BYTE_LENGTH (64) | |||
#define HASH_FUNCTION sha3_512 | |||
#define N0 (2) | |||
#define P (152267) // modulus(x) = x^P-1 | |||
#define DV (13) // odd number | |||
#define M (13) | |||
#define M0 (7) | |||
#define M1 (6) | |||
#define NUM_ERRORS_T (267) | |||
// Derived parameters, they are useful for QC-LDPC algorithms | |||
#define HASH_BIT_LENGTH (HASH_BYTE_LENGTH << 3) | |||
#define K ((N0-1)*P) | |||
#define N (N0*P) | |||
#define DC (N0*DV) | |||
#define Q_BLOCK_WEIGHTS {{M0,M1},{M1,M0}} | |||
static const unsigned char qBlockWeights[N0][N0] = Q_BLOCK_WEIGHTS; | |||
#endif |
@@ -0,0 +1,108 @@ | |||
#include "rng.h" | |||
#include <string.h> // void *memset(void *s, int c, size_t n); | |||
#include "aes.h" | |||
#include "qc_ldpc_parameters.h" | |||
/* | |||
seedexpander_init() | |||
ctx - stores the current state of an instance of the seed expander | |||
seed - a 32 byte random value | |||
diversifier - an 8 byte diversifier | |||
maxlen - maximum number of bytes (less than 2**32) generated under this seed and diversifier | |||
*/ | |||
static void seedexpander_init(AES_XOF_struct *ctx, | |||
unsigned char *seed, | |||
unsigned char *diversifier, | |||
size_t maxlen) { | |||
ctx->length_remaining = maxlen; | |||
memset(ctx->key, 0, 32); | |||
int max_accessible_seed_len = TRNG_BYTE_LENGTH < 32 ? 32 : TRNG_BYTE_LENGTH; | |||
memcpy(ctx->key, seed, max_accessible_seed_len); | |||
memcpy(ctx->ctr, diversifier, 8); | |||
ctx->ctr[11] = maxlen % 256; | |||
maxlen >>= 8; | |||
ctx->ctr[10] = maxlen % 256; | |||
maxlen >>= 8; | |||
ctx->ctr[9] = maxlen % 256; | |||
maxlen >>= 8; | |||
ctx->ctr[8] = maxlen % 256; | |||
memset(ctx->ctr + 12, 0x00, 4); | |||
ctx->buffer_pos = 16; | |||
memset(ctx->buffer, 0x00, 16); | |||
} | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_seedexpander_from_trng(AES_XOF_struct *ctx, | |||
const unsigned char *trng_entropy | |||
/* TRNG_BYTE_LENGTH wide buffer */) { | |||
/*the NIST seedexpander will however access 32B from this buffer */ | |||
unsigned int prng_buffer_size = TRNG_BYTE_LENGTH < 32 ? 32 : TRNG_BYTE_LENGTH; | |||
unsigned char prng_buffer[TRNG_BYTE_LENGTH < 32 ? 32 : TRNG_BYTE_LENGTH] = { 0x00 }; | |||
unsigned char *diversifier = ((unsigned char *)trng_entropy) + 32; | |||
memcpy(prng_buffer, | |||
trng_entropy, | |||
TRNG_BYTE_LENGTH < prng_buffer_size ? TRNG_BYTE_LENGTH : prng_buffer_size); | |||
/* the required seed expansion will be quite small, set the max number of | |||
* bytes conservatively to 10 MiB*/ | |||
seedexpander_init(ctx, prng_buffer, diversifier, RNG_MAXLEN); | |||
} | |||
/* | |||
seedexpander() | |||
ctx - stores the current state of an instance of the seed expander | |||
x - returns the XOF data | |||
xlen - number of bytes to return | |||
*/ | |||
int PQCLEAN_LEDAKEMLT52_LEAKTIME_seedexpander(AES_XOF_struct *ctx, unsigned char *x, size_t xlen) { | |||
size_t offset; | |||
aes256ctx ctx256; | |||
if ( x == NULL ) { | |||
return RNG_BAD_OUTBUF; | |||
} | |||
if ( xlen >= ctx->length_remaining ) { | |||
return RNG_BAD_REQ_LEN; | |||
} | |||
aes256_keyexp(&ctx256, ctx->key); | |||
ctx->length_remaining -= xlen; | |||
offset = 0; | |||
while ( xlen > 0 ) { | |||
if ( xlen <= (16 - ctx->buffer_pos) ) { // buffer has what we need | |||
memcpy(x + offset, ctx->buffer + ctx->buffer_pos, xlen); | |||
ctx->buffer_pos += xlen; | |||
return RNG_SUCCESS; | |||
} | |||
// take what's in the buffer | |||
memcpy(x + offset, ctx->buffer + ctx->buffer_pos, 16 - ctx->buffer_pos); | |||
xlen -= 16 - ctx->buffer_pos; | |||
offset += 16 - ctx->buffer_pos; | |||
aes256_ecb(ctx->buffer, ctx->ctr, 16 / AES_BLOCKBYTES, &ctx256); | |||
ctx->buffer_pos = 0; | |||
//increment the counter | |||
for (int i = 15; i >= 12; i--) { | |||
if ( ctx->ctr[i] == 0xff ) { | |||
ctx->ctr[i] = 0x00; | |||
} else { | |||
ctx->ctr[i]++; | |||
break; | |||
} | |||
} | |||
} | |||
return RNG_SUCCESS; | |||
} |
@@ -0,0 +1,24 @@ | |||
#ifndef RNG_H | |||
#define RNG_H | |||
#include <stddef.h> | |||
#include <stdint.h> | |||
#define RNG_SUCCESS ( 0) | |||
#define RNG_BAD_MAXLEN (-1) | |||
#define RNG_BAD_OUTBUF (-2) | |||
#define RNG_BAD_REQ_LEN (-3) | |||
#define RNG_MAXLEN (10 * 1024 * 1024) | |||
typedef struct { | |||
unsigned char buffer[16]; | |||
size_t buffer_pos; | |||
size_t length_remaining; | |||
unsigned char key[32]; | |||
unsigned char ctr[16]; | |||
} AES_XOF_struct; | |||
int PQCLEAN_LEDAKEMLT52_LEAKTIME_seedexpander(AES_XOF_struct *ctx, unsigned char *x, size_t xlen); | |||
void PQCLEAN_LEDAKEMLT52_LEAKTIME_seedexpander_from_trng(AES_XOF_struct *ctx, const unsigned char *trng_entropy); | |||
#endif |
@@ -0,0 +1,32 @@ | |||
consistency_checks: | |||
- source: | |||
scheme: ledakemlt32 | |||
implementation: leaktime | |||
files: | |||
- bf_decoding.c | |||
- dfr_test.c | |||
- dfr_test.h | |||
- gf2x_arith.c | |||
- gf2x_arith.h | |||
- H_Q_matrices_generation.c | |||
- H_Q_matrices_generation.h | |||
- kem.c | |||
- niederreiter.c | |||
- niederreiter.h | |||
- rng.c | |||
- rng.h | |||
- source: | |||
scheme: ledakemlt52 | |||
implementation: leaktime | |||
files: | |||
- bf_decoding.c | |||
- dfr_test.c | |||
- dfr_test.h | |||
- gf2x_arith.c | |||
- gf2x_arith.h | |||
- H_Q_matrices_generation.c | |||
- H_Q_matrices_generation.h | |||
- kem.c | |||
- niederreiter.c | |||
- niederreiter.h | |||
- rng.h |
@@ -0,0 +1,32 @@ | |||
consistency_checks: | |||
- source: | |||
scheme: ledakemlt12 | |||
implementation: leaktime | |||
files: | |||
- bf_decoding.c | |||
- dfr_test.c | |||
- dfr_test.h | |||
- gf2x_arith.c | |||
- gf2x_arith.h | |||
- H_Q_matrices_generation.c | |||
- H_Q_matrices_generation.h | |||
- kem.c | |||
- niederreiter.c | |||
- niederreiter.h | |||
- rng.c | |||
- rng.h | |||
- source: | |||
scheme: ledakemlt52 | |||
implementation: leaktime | |||
files: | |||
- bf_decoding.c | |||
- dfr_test.c | |||
- dfr_test.h | |||
- gf2x_arith.c | |||
- gf2x_arith.h | |||
- H_Q_matrices_generation.c | |||
- H_Q_matrices_generation.h | |||
- kem.c | |||
- niederreiter.c | |||
- niederreiter.h | |||
- rng.h |
@@ -0,0 +1,32 @@ | |||
consistency_checks: | |||
- source: | |||
scheme: ledakemlt12 | |||
implementation: leaktime | |||
files: | |||
- bf_decoding.c | |||
- dfr_test.c | |||
- dfr_test.h | |||
- gf2x_arith.c | |||
- gf2x_arith.h | |||
- H_Q_matrices_generation.c | |||
- H_Q_matrices_generation.h | |||
- kem.c | |||
- niederreiter.c | |||
- niederreiter.h | |||
- rng.h | |||
- source: | |||
scheme: ledakemlt32 | |||
implementation: leaktime | |||
files: | |||
- bf_decoding.c | |||
- dfr_test.c | |||
- dfr_test.h | |||
- gf2x_arith.c | |||
- gf2x_arith.h | |||
- gf2x_arith_mod_xPplusOne.c | |||
- H_Q_matrices_generation.c | |||
- H_Q_matrices_generation.h | |||
- kem.c | |||
- niederreiter.c | |||
- niederreiter.h | |||
- rng.h |