Reference implementations of PQC
Nie możesz wybrać więcej, niż 25 tematów Tematy muszą się zaczynać od litery lub cyfry, mogą zawierać myślniki ('-') i mogą mieć do 35 znaków.
 
 
 
 
Henry Case dafff237c2 Merge pull request 'sike' (#1) from sike into main 3 lat temu
.cmake KEM and Sign C-API 3 lat temu
.github/workflows Fix testing against KATs 3 lat temu
3rd update cpu_features submodule 3 lat temu
buid.dbg add drone.yml 3 lat temu
public/pqc update sike 3 lat temu
src check if adox available 3 lat temu
test SIKE/p434 goes thru KATs 3 lat temu
.astylerc Disable AStyle line endings formatter 5 lat temu
.drone.yml Update '.drone.yml' 3 lat temu
.gitattributes Fix tidy for signing 5 lat temu
.gitignore Parallel tests (#206) 5 lat temu
.gitmodules change path to cpu_features submodule 3 lat temu
CMakeLists.txt use haswell as default arch 3 lat temu
LICENSE Create LICENSE 3 lat temu
README.md Merge pull request 'sike' (#1) from sike into main 3 lat temu

README.md

PQ Crypto Catalog

Build Status

This is a repository of post-quantum schemes copied from either the submission to the NIST Post-Quantum Standardization or PQClean project. The goal of the library is to provide easy to use API which enables quick experimentation with some post-quantum cryptographic schemes.

Users shouldn’t expect any level of security provided by this code. The library is not meant to be used on live production systems.

Schemes support

Name NIST Round x86 optimized
Kyber 3 x
NTRU 3 x
SABER 3 x
FrodoKEM 3
NTRU Prime 3 x
HQC-RMRS 3 x
Dilithium 3 x
Falcon 2
Rainbow 3
SPHINCS+ SHA256/SHAKE256 3 x
SIKE/p434 3 x

Building

CMake is used to build the library:

mkdir build
cd build
cmake -DCMAKE_BUILD_TYPE=Release ..
make

Build outputs two libraries, a static libpqc_s.a and dynamic libpqc.so, which can be linked with a project.

API

Library provides simple API, wrapping PQClean. For example to use KEM, one should call the library in following way:

    #include <pqc/pqc.h>

    std::vector<uint8_t> ct(ciphertext_bsz(p));
    std::vector<uint8_t> ss1(shared_secret_bsz(p));
    std::vector<uint8_t> ss2(shared_secret_bsz(p));
    std::vector<uint8_t> sk(private_key_bsz(p));
    std::vector<uint8_t> pk(public_key_bsz(p));

    const params_t *p = pqc_kem_alg_by_id(KYBER512);
    pqc_keygen(p, pk.data(), sk.data());
    pqc_kem_encapsulate(p, ct.data(), ss1.data(), pk.data());
    pqc_kem_decapsulate(p, ss2.data(), ct.data(), sk.data());

    p = pqc_sig_alg_by_id(DILITHIUM2);
    size_t sigsz = sig.capacity();
    pqc_keygen(p, pk.data(), sk.data());
    pqc_sig_create(p, sig.data(), &sigsz, msg.data(), msg.size(), sk.data());
    pqc_sig_verify(p, sig.data(), sig.size(), msg.data(), msg.size(), pk.data());

See test implemetnation in test/ut.cpp for more details.

Rust binding

Rust bindgings are provided in the src/rustapi/pqc-sys and can be regenerated automatically by running cargo build in that directory.

Testing against Known Answer Tests

Algorithms are tested against KATs, by the Rust-based runner implemented in the test/katrunner (only verification/decpaulation). The runner uses katwalk crate for parsing NIST format. To run it:

    cd test/katrunner
    curl http://amongbytes.com/~flowher/permalinks/kat.zip --output kat.zip
    unzip kat.zip
    cargo run -- --katdir KAT