pqc/common/sha2.c
Thom Wiggers 65a6a63e08
Put all common primitives on the heap (#266)
* Put AES ctx on the heap

This forces people to use the ``ctx_release`` functions, because otherwise there will be leaks

* Put fips202 on the heap

* Add much more docs for fips202.h

* fixup! Put fips202 on the heap

* Put SHA2 on the heap-supporting API

* Fix clang-tidy warnings

* Fix unreachable free() in falcon

* Fix McEliece8192128f-sse GNU Makefile
2020-02-11 11:15:14 +01:00

770 righe
23 KiB
C

/* Based on the public domain implementation in
* crypto_hash/sha512/ref/ from http://bench.cr.yp.to/supercop.html
* by D. J. Bernstein */
#include <stddef.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include "sha2.h"
static uint32_t load_bigendian_32(const uint8_t *x) {
return (uint32_t)(x[3]) | (((uint32_t)(x[2])) << 8) |
(((uint32_t)(x[1])) << 16) | (((uint32_t)(x[0])) << 24);
}
static uint64_t load_bigendian_64(const uint8_t *x) {
return (uint64_t)(x[7]) | (((uint64_t)(x[6])) << 8) |
(((uint64_t)(x[5])) << 16) | (((uint64_t)(x[4])) << 24) |
(((uint64_t)(x[3])) << 32) | (((uint64_t)(x[2])) << 40) |
(((uint64_t)(x[1])) << 48) | (((uint64_t)(x[0])) << 56);
}
static void store_bigendian_32(uint8_t *x, uint64_t u) {
x[3] = (uint8_t) u;
u >>= 8;
x[2] = (uint8_t) u;
u >>= 8;
x[1] = (uint8_t) u;
u >>= 8;
x[0] = (uint8_t) u;
}
static void store_bigendian_64(uint8_t *x, uint64_t u) {
x[7] = (uint8_t) u;
u >>= 8;
x[6] = (uint8_t) u;
u >>= 8;
x[5] = (uint8_t) u;
u >>= 8;
x[4] = (uint8_t) u;
u >>= 8;
x[3] = (uint8_t) u;
u >>= 8;
x[2] = (uint8_t) u;
u >>= 8;
x[1] = (uint8_t) u;
u >>= 8;
x[0] = (uint8_t) u;
}
#define SHR(x, c) ((x) >> (c))
#define ROTR_32(x, c) (((x) >> (c)) | ((x) << (32 - (c))))
#define ROTR_64(x, c) (((x) >> (c)) | ((x) << (64 - (c))))
#define Ch(x, y, z) (((x) & (y)) ^ (~(x) & (z)))
#define Maj(x, y, z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
#define Sigma0_32(x) (ROTR_32(x, 2) ^ ROTR_32(x,13) ^ ROTR_32(x,22))
#define Sigma1_32(x) (ROTR_32(x, 6) ^ ROTR_32(x,11) ^ ROTR_32(x,25))
#define sigma0_32(x) (ROTR_32(x, 7) ^ ROTR_32(x,18) ^ SHR(x, 3))
#define sigma1_32(x) (ROTR_32(x,17) ^ ROTR_32(x,19) ^ SHR(x,10))
#define Sigma0_64(x) (ROTR_64(x, 28) ^ ROTR_64(x, 34) ^ ROTR_64(x, 39))
#define Sigma1_64(x) (ROTR_64(x, 14) ^ ROTR_64(x, 18) ^ ROTR_64(x, 41))
#define sigma0_64(x) (ROTR_64(x, 1) ^ ROTR_64(x, 8) ^ SHR(x, 7))
#define sigma1_64(x) (ROTR_64(x, 19) ^ ROTR_64(x, 61) ^ SHR(x, 6))
#define M_32(w0, w14, w9, w1) w0 = sigma1_32(w14) + (w9) + sigma0_32(w1) + (w0);
#define M_64(w0, w14, w9, w1) w0 = sigma1_64(w14) + (w9) + sigma0_64(w1) + (w0);
#define EXPAND_32 \
M_32(w0, w14, w9, w1) \
M_32(w1, w15, w10, w2) \
M_32(w2, w0, w11, w3) \
M_32(w3, w1, w12, w4) \
M_32(w4, w2, w13, w5) \
M_32(w5, w3, w14, w6) \
M_32(w6, w4, w15, w7) \
M_32(w7, w5, w0, w8) \
M_32(w8, w6, w1, w9) \
M_32(w9, w7, w2, w10) \
M_32(w10, w8, w3, w11) \
M_32(w11, w9, w4, w12) \
M_32(w12, w10, w5, w13) \
M_32(w13, w11, w6, w14) \
M_32(w14, w12, w7, w15) \
M_32(w15, w13, w8, w0)
#define EXPAND_64 \
M_64(w0, w14, w9, w1) \
M_64(w1, w15, w10, w2) \
M_64(w2, w0, w11, w3) \
M_64(w3, w1, w12, w4) \
M_64(w4, w2, w13, w5) \
M_64(w5, w3, w14, w6) \
M_64(w6, w4, w15, w7) \
M_64(w7, w5, w0, w8) \
M_64(w8, w6, w1, w9) \
M_64(w9, w7, w2, w10) \
M_64(w10, w8, w3, w11) \
M_64(w11, w9, w4, w12) \
M_64(w12, w10, w5, w13) \
M_64(w13, w11, w6, w14) \
M_64(w14, w12, w7, w15) \
M_64(w15, w13, w8, w0)
#define F_32(w, k) \
T1 = h + Sigma1_32(e) + Ch(e, f, g) + (k) + (w); \
T2 = Sigma0_32(a) + Maj(a, b, c); \
h = g; \
g = f; \
f = e; \
e = d + T1; \
d = c; \
c = b; \
b = a; \
a = T1 + T2;
#define F_64(w, k) \
T1 = h + Sigma1_64(e) + Ch(e, f, g) + (k) + (w); \
T2 = Sigma0_64(a) + Maj(a, b, c); \
h = g; \
g = f; \
f = e; \
e = d + T1; \
d = c; \
c = b; \
b = a; \
a = T1 + T2;
static size_t crypto_hashblocks_sha256(uint8_t *statebytes,
const uint8_t *in, size_t inlen) {
uint32_t state[8];
uint32_t a;
uint32_t b;
uint32_t c;
uint32_t d;
uint32_t e;
uint32_t f;
uint32_t g;
uint32_t h;
uint32_t T1;
uint32_t T2;
a = load_bigendian_32(statebytes + 0);
state[0] = a;
b = load_bigendian_32(statebytes + 4);
state[1] = b;
c = load_bigendian_32(statebytes + 8);
state[2] = c;
d = load_bigendian_32(statebytes + 12);
state[3] = d;
e = load_bigendian_32(statebytes + 16);
state[4] = e;
f = load_bigendian_32(statebytes + 20);
state[5] = f;
g = load_bigendian_32(statebytes + 24);
state[6] = g;
h = load_bigendian_32(statebytes + 28);
state[7] = h;
while (inlen >= 64) {
uint32_t w0 = load_bigendian_32(in + 0);
uint32_t w1 = load_bigendian_32(in + 4);
uint32_t w2 = load_bigendian_32(in + 8);
uint32_t w3 = load_bigendian_32(in + 12);
uint32_t w4 = load_bigendian_32(in + 16);
uint32_t w5 = load_bigendian_32(in + 20);
uint32_t w6 = load_bigendian_32(in + 24);
uint32_t w7 = load_bigendian_32(in + 28);
uint32_t w8 = load_bigendian_32(in + 32);
uint32_t w9 = load_bigendian_32(in + 36);
uint32_t w10 = load_bigendian_32(in + 40);
uint32_t w11 = load_bigendian_32(in + 44);
uint32_t w12 = load_bigendian_32(in + 48);
uint32_t w13 = load_bigendian_32(in + 52);
uint32_t w14 = load_bigendian_32(in + 56);
uint32_t w15 = load_bigendian_32(in + 60);
F_32(w0, 0x428a2f98)
F_32(w1, 0x71374491)
F_32(w2, 0xb5c0fbcf)
F_32(w3, 0xe9b5dba5)
F_32(w4, 0x3956c25b)
F_32(w5, 0x59f111f1)
F_32(w6, 0x923f82a4)
F_32(w7, 0xab1c5ed5)
F_32(w8, 0xd807aa98)
F_32(w9, 0x12835b01)
F_32(w10, 0x243185be)
F_32(w11, 0x550c7dc3)
F_32(w12, 0x72be5d74)
F_32(w13, 0x80deb1fe)
F_32(w14, 0x9bdc06a7)
F_32(w15, 0xc19bf174)
EXPAND_32
F_32(w0, 0xe49b69c1)
F_32(w1, 0xefbe4786)
F_32(w2, 0x0fc19dc6)
F_32(w3, 0x240ca1cc)
F_32(w4, 0x2de92c6f)
F_32(w5, 0x4a7484aa)
F_32(w6, 0x5cb0a9dc)
F_32(w7, 0x76f988da)
F_32(w8, 0x983e5152)
F_32(w9, 0xa831c66d)
F_32(w10, 0xb00327c8)
F_32(w11, 0xbf597fc7)
F_32(w12, 0xc6e00bf3)
F_32(w13, 0xd5a79147)
F_32(w14, 0x06ca6351)
F_32(w15, 0x14292967)
EXPAND_32
F_32(w0, 0x27b70a85)
F_32(w1, 0x2e1b2138)
F_32(w2, 0x4d2c6dfc)
F_32(w3, 0x53380d13)
F_32(w4, 0x650a7354)
F_32(w5, 0x766a0abb)
F_32(w6, 0x81c2c92e)
F_32(w7, 0x92722c85)
F_32(w8, 0xa2bfe8a1)
F_32(w9, 0xa81a664b)
F_32(w10, 0xc24b8b70)
F_32(w11, 0xc76c51a3)
F_32(w12, 0xd192e819)
F_32(w13, 0xd6990624)
F_32(w14, 0xf40e3585)
F_32(w15, 0x106aa070)
EXPAND_32
F_32(w0, 0x19a4c116)
F_32(w1, 0x1e376c08)
F_32(w2, 0x2748774c)
F_32(w3, 0x34b0bcb5)
F_32(w4, 0x391c0cb3)
F_32(w5, 0x4ed8aa4a)
F_32(w6, 0x5b9cca4f)
F_32(w7, 0x682e6ff3)
F_32(w8, 0x748f82ee)
F_32(w9, 0x78a5636f)
F_32(w10, 0x84c87814)
F_32(w11, 0x8cc70208)
F_32(w12, 0x90befffa)
F_32(w13, 0xa4506ceb)
F_32(w14, 0xbef9a3f7)
F_32(w15, 0xc67178f2)
a += state[0];
b += state[1];
c += state[2];
d += state[3];
e += state[4];
f += state[5];
g += state[6];
h += state[7];
state[0] = a;
state[1] = b;
state[2] = c;
state[3] = d;
state[4] = e;
state[5] = f;
state[6] = g;
state[7] = h;
in += 64;
inlen -= 64;
}
store_bigendian_32(statebytes + 0, state[0]);
store_bigendian_32(statebytes + 4, state[1]);
store_bigendian_32(statebytes + 8, state[2]);
store_bigendian_32(statebytes + 12, state[3]);
store_bigendian_32(statebytes + 16, state[4]);
store_bigendian_32(statebytes + 20, state[5]);
store_bigendian_32(statebytes + 24, state[6]);
store_bigendian_32(statebytes + 28, state[7]);
return inlen;
}
static size_t crypto_hashblocks_sha512(uint8_t *statebytes,
const uint8_t *in, size_t inlen) {
uint64_t state[8];
uint64_t a;
uint64_t b;
uint64_t c;
uint64_t d;
uint64_t e;
uint64_t f;
uint64_t g;
uint64_t h;
uint64_t T1;
uint64_t T2;
a = load_bigendian_64(statebytes + 0);
state[0] = a;
b = load_bigendian_64(statebytes + 8);
state[1] = b;
c = load_bigendian_64(statebytes + 16);
state[2] = c;
d = load_bigendian_64(statebytes + 24);
state[3] = d;
e = load_bigendian_64(statebytes + 32);
state[4] = e;
f = load_bigendian_64(statebytes + 40);
state[5] = f;
g = load_bigendian_64(statebytes + 48);
state[6] = g;
h = load_bigendian_64(statebytes + 56);
state[7] = h;
while (inlen >= 128) {
uint64_t w0 = load_bigendian_64(in + 0);
uint64_t w1 = load_bigendian_64(in + 8);
uint64_t w2 = load_bigendian_64(in + 16);
uint64_t w3 = load_bigendian_64(in + 24);
uint64_t w4 = load_bigendian_64(in + 32);
uint64_t w5 = load_bigendian_64(in + 40);
uint64_t w6 = load_bigendian_64(in + 48);
uint64_t w7 = load_bigendian_64(in + 56);
uint64_t w8 = load_bigendian_64(in + 64);
uint64_t w9 = load_bigendian_64(in + 72);
uint64_t w10 = load_bigendian_64(in + 80);
uint64_t w11 = load_bigendian_64(in + 88);
uint64_t w12 = load_bigendian_64(in + 96);
uint64_t w13 = load_bigendian_64(in + 104);
uint64_t w14 = load_bigendian_64(in + 112);
uint64_t w15 = load_bigendian_64(in + 120);
F_64(w0, 0x428a2f98d728ae22ULL)
F_64(w1, 0x7137449123ef65cdULL)
F_64(w2, 0xb5c0fbcfec4d3b2fULL)
F_64(w3, 0xe9b5dba58189dbbcULL)
F_64(w4, 0x3956c25bf348b538ULL)
F_64(w5, 0x59f111f1b605d019ULL)
F_64(w6, 0x923f82a4af194f9bULL)
F_64(w7, 0xab1c5ed5da6d8118ULL)
F_64(w8, 0xd807aa98a3030242ULL)
F_64(w9, 0x12835b0145706fbeULL)
F_64(w10, 0x243185be4ee4b28cULL)
F_64(w11, 0x550c7dc3d5ffb4e2ULL)
F_64(w12, 0x72be5d74f27b896fULL)
F_64(w13, 0x80deb1fe3b1696b1ULL)
F_64(w14, 0x9bdc06a725c71235ULL)
F_64(w15, 0xc19bf174cf692694ULL)
EXPAND_64
F_64(w0, 0xe49b69c19ef14ad2ULL)
F_64(w1, 0xefbe4786384f25e3ULL)
F_64(w2, 0x0fc19dc68b8cd5b5ULL)
F_64(w3, 0x240ca1cc77ac9c65ULL)
F_64(w4, 0x2de92c6f592b0275ULL)
F_64(w5, 0x4a7484aa6ea6e483ULL)
F_64(w6, 0x5cb0a9dcbd41fbd4ULL)
F_64(w7, 0x76f988da831153b5ULL)
F_64(w8, 0x983e5152ee66dfabULL)
F_64(w9, 0xa831c66d2db43210ULL)
F_64(w10, 0xb00327c898fb213fULL)
F_64(w11, 0xbf597fc7beef0ee4ULL)
F_64(w12, 0xc6e00bf33da88fc2ULL)
F_64(w13, 0xd5a79147930aa725ULL)
F_64(w14, 0x06ca6351e003826fULL)
F_64(w15, 0x142929670a0e6e70ULL)
EXPAND_64
F_64(w0, 0x27b70a8546d22ffcULL)
F_64(w1, 0x2e1b21385c26c926ULL)
F_64(w2, 0x4d2c6dfc5ac42aedULL)
F_64(w3, 0x53380d139d95b3dfULL)
F_64(w4, 0x650a73548baf63deULL)
F_64(w5, 0x766a0abb3c77b2a8ULL)
F_64(w6, 0x81c2c92e47edaee6ULL)
F_64(w7, 0x92722c851482353bULL)
F_64(w8, 0xa2bfe8a14cf10364ULL)
F_64(w9, 0xa81a664bbc423001ULL)
F_64(w10, 0xc24b8b70d0f89791ULL)
F_64(w11, 0xc76c51a30654be30ULL)
F_64(w12, 0xd192e819d6ef5218ULL)
F_64(w13, 0xd69906245565a910ULL)
F_64(w14, 0xf40e35855771202aULL)
F_64(w15, 0x106aa07032bbd1b8ULL)
EXPAND_64
F_64(w0, 0x19a4c116b8d2d0c8ULL)
F_64(w1, 0x1e376c085141ab53ULL)
F_64(w2, 0x2748774cdf8eeb99ULL)
F_64(w3, 0x34b0bcb5e19b48a8ULL)
F_64(w4, 0x391c0cb3c5c95a63ULL)
F_64(w5, 0x4ed8aa4ae3418acbULL)
F_64(w6, 0x5b9cca4f7763e373ULL)
F_64(w7, 0x682e6ff3d6b2b8a3ULL)
F_64(w8, 0x748f82ee5defb2fcULL)
F_64(w9, 0x78a5636f43172f60ULL)
F_64(w10, 0x84c87814a1f0ab72ULL)
F_64(w11, 0x8cc702081a6439ecULL)
F_64(w12, 0x90befffa23631e28ULL)
F_64(w13, 0xa4506cebde82bde9ULL)
F_64(w14, 0xbef9a3f7b2c67915ULL)
F_64(w15, 0xc67178f2e372532bULL)
EXPAND_64
F_64(w0, 0xca273eceea26619cULL)
F_64(w1, 0xd186b8c721c0c207ULL)
F_64(w2, 0xeada7dd6cde0eb1eULL)
F_64(w3, 0xf57d4f7fee6ed178ULL)
F_64(w4, 0x06f067aa72176fbaULL)
F_64(w5, 0x0a637dc5a2c898a6ULL)
F_64(w6, 0x113f9804bef90daeULL)
F_64(w7, 0x1b710b35131c471bULL)
F_64(w8, 0x28db77f523047d84ULL)
F_64(w9, 0x32caab7b40c72493ULL)
F_64(w10, 0x3c9ebe0a15c9bebcULL)
F_64(w11, 0x431d67c49c100d4cULL)
F_64(w12, 0x4cc5d4becb3e42b6ULL)
F_64(w13, 0x597f299cfc657e2aULL)
F_64(w14, 0x5fcb6fab3ad6faecULL)
F_64(w15, 0x6c44198c4a475817ULL)
a += state[0];
b += state[1];
c += state[2];
d += state[3];
e += state[4];
f += state[5];
g += state[6];
h += state[7];
state[0] = a;
state[1] = b;
state[2] = c;
state[3] = d;
state[4] = e;
state[5] = f;
state[6] = g;
state[7] = h;
in += 128;
inlen -= 128;
}
store_bigendian_64(statebytes + 0, state[0]);
store_bigendian_64(statebytes + 8, state[1]);
store_bigendian_64(statebytes + 16, state[2]);
store_bigendian_64(statebytes + 24, state[3]);
store_bigendian_64(statebytes + 32, state[4]);
store_bigendian_64(statebytes + 40, state[5]);
store_bigendian_64(statebytes + 48, state[6]);
store_bigendian_64(statebytes + 56, state[7]);
return inlen;
}
static const uint8_t iv_224[32] = {
0xc1, 0x05, 0x9e, 0xd8, 0x36, 0x7c, 0xd5, 0x07,
0x30, 0x70, 0xdd, 0x17, 0xf7, 0x0e, 0x59, 0x39,
0xff, 0xc0, 0x0b, 0x31, 0x68, 0x58, 0x15, 0x11,
0x64, 0xf9, 0x8f, 0xa7, 0xbe, 0xfa, 0x4f, 0xa4
};
static const uint8_t iv_256[32] = {
0x6a, 0x09, 0xe6, 0x67, 0xbb, 0x67, 0xae, 0x85,
0x3c, 0x6e, 0xf3, 0x72, 0xa5, 0x4f, 0xf5, 0x3a,
0x51, 0x0e, 0x52, 0x7f, 0x9b, 0x05, 0x68, 0x8c,
0x1f, 0x83, 0xd9, 0xab, 0x5b, 0xe0, 0xcd, 0x19
};
static const uint8_t iv_384[64] = {
0xcb, 0xbb, 0x9d, 0x5d, 0xc1, 0x05, 0x9e, 0xd8, 0x62, 0x9a, 0x29,
0x2a, 0x36, 0x7c, 0xd5, 0x07, 0x91, 0x59, 0x01, 0x5a, 0x30, 0x70,
0xdd, 0x17, 0x15, 0x2f, 0xec, 0xd8, 0xf7, 0x0e, 0x59, 0x39, 0x67,
0x33, 0x26, 0x67, 0xff, 0xc0, 0x0b, 0x31, 0x8e, 0xb4, 0x4a, 0x87,
0x68, 0x58, 0x15, 0x11, 0xdb, 0x0c, 0x2e, 0x0d, 0x64, 0xf9, 0x8f,
0xa7, 0x47, 0xb5, 0x48, 0x1d, 0xbe, 0xfa, 0x4f, 0xa4
};
static const uint8_t iv_512[64] = {
0x6a, 0x09, 0xe6, 0x67, 0xf3, 0xbc, 0xc9, 0x08, 0xbb, 0x67, 0xae,
0x85, 0x84, 0xca, 0xa7, 0x3b, 0x3c, 0x6e, 0xf3, 0x72, 0xfe, 0x94,
0xf8, 0x2b, 0xa5, 0x4f, 0xf5, 0x3a, 0x5f, 0x1d, 0x36, 0xf1, 0x51,
0x0e, 0x52, 0x7f, 0xad, 0xe6, 0x82, 0xd1, 0x9b, 0x05, 0x68, 0x8c,
0x2b, 0x3e, 0x6c, 0x1f, 0x1f, 0x83, 0xd9, 0xab, 0xfb, 0x41, 0xbd,
0x6b, 0x5b, 0xe0, 0xcd, 0x19, 0x13, 0x7e, 0x21, 0x79
};
void sha224_inc_init(sha224ctx *state) {
state->ctx = malloc(PQC_SHA256CTX_BYTES);
if (state->ctx == NULL) {
exit(111);
}
for (size_t i = 0; i < 32; ++i) {
state->ctx[i] = iv_224[i];
}
for (size_t i = 32; i < 40; ++i) {
state->ctx[i] = 0;
}
}
void sha256_inc_init(sha256ctx *state) {
state->ctx = malloc(PQC_SHA256CTX_BYTES);
if (state->ctx == NULL) {
exit(111);
}
for (size_t i = 0; i < 32; ++i) {
state->ctx[i] = iv_256[i];
}
for (size_t i = 32; i < 40; ++i) {
state->ctx[i] = 0;
}
}
void sha384_inc_init(sha384ctx *state) {
state->ctx = malloc(PQC_SHA512CTX_BYTES);
if (state->ctx == NULL) {
exit(111);
}
for (size_t i = 0; i < 64; ++i) {
state->ctx[i] = iv_384[i];
}
for (size_t i = 64; i < 72; ++i) {
state->ctx[i] = 0;
}
}
void sha512_inc_init(sha512ctx *state) {
state->ctx = malloc(PQC_SHA512CTX_BYTES);
if (state->ctx == NULL) {
exit(111);
}
for (size_t i = 0; i < 64; ++i) {
state->ctx[i] = iv_512[i];
}
for (size_t i = 64; i < 72; ++i) {
state->ctx[i] = 0;
}
}
void sha224_inc_ctx_clone(sha224ctx *stateout, const sha224ctx *statein) {
stateout->ctx = malloc(PQC_SHA256CTX_BYTES);
if (stateout->ctx == NULL) {
exit(111);
}
memcpy(stateout->ctx, statein->ctx, PQC_SHA256CTX_BYTES);
}
void sha256_inc_ctx_clone(sha256ctx *stateout, const sha256ctx *statein) {
stateout->ctx = malloc(PQC_SHA256CTX_BYTES);
if (stateout->ctx == NULL) {
exit(111);
}
memcpy(stateout->ctx, statein->ctx, PQC_SHA256CTX_BYTES);
}
void sha384_inc_ctx_clone(sha384ctx *stateout, const sha384ctx *statein) {
stateout->ctx = malloc(PQC_SHA512CTX_BYTES);
if (stateout->ctx == NULL) {
exit(111);
}
memcpy(stateout->ctx, statein->ctx, PQC_SHA512CTX_BYTES);
}
void sha512_inc_ctx_clone(sha512ctx *stateout, const sha512ctx *statein) {
stateout->ctx = malloc(PQC_SHA512CTX_BYTES);
if (stateout->ctx == NULL) {
exit(111);
}
memcpy(stateout->ctx, statein->ctx, PQC_SHA512CTX_BYTES);
}
/* Destroy the hash state. */
void sha224_inc_ctx_release(sha224ctx *state) {
free(state->ctx);
}
/* Destroy the hash state. */
void sha256_inc_ctx_release(sha256ctx *state) {
free(state->ctx);
}
/* Destroy the hash state. */
void sha384_inc_ctx_release(sha384ctx *state) {
free(state->ctx);
}
/* Destroy the hash state. */
void sha512_inc_ctx_release(sha512ctx *state) {
free(state->ctx);
}
void sha256_inc_blocks(sha256ctx *state, const uint8_t *in, size_t inblocks) {
uint64_t bytes = load_bigendian_64(state->ctx + 32);
crypto_hashblocks_sha256(state->ctx, in, 64 * inblocks);
bytes += 64 * inblocks;
store_bigendian_64(state->ctx + 32, bytes);
}
void sha224_inc_blocks(sha224ctx *state, const uint8_t *in, size_t inblocks) {
sha256_inc_blocks((sha256ctx*) state, in, inblocks);
}
void sha512_inc_blocks(sha512ctx *state, const uint8_t *in, size_t inblocks) {
uint64_t bytes = load_bigendian_64(state->ctx + 64);
crypto_hashblocks_sha512(state->ctx, in, 128 * inblocks);
bytes += 128 * inblocks;
store_bigendian_64(state->ctx + 64, bytes);
}
void sha384_inc_blocks(sha384ctx *state, const uint8_t *in, size_t inblocks) {
sha512_inc_blocks((sha512ctx*) state, in, inblocks);
}
void sha256_inc_finalize(uint8_t *out, sha256ctx *state, const uint8_t *in, size_t inlen) {
uint8_t padded[128];
uint64_t bytes = load_bigendian_64(state->ctx + 32) + inlen;
crypto_hashblocks_sha256(state->ctx, in, inlen);
in += inlen;
inlen &= 63;
in -= inlen;
for (size_t i = 0; i < inlen; ++i) {
padded[i] = in[i];
}
padded[inlen] = 0x80;
if (inlen < 56) {
for (size_t i = inlen + 1; i < 56; ++i) {
padded[i] = 0;
}
padded[56] = (uint8_t) (bytes >> 53);
padded[57] = (uint8_t) (bytes >> 45);
padded[58] = (uint8_t) (bytes >> 37);
padded[59] = (uint8_t) (bytes >> 29);
padded[60] = (uint8_t) (bytes >> 21);
padded[61] = (uint8_t) (bytes >> 13);
padded[62] = (uint8_t) (bytes >> 5);
padded[63] = (uint8_t) (bytes << 3);
crypto_hashblocks_sha256(state->ctx, padded, 64);
} else {
for (size_t i = inlen + 1; i < 120; ++i) {
padded[i] = 0;
}
padded[120] = (uint8_t) (bytes >> 53);
padded[121] = (uint8_t) (bytes >> 45);
padded[122] = (uint8_t) (bytes >> 37);
padded[123] = (uint8_t) (bytes >> 29);
padded[124] = (uint8_t) (bytes >> 21);
padded[125] = (uint8_t) (bytes >> 13);
padded[126] = (uint8_t) (bytes >> 5);
padded[127] = (uint8_t) (bytes << 3);
crypto_hashblocks_sha256(state->ctx, padded, 128);
}
for (size_t i = 0; i < 32; ++i) {
out[i] = state->ctx[i];
}
sha256_inc_ctx_release(state);
}
void sha224_inc_finalize(uint8_t *out, sha224ctx *state, const uint8_t *in, size_t inlen) {
uint8_t tmp[32];
sha256_inc_finalize(tmp, (sha256ctx*)state, in, inlen);
for (size_t i = 0; i < 28; ++i) {
out[i] = tmp[i];
}
}
void sha512_inc_finalize(uint8_t *out, sha512ctx *state, const uint8_t *in, size_t inlen) {
uint8_t padded[256];
uint64_t bytes = load_bigendian_64(state->ctx + 64) + inlen;
crypto_hashblocks_sha512(state->ctx, in, inlen);
in += inlen;
inlen &= 127;
in -= inlen;
for (size_t i = 0; i < inlen; ++i) {
padded[i] = in[i];
}
padded[inlen] = 0x80;
if (inlen < 112) {
for (size_t i = inlen + 1; i < 119; ++i) {
padded[i] = 0;
}
padded[119] = (uint8_t) (bytes >> 61);
padded[120] = (uint8_t) (bytes >> 53);
padded[121] = (uint8_t) (bytes >> 45);
padded[122] = (uint8_t) (bytes >> 37);
padded[123] = (uint8_t) (bytes >> 29);
padded[124] = (uint8_t) (bytes >> 21);
padded[125] = (uint8_t) (bytes >> 13);
padded[126] = (uint8_t) (bytes >> 5);
padded[127] = (uint8_t) (bytes << 3);
crypto_hashblocks_sha512(state->ctx, padded, 128);
} else {
for (size_t i = inlen + 1; i < 247; ++i) {
padded[i] = 0;
}
padded[247] = (uint8_t) (bytes >> 61);
padded[248] = (uint8_t) (bytes >> 53);
padded[249] = (uint8_t) (bytes >> 45);
padded[250] = (uint8_t) (bytes >> 37);
padded[251] = (uint8_t) (bytes >> 29);
padded[252] = (uint8_t) (bytes >> 21);
padded[253] = (uint8_t) (bytes >> 13);
padded[254] = (uint8_t) (bytes >> 5);
padded[255] = (uint8_t) (bytes << 3);
crypto_hashblocks_sha512(state->ctx, padded, 256);
}
for (size_t i = 0; i < 64; ++i) {
out[i] = state->ctx[i];
}
sha512_inc_ctx_release(state);
}
void sha384_inc_finalize(uint8_t *out, sha384ctx *state, const uint8_t *in, size_t inlen) {
uint8_t tmp[64];
sha512_inc_finalize(tmp, (sha512ctx*)state, in, inlen);
for (size_t i = 0; i < 48; ++i) {
out[i] = tmp[i];
}
}
void sha224(uint8_t *out, const uint8_t *in, size_t inlen) {
sha224ctx state;
sha224_inc_init(&state);
sha224_inc_finalize(out, &state, in, inlen);
}
void sha256(uint8_t *out, const uint8_t *in, size_t inlen) {
sha256ctx state;
sha256_inc_init(&state);
sha256_inc_finalize(out, &state, in, inlen);
}
void sha384(uint8_t *out, const uint8_t *in, size_t inlen) {
sha384ctx state;
sha384_inc_init(&state);
sha384_inc_finalize(out, &state, in, inlen);
}
void sha512(uint8_t *out, const uint8_t *in, size_t inlen) {
sha512ctx state;
sha512_inc_init(&state);
sha512_inc_finalize(out, &state, in, inlen);
}