b3f9d4f8d6
* Add McEliece reference implementations * Add Vec implementations of McEliece * Add sse implementations * Add AVX2 implementations * Get rid of stuff not supported by Mac ABI * restrict to two cores * Ditch .data files * Remove .hidden from all .S files * speed up duplicate consistency tests by batching * make cpuinfo more robust * Hope to stabilize macos cpuinfo without ccache * Revert "Hope to stabilize macos cpuinfo without ccache" This reverts commit 6129c3cabe1abbc8b956bc87e902a698e32bf322. * Just hardcode what's available at travis * Fixed-size types in api.h * namespace all header files in mceliece * Ditch operations.h * Get rid of static inline functions * fixup! Ditch operations.h
204 lines
4.9 KiB
C
204 lines
4.9 KiB
C
/*
|
|
This file is for Niederreiter decryption
|
|
*/
|
|
|
|
#include "decrypt.h"
|
|
|
|
#include "benes.h"
|
|
#include "bm.h"
|
|
#include "fft.h"
|
|
#include "fft_tr.h"
|
|
#include "params.h"
|
|
#include "util.h"
|
|
|
|
#include <stdio.h>
|
|
|
|
static void scaling(vec128 out[][GFBITS], vec128 inv[][GFBITS], const unsigned char *sk, vec128 *recv) {
|
|
int i, j;
|
|
|
|
uint64_t irr_int[ GFBITS ];
|
|
vec128 eval[32][ GFBITS ];
|
|
vec128 tmp[ GFBITS ];
|
|
|
|
//
|
|
|
|
PQCLEAN_MCELIECE348864F_SSE_irr_load(irr_int, sk);
|
|
|
|
PQCLEAN_MCELIECE348864F_SSE_fft(eval, irr_int);
|
|
|
|
for (i = 0; i < 32; i++) {
|
|
PQCLEAN_MCELIECE348864F_SSE_vec128_sq(eval[i], eval[i]);
|
|
}
|
|
|
|
PQCLEAN_MCELIECE348864F_SSE_vec128_copy(inv[0], eval[0]);
|
|
|
|
for (i = 1; i < 32; i++) {
|
|
PQCLEAN_MCELIECE348864F_SSE_vec128_mul(inv[i], inv[i - 1], eval[i]);
|
|
}
|
|
|
|
PQCLEAN_MCELIECE348864F_SSE_vec128_inv(tmp, inv[31]);
|
|
|
|
for (i = 30; i >= 0; i--) {
|
|
PQCLEAN_MCELIECE348864F_SSE_vec128_mul(inv[i + 1], tmp, inv[i]);
|
|
PQCLEAN_MCELIECE348864F_SSE_vec128_mul(tmp, tmp, eval[i + 1]);
|
|
}
|
|
|
|
PQCLEAN_MCELIECE348864F_SSE_vec128_copy(inv[0], tmp);
|
|
|
|
//
|
|
|
|
for (i = 0; i < 32; i++) {
|
|
for (j = 0; j < GFBITS; j++) {
|
|
out[i][j] = PQCLEAN_MCELIECE348864F_SSE_vec128_and(inv[i][j], recv[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void preprocess(vec128 *recv, const unsigned char *s) {
|
|
int i;
|
|
uint8_t r[ 512 ];
|
|
|
|
for (i = 0; i < SYND_BYTES; i++) {
|
|
r[i] = s[i];
|
|
}
|
|
|
|
for (i = SYND_BYTES; i < 512; i++) {
|
|
r[i] = 0;
|
|
}
|
|
|
|
for (i = 0; i < 32; i++) {
|
|
recv[i] = PQCLEAN_MCELIECE348864F_SSE_load16(r + i * 16);
|
|
}
|
|
}
|
|
|
|
static void postprocess(unsigned char *e, vec128 *err) {
|
|
int i;
|
|
unsigned char error8[ (1 << GFBITS) / 8 ];
|
|
uint64_t v[2];
|
|
|
|
for (i = 0; i < 32; i++) {
|
|
v[0] = PQCLEAN_MCELIECE348864F_SSE_vec128_extract(err[i], 0);
|
|
v[1] = PQCLEAN_MCELIECE348864F_SSE_vec128_extract(err[i], 1);
|
|
|
|
PQCLEAN_MCELIECE348864F_SSE_store8(error8 + i * 16 + 0, v[0]);
|
|
PQCLEAN_MCELIECE348864F_SSE_store8(error8 + i * 16 + 8, v[1]);
|
|
}
|
|
|
|
for (i = 0; i < SYS_N / 8; i++) {
|
|
e[i] = error8[i];
|
|
}
|
|
}
|
|
|
|
static void scaling_inv(vec128 out[][GFBITS], vec128 inv[][GFBITS], vec128 *recv) {
|
|
int i, j;
|
|
|
|
for (i = 0; i < 32; i++) {
|
|
for (j = 0; j < GFBITS; j++) {
|
|
out[i][j] = PQCLEAN_MCELIECE348864F_SSE_vec128_and(inv[i][j], recv[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
static uint16_t weight_check(unsigned char *e, vec128 *error) {
|
|
int i;
|
|
uint16_t w0 = 0;
|
|
uint16_t w1 = 0;
|
|
uint16_t check;
|
|
|
|
for (i = 0; i < 32; i++) {
|
|
w0 += _mm_popcnt_u64( PQCLEAN_MCELIECE348864F_SSE_vec128_extract(error[i], 0) );
|
|
w0 += _mm_popcnt_u64( PQCLEAN_MCELIECE348864F_SSE_vec128_extract(error[i], 1) );
|
|
}
|
|
|
|
for (i = 0; i < SYS_N / 8; i++) {
|
|
w1 += _mm_popcnt_u32( e[i] );
|
|
}
|
|
|
|
check = (w0 ^ SYS_T) | (w1 ^ SYS_T);
|
|
check -= 1;
|
|
check >>= 15;
|
|
|
|
return check;
|
|
}
|
|
|
|
static uint64_t synd_cmp(vec128 s0[ GFBITS ], vec128 s1[ GFBITS ]) {
|
|
int i;
|
|
vec128 diff;
|
|
|
|
diff = PQCLEAN_MCELIECE348864F_SSE_vec128_xor(s0[0], s1[0]);
|
|
|
|
for (i = 1; i < GFBITS; i++) {
|
|
diff = PQCLEAN_MCELIECE348864F_SSE_vec128_or(diff, PQCLEAN_MCELIECE348864F_SSE_vec128_xor(s0[i], s1[i]));
|
|
}
|
|
|
|
return PQCLEAN_MCELIECE348864F_SSE_vec128_testz(diff);
|
|
}
|
|
|
|
/* Niederreiter decryption with the Berlekamp decoder */
|
|
/* intput: sk, secret key */
|
|
/* c, ciphertext (syndrome) */
|
|
/* output: e, error vector */
|
|
/* return: 0 for success; 1 for failure */
|
|
int PQCLEAN_MCELIECE348864F_SSE_decrypt(unsigned char *e, const unsigned char *sk, const unsigned char *c) {
|
|
int i;
|
|
|
|
uint16_t check_synd;
|
|
uint16_t check_weight;
|
|
|
|
vec128 inv[ 32 ][ GFBITS ];
|
|
vec128 scaled[ 32 ][ GFBITS ];
|
|
vec128 eval[ 32 ][ GFBITS ];
|
|
|
|
vec128 error[ 32 ];
|
|
|
|
vec128 s_priv[ GFBITS ];
|
|
vec128 s_priv_cmp[ GFBITS ];
|
|
|
|
uint64_t locator[ GFBITS ];
|
|
|
|
vec128 recv[ 32 ];
|
|
vec128 allone;
|
|
|
|
uint64_t bits_int[23][32];
|
|
|
|
// Berlekamp decoder
|
|
|
|
preprocess(recv, c);
|
|
|
|
PQCLEAN_MCELIECE348864F_SSE_load_bits(bits_int, sk + IRR_BYTES);
|
|
PQCLEAN_MCELIECE348864F_SSE_benes((uint64_t *) recv, bits_int, 1);
|
|
|
|
scaling(scaled, inv, sk, recv);
|
|
|
|
PQCLEAN_MCELIECE348864F_SSE_fft_tr(s_priv, scaled);
|
|
|
|
PQCLEAN_MCELIECE348864F_SSE_bm(locator, s_priv);
|
|
|
|
PQCLEAN_MCELIECE348864F_SSE_fft(eval, locator);
|
|
|
|
// reencryption and weight check
|
|
|
|
allone = PQCLEAN_MCELIECE348864F_SSE_vec128_setbits(1);
|
|
|
|
for (i = 0; i < 32; i++) {
|
|
error[i] = PQCLEAN_MCELIECE348864F_SSE_vec128_or_reduce(eval[i]);
|
|
error[i] = PQCLEAN_MCELIECE348864F_SSE_vec128_xor(error[i], allone);
|
|
}
|
|
|
|
scaling_inv(scaled, inv, error);
|
|
PQCLEAN_MCELIECE348864F_SSE_fft_tr(s_priv_cmp, scaled);
|
|
|
|
check_synd = synd_cmp(s_priv, s_priv_cmp);
|
|
|
|
//
|
|
|
|
PQCLEAN_MCELIECE348864F_SSE_benes((uint64_t *) error, bits_int, 0);
|
|
|
|
postprocess(e, error);
|
|
|
|
check_weight = weight_check(e, error);
|
|
|
|
return 1 - (check_synd & check_weight);
|
|
}
|
|
|