pqc/crypto_kem/mceliece6688128/avx/fft.c
Thom Wiggers b3f9d4f8d6
Classic McEliece (#259)
* Add McEliece reference implementations

* Add Vec implementations of McEliece

* Add sse implementations

* Add AVX2 implementations

* Get rid of stuff not supported by Mac ABI

* restrict to two cores

* Ditch .data files

* Remove .hidden from all .S files

* speed up duplicate consistency tests by batching

* make cpuinfo more robust

* Hope to stabilize macos cpuinfo without ccache

* Revert "Hope to stabilize macos cpuinfo without ccache"

This reverts commit 6129c3cabe1abbc8b956bc87e902a698e32bf322.

* Just hardcode what's available at travis

* Fixed-size types in api.h

* namespace all header files in mceliece

* Ditch operations.h

* Get rid of static inline functions

* fixup! Ditch operations.h
2020-02-05 13:09:56 +01:00

276 lines
12 KiB
C

/*
This file is for the Gao-Mateer FFT
sse http://www.math.clemson.edu/~sgao/papers/GM10.pdf
*/
#include "fft.h"
#include "transpose.h"
#include "vec256.h"
#include <stdint.h>
/* input: in, polynomial in bitsliced form */
/* output: in, result of applying the radix conversions on in */
static void radix_conversions(vec128 *in) {
int i, j, k;
vec128 t;
uint64_t v0, v1;
const vec128 mask[5][2] = {
{
PQCLEAN_MCELIECE6688128_AVX_vec128_set2x(0x8888888888888888, 0x8888888888888888),
PQCLEAN_MCELIECE6688128_AVX_vec128_set2x(0x4444444444444444, 0x4444444444444444)
},
{
PQCLEAN_MCELIECE6688128_AVX_vec128_set2x(0xC0C0C0C0C0C0C0C0, 0xC0C0C0C0C0C0C0C0),
PQCLEAN_MCELIECE6688128_AVX_vec128_set2x(0x3030303030303030, 0x3030303030303030)
},
{
PQCLEAN_MCELIECE6688128_AVX_vec128_set2x(0xF000F000F000F000, 0xF000F000F000F000),
PQCLEAN_MCELIECE6688128_AVX_vec128_set2x(0x0F000F000F000F00, 0x0F000F000F000F00)
},
{
PQCLEAN_MCELIECE6688128_AVX_vec128_set2x(0xFF000000FF000000, 0xFF000000FF000000),
PQCLEAN_MCELIECE6688128_AVX_vec128_set2x(0x00FF000000FF0000, 0x00FF000000FF0000)
},
{
PQCLEAN_MCELIECE6688128_AVX_vec128_set2x(0xFFFF000000000000, 0xFFFF000000000000),
PQCLEAN_MCELIECE6688128_AVX_vec128_set2x(0x0000FFFF00000000, 0x0000FFFF00000000)
}
};
const vec128 s[5][GFBITS] = {
#include "scalars_2x.inc"
};
//
for (j = 0; j <= 5; j++) {
for (i = 0; i < GFBITS; i++) {
v1 = PQCLEAN_MCELIECE6688128_AVX_vec128_extract(in[i], 1);
v1 ^= v1 >> 32;
v0 = PQCLEAN_MCELIECE6688128_AVX_vec128_extract(in[i], 0);
v0 ^= v1 << 32;
in[i] = PQCLEAN_MCELIECE6688128_AVX_vec128_set2x(v0, v1);
}
for (i = 0; i < GFBITS; i++) {
for (k = 4; k >= j; k--) {
t = PQCLEAN_MCELIECE6688128_AVX_vec128_and(in[i], mask[k][0]);
t = PQCLEAN_MCELIECE6688128_AVX_vec128_srl_2x(t, 1 << k);
in[i] = PQCLEAN_MCELIECE6688128_AVX_vec128_xor(in[i], t);
t = PQCLEAN_MCELIECE6688128_AVX_vec128_and(in[i], mask[k][1]);
t = PQCLEAN_MCELIECE6688128_AVX_vec128_srl_2x(t, 1 << k);
in[i] = PQCLEAN_MCELIECE6688128_AVX_vec128_xor(in[i], t);
}
}
if (j < 5) {
PQCLEAN_MCELIECE6688128_AVX_vec128_mul(in, in, s[j]); // scaling
}
}
}
/* input: in, result of applying the radix conversions to the input polynomial */
/* output: out, evaluation results (by applying the FFT butterflies) */
static void butterflies(vec256 out[][ GFBITS ], vec128 *in) {
int i, j, k, s, b;
vec128 tmp[ GFBITS ];
vec256 tmp0[ GFBITS ];
vec256 tmp1[ GFBITS ];
vec128 t[ GFBITS ];
union {
vec128 v[8][ GFBITS + 1 ];
vec256 V[8][ (GFBITS + 1) / 2 ];
} pre;
union {
vec128 v[64][ 2 ];
vec256 V[64];
} buf;
uint64_t v0, v1;
const vec256 consts[ 33 ][ GFBITS ] = {
#include "consts.inc"
};
const vec256 powers[ 32 ][ GFBITS ] = {
#include "powers.inc"
};
uint64_t consts_ptr = 2;
const unsigned char reversal[64] = {
0, 32, 16, 48, 8, 40, 24, 56,
4, 36, 20, 52, 12, 44, 28, 60,
2, 34, 18, 50, 10, 42, 26, 58,
6, 38, 22, 54, 14, 46, 30, 62,
1, 33, 17, 49, 9, 41, 25, 57,
5, 37, 21, 53, 13, 45, 29, 61,
3, 35, 19, 51, 11, 43, 27, 59,
7, 39, 23, 55, 15, 47, 31, 63
};
const uint16_t beta[8] = {2522, 7827, 7801, 8035, 6897, 8167, 3476, 0};
// boradcast
for (j = 0; j < GFBITS; j++) {
t[j] = PQCLEAN_MCELIECE6688128_AVX_vec128_unpack_high(in[j], in[j]);
}
for (i = 0; i < 8; i += 2) {
for (j = 0; j < GFBITS; j++) {
v0 = (beta[i + 0] >> j) & 1;
v0 = -v0;
v1 = (beta[i + 1] >> j) & 1;
v1 = -v1;
tmp[j] = PQCLEAN_MCELIECE6688128_AVX_vec128_set2x(v0, v1);
}
PQCLEAN_MCELIECE6688128_AVX_vec128_mul(tmp, t, tmp);
for (j = 0; j < GFBITS; j++) {
pre.v[i + 0][j] = PQCLEAN_MCELIECE6688128_AVX_vec128_unpack_low(tmp[j], tmp[j]);
pre.v[i + 1][j] = PQCLEAN_MCELIECE6688128_AVX_vec128_unpack_high(tmp[j], tmp[j]);
}
}
for (i = 0; i < GFBITS; i += 2) {
if (i != GFBITS - 1) {
buf.v[0][1] = PQCLEAN_MCELIECE6688128_AVX_vec128_unpack_low(in[i + 1], in[i + 1] ^ pre.v[6][i + 1]);
}
buf.v[0][0] = PQCLEAN_MCELIECE6688128_AVX_vec128_unpack_low(in[i + 0], in[i + 0] ^ pre.v[6][i + 0]);
buf.V[1] = PQCLEAN_MCELIECE6688128_AVX_vec256_xor(buf.V[0], pre.V[0][i / 2]);
buf.V[16] = PQCLEAN_MCELIECE6688128_AVX_vec256_xor(buf.V[0], pre.V[4][i / 2]);
buf.V[3] = PQCLEAN_MCELIECE6688128_AVX_vec256_xor(buf.V[1], pre.V[1][i / 2]);
buf.V[48] = PQCLEAN_MCELIECE6688128_AVX_vec256_xor(buf.V[16], pre.V[5][i / 2]);
buf.V[49] = PQCLEAN_MCELIECE6688128_AVX_vec256_xor(buf.V[48], pre.V[0][i / 2]);
buf.V[2] = PQCLEAN_MCELIECE6688128_AVX_vec256_xor(buf.V[0], pre.V[1][i / 2]);
buf.V[51] = PQCLEAN_MCELIECE6688128_AVX_vec256_xor(buf.V[49], pre.V[1][i / 2]);
buf.V[6] = PQCLEAN_MCELIECE6688128_AVX_vec256_xor(buf.V[2], pre.V[2][i / 2]);
buf.V[50] = PQCLEAN_MCELIECE6688128_AVX_vec256_xor(buf.V[51], pre.V[0][i / 2]);
buf.V[7] = PQCLEAN_MCELIECE6688128_AVX_vec256_xor(buf.V[6], pre.V[0][i / 2]);
buf.V[54] = PQCLEAN_MCELIECE6688128_AVX_vec256_xor(buf.V[50], pre.V[2][i / 2]);
buf.V[5] = PQCLEAN_MCELIECE6688128_AVX_vec256_xor(buf.V[7], pre.V[1][i / 2]);
buf.V[55] = PQCLEAN_MCELIECE6688128_AVX_vec256_xor(buf.V[54], pre.V[0][i / 2]);
buf.V[53] = PQCLEAN_MCELIECE6688128_AVX_vec256_xor(buf.V[55], pre.V[1][i / 2]);
buf.V[4] = PQCLEAN_MCELIECE6688128_AVX_vec256_xor(buf.V[0], pre.V[2][i / 2]);
buf.V[52] = PQCLEAN_MCELIECE6688128_AVX_vec256_xor(buf.V[53], pre.V[0][i / 2]);
buf.V[12] = PQCLEAN_MCELIECE6688128_AVX_vec256_xor(buf.V[4], pre.V[3][i / 2]);
buf.V[60] = PQCLEAN_MCELIECE6688128_AVX_vec256_xor(buf.V[52], pre.V[3][i / 2]);
buf.V[13] = PQCLEAN_MCELIECE6688128_AVX_vec256_xor(buf.V[12], pre.V[0][i / 2]);
buf.V[61] = PQCLEAN_MCELIECE6688128_AVX_vec256_xor(buf.V[60], pre.V[0][i / 2]);
buf.V[15] = PQCLEAN_MCELIECE6688128_AVX_vec256_xor(buf.V[13], pre.V[1][i / 2]);
buf.V[63] = PQCLEAN_MCELIECE6688128_AVX_vec256_xor(buf.V[61], pre.V[1][i / 2]);
buf.V[14] = PQCLEAN_MCELIECE6688128_AVX_vec256_xor(buf.V[15], pre.V[0][i / 2]);
buf.V[62] = PQCLEAN_MCELIECE6688128_AVX_vec256_xor(buf.V[63], pre.V[0][i / 2]);
buf.V[10] = PQCLEAN_MCELIECE6688128_AVX_vec256_xor(buf.V[14], pre.V[2][i / 2]);
buf.V[58] = PQCLEAN_MCELIECE6688128_AVX_vec256_xor(buf.V[62], pre.V[2][i / 2]);
buf.V[11] = PQCLEAN_MCELIECE6688128_AVX_vec256_xor(buf.V[10], pre.V[0][i / 2]);
buf.V[59] = PQCLEAN_MCELIECE6688128_AVX_vec256_xor(buf.V[58], pre.V[0][i / 2]);
buf.V[9] = PQCLEAN_MCELIECE6688128_AVX_vec256_xor(buf.V[11], pre.V[1][i / 2]);
buf.V[57] = PQCLEAN_MCELIECE6688128_AVX_vec256_xor(buf.V[59], pre.V[1][i / 2]);
buf.V[56] = PQCLEAN_MCELIECE6688128_AVX_vec256_xor(buf.V[57], pre.V[0][i / 2]);
buf.V[8] = PQCLEAN_MCELIECE6688128_AVX_vec256_xor(buf.V[0], pre.V[3][i / 2]);
buf.V[40] = PQCLEAN_MCELIECE6688128_AVX_vec256_xor(buf.V[56], pre.V[4][i / 2]);
buf.V[24] = PQCLEAN_MCELIECE6688128_AVX_vec256_xor(buf.V[8], pre.V[4][i / 2]);
buf.V[41] = PQCLEAN_MCELIECE6688128_AVX_vec256_xor(buf.V[40], pre.V[0][i / 2]);
buf.V[25] = PQCLEAN_MCELIECE6688128_AVX_vec256_xor(buf.V[24], pre.V[0][i / 2]);
buf.V[43] = PQCLEAN_MCELIECE6688128_AVX_vec256_xor(buf.V[41], pre.V[1][i / 2]);
buf.V[27] = PQCLEAN_MCELIECE6688128_AVX_vec256_xor(buf.V[25], pre.V[1][i / 2]);
buf.V[42] = PQCLEAN_MCELIECE6688128_AVX_vec256_xor(buf.V[43], pre.V[0][i / 2]);
buf.V[26] = PQCLEAN_MCELIECE6688128_AVX_vec256_xor(buf.V[27], pre.V[0][i / 2]);
buf.V[46] = PQCLEAN_MCELIECE6688128_AVX_vec256_xor(buf.V[42], pre.V[2][i / 2]);
buf.V[30] = PQCLEAN_MCELIECE6688128_AVX_vec256_xor(buf.V[26], pre.V[2][i / 2]);
buf.V[47] = PQCLEAN_MCELIECE6688128_AVX_vec256_xor(buf.V[46], pre.V[0][i / 2]);
buf.V[31] = PQCLEAN_MCELIECE6688128_AVX_vec256_xor(buf.V[30], pre.V[0][i / 2]);
buf.V[45] = PQCLEAN_MCELIECE6688128_AVX_vec256_xor(buf.V[47], pre.V[1][i / 2]);
buf.V[29] = PQCLEAN_MCELIECE6688128_AVX_vec256_xor(buf.V[31], pre.V[1][i / 2]);
buf.V[44] = PQCLEAN_MCELIECE6688128_AVX_vec256_xor(buf.V[45], pre.V[0][i / 2]);
buf.V[28] = PQCLEAN_MCELIECE6688128_AVX_vec256_xor(buf.V[29], pre.V[0][i / 2]);
buf.V[36] = PQCLEAN_MCELIECE6688128_AVX_vec256_xor(buf.V[44], pre.V[3][i / 2]);
buf.V[20] = PQCLEAN_MCELIECE6688128_AVX_vec256_xor(buf.V[28], pre.V[3][i / 2]);
buf.V[37] = PQCLEAN_MCELIECE6688128_AVX_vec256_xor(buf.V[36], pre.V[0][i / 2]);
buf.V[21] = PQCLEAN_MCELIECE6688128_AVX_vec256_xor(buf.V[20], pre.V[0][i / 2]);
buf.V[39] = PQCLEAN_MCELIECE6688128_AVX_vec256_xor(buf.V[37], pre.V[1][i / 2]);
buf.V[23] = PQCLEAN_MCELIECE6688128_AVX_vec256_xor(buf.V[21], pre.V[1][i / 2]);
buf.V[38] = PQCLEAN_MCELIECE6688128_AVX_vec256_xor(buf.V[39], pre.V[0][i / 2]);
buf.V[22] = PQCLEAN_MCELIECE6688128_AVX_vec256_xor(buf.V[23], pre.V[0][i / 2]);
buf.V[34] = PQCLEAN_MCELIECE6688128_AVX_vec256_xor(buf.V[38], pre.V[2][i / 2]);
buf.V[18] = PQCLEAN_MCELIECE6688128_AVX_vec256_xor(buf.V[22], pre.V[2][i / 2]);
buf.V[35] = PQCLEAN_MCELIECE6688128_AVX_vec256_xor(buf.V[34], pre.V[0][i / 2]);
buf.V[19] = PQCLEAN_MCELIECE6688128_AVX_vec256_xor(buf.V[18], pre.V[0][i / 2]);
buf.V[33] = PQCLEAN_MCELIECE6688128_AVX_vec256_xor(buf.V[35], pre.V[1][i / 2]);
buf.V[17] = PQCLEAN_MCELIECE6688128_AVX_vec256_xor(buf.V[19], pre.V[1][i / 2]);
buf.V[32] = PQCLEAN_MCELIECE6688128_AVX_vec256_xor(buf.V[33], pre.V[0][i / 2]);
// transpose
PQCLEAN_MCELIECE6688128_AVX_transpose_64x256_sp(buf.V);
for (j = 0; j < 32; j++) {
if (i != GFBITS - 1) {
out[j][i + 1] = PQCLEAN_MCELIECE6688128_AVX_vec256_unpack_high(buf.V[ reversal[2 * j + 0] ], buf.V[ reversal[2 * j + 1] ]);
}
out[j][i + 0] = PQCLEAN_MCELIECE6688128_AVX_vec256_unpack_low (buf.V[ reversal[2 * j + 0] ], buf.V[ reversal[2 * j + 1] ]);
}
}
// butterflies
for (k = 0; k < 32; k += 2) {
for (b = 0; b < GFBITS; b++) {
tmp0[b] = PQCLEAN_MCELIECE6688128_AVX_vec256_unpack_low (out[k][b], out[k + 1][b]);
}
for (b = 0; b < GFBITS; b++) {
tmp1[b] = PQCLEAN_MCELIECE6688128_AVX_vec256_unpack_high (out[k][b], out[k + 1][b]);
}
PQCLEAN_MCELIECE6688128_AVX_vec256_maa_asm(tmp0, tmp1, consts[1]);
for (b = 0; b < GFBITS; b++) {
out[k][b] = PQCLEAN_MCELIECE6688128_AVX_vec256_unpack_low (tmp0[b], tmp1[b]);
}
for (b = 0; b < GFBITS; b++) {
out[k + 1][b] = PQCLEAN_MCELIECE6688128_AVX_vec256_unpack_high (tmp0[b], tmp1[b]);
}
}
for (i = 0; i <= 4; i++) {
s = 1 << i;
for (j = 0; j < 32; j += 2 * s) {
for (k = j; k < j + s; k++) {
PQCLEAN_MCELIECE6688128_AVX_vec256_maa_asm(out[k], out[k + s], consts[ consts_ptr + (k - j) ]);
}
}
consts_ptr += (1 << i);
}
// adding the part contributed by x^128
for (i = 0; i < 32; i++) {
for (b = 0; b < GFBITS; b++) {
out[i][b] = PQCLEAN_MCELIECE6688128_AVX_vec256_xor(out[i][b], powers[i][b]);
}
}
}
/* input: in, polynomial in bitsliced form */
/* output: out, bitsliced results of evaluating in all the field elements */
void PQCLEAN_MCELIECE6688128_AVX_fft(vec256 out[][GFBITS], vec128 *in) {
radix_conversions(in);
butterflies(out, in);
}