336 lines
9.0 KiB
C
336 lines
9.0 KiB
C
#include "SABER_indcpa.h"
|
|
#include "SABER_params.h"
|
|
#include "fips202.h"
|
|
#include "pack_unpack.h"
|
|
#include "poly.h"
|
|
#include "poly_mul.h"
|
|
#include "randombytes.h"
|
|
#include <stdint.h>
|
|
#include <string.h>
|
|
|
|
|
|
|
|
/*-----------------------------------------------------------------------------------
|
|
This routine generates a=[Matrix K x K] of 256-coefficient polynomials
|
|
-------------------------------------------------------------------------------------*/
|
|
|
|
#define h1 4 //2^(EQ-EP-1)
|
|
|
|
#define h2 ( (1<<(SABER_EP-2)) - (1<<(SABER_EP-SABER_ET-1)) + (1<<(SABER_EQ-SABER_EP-1)) )
|
|
|
|
static void InnerProd(uint16_t pkcl[SABER_K][SABER_N], uint16_t skpv[SABER_K][SABER_N], uint16_t mod, uint16_t res[SABER_N]);
|
|
static void MatrixVectorMul(polyvec *a, uint16_t skpv[SABER_K][SABER_N], uint16_t res[SABER_K][SABER_N], uint16_t mod, int16_t transpose);
|
|
|
|
static void POL2MSG(const uint16_t *message_dec_unpacked, unsigned char *message_dec);
|
|
|
|
static void GenMatrix(polyvec *a, const unsigned char *seed) {
|
|
unsigned char buf[SABER_K * SABER_K * (13 * SABER_N / 8)];
|
|
|
|
uint16_t temp_ar[SABER_N];
|
|
|
|
int i, j, k;
|
|
uint16_t mod = (SABER_Q - 1);
|
|
|
|
shake128(buf, sizeof(buf), seed, SABER_SEEDBYTES);
|
|
|
|
for (i = 0; i < SABER_K; i++) {
|
|
for (j = 0; j < SABER_K; j++) {
|
|
PQCLEAN_SABER_CLEAN_BS2POL(buf + (i * SABER_K + j) * (13 * SABER_N / 8), temp_ar);
|
|
for (k = 0; k < SABER_N; k++) {
|
|
a[i].vec[j].coeffs[k] = (temp_ar[k])& mod ;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void PQCLEAN_SABER_CLEAN_indcpa_kem_keypair(unsigned char *pk, unsigned char *sk) {
|
|
polyvec a[SABER_K];// skpv;
|
|
|
|
uint16_t skpv[SABER_K][SABER_N];
|
|
|
|
unsigned char seed[SABER_SEEDBYTES];
|
|
unsigned char noiseseed[SABER_COINBYTES];
|
|
int32_t i, j;
|
|
uint16_t mod_q = SABER_Q - 1;
|
|
|
|
|
|
uint16_t res[SABER_K][SABER_N];
|
|
|
|
randombytes(seed, SABER_SEEDBYTES);
|
|
shake128(seed, SABER_SEEDBYTES, seed, SABER_SEEDBYTES); // for not revealing system RNG state
|
|
randombytes(noiseseed, SABER_COINBYTES);
|
|
|
|
GenMatrix(a, seed); //sample matrix A
|
|
|
|
PQCLEAN_SABER_CLEAN_GenSecret(skpv, noiseseed); //generate secret from constant-time binomial distribution
|
|
|
|
//------------------------do the matrix vector multiplication and rounding------------
|
|
|
|
for (i = 0; i < SABER_K; i++) {
|
|
for (j = 0; j < SABER_N; j++) {
|
|
res[i][j] = 0;
|
|
}
|
|
}
|
|
|
|
MatrixVectorMul(a, skpv, res, SABER_Q - 1, 1);
|
|
|
|
//-----now rounding
|
|
for (i = 0; i < SABER_K; i++) { //shift right 3 bits
|
|
for (j = 0; j < SABER_N; j++) {
|
|
res[i][j] = (res[i][j] + h1) & (mod_q);
|
|
res[i][j] = (res[i][j] >> (SABER_EQ - SABER_EP));
|
|
}
|
|
}
|
|
|
|
//------------------unload and pack sk=3 x (256 coefficients of 14 bits)-------
|
|
|
|
PQCLEAN_SABER_CLEAN_POLVEC2BS(sk, skpv, SABER_Q);
|
|
|
|
//------------------unload and pack pk=256 bits seed and 3 x (256 coefficients of 11 bits)-------
|
|
|
|
|
|
PQCLEAN_SABER_CLEAN_POLVEC2BS(pk, res, SABER_P); // load the public-key coefficients
|
|
|
|
|
|
|
|
for (i = 0; i < SABER_SEEDBYTES; i++) { // now load the seedbytes in PK. Easy since seed bytes are kept in byte format.
|
|
pk[SABER_POLYVECCOMPRESSEDBYTES + i] = seed[i];
|
|
}
|
|
|
|
}
|
|
|
|
|
|
void PQCLEAN_SABER_CLEAN_indcpa_kem_enc(const unsigned char *message_received, unsigned char *noiseseed, const unsigned char *pk, unsigned char *ciphertext) {
|
|
uint32_t i, j, k;
|
|
polyvec a[SABER_K]; // skpv;
|
|
unsigned char seed[SABER_SEEDBYTES];
|
|
uint16_t pkcl[SABER_K][SABER_N]; //public key of received by the client
|
|
|
|
|
|
|
|
uint16_t skpv1[SABER_K][SABER_N];
|
|
|
|
uint16_t message[SABER_KEYBYTES * 8];
|
|
|
|
uint16_t res[SABER_K][SABER_N];
|
|
uint16_t mod_p = SABER_P - 1;
|
|
uint16_t mod_q = SABER_Q - 1;
|
|
|
|
uint16_t vprime[SABER_N];
|
|
|
|
|
|
|
|
unsigned char msk_c[SABER_SCALEBYTES_KEM];
|
|
|
|
for (i = 0; i < SABER_SEEDBYTES; i++) { // extract the seedbytes from Public Key.
|
|
seed[i] = pk[ SABER_POLYVECCOMPRESSEDBYTES + i];
|
|
}
|
|
|
|
GenMatrix(a, seed);
|
|
|
|
PQCLEAN_SABER_CLEAN_GenSecret(skpv1, noiseseed); //generate secret from constant-time binomial distribution
|
|
|
|
//-----------------matrix-vector multiplication and rounding
|
|
|
|
for (i = 0; i < SABER_K; i++) {
|
|
for (j = 0; j < SABER_N; j++) {
|
|
res[i][j] = 0;
|
|
}
|
|
}
|
|
|
|
MatrixVectorMul(a, skpv1, res, SABER_Q - 1, 0);
|
|
|
|
//-----now rounding
|
|
|
|
for (i = 0; i < SABER_K; i++) { //shift right 3 bits
|
|
for (j = 0; j < SABER_N; j++) {
|
|
res[i][j] = ( res[i][j] + h1 ) & mod_q;
|
|
res[i][j] = (res[i][j] >> (SABER_EQ - SABER_EP) );
|
|
}
|
|
}
|
|
|
|
PQCLEAN_SABER_CLEAN_POLVEC2BS(ciphertext, res, SABER_P);
|
|
|
|
//*******************client matrix-vector multiplication ends************************************
|
|
|
|
//------now calculate the v'
|
|
|
|
//-------unpack the public_key
|
|
|
|
//pkcl is the b in the protocol
|
|
PQCLEAN_SABER_CLEAN_BS2POLVEC(pk, pkcl, SABER_P);
|
|
|
|
|
|
|
|
for (i = 0; i < SABER_N; i++) {
|
|
vprime[i] = 0;
|
|
}
|
|
|
|
for (i = 0; i < SABER_K; i++) {
|
|
for (j = 0; j < SABER_N; j++) {
|
|
skpv1[i][j] = skpv1[i][j] & (mod_p);
|
|
}
|
|
}
|
|
|
|
// vector-vector scalar multiplication with mod p
|
|
InnerProd(pkcl, skpv1, mod_p, vprime);
|
|
|
|
//addition of h1 to vprime
|
|
for (i = 0; i < SABER_N; i++) {
|
|
vprime[i] = vprime[i] + h1;
|
|
}
|
|
|
|
|
|
// unpack message_received;
|
|
for (j = 0; j < SABER_KEYBYTES; j++) {
|
|
for (i = 0; i < 8; i++) {
|
|
message[8 * j + i] = ((message_received[j] >> i) & 0x01);
|
|
}
|
|
}
|
|
|
|
// message encoding
|
|
for (i = 0; i < SABER_N; i++) {
|
|
message[i] = (message[i] << (SABER_EP - 1));
|
|
}
|
|
|
|
|
|
|
|
|
|
for (k = 0; k < SABER_N; k++) {
|
|
vprime[k] = ( (vprime[k] - message[k]) & (mod_p) ) >> (SABER_EP - SABER_ET);
|
|
}
|
|
|
|
|
|
PQCLEAN_SABER_CLEAN_pack_4bit(msk_c, vprime);
|
|
|
|
|
|
for (j = 0; j < SABER_SCALEBYTES_KEM; j++) {
|
|
ciphertext[SABER_POLYVECCOMPRESSEDBYTES + j] = msk_c[j];
|
|
}
|
|
}
|
|
|
|
|
|
void PQCLEAN_SABER_CLEAN_indcpa_kem_dec(const unsigned char *sk, const unsigned char *ciphertext, unsigned char message_dec[]) {
|
|
|
|
uint32_t i, j;
|
|
|
|
|
|
uint16_t sksv[SABER_K][SABER_N]; //secret key of the server
|
|
|
|
|
|
uint16_t pksv[SABER_K][SABER_N];
|
|
|
|
uint8_t scale_ar[SABER_SCALEBYTES_KEM];
|
|
|
|
uint16_t mod_p = SABER_P - 1;
|
|
|
|
uint16_t v[SABER_N];
|
|
|
|
uint16_t op[SABER_N];
|
|
|
|
|
|
PQCLEAN_SABER_CLEAN_BS2POLVEC(sk, sksv, SABER_Q); //sksv is the secret-key
|
|
PQCLEAN_SABER_CLEAN_BS2POLVEC(ciphertext, pksv, SABER_P); //pksv is the ciphertext
|
|
|
|
// vector-vector scalar multiplication with mod p
|
|
for (i = 0; i < SABER_N; i++) {
|
|
v[i] = 0;
|
|
}
|
|
|
|
for (i = 0; i < SABER_K; i++) {
|
|
for (j = 0; j < SABER_N; j++) {
|
|
sksv[i][j] = sksv[i][j] & (mod_p);
|
|
}
|
|
}
|
|
|
|
InnerProd(pksv, sksv, mod_p, v);
|
|
|
|
|
|
//Extraction
|
|
for (i = 0; i < SABER_SCALEBYTES_KEM; i++) {
|
|
scale_ar[i] = ciphertext[SABER_POLYVECCOMPRESSEDBYTES + i];
|
|
}
|
|
|
|
PQCLEAN_SABER_CLEAN_un_pack4bit(scale_ar, op);
|
|
|
|
|
|
//addition of h1
|
|
for (i = 0; i < SABER_N; i++) {
|
|
v[i] = ( ( v[i] + h2 - (op[i] << (SABER_EP - SABER_ET)) ) & (mod_p) ) >> (SABER_EP - 1);
|
|
}
|
|
|
|
// pack decrypted message
|
|
|
|
POL2MSG(v, message_dec);
|
|
|
|
|
|
}
|
|
static void MatrixVectorMul(polyvec *a, uint16_t skpv[SABER_K][SABER_N], uint16_t res[SABER_K][SABER_N], uint16_t mod, int16_t transpose) {
|
|
|
|
uint16_t acc[SABER_N];
|
|
int32_t i, j, k;
|
|
|
|
if (transpose == 1) {
|
|
for (i = 0; i < SABER_K; i++) {
|
|
for (j = 0; j < SABER_K; j++) {
|
|
PQCLEAN_SABER_CLEAN_pol_mul((uint16_t *)&a[j].vec[i], skpv[j], acc, SABER_Q, SABER_N);
|
|
|
|
for (k = 0; k < SABER_N; k++) {
|
|
res[i][k] = res[i][k] + acc[k];
|
|
res[i][k] = (res[i][k] & mod); //reduction mod p
|
|
acc[k] = 0; //clear the accumulator
|
|
}
|
|
|
|
}
|
|
}
|
|
} else {
|
|
|
|
for (i = 0; i < SABER_K; i++) {
|
|
for (j = 0; j < SABER_K; j++) {
|
|
PQCLEAN_SABER_CLEAN_pol_mul((uint16_t *)&a[i].vec[j], skpv[j], acc, SABER_Q, SABER_N);
|
|
for (k = 0; k < SABER_N; k++) {
|
|
res[i][k] = res[i][k] + acc[k];
|
|
res[i][k] = res[i][k] & mod; //reduction
|
|
acc[k] = 0; //clear the accumulator
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
}
|
|
|
|
static void POL2MSG(const uint16_t *message_dec_unpacked, unsigned char *message_dec) {
|
|
|
|
int32_t i, j;
|
|
|
|
for (j = 0; j < SABER_KEYBYTES; j++) {
|
|
message_dec[j] = 0;
|
|
for (i = 0; i < 8; i++) {
|
|
message_dec[j] = message_dec[j] | (uint8_t) (message_dec_unpacked[j * 8 + i] << i);
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
|
|
static void InnerProd(uint16_t pkcl[SABER_K][SABER_N], uint16_t skpv[SABER_K][SABER_N], uint16_t mod, uint16_t res[SABER_N]) {
|
|
|
|
|
|
uint32_t j, k;
|
|
uint16_t acc[SABER_N];
|
|
|
|
// vector-vector scalar multiplication with mod p
|
|
for (j = 0; j < SABER_K; j++) {
|
|
PQCLEAN_SABER_CLEAN_pol_mul(pkcl[j], skpv[j], acc, SABER_P, SABER_N);
|
|
|
|
for (k = 0; k < SABER_N; k++) {
|
|
res[k] = res[k] + acc[k];
|
|
res[k] = res[k] & mod; //reduction
|
|
acc[k] = 0; //clear the accumulator
|
|
}
|
|
}
|
|
}
|