pqc/test/crypto_kem/functest.c
2019-02-28 09:15:09 +01:00

200 lines
6.4 KiB
C

#include "api.h"
#include "randombytes.h"
#include <stdio.h>
#include <string.h>
#define NTESTS 10
const unsigned char canary[8] = {
0x01, 0x23, 0x45, 0x67, 0x89, 0xAB, 0xCD, 0xEF
};
/* allocate a bit more for all keys and messages and
* make sure it is not touched by the implementations.
*/
static void write_canary(unsigned char *d) {
for (int i = 0; i < 8; i++) {
d[i] = canary[i];
}
}
static int check_canary(const unsigned char *d) {
for (int i = 0; i < 8; i++) {
if (d[i] != canary[i])
return -1;
}
return 0;
}
// https://stackoverflow.com/a/1489985/1711232
#define PASTER(x, y) x##_##y
#define EVALUATOR(x, y) PASTER(x, y)
#define NAMESPACE(fun) EVALUATOR(PQCLEAN_NAMESPACE, fun)
#define crypto_kem_keypair NAMESPACE(crypto_kem_keypair)
#define crypto_kem_enc NAMESPACE(crypto_kem_enc)
#define crypto_kem_dec NAMESPACE(crypto_kem_dec)
#define RETURNS_ZERO(f) \
if ((f) != 0) { \
puts(#f " returned non-zero returncode"); \
return -1; \
}
static int test_keys(void) {
/*
* This is most likely going to be aligned by the compiler.
* 16 extra bytes for canary
* 1 extra byte for unalignment
*/
unsigned char key_a_aligned[CRYPTO_BYTES + 16 + 1];
unsigned char key_b_aligned[CRYPTO_BYTES + 16 + 1];
unsigned char pk_aligned[CRYPTO_PUBLICKEYBYTES + 16 + 1];
unsigned char sendb_aligned[CRYPTO_CIPHERTEXTBYTES + 16 + 1];
unsigned char sk_a_aligned[CRYPTO_SECRETKEYBYTES + 16 + 1];
/*
* Make sure all pointers are odd.
* This ensures that the implementation does not assume anything about the
* data alignment. For example this would catch if an implementation
* directly uses these pointers to load into vector registers using movdqa.
*/
unsigned char *key_a = (unsigned char *) ((uintptr_t) key_a_aligned|(uintptr_t) 1);
unsigned char *key_b = (unsigned char *) ((uintptr_t) key_b_aligned|(uintptr_t) 1);
unsigned char *pk = (unsigned char *) ((uintptr_t) pk_aligned|(uintptr_t) 1);
unsigned char *sendb = (unsigned char *) ((uintptr_t) sendb_aligned|(uintptr_t) 1);
unsigned char *sk_a = (unsigned char *) ((uintptr_t) sk_a_aligned|(uintptr_t) 1);
/*
* Write 8 byte canary before and after the actual memory regions.
* This is used to validate that the implementation does not assume
* anything about the placement of data in memory
* (e.g., assuming that the pk is always behind the sk)
*/
write_canary(key_a);
write_canary(key_a + CRYPTO_BYTES + 8);
write_canary(key_b);
write_canary(key_b + CRYPTO_BYTES + 8);
write_canary(pk);
write_canary(pk + CRYPTO_PUBLICKEYBYTES + 8);
write_canary(sendb);
write_canary(sendb + CRYPTO_CIPHERTEXTBYTES + 8);
write_canary(sk_a);
write_canary(sk_a + CRYPTO_SECRETKEYBYTES + 8);
int i;
for (i = 0; i < NTESTS; i++) {
// Alice generates a public key
RETURNS_ZERO(crypto_kem_keypair(pk + 8, sk_a + 8));
// Bob derives a secret key and creates a response
RETURNS_ZERO(crypto_kem_enc(sendb + 8, key_b + 8, pk + 8));
// Alice uses Bobs response to get her secret key
RETURNS_ZERO(crypto_kem_dec(key_a + 8, sendb + 8, sk_a + 8));
if (memcmp(key_a + 8, key_b + 8, CRYPTO_BYTES) != 0) {
printf("ERROR KEYS\n");
return -1;
}
// Validate that the implementation did not touch the canary
if (check_canary(key_a) || check_canary(key_a + CRYPTO_BYTES + 8) ||
check_canary(key_b) || check_canary(key_b + CRYPTO_BYTES + 8 ) ||
check_canary(pk) || check_canary(pk + CRYPTO_PUBLICKEYBYTES + 8 ) ||
check_canary(sendb) || check_canary(sendb + CRYPTO_CIPHERTEXTBYTES + 8 ) ||
check_canary(sk_a) || check_canary(sk_a + CRYPTO_SECRETKEYBYTES + 8 )) {
printf("ERROR canary overwritten\n");
return -1;
}
}
return 0;
}
static int test_invalid_sk_a(void) {
unsigned char sk_a[CRYPTO_SECRETKEYBYTES];
unsigned char key_a[CRYPTO_BYTES], key_b[CRYPTO_BYTES];
unsigned char pk[CRYPTO_PUBLICKEYBYTES];
unsigned char sendb[CRYPTO_CIPHERTEXTBYTES];
int i;
int returncode;
for (i = 0; i < NTESTS; i++) {
// Alice generates a public key
RETURNS_ZERO(crypto_kem_keypair(pk, sk_a));
// Bob derives a secret key and creates a response
RETURNS_ZERO(crypto_kem_enc(sendb, key_b, pk));
// Replace secret key with random values
randombytes(sk_a, CRYPTO_SECRETKEYBYTES);
// Alice uses Bobs response to get her secret key
if ((returncode = crypto_kem_dec(key_a, sendb, sk_a)) > 0) {
printf("ERROR failing crypto_kem_dec returned %d instead of "
"negative or zero code\n",
returncode);
return -1;
}
if (!memcmp(key_a, key_b, CRYPTO_BYTES)) {
printf("ERROR invalid sk_a\n");
return 1;
}
}
return 0;
}
static int test_invalid_ciphertext(void) {
unsigned char sk_a[CRYPTO_SECRETKEYBYTES];
unsigned char key_a[CRYPTO_BYTES], key_b[CRYPTO_BYTES];
unsigned char pk[CRYPTO_PUBLICKEYBYTES];
unsigned char sendb[CRYPTO_CIPHERTEXTBYTES];
int i;
size_t pos;
int returncode;
for (i = 0; i < NTESTS; i++) {
randombytes((unsigned char *)&pos, sizeof(size_t));
// Alice generates a public key
RETURNS_ZERO(crypto_kem_keypair(pk, sk_a));
// Bob derives a secret key and creates a response
RETURNS_ZERO(crypto_kem_enc(sendb, key_b, pk));
// Change some byte in the ciphertext (i.e., encapsulated key)
sendb[pos % CRYPTO_CIPHERTEXTBYTES] ^= 23;
// Alice uses Bobs response to get her secret key
if ((returncode = crypto_kem_dec(key_a, sendb, sk_a)) > 0) {
printf("ERROR crypto_kem_dec should either fail (negative "
"returncode) or succeed (return 0) but returned %d\n",
returncode);
return -1;
}
if (!memcmp(key_a, key_b, CRYPTO_BYTES)) {
printf("ERROR invalid ciphertext\n");
return 1;
}
}
return 0;
}
int main(void) {
int result = 0;
result += test_keys();
result += test_invalid_sk_a();
result += test_invalid_ciphertext();
if (result != 0) {
puts("Errors occurred");
}
return result;
}