pqc/crypto_kem/test.c
Joost Rijneveld d3d6f7b7b7
Replace functional test by tests from PQM4
This also adds some code for canaries, and unifies crypto_{kem,sign}
2019-01-15 17:13:19 +01:00

131 lines
3.5 KiB
C

#include "api.h"
#include "randombytes.h"
#include <stdio.h>
#include <string.h>
#define NTESTS 10
/* allocate a bit more for all keys and messages and
* make sure it is not touched by the implementations.
*/
static void write_canary(unsigned char *d) {
*((uint64_t *)d) = 0x0123456789ABCDEF;
}
static int check_canary(unsigned char *d) {
if (*(uint64_t *)d != 0x0123456789ABCDEF)
return -1;
else
return 0;
}
static int test_keys(void) {
unsigned char key_a[CRYPTO_BYTES + 16], key_b[CRYPTO_BYTES + 16];
unsigned char pk[CRYPTO_PUBLICKEYBYTES + 16];
unsigned char sendb[CRYPTO_CIPHERTEXTBYTES + 16];
unsigned char sk_a[CRYPTO_SECRETKEYBYTES + 16];
write_canary(key_a);
write_canary(key_a + sizeof(key_a) - 8);
write_canary(key_b);
write_canary(key_b + sizeof(key_b) - 8);
write_canary(pk);
write_canary(pk + sizeof(pk) - 8);
write_canary(sendb);
write_canary(sendb + sizeof(sendb) - 8);
write_canary(sk_a);
write_canary(sk_a + sizeof(sk_a) - 8);
int i;
for (i = 0; i < NTESTS; i++) {
// Alice generates a public key
crypto_kem_keypair(pk + 8, sk_a + 8);
// Bob derives a secret key and creates a response
crypto_kem_enc(sendb + 8, key_b + 8, pk + 8);
// Alice uses Bobs response to get her secret key
crypto_kem_dec(key_a + 8, sendb + 8, sk_a + 8);
if (memcmp(key_a + 8, key_b + 8, CRYPTO_BYTES)) {
printf("ERROR KEYS\n");
} else if (check_canary(key_a) || check_canary(key_a + sizeof(key_a) - 8) ||
check_canary(key_b) || check_canary(key_b + sizeof(key_b) - 8) ||
check_canary(pk) || check_canary(pk + sizeof(pk) - 8) ||
check_canary(sendb) || check_canary(sendb + sizeof(sendb) - 8) ||
check_canary(sk_a) || check_canary(sk_a + sizeof(sk_a) - 8)) {
printf("ERROR canary overwritten\n");
}
}
return 0;
}
static int test_invalid_sk_a(void) {
unsigned char sk_a[CRYPTO_SECRETKEYBYTES];
unsigned char key_a[CRYPTO_BYTES], key_b[CRYPTO_BYTES];
unsigned char pk[CRYPTO_PUBLICKEYBYTES];
unsigned char sendb[CRYPTO_CIPHERTEXTBYTES];
int i;
for (i = 0; i < NTESTS; i++) {
// Alice generates a public key
crypto_kem_keypair(pk, sk_a);
// Bob derives a secret key and creates a response
crypto_kem_enc(sendb, key_b, pk);
// Replace secret key with random values
randombytes(sk_a, CRYPTO_SECRETKEYBYTES);
// Alice uses Bobs response to get her secret key
crypto_kem_dec(key_a, sendb, sk_a);
if (!memcmp(key_a, key_b, CRYPTO_BYTES)) {
printf("ERROR invalid sk_a\n");
}
}
return 0;
}
static int test_invalid_ciphertext(void) {
unsigned char sk_a[CRYPTO_SECRETKEYBYTES];
unsigned char key_a[CRYPTO_BYTES], key_b[CRYPTO_BYTES];
unsigned char pk[CRYPTO_PUBLICKEYBYTES];
unsigned char sendb[CRYPTO_CIPHERTEXTBYTES];
int i;
size_t pos;
for (i = 0; i < NTESTS; i++) {
randombytes((unsigned char *)&pos, sizeof(size_t));
// Alice generates a public key
crypto_kem_keypair(pk, sk_a);
// Bob derives a secret key and creates a response
crypto_kem_enc(sendb, key_b, pk);
// Change some byte in the ciphertext (i.e., encapsulated key)
sendb[pos % CRYPTO_CIPHERTEXTBYTES] ^= 23;
// Alice uses Bobs response to get her secret key
crypto_kem_dec(key_a, sendb, sk_a);
if (!memcmp(key_a, key_b, CRYPTO_BYTES)) {
printf("ERROR invalid ciphertext\n");
}
}
return 0;
}
int main(void) {
test_keys();
test_invalid_sk_a();
test_invalid_ciphertext();
return 0;
}