pqc/crypto_kem/hqc-192/avx2/bch.c
2020-09-11 12:38:08 -04:00

275 lines
11 KiB
C

#include "alpha_table.h"
#include "bch.h"
#include "fft.h"
#include "gf.h"
#include "parameters.h"
#include "vector.h"
#include <immintrin.h>
#include <stdint.h>
#include <string.h>
/**
* @file bch.c
* Constant time implementation of BCH codes
*/
static size_t compute_elp(uint16_t *sigma, const uint16_t *syndromes);
static void message_from_codeword(uint64_t *message, const uint64_t *codeword);
static void compute_syndromes(__m256i *syndromes, const uint64_t *rcv);
static void compute_roots(uint64_t *error, const uint16_t *sigma);
/**
* @brief Computes the values alpha^ij for decoding syndromes
*
* function to initialize a table which contains values alpha^ij for i in [0,N1[ and j in [1,2*PARAM_DELTA]
* these values are used in order to compute the syndromes of the received word v(x)=v_0+v_1x+...+v_{n1-1}x^{n1-1}
* value alpha^ij is stored in alpha_ij_table[2*PARAM_DELTA*i+j-1]
* The syndromes are equal to v(alpha^k) for k in [1,2*PARAM_DELTA]
* Size of the table is fixed to match 256 bit representation
* Useless values are filled with 0.
*
* @param[in] exp Exp look-up-table of GF
*/
void PQCLEAN_HQC192_AVX2_table_alphaij_generation(const uint16_t *exp) {
int32_t tmp_value;
int16_t *alpha_tmp;
// pre-computation of alpha^ij for i in [0, N1[ and j in [1, 2*PARAM_DELTA]
// see comment of alpha_ij_table_init() function.
for (uint16_t i = 0; i < PARAM_N1; ++i) {
tmp_value = 0;
alpha_tmp = table_alpha_ij + i * (PARAM_DELTA << 1);
for (uint16_t j = 0; j < (PARAM_DELTA << 1); j++) {
tmp_value = PQCLEAN_HQC192_AVX2_gf_mod(tmp_value + i);
alpha_tmp[j] = gf_exp[tmp_value];
}
}
}
/**
* @brief Computes the error locator polynomial (ELP) sigma
*
* This is a constant time implementation of Berlekamp's simplified algorithm (see @cite joiner1995decoding). <br>
* We use the letter p for rho which is initialized at -1/2. <br>
* The array X_sigma_p represents the polynomial X^(2(mu-rho))*sigma_p(X). <br>
* Instead of maintaining a list of sigmas, we update in place both sigma and X_sigma_p. <br>
* sigma_copy serves as a temporary save of sigma in case X_sigma_p needs to be updated. <br>
* We can properly correct only if the degree of sigma does not exceed PARAM_DELTA.
* This means only the first PARAM_DELTA + 1 coefficients of sigma are of value
* and we only need to save its first PARAM_DELTA - 1 coefficients.
*
* @returns the degree of the ELP sigma
* @param[out] sigma Array of size (at least) PARAM_DELTA receiving the ELP
* @param[in] syndromes Array of size (at least) 2*PARAM_DELTA storing the syndromes
*/
static size_t compute_elp(uint16_t *sigma, const uint16_t *syndromes) {
sigma[0] = 1;
size_t deg_sigma = 0;
size_t deg_sigma_p = 0;
uint16_t sigma_copy[PARAM_DELTA - 1] = {0};
size_t deg_sigma_copy = 0;
uint16_t X_sigma_p[PARAM_DELTA + 1] = {0, 1};
int32_t pp = -1; // 2*rho
uint16_t d_p = 1;
uint16_t d = syndromes[0];
for (size_t mu = 0; mu < PARAM_DELTA; ++mu) {
// Save sigma in case we need it to update X_sigma_p
memcpy(sigma_copy, sigma, 2 * (PARAM_DELTA - 1));
deg_sigma_copy = deg_sigma;
uint16_t dd = PQCLEAN_HQC192_AVX2_gf_mul(d, PQCLEAN_HQC192_AVX2_gf_inverse(d_p)); // 0 if(d == 0)
for (size_t i = 1; (i <= 2 * mu + 1) && (i <= PARAM_DELTA); ++i) {
sigma[i] ^= PQCLEAN_HQC192_AVX2_gf_mul(dd, X_sigma_p[i]);
}
size_t deg_X = 2 * mu - pp; // 2*(mu-rho)
size_t deg_X_sigma_p = deg_X + deg_sigma_p;
// mask1 = 0xffff if(d != 0) and 0 otherwise
int16_t mask1 = -((uint16_t) - d >> 15);
// mask2 = 0xffff if(deg_X_sigma_p > deg_sigma) and 0 otherwise
int16_t mask2 = -((uint16_t) (deg_sigma - deg_X_sigma_p) >> 15);
// mask12 = 0xffff if the deg_sigma increased and 0 otherwise
int16_t mask12 = mask1 & mask2;
deg_sigma = (mask12 & deg_X_sigma_p) ^ (~mask12 & deg_sigma);
if (mu == PARAM_DELTA - 1) {
break;
}
// Update pp, d_p and X_sigma_p if needed
pp = (mask12 & (2 * mu)) ^ (~mask12 & pp);
d_p = (mask12 & d) ^ (~mask12 & d_p);
for (size_t i = PARAM_DELTA - 1; i; --i) {
X_sigma_p[i + 1] = (mask12 & sigma_copy[i - 1]) ^ (~mask12 & X_sigma_p[i - 1]);
}
X_sigma_p[1] = 0;
X_sigma_p[0] = 0;
deg_sigma_p = (mask12 & deg_sigma_copy) ^ (~mask12 & deg_sigma_p);
// Compute the next discrepancy
d = syndromes[2 * mu + 2];
for (size_t i = 1; (i <= 2 * mu + 1) && (i <= PARAM_DELTA); ++i) {
d ^= PQCLEAN_HQC192_AVX2_gf_mul(sigma[i], syndromes[2 * mu + 2 - i]);
}
}
return deg_sigma;
}
/**
* @brief Retrieves the message message from the codeword codeword
*
* Since we performed a systematic encoding, the message is the last PARAM_K bits of the codeword.
*
* @param[out] message Array of size VEC_K_SIZE_BYTES receiving the message
* @param[in] codeword Array of size VEC_N1_SIZE_BYTES storing the codeword
*/
static void message_from_codeword(uint64_t *message, const uint64_t *codeword) {
int32_t val = PARAM_N1 - PARAM_K;
uint64_t mask1 = (uint64_t) (0xffffffffffffffff << val % 64);
uint64_t mask2 = (uint64_t) (0xffffffffffffffff >> (64 - val % 64));
size_t index = val / 64;
for (size_t i = 0; i < VEC_K_SIZE_64 - 1; ++i) {
uint64_t message1 = (codeword[index] & mask1) >> val % 64;
uint64_t message2 = (codeword[++index] & mask2) << (64 - val % 64);
message[i] = message1 | message2;
}
// Last byte (8-val % 8 is the number of bits given by message1)
if ((PARAM_K % 64 == 0) || (64 - val % 64 < PARAM_K % 64)) {
uint64_t message1 = (codeword[index] & mask1) >> val % 64;
uint64_t message2 = (codeword[++index] & mask2) << (64 - val % 64);
message[VEC_K_SIZE_64 - 1] = message1 | message2;
} else {
uint64_t message1 = (codeword[index] & mask1) >> val % 64;
message[VEC_K_SIZE_64 - 1] = message1;
}
}
/**
* @brief Computes the 2^PARAM_DELTA syndromes from the received vector vector
*
* Syndromes are the sum of powers of alpha weighted by vector's coefficients.
* These powers have been pre-computed in table_alphaPARAM_DELTA.h
* Syndromes are 16-bits long , hence we can simultaneously compute 16 syndromes
* in a 256-bit register
*
* @param[out] syndromes Array of size 2^(PARAM_FFT_T) receiving the 2*PARAM_DELTA syndromes
* @param[in] rcv Array of size VEC_N1_SIZE_BYTES storing the received word
*/
void compute_syndromes(__m256i *syndromes, const uint64_t *rcv) {
const __m256i zero_256 = _mm256_set1_epi64x(0);
const __m256i mask_one = _mm256_set_epi64x(0x0303030303030303, 0x0202020202020202, 0x0101010101010101, 0x0);
const __m256i mask_two = _mm256_set1_epi64x(-0x7FBFDFEFF7FBFDFF);
const __m256i un_256 = _mm256_set1_epi64x(1);
__m256i y;
__m256i S;
__m256i L;
__m256i tmp_repeat;
uint32_t *aux;
int16_t *alpha_tmp;
uint32_t i;
// static variable so that it is stored in the DATA segment
// not in the STACK segment
static uint8_t tmp_array[PARAM_N1 + 4]; // +4 to control overflow due to management of 256 bits
__m256i *z = (__m256i *) tmp_array;
// vectorized version of the separation of the coordinates of the vector v in order to put each coordinate in an unsigned char
// aux is used to consider 4 elements in v at each step of the loop
aux = (uint32_t *) rcv;
for (i = 0; i < ((VEC_N1_SIZE_BYTES >> 2) << 2); i += 4) {
// duplicate aux 8 times in y , i.e y= (aux aux aux .... aux)
y = _mm256_set1_epi32(*aux);
// shuffle the bytes of y so that if aux=(a0 a1 a2 a3)
// then y = (a0 a0 a0 a0 a0 a0 a0 a0 a1 a1 a1 a1 a1 a1 a1 a1 .... a3)
y = _mm256_shuffle_epi8(y, mask_one);
// apply a mask on each byte of y to determine if jth bit of a_k is 0 or 1
z[i >> 2] = _mm256_and_si256(y, mask_two);
aux ++;
}
// Evaluation of the polynomial corresponding to the vector v in alpha^i for i in {1, ..., 2 * PARAM_DELTA}
for (size_t j = 0; j < SYND_SIZE_256; ++j) {
S = zero_256;
alpha_tmp = table_alpha_ij + (j << 4);
for (size_t i = 0; i < PARAM_N1; ++i) {
tmp_repeat = _mm256_set1_epi64x((long long)(tmp_array[i] != 0));
L = _mm256_cmpeq_epi64(tmp_repeat, un_256);
tmp_repeat = _mm256_lddqu_si256((__m256i *)(alpha_tmp + i * (PARAM_DELTA << 1)));
L = _mm256_and_si256(L, tmp_repeat);
S = _mm256_xor_si256(L, S);
}
_mm256_storeu_si256(syndromes + j, S);
}
}
/**
* @brief Computes the error polynomial error from the error locator polynomial sigma
*
* See function PQCLEAN_HQC192_AVX2_fft for more details.
*
* @param[out] error Array of VEC_N1_SIZE_BYTES elements receiving the error polynomial
* @param[in] sigma Array of 2^PARAM_FFT elements storing the error locator polynomial
*/
static void compute_roots(uint64_t *error, const uint16_t *sigma) {
uint16_t w[1 << PARAM_M] = {0}; // w will receive the evaluation of sigma in all field elements
PQCLEAN_HQC192_AVX2_fft(w, sigma, PARAM_DELTA + 1);
PQCLEAN_HQC192_AVX2_fft_retrieve_bch_error_poly(error, w);
}
/**
* @brief Decodes the received word
*
* This function relies on four steps:
* <ol>
* <li> The first step, done by additive FFT transpose, is the computation of the 2*PARAM_DELTA syndromes.
* <li> The second step is the computation of the error-locator polynomial sigma.
* <li> The third step, done by additive FFT, is finding the error-locator numbers by calculating the roots of the polynomial sigma and takings their inverses.
* <li> The fourth step is the correction of the errors in the received polynomial.
* </ol>
* For a more complete picture on BCH decoding, see Shu. Lin and Daniel J. Costello in Error Control Coding: Fundamentals and Applications @cite lin1983error
*
* @param[out] message Array of size VEC_K_SIZE_BYTES receiving the decoded message
* @param[in] vector Array of size VEC_N1_SIZE_BYTES storing the received word
*/
void PQCLEAN_HQC192_AVX2_bch_code_decode(uint64_t *message, uint64_t *vector) {
uint16_t sigma[1 << PARAM_FFT] = {0};
uint64_t error[(1 << PARAM_M) / 8] = {0};
static __m256i syndromes_256[SYND_SIZE_256];
// Calculate the 2*PARAM_DELTA syndromes
compute_syndromes(syndromes_256, vector);
// Compute the error locator polynomial sigma
// Sigma's degree is at most PARAM_DELTA but the FFT requires the extra room
compute_elp(sigma, (uint16_t *)syndromes_256);
// Compute the error polynomial error
compute_roots(error, sigma);
// Add the error polynomial to the received polynomial
PQCLEAN_HQC192_AVX2_vect_add(vector, vector, error, VEC_N1_SIZE_64);
// Retrieve the message from the decoded codeword
message_from_codeword(message, vector);
}