64 lines
2.0 KiB
C
64 lines
2.0 KiB
C
#ifndef GF2X_ARITH_H
|
|
#define GF2X_ARITH_H
|
|
|
|
#include <inttypes.h>
|
|
#include <stddef.h>
|
|
|
|
/*
|
|
* Elements of GF(2)[x] are stored in compact dense binary form.
|
|
*
|
|
* Each bit in a byte is assumed to be the coefficient of a binary
|
|
* polynomial f(x), in Big-Endian format (i.e., reading everything from
|
|
* left to right, the most significant element is met first):
|
|
*
|
|
* byte:(0000 0000) == 0x00 ... f(x) == 0
|
|
* byte:(0000 0001) == 0x01 ... f(x) == 1
|
|
* byte:(0000 0010) == 0x02 ... f(x) == x
|
|
* byte:(0000 0011) == 0x03 ... f(x) == x+1
|
|
* ... ... ...
|
|
* byte:(0000 1111) == 0x0F ... f(x) == x^{3}+x^{2}+x+1
|
|
* ... ... ...
|
|
* byte:(1111 1111) == 0xFF ... f(x) == x^{7}+x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+1
|
|
*
|
|
*
|
|
* A "machine word" (A_i) is considered as a DIGIT.
|
|
* Bytes in a DIGIT are assumed in Big-Endian format:
|
|
* E.g., if sizeof(DIGIT) == 4:
|
|
* A_i: A_{i,3} A_{i,2} A_{i,1} A_{i,0}.
|
|
* A_{i,3} denotes the most significant byte, A_{i,0} the least significant one.
|
|
* f(x) == x^{31} + ... + x^{24} +
|
|
* + x^{23} + ... + x^{16} +
|
|
* + x^{15} + ... + x^{8} +
|
|
* + x^{7} + ... + x^{0}
|
|
*
|
|
*
|
|
* Multi-precision elements (i.e., with multiple DIGITs) are stored in
|
|
* Big-endian format:
|
|
* A = A_{n-1} A_{n-2} ... A_1 A_0
|
|
*
|
|
* position[A_{n-1}] == 0
|
|
* position[A_{n-2}] == 1
|
|
* ...
|
|
* position[A_{1}] == n-2
|
|
* position[A_{0}] == n-1
|
|
*/
|
|
|
|
typedef uint64_t DIGIT;
|
|
#define DIGIT_SIZE_B (8)
|
|
#define DIGIT_SIZE_b (DIGIT_SIZE_B << 3)
|
|
#define POSITION_T uint32_t
|
|
|
|
#define GF2X_MUL PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mul_comb
|
|
|
|
static inline void gf2x_add(DIGIT Res[], const DIGIT A[], const DIGIT B[], size_t nr) {
|
|
for (size_t i = 0; i < nr; i++) {
|
|
Res[i] = A[i] ^ B[i];
|
|
}
|
|
}
|
|
|
|
void PQCLEAN_LEDAKEMLT12_CLEAN_right_bit_shift_n(size_t length, DIGIT in[], unsigned int amount);
|
|
void PQCLEAN_LEDAKEMLT12_CLEAN_left_bit_shift_n(size_t length, DIGIT in[], unsigned int amount);
|
|
void GF2X_MUL(int nr, DIGIT Res[], int na, const DIGIT A[], int nb, const DIGIT B[]);
|
|
|
|
#endif
|