91 Zeilen
3.6 KiB
C
91 Zeilen
3.6 KiB
C
#ifndef _BLAS_COMM_H_
|
|
#define _BLAS_COMM_H_
|
|
/// @file blas_comm.h
|
|
/// @brief Common functions for linear algebra.
|
|
///
|
|
|
|
#include "rainbow_config.h"
|
|
#include <stdint.h>
|
|
|
|
/// @brief set a vector to 0.
|
|
///
|
|
/// @param[in,out] b - the vector b.
|
|
/// @param[in] _num_byte - number of bytes for the vector b.
|
|
///
|
|
void PQCLEAN_RAINBOWVCCLASSIC_CLEAN_gf256v_set_zero(uint8_t *b, unsigned int _num_byte);
|
|
|
|
/// @brief get an element from GF(256) vector .
|
|
///
|
|
/// @param[in] a - the input vector a.
|
|
/// @param[in] i - the index in the vector a.
|
|
/// @return the value of the element.
|
|
///
|
|
uint8_t PQCLEAN_RAINBOWVCCLASSIC_CLEAN_gf256v_get_ele(const uint8_t *a, unsigned int i);
|
|
|
|
/// @brief check if a vector is 0.
|
|
///
|
|
/// @param[in] a - the vector a.
|
|
/// @param[in] _num_byte - number of bytes for the vector a.
|
|
/// @return 1(true) if a is 0. 0(false) else.
|
|
///
|
|
unsigned int PQCLEAN_RAINBOWVCCLASSIC_CLEAN_gf256v_is_zero(const uint8_t *a, unsigned int _num_byte);
|
|
|
|
/// @brief polynomial multiplication: c = a*b
|
|
///
|
|
/// @param[out] c - the output polynomial c
|
|
/// @param[in] a - the vector a.
|
|
/// @param[in] b - the vector b.
|
|
/// @param[in] _num - number of elements for the polynomials a and b.
|
|
///
|
|
void PQCLEAN_RAINBOWVCCLASSIC_CLEAN_gf256v_polymul(uint8_t *c, const uint8_t *a, const uint8_t *b, unsigned int _num);
|
|
|
|
/// @brief matrix-vector multiplication: c = matA * b , in GF(256)
|
|
///
|
|
/// @param[out] c - the output vector c
|
|
/// @param[in] matA - a column-major matrix A.
|
|
/// @param[in] n_A_vec_byte - the size of column vectors in bytes.
|
|
/// @param[in] n_A_width - the width of matrix A.
|
|
/// @param[in] b - the vector b.
|
|
///
|
|
void PQCLEAN_RAINBOWVCCLASSIC_CLEAN_gf256mat_prod(uint8_t *c, const uint8_t *matA, unsigned int n_A_vec_byte, unsigned int n_A_width, const uint8_t *b);
|
|
|
|
/// @brief matrix-matrix multiplication: c = a * b , in GF(256)
|
|
///
|
|
/// @param[out] c - the output matrix c
|
|
/// @param[in] c - a matrix a.
|
|
/// @param[in] b - a matrix b.
|
|
/// @param[in] len_vec - the length of column vectors.
|
|
///
|
|
void PQCLEAN_RAINBOWVCCLASSIC_CLEAN_gf256mat_mul(uint8_t *c, const uint8_t *a, const uint8_t *b, unsigned int len_vec);
|
|
|
|
/// @brief Gauss elimination for a matrix, in GF(256)
|
|
///
|
|
/// @param[in,out] mat - the matrix.
|
|
/// @param[in] h - the height of the matrix.
|
|
/// @param[in] w - the width of the matrix.
|
|
/// @return 1(true) if success. 0(false) if the matrix is singular.
|
|
///
|
|
unsigned int PQCLEAN_RAINBOWVCCLASSIC_CLEAN_gf256mat_gauss_elim(uint8_t *mat, unsigned int h, unsigned int w);
|
|
|
|
/// @brief Solving linear equations, in GF(256)
|
|
///
|
|
/// @param[out] sol - the solutions.
|
|
/// @param[in] inp_mat - the matrix parts of input equations.
|
|
/// @param[in] c_terms - the constant terms of the input equations.
|
|
/// @param[in] n - the number of equations.
|
|
/// @return 1(true) if success. 0(false) if the matrix is singular.
|
|
///
|
|
unsigned int PQCLEAN_RAINBOWVCCLASSIC_CLEAN_gf256mat_solve_linear_eq(uint8_t *sol, const uint8_t *inp_mat, const uint8_t *c_terms, unsigned int n);
|
|
|
|
/// @brief Computing the inverse matrix, in GF(256)
|
|
///
|
|
/// @param[out] inv_a - the output of matrix a.
|
|
/// @param[in] a - a matrix a.
|
|
/// @param[in] H - height of matrix a, i.e., matrix a is an HxH matrix.
|
|
/// @param[in] buffer - The buffer for computations. it has to be as large as 2 input matrixes.
|
|
/// @return 1(true) if success. 0(false) if the matrix is singular.
|
|
///
|
|
unsigned int PQCLEAN_RAINBOWVCCLASSIC_CLEAN_gf256mat_inv(uint8_t *inv_a, const uint8_t *a, unsigned int H, uint8_t *buffer);
|
|
|
|
#endif // _BLAS_COMM_H_
|