255 строки
8.1 KiB
C
255 строки
8.1 KiB
C
#include "api.h"
|
|
#include "randombytes.h"
|
|
#include <stddef.h>
|
|
#include <stdint.h>
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
|
|
#ifndef NTESTS
|
|
#define NTESTS 5
|
|
#endif
|
|
|
|
#define MLEN 32
|
|
|
|
const uint8_t canary[8] = {
|
|
0x01, 0x23, 0x45, 0x67, 0x89, 0xAB, 0xCD, 0xEF
|
|
};
|
|
|
|
/* allocate a bit more for all keys and messages and
|
|
* make sure it is not touched by the implementations.
|
|
*/
|
|
static void write_canary(uint8_t *d) {
|
|
for (size_t i = 0; i < 8; i++) {
|
|
d[i] = canary[i];
|
|
}
|
|
}
|
|
|
|
static int check_canary(const uint8_t *d) {
|
|
for (size_t i = 0; i < 8; i++) {
|
|
if (d[i] != canary[i]) {
|
|
return -1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// https://stackoverflow.com/a/1489985/1711232
|
|
#define PASTER(x, y) x##_##y
|
|
#define EVALUATOR(x, y) PASTER(x, y)
|
|
#define NAMESPACE(fun) EVALUATOR(PQCLEAN_NAMESPACE, fun)
|
|
|
|
#define CRYPTO_PUBLICKEYBYTES NAMESPACE(CRYPTO_PUBLICKEYBYTES)
|
|
#define CRYPTO_SECRETKEYBYTES NAMESPACE(CRYPTO_SECRETKEYBYTES)
|
|
#define CRYPTO_BYTES NAMESPACE(CRYPTO_BYTES)
|
|
#define CRYPTO_ALGNAME NAMESPACE(CRYPTO_ALGNAME)
|
|
|
|
#define crypto_sign_keypair NAMESPACE(crypto_sign_keypair)
|
|
#define crypto_sign NAMESPACE(crypto_sign)
|
|
#define crypto_sign_open NAMESPACE(crypto_sign_open)
|
|
#define crypto_sign_signature NAMESPACE(crypto_sign_signature)
|
|
#define crypto_sign_verify NAMESPACE(crypto_sign_verify)
|
|
|
|
#define RETURNS_ZERO(f) \
|
|
if ((f) != 0) { \
|
|
puts("(f) returned non-zero returncode"); \
|
|
return -1; \
|
|
}
|
|
|
|
// https://stackoverflow.com/a/55243651/248065
|
|
#define MY_TRUTHY_VALUE_X 1
|
|
#define CAT(x,y) CAT_(x,y)
|
|
#define CAT_(x,y) x##y
|
|
#define HAS_NAMESPACE(x) CAT(CAT(MY_TRUTHY_VALUE_,CAT(PQCLEAN_NAMESPACE,CAT(_,x))),X)
|
|
|
|
#if !HAS_NAMESPACE(API_H)
|
|
#error "namespace not properly defined for header guard"
|
|
#endif
|
|
|
|
|
|
static int test_sign(void) {
|
|
/*
|
|
* This is most likely going to be aligned by the compiler.
|
|
* 16 extra bytes for canary
|
|
* 1 extra byte for unalignment
|
|
*/
|
|
uint8_t pk_aligned[CRYPTO_PUBLICKEYBYTES + 16 + 1];
|
|
uint8_t sk_aligned[CRYPTO_SECRETKEYBYTES + 16 + 1];
|
|
uint8_t sm_aligned[MLEN + CRYPTO_BYTES + 16 + 1];
|
|
uint8_t m_aligned[MLEN + 16 + 1];
|
|
|
|
/*
|
|
* Make sure all pointers are odd.
|
|
* This ensures that the implementation does not assume anything about the
|
|
* data alignment. For example this would catch if an implementation
|
|
* directly uses these pointers to load into vector registers using movdqa.
|
|
*/
|
|
uint8_t *pk = (uint8_t *) ((uintptr_t) pk_aligned|(uintptr_t) 1);
|
|
uint8_t *sk = (uint8_t *) ((uintptr_t) sk_aligned|(uintptr_t) 1);
|
|
uint8_t *sm = (uint8_t *) ((uintptr_t) sm_aligned|(uintptr_t) 1);
|
|
uint8_t *m = (uint8_t *) ((uintptr_t) m_aligned|(uintptr_t) 1);
|
|
|
|
size_t mlen;
|
|
size_t smlen;
|
|
int returncode;
|
|
|
|
int i;
|
|
/*
|
|
* Write 8 byte canary before and after the actual memory regions.
|
|
* This is used to validate that the implementation does not assume
|
|
* anything about the placement of data in memory
|
|
* (e.g., assuming that the pk is always behind the sk)
|
|
*/
|
|
write_canary(pk);
|
|
write_canary(pk + CRYPTO_PUBLICKEYBYTES + 8);
|
|
write_canary(sk);
|
|
write_canary(sk + CRYPTO_SECRETKEYBYTES + 8);
|
|
write_canary(sm);
|
|
write_canary(sm + MLEN + CRYPTO_BYTES + 8);
|
|
write_canary(m);
|
|
write_canary(m + MLEN + 8);
|
|
|
|
for (i = 0; i < NTESTS; i++) {
|
|
RETURNS_ZERO(crypto_sign_keypair(pk + 8, sk + 8));
|
|
|
|
randombytes(m + 8, MLEN);
|
|
RETURNS_ZERO(crypto_sign(sm + 8, &smlen, m + 8, MLEN, sk + 8));
|
|
|
|
// By relying on m == sm we prevent having to allocate CRYPTO_BYTES
|
|
// twice
|
|
if ((returncode =
|
|
crypto_sign_open(sm + 8, &mlen, sm + 8, smlen, pk + 8)) != 0) {
|
|
fprintf(stderr, "ERROR Signature did not verify correctly!\n");
|
|
if (returncode > 0) {
|
|
fprintf(stderr, "ERROR return code should be < 0 on failure");
|
|
}
|
|
return 1;
|
|
}
|
|
// Validate that the implementation did not touch the canary
|
|
if (check_canary(pk) || check_canary(pk + CRYPTO_PUBLICKEYBYTES + 8) ||
|
|
check_canary(sk) || check_canary(sk + CRYPTO_SECRETKEYBYTES + 8) ||
|
|
check_canary(sm) || check_canary(sm + MLEN + CRYPTO_BYTES + 8) ||
|
|
check_canary(m) || check_canary(m + MLEN + 8)) {
|
|
fprintf(stderr, "ERROR canary overwritten\n");
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int test_sign_detached(void) {
|
|
/*
|
|
* This is most likely going to be aligned by the compiler.
|
|
* 16 extra bytes for canary
|
|
* 1 extra byte for unalignment
|
|
*/
|
|
uint8_t pk_aligned[CRYPTO_PUBLICKEYBYTES + 16 + 1];
|
|
uint8_t sk_aligned[CRYPTO_SECRETKEYBYTES + 16 + 1];
|
|
uint8_t sig_aligned[CRYPTO_BYTES + 16 + 1];
|
|
uint8_t m_aligned[MLEN + 16 + 1];
|
|
|
|
/*
|
|
* Make sure all pointers are odd.
|
|
* This ensures that the implementation does not assume anything about the
|
|
* data alignment. For example this would catch if an implementation
|
|
* directly uses these pointers to load into vector registers using movdqa.
|
|
*/
|
|
uint8_t *pk = (uint8_t *) ((uintptr_t) pk_aligned|(uintptr_t) 1);
|
|
uint8_t *sk = (uint8_t *) ((uintptr_t) sk_aligned|(uintptr_t) 1);
|
|
uint8_t *sig = (uint8_t *) ((uintptr_t) sig_aligned|(uintptr_t) 1);
|
|
uint8_t *m = (uint8_t *) ((uintptr_t) m_aligned|(uintptr_t) 1);
|
|
|
|
size_t siglen;
|
|
int returncode;
|
|
|
|
int i;
|
|
/*
|
|
* Write 8 byte canary before and after the actual memory regions.
|
|
* This is used to validate that the implementation does not assume
|
|
* anything about the placement of data in memory
|
|
* (e.g., assuming that the pk is always behind the sk)
|
|
*/
|
|
write_canary(pk);
|
|
write_canary(pk + CRYPTO_PUBLICKEYBYTES + 8);
|
|
write_canary(sk);
|
|
write_canary(sk + CRYPTO_SECRETKEYBYTES + 8);
|
|
write_canary(sig);
|
|
write_canary(sig + CRYPTO_BYTES + 8);
|
|
write_canary(m);
|
|
write_canary(m + MLEN + 8);
|
|
|
|
for (i = 0; i < NTESTS; i++) {
|
|
RETURNS_ZERO(crypto_sign_keypair(pk + 8, sk + 8));
|
|
|
|
randombytes(m + 8, MLEN);
|
|
RETURNS_ZERO(crypto_sign_signature(sig + 8, &siglen, m + 8, MLEN, sk + 8));
|
|
|
|
if ((returncode =
|
|
crypto_sign_verify(sig + 8, siglen, m + 8, MLEN, pk + 8)) != 0) {
|
|
fprintf(stderr, "ERROR Signature did not verify correctly!\n");
|
|
if (returncode > 0) {
|
|
fprintf(stderr, "ERROR return code should be < 0 on failure");
|
|
}
|
|
return 1;
|
|
}
|
|
// Validate that the implementation did not touch the canary
|
|
if (check_canary(pk) || check_canary(pk + CRYPTO_PUBLICKEYBYTES + 8) ||
|
|
check_canary(sk) || check_canary(sk + CRYPTO_SECRETKEYBYTES + 8) ||
|
|
check_canary(sig) || check_canary(sig + CRYPTO_BYTES + 8) ||
|
|
check_canary(m) || check_canary(m + MLEN + 8)) {
|
|
fprintf(stderr, "ERROR canary overwritten\n");
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int test_wrong_pk(void) {
|
|
uint8_t pk[CRYPTO_PUBLICKEYBYTES];
|
|
uint8_t pk2[CRYPTO_PUBLICKEYBYTES];
|
|
uint8_t sk[CRYPTO_SECRETKEYBYTES];
|
|
uint8_t sm[MLEN + CRYPTO_BYTES];
|
|
uint8_t m[MLEN];
|
|
|
|
size_t mlen;
|
|
size_t smlen;
|
|
|
|
int returncode;
|
|
|
|
int i;
|
|
|
|
for (i = 0; i < NTESTS; i++) {
|
|
RETURNS_ZERO(crypto_sign_keypair(pk2, sk));
|
|
|
|
RETURNS_ZERO(crypto_sign_keypair(pk, sk));
|
|
|
|
randombytes(m, MLEN);
|
|
RETURNS_ZERO(crypto_sign(sm, &smlen, m, MLEN, sk));
|
|
|
|
// By relying on m == sm we prevent having to allocate CRYPTO_BYTES
|
|
// twice
|
|
returncode = crypto_sign_open(sm, &mlen, sm, smlen, pk2);
|
|
if (!returncode) {
|
|
fprintf(stderr, "ERROR Signature did verify correctly under wrong public key!\n");
|
|
if (returncode > 0) {
|
|
fprintf(stderr, "ERROR return code should be < 0");
|
|
}
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int main(void) {
|
|
// check if CRYPTO_ALGNAME is printable
|
|
puts(CRYPTO_ALGNAME);
|
|
int result = 0;
|
|
result += test_sign();
|
|
result += test_sign_detached();
|
|
result += test_wrong_pk();
|
|
|
|
return result;
|
|
}
|