aa4611a4d1
This PR sacrifices passing some extra arguments to get rid of the global state. * Haraka needs state in all hash calls, this results in changes to the hash functions specified in `hash.h`. The extra pointers passed would not be necessary for SHA256 or SHAKE256. * SHAKE256 did not have global state, but uniformity in the implementations requires us to pass around the new state context anyway. Otherwise, @joostrijneveld's SPHINCS+ generator doesn't really work anymore). We introduce a new header file called `primitive.h` which defines the required state type for the generic functions. I did not go into replacing _all_ occurrences of state variables by the new `hash_state` macro.
170 lines
6.3 KiB
C
170 lines
6.3 KiB
C
#include <stdint.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
#include "address.h"
|
|
#include "fors.h"
|
|
#include "hash.h"
|
|
#include "primitive.h"
|
|
#include "thash.h"
|
|
#include "utils.h"
|
|
|
|
static void fors_gen_sk(unsigned char *sk, const unsigned char *sk_seed,
|
|
uint32_t fors_leaf_addr[8], const hash_state *state_seeded) {
|
|
PQCLEAN_SPHINCSHARAKA256SSIMPLE_CLEAN_prf_addr(
|
|
sk, sk_seed, fors_leaf_addr, state_seeded);
|
|
}
|
|
|
|
static void fors_sk_to_leaf(unsigned char *leaf, const unsigned char *sk,
|
|
const unsigned char *pub_seed,
|
|
uint32_t fors_leaf_addr[8],
|
|
hash_state *state_seeded) {
|
|
PQCLEAN_SPHINCSHARAKA256SSIMPLE_CLEAN_thash_1(
|
|
leaf, sk, pub_seed, fors_leaf_addr, state_seeded);
|
|
}
|
|
|
|
static void fors_gen_leaf(unsigned char *leaf, const unsigned char *sk_seed,
|
|
const unsigned char *pub_seed,
|
|
uint32_t addr_idx, const uint32_t fors_tree_addr[8],
|
|
hash_state *state_seeded) {
|
|
uint32_t fors_leaf_addr[8] = {0};
|
|
|
|
/* Only copy the parts that must be kept in fors_leaf_addr. */
|
|
PQCLEAN_SPHINCSHARAKA256SSIMPLE_CLEAN_copy_keypair_addr(
|
|
fors_leaf_addr, fors_tree_addr);
|
|
PQCLEAN_SPHINCSHARAKA256SSIMPLE_CLEAN_set_type(
|
|
fors_leaf_addr, SPX_ADDR_TYPE_FORSTREE);
|
|
PQCLEAN_SPHINCSHARAKA256SSIMPLE_CLEAN_set_tree_index(
|
|
fors_leaf_addr, addr_idx);
|
|
|
|
fors_gen_sk(leaf, sk_seed, fors_leaf_addr, state_seeded);
|
|
fors_sk_to_leaf(leaf, leaf, pub_seed, fors_leaf_addr, state_seeded);
|
|
}
|
|
|
|
/**
|
|
* Interprets m as SPX_FORS_HEIGHT-bit unsigned integers.
|
|
* Assumes m contains at least SPX_FORS_HEIGHT * SPX_FORS_TREES bits.
|
|
* Assumes indices has space for SPX_FORS_TREES integers.
|
|
*/
|
|
static void message_to_indices(uint32_t *indices, const unsigned char *m) {
|
|
unsigned int i, j;
|
|
unsigned int offset = 0;
|
|
|
|
for (i = 0; i < SPX_FORS_TREES; i++) {
|
|
indices[i] = 0;
|
|
for (j = 0; j < SPX_FORS_HEIGHT; j++) {
|
|
indices[i] ^= (((uint32_t)m[offset >> 3] >> (offset & 0x7)) & 0x1) << j;
|
|
offset++;
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Signs a message m, deriving the secret key from sk_seed and the FTS address.
|
|
* Assumes m contains at least SPX_FORS_HEIGHT * SPX_FORS_TREES bits.
|
|
*/
|
|
void PQCLEAN_SPHINCSHARAKA256SSIMPLE_CLEAN_fors_sign(
|
|
unsigned char *sig, unsigned char *pk,
|
|
const unsigned char *m,
|
|
const unsigned char *sk_seed, const unsigned char *pub_seed,
|
|
const uint32_t fors_addr[8], hash_state *state_seeded) {
|
|
uint32_t indices[SPX_FORS_TREES];
|
|
unsigned char roots[SPX_FORS_TREES * SPX_N];
|
|
uint32_t fors_tree_addr[8] = {0};
|
|
uint32_t fors_pk_addr[8] = {0};
|
|
uint32_t idx_offset;
|
|
unsigned int i;
|
|
|
|
PQCLEAN_SPHINCSHARAKA256SSIMPLE_CLEAN_copy_keypair_addr(
|
|
fors_tree_addr, fors_addr);
|
|
PQCLEAN_SPHINCSHARAKA256SSIMPLE_CLEAN_copy_keypair_addr(
|
|
fors_pk_addr, fors_addr);
|
|
|
|
PQCLEAN_SPHINCSHARAKA256SSIMPLE_CLEAN_set_type(
|
|
fors_tree_addr, SPX_ADDR_TYPE_FORSTREE);
|
|
PQCLEAN_SPHINCSHARAKA256SSIMPLE_CLEAN_set_type(
|
|
fors_pk_addr, SPX_ADDR_TYPE_FORSPK);
|
|
|
|
message_to_indices(indices, m);
|
|
|
|
for (i = 0; i < SPX_FORS_TREES; i++) {
|
|
idx_offset = i * (1 << SPX_FORS_HEIGHT);
|
|
|
|
PQCLEAN_SPHINCSHARAKA256SSIMPLE_CLEAN_set_tree_height(
|
|
fors_tree_addr, 0);
|
|
PQCLEAN_SPHINCSHARAKA256SSIMPLE_CLEAN_set_tree_index(
|
|
fors_tree_addr, indices[i] + idx_offset);
|
|
|
|
/* Include the secret key part that produces the selected leaf node. */
|
|
fors_gen_sk(sig, sk_seed, fors_tree_addr, state_seeded);
|
|
sig += SPX_N;
|
|
|
|
/* Compute the authentication path for this leaf node. */
|
|
PQCLEAN_SPHINCSHARAKA256SSIMPLE_CLEAN_treehash_FORS_HEIGHT(
|
|
roots + i * SPX_N, sig, sk_seed, pub_seed,
|
|
indices[i], idx_offset, fors_gen_leaf, fors_tree_addr,
|
|
state_seeded);
|
|
sig += SPX_N * SPX_FORS_HEIGHT;
|
|
}
|
|
|
|
/* Hash horizontally across all tree roots to derive the public key. */
|
|
PQCLEAN_SPHINCSHARAKA256SSIMPLE_CLEAN_thash_FORS_TREES(
|
|
pk, roots, pub_seed, fors_pk_addr, state_seeded);
|
|
}
|
|
|
|
/**
|
|
* Derives the FORS public key from a signature.
|
|
* This can be used for verification by comparing to a known public key, or to
|
|
* subsequently verify a signature on the derived public key. The latter is the
|
|
* typical use-case when used as an FTS below an OTS in a hypertree.
|
|
* Assumes m contains at least SPX_FORS_HEIGHT * SPX_FORS_TREES bits.
|
|
*/
|
|
void PQCLEAN_SPHINCSHARAKA256SSIMPLE_CLEAN_fors_pk_from_sig(
|
|
unsigned char *pk,
|
|
const unsigned char *sig, const unsigned char *m,
|
|
const unsigned char *pub_seed, const uint32_t fors_addr[8],
|
|
hash_state *state_seeded) {
|
|
uint32_t indices[SPX_FORS_TREES];
|
|
unsigned char roots[SPX_FORS_TREES * SPX_N];
|
|
unsigned char leaf[SPX_N];
|
|
uint32_t fors_tree_addr[8] = {0};
|
|
uint32_t fors_pk_addr[8] = {0};
|
|
uint32_t idx_offset;
|
|
unsigned int i;
|
|
|
|
PQCLEAN_SPHINCSHARAKA256SSIMPLE_CLEAN_copy_keypair_addr(
|
|
fors_tree_addr, fors_addr);
|
|
PQCLEAN_SPHINCSHARAKA256SSIMPLE_CLEAN_copy_keypair_addr(
|
|
fors_pk_addr, fors_addr);
|
|
|
|
PQCLEAN_SPHINCSHARAKA256SSIMPLE_CLEAN_set_type(
|
|
fors_tree_addr, SPX_ADDR_TYPE_FORSTREE);
|
|
PQCLEAN_SPHINCSHARAKA256SSIMPLE_CLEAN_set_type(
|
|
fors_pk_addr, SPX_ADDR_TYPE_FORSPK);
|
|
|
|
message_to_indices(indices, m);
|
|
|
|
for (i = 0; i < SPX_FORS_TREES; i++) {
|
|
idx_offset = i * (1 << SPX_FORS_HEIGHT);
|
|
|
|
PQCLEAN_SPHINCSHARAKA256SSIMPLE_CLEAN_set_tree_height(
|
|
fors_tree_addr, 0);
|
|
PQCLEAN_SPHINCSHARAKA256SSIMPLE_CLEAN_set_tree_index(
|
|
fors_tree_addr, indices[i] + idx_offset);
|
|
|
|
/* Derive the leaf from the included secret key part. */
|
|
fors_sk_to_leaf(leaf, sig, pub_seed, fors_tree_addr, state_seeded);
|
|
sig += SPX_N;
|
|
|
|
/* Derive the corresponding root node of this tree. */
|
|
PQCLEAN_SPHINCSHARAKA256SSIMPLE_CLEAN_compute_root(
|
|
roots + i * SPX_N, leaf, indices[i], idx_offset, sig,
|
|
SPX_FORS_HEIGHT, pub_seed, fors_tree_addr, state_seeded);
|
|
sig += SPX_N * SPX_FORS_HEIGHT;
|
|
}
|
|
|
|
/* Hash horizontally across all tree roots to derive the public key. */
|
|
PQCLEAN_SPHINCSHARAKA256SSIMPLE_CLEAN_thash_FORS_TREES(
|
|
pk, roots, pub_seed, fors_pk_addr, state_seeded);
|
|
}
|