pqc/crypto_kem/mceliece348864f/sse/controlbits.c
Thom Wiggers b3f9d4f8d6
Classic McEliece (#259)
* Add McEliece reference implementations

* Add Vec implementations of McEliece

* Add sse implementations

* Add AVX2 implementations

* Get rid of stuff not supported by Mac ABI

* restrict to two cores

* Ditch .data files

* Remove .hidden from all .S files

* speed up duplicate consistency tests by batching

* make cpuinfo more robust

* Hope to stabilize macos cpuinfo without ccache

* Revert "Hope to stabilize macos cpuinfo without ccache"

This reverts commit 6129c3cabe1abbc8b956bc87e902a698e32bf322.

* Just hardcode what's available at travis

* Fixed-size types in api.h

* namespace all header files in mceliece

* Ditch operations.h

* Get rid of static inline functions

* fixup! Ditch operations.h
2020-02-05 13:09:56 +01:00

275 lines
5.8 KiB
C

/*
This file is for functions required for generating the control bits of the Benes network w.r.t. a random permutation
see the Lev-Pippenger-Valiant paper https://www.computer.org/csdl/trans/tc/1981/02/06312171.pdf
*/
#include "controlbits.h"
#include "params.h"
#include <stdint.h>
typedef uint8_t bit;
#define N (1 << GFBITS)
static bit is_smaller(uint32_t a, uint32_t b) {
uint32_t ret = 0;
ret = a - b;
ret >>= 31;
return (bit)ret;
}
static bit is_smaller_63b(uint64_t a, uint64_t b) {
uint64_t ret = 0;
ret = a - b;
ret >>= 63;
return (bit)ret;
}
static void cswap(uint32_t *x, uint32_t *y, bit swap) {
uint32_t m;
uint32_t d;
m = swap;
m = 0 - m;
d = (*x ^ *y);
d &= m;
*x ^= d;
*y ^= d;
}
static void cswap_63b(uint64_t *x, uint64_t *y, bit swap) {
uint64_t m;
uint64_t d;
m = swap;
m = 0 - m;
d = (*x ^ *y);
d &= m;
*x ^= d;
*y ^= d;
}
/* output x = min(input x,input y) */
/* output y = max(input x,input y) */
static void minmax(uint32_t *x, uint32_t *y) {
bit m;
m = is_smaller(*y, *x);
cswap(x, y, m);
}
static void minmax_63b(uint64_t *x, uint64_t *y) {
bit m;
m = is_smaller_63b(*y, *x);
cswap_63b(x, y, m);
}
/* merge first half of x[0],x[step],...,x[(2*n-1)*step] with second half */
/* requires n to be a power of 2 */
static void merge(int n, uint32_t *x, int step) {
int i;
if (n == 1) {
minmax(&x[0], &x[step]);
} else {
merge(n / 2, x, step * 2);
merge(n / 2, x + step, step * 2);
for (i = 1; i < 2 * n - 1; i += 2) {
minmax(&x[i * step], &x[(i + 1) * step]);
}
}
}
static void merge_63b(int n, uint64_t *x, int step) {
int i;
if (n == 1) {
minmax_63b(&x[0], &x[step]);
} else {
merge_63b(n / 2, x, step * 2);
merge_63b(n / 2, x + step, step * 2);
for (i = 1; i < 2 * n - 1; i += 2) {
minmax_63b(&x[i * step], &x[(i + 1) * step]);
}
}
}
/* sort x[0],x[1],...,x[n-1] in place */
/* requires n to be a power of 2 */
static void sort(int n, uint32_t *x) {
if (n <= 1) {
return;
}
sort(n / 2, x);
sort(n / 2, x + n / 2);
merge(n / 2, x, 1);
}
void PQCLEAN_MCELIECE348864F_SSE_sort_63b(int n, uint64_t *x) {
if (n <= 1) {
return;
}
PQCLEAN_MCELIECE348864F_SSE_sort_63b(n / 2, x);
PQCLEAN_MCELIECE348864F_SSE_sort_63b(n / 2, x + n / 2);
merge_63b(n / 2, x, 1);
}
/* y[pi[i]] = x[i] */
/* requires n = 2^w */
/* requires pi to be a permutation */
static void composeinv(int n, uint32_t *y, const uint32_t *x, const uint32_t *pi) { // NC
int i;
uint32_t t[2 * N];
for (i = 0; i < n; ++i) {
t[i] = x[i] | (pi[i] << 16);
}
sort(n, t);
for (i = 0; i < n; ++i) {
y[i] = t[i] & 0xFFFF;
}
}
/* ip[i] = j iff pi[i] = j */
/* requires n = 2^w */
/* requires pi to be a permutation */
static void invert(int n, uint32_t *ip, const uint32_t *pi) {
int i;
for (i = 0; i < n; i++) {
ip[i] = i;
}
composeinv(n, ip, ip, pi);
}
static void flow(int w, uint32_t *x, const uint32_t *y, int t) {
bit m0;
bit m1;
uint32_t b;
uint32_t y_copy = *y;
m0 = is_smaller(*y & ((1 << w) - 1), *x & ((1 << w) - 1));
m1 = is_smaller(0, t);
cswap(x, &y_copy, m0);
b = m0 & m1;
*x ^= b << w;
}
/* input: permutation pi */
/* output: (2w-1)n/2 (or 0 if n==1) control bits c[0],c[step],c[2*step],... */
/* requires n = 2^w */
static void controlbitsfrompermutation(int w, int n, int step, int off, unsigned char *c, const uint32_t *pi) {
int i;
int j;
int k;
int t;
uint32_t ip[N] = {0};
uint32_t I[2 * N] = {0};
uint32_t P[2 * N] = {0};
uint32_t PI[2 * N] = {0};
uint32_t T[2 * N] = {0};
uint32_t piflip[N] = {0};
uint32_t subpi[2][N / 2] = {{0}};
if (w == 1) {
c[ off / 8 ] |= (pi[0] & 1) << (off % 8);
}
if (w <= 1) {
return;
}
invert(n, ip, pi);
for (i = 0; i < n; ++i) {
I[i] = ip[i] | (1 << w);
I[n + i] = pi[i];
}
for (i = 0; i < 2 * n; ++i) {
P[i] = (i >> w) + (i & ((1 << w) - 2)) + ((i & 1) << w);
}
for (t = 0; t < w; ++t) {
composeinv(2 * n, PI, P, I);
for (i = 0; i < 2 * n; ++i) {
flow(w, &P[i], &PI[i], t);
}
for (i = 0; i < 2 * n; ++i) {
T[i] = I[i ^ 1];
}
composeinv(2 * n, I, I, T);
for (i = 0; i < 2 * n; ++i) {
T[i] = P[i ^ 1];
}
for (i = 0; i < 2 * n; ++i) {
flow(w, &P[i], &T[i], 1);
}
}
for (i = 0; i < n; ++i) {
for (j = 0; j < w; ++j) {
piflip[i] = pi[i];
}
}
for (i = 0; i < n / 2; ++i) {
c[ (off + i * step) / 8 ] |= ((P[i * 2] >> w) & 1) << ((off + i * step) % 8);
}
for (i = 0; i < n / 2; ++i) {
c[ (off + ((w - 1)*n + i) * step) / 8 ] |= ((P[n + i * 2] >> w) & 1) << ((off + ((w - 1) * n + i) * step) % 8);
}
for (i = 0; i < n / 2; ++i) {
cswap(&piflip[i * 2], &piflip[i * 2 + 1], (P[n + i * 2] >> w) & 1);
}
for (k = 0; k < 2; ++k) {
for (i = 0; i < n / 2; ++i) {
subpi[k][i] = piflip[i * 2 + k] >> 1;
}
}
for (k = 0; k < 2; ++k) {
controlbitsfrompermutation(w - 1, n / 2, step * 2, off + step * (n / 2 + k), c, subpi[k]);
}
}
/* input: pi, a permutation*/
/* output: out, control bits w.r.t. pi */
void PQCLEAN_MCELIECE348864F_SSE_controlbits(unsigned char *out, const uint32_t *pi) {
unsigned int i;
unsigned char c[ (2 * GFBITS - 1) * (1 << GFBITS) / 16 ];
for (i = 0; i < sizeof(c); i++) {
c[i] = 0;
}
controlbitsfrompermutation(GFBITS, (1 << GFBITS), 1, 0, c, pi);
for (i = 0; i < sizeof(c); i++) {
out[i] = c[i];
}
}