b3f9d4f8d6
* Add McEliece reference implementations * Add Vec implementations of McEliece * Add sse implementations * Add AVX2 implementations * Get rid of stuff not supported by Mac ABI * restrict to two cores * Ditch .data files * Remove .hidden from all .S files * speed up duplicate consistency tests by batching * make cpuinfo more robust * Hope to stabilize macos cpuinfo without ccache * Revert "Hope to stabilize macos cpuinfo without ccache" This reverts commit 6129c3cabe1abbc8b956bc87e902a698e32bf322. * Just hardcode what's available at travis * Fixed-size types in api.h * namespace all header files in mceliece * Ditch operations.h * Get rid of static inline functions * fixup! Ditch operations.h
192 lines
4.2 KiB
C
192 lines
4.2 KiB
C
/*
|
|
This file is for Niederreiter decryption
|
|
*/
|
|
|
|
#include "decrypt.h"
|
|
|
|
#include "benes.h"
|
|
#include "bm.h"
|
|
#include "fft.h"
|
|
#include "fft_tr.h"
|
|
#include "params.h"
|
|
#include "util.h"
|
|
#include "vec.h"
|
|
|
|
#include <stdio.h>
|
|
|
|
static void scaling(vec out[][GFBITS], vec inv[][GFBITS], const unsigned char *sk, const vec *recv) {
|
|
int i, j;
|
|
|
|
vec irr_int[2][ GFBITS ];
|
|
vec eval[128][ GFBITS ];
|
|
vec tmp[ GFBITS ];
|
|
|
|
//
|
|
|
|
PQCLEAN_MCELIECE6688128_VEC_irr_load(irr_int, sk);
|
|
|
|
PQCLEAN_MCELIECE6688128_VEC_fft(eval, irr_int);
|
|
|
|
for (i = 0; i < 128; i++) {
|
|
PQCLEAN_MCELIECE6688128_VEC_vec_sq(eval[i], eval[i]);
|
|
}
|
|
|
|
PQCLEAN_MCELIECE6688128_VEC_vec_copy(inv[0], eval[0]);
|
|
|
|
for (i = 1; i < 128; i++) {
|
|
PQCLEAN_MCELIECE6688128_VEC_vec_mul(inv[i], inv[i - 1], eval[i]);
|
|
}
|
|
|
|
PQCLEAN_MCELIECE6688128_VEC_vec_inv(tmp, inv[127]);
|
|
|
|
for (i = 126; i >= 0; i--) {
|
|
PQCLEAN_MCELIECE6688128_VEC_vec_mul(inv[i + 1], tmp, inv[i]);
|
|
PQCLEAN_MCELIECE6688128_VEC_vec_mul(tmp, tmp, eval[i + 1]);
|
|
}
|
|
|
|
PQCLEAN_MCELIECE6688128_VEC_vec_copy(inv[0], tmp);
|
|
|
|
//
|
|
|
|
for (i = 0; i < 128; i++) {
|
|
for (j = 0; j < GFBITS; j++) {
|
|
out[i][j] = inv[i][j] & recv[i];
|
|
}
|
|
}
|
|
}
|
|
|
|
static void preprocess(vec *recv, const unsigned char *s) {
|
|
int i;
|
|
unsigned char r[ 1024 ];
|
|
|
|
for (i = 0; i < SYND_BYTES; i++) {
|
|
r[i] = s[i];
|
|
}
|
|
|
|
for (i = SYND_BYTES; i < 1024; i++) {
|
|
r[i] = 0;
|
|
}
|
|
|
|
for (i = 0; i < 128; i++) {
|
|
recv[i] = PQCLEAN_MCELIECE6688128_VEC_load8(r + i * 8);
|
|
}
|
|
}
|
|
|
|
static void postprocess(unsigned char *e, vec *err) {
|
|
int i;
|
|
unsigned char error8[ (1 << GFBITS) / 8 ];
|
|
|
|
for (i = 0; i < 128; i++) {
|
|
PQCLEAN_MCELIECE6688128_VEC_store8(error8 + i * 8, err[i]);
|
|
}
|
|
|
|
for (i = 0; i < SYS_N / 8; i++) {
|
|
e[i] = error8[i];
|
|
}
|
|
}
|
|
|
|
static void scaling_inv(vec out[][GFBITS], vec inv[][GFBITS], const vec *recv) {
|
|
int i, j;
|
|
|
|
for (i = 0; i < 128; i++) {
|
|
for (j = 0; j < GFBITS; j++) {
|
|
out[i][j] = inv[i][j] & recv[i];
|
|
}
|
|
}
|
|
}
|
|
|
|
static int weight_check(const unsigned char *e, const vec *error) {
|
|
int i;
|
|
uint16_t w0 = 0;
|
|
uint16_t w1 = 0;
|
|
uint16_t check;
|
|
|
|
for (i = 0; i < (1 << GFBITS); i++) {
|
|
w0 += (error[i / 64] >> (i % 64)) & 1;
|
|
}
|
|
|
|
for (i = 0; i < SYS_N; i++) {
|
|
w1 += (e[i / 8] >> (i % 8)) & 1;
|
|
}
|
|
|
|
check = (w0 ^ SYS_T) | (w1 ^ SYS_T);
|
|
check -= 1;
|
|
check >>= 15;
|
|
|
|
return check;
|
|
}
|
|
|
|
static uint16_t synd_cmp(vec s0[][ GFBITS ], vec s1[][ GFBITS ]) {
|
|
int i, j;
|
|
vec diff = 0;
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
for (j = 0; j < GFBITS; j++) {
|
|
diff |= (s0[i][j] ^ s1[i][j]);
|
|
}
|
|
}
|
|
|
|
return (uint16_t)PQCLEAN_MCELIECE6688128_VEC_vec_testz(diff);
|
|
}
|
|
|
|
/* Niederreiter decryption with the Berlekamp decoder */
|
|
/* intput: sk, secret key */
|
|
/* c, ciphertext (syndrome) */
|
|
/* output: e, error vector */
|
|
/* return: 0 for success; 1 for failure */
|
|
int PQCLEAN_MCELIECE6688128_VEC_decrypt(unsigned char *e, const unsigned char *sk, const unsigned char *c) {
|
|
int i;
|
|
|
|
uint16_t check_synd;
|
|
uint16_t check_weight;
|
|
|
|
vec inv[ 128 ][ GFBITS ];
|
|
vec scaled[ 128 ][ GFBITS ];
|
|
vec eval[ 128 ][ GFBITS ];
|
|
|
|
vec error[ 128 ];
|
|
|
|
vec s_priv[ 4 ][ GFBITS ];
|
|
vec s_priv_cmp[ 4 ][ GFBITS ];
|
|
vec locator[2][ GFBITS ];
|
|
|
|
vec recv[ 128 ];
|
|
vec allone;
|
|
|
|
// Berlekamp decoder
|
|
|
|
preprocess(recv, c);
|
|
|
|
PQCLEAN_MCELIECE6688128_VEC_benes(recv, sk + IRR_BYTES, 1);
|
|
scaling(scaled, inv, sk, recv);
|
|
PQCLEAN_MCELIECE6688128_VEC_fft_tr(s_priv, scaled);
|
|
PQCLEAN_MCELIECE6688128_VEC_bm(locator, s_priv);
|
|
|
|
PQCLEAN_MCELIECE6688128_VEC_fft(eval, locator);
|
|
|
|
// reencryption and weight check
|
|
|
|
allone = PQCLEAN_MCELIECE6688128_VEC_vec_setbits(1);
|
|
|
|
for (i = 0; i < 128; i++) {
|
|
error[i] = PQCLEAN_MCELIECE6688128_VEC_vec_or_reduce(eval[i]);
|
|
error[i] ^= allone;
|
|
}
|
|
|
|
scaling_inv(scaled, inv, error);
|
|
PQCLEAN_MCELIECE6688128_VEC_fft_tr(s_priv_cmp, scaled);
|
|
|
|
check_synd = synd_cmp(s_priv, s_priv_cmp);
|
|
|
|
//
|
|
|
|
PQCLEAN_MCELIECE6688128_VEC_benes(error, sk + IRR_BYTES, 0);
|
|
|
|
postprocess(e, error);
|
|
|
|
check_weight = (uint16_t)weight_check(e, error);
|
|
|
|
return 1 - (check_synd & check_weight);
|
|
}
|
|
|