mirror of
https://github.com/henrydcase/pqc.git
synced 2024-12-04 21:34:01 +00:00
139 lines
4.9 KiB
C
139 lines
4.9 KiB
C
|
#include "code.h"
|
||
|
#include "gf2x.h"
|
||
|
#include "hqc.h"
|
||
|
#include "nistseedexpander.h"
|
||
|
#include "parameters.h"
|
||
|
#include "parsing.h"
|
||
|
#include "randombytes.h"
|
||
|
#include "vector.h"
|
||
|
#include <stdint.h>
|
||
|
/**
|
||
|
* @file hqc.c
|
||
|
* @brief Implementation of hqc.h
|
||
|
*/
|
||
|
|
||
|
|
||
|
|
||
|
/**
|
||
|
* @brief Keygen of the HQC_PKE IND_CPA scheme
|
||
|
*
|
||
|
* The public key is composed of the syndrome <b>s</b> as well as the <b>seed</b> used to generate the vector <b>h</b>.
|
||
|
*
|
||
|
* The secret key is composed of the <b>seed</b> used to generate vectors <b>x</b> and <b>y</b>.
|
||
|
* As a technicality, the public key is appended to the secret key in order to respect NIST API.
|
||
|
*
|
||
|
* @param[out] pk String containing the public key
|
||
|
* @param[out] sk String containing the secret key
|
||
|
*/
|
||
|
void PQCLEAN_HQC256_AVX2_hqc_pke_keygen(unsigned char *pk, unsigned char *sk) {
|
||
|
AES_XOF_struct sk_seedexpander;
|
||
|
AES_XOF_struct pk_seedexpander;
|
||
|
uint8_t sk_seed[SEED_BYTES] = {0};
|
||
|
uint8_t pk_seed[SEED_BYTES] = {0};
|
||
|
uint64_t x[VEC_N_256_SIZE_64] = {0};
|
||
|
uint64_t y[VEC_N_256_SIZE_64] = {0};
|
||
|
uint64_t h[VEC_N_256_SIZE_64] = {0};
|
||
|
uint64_t s[VEC_N_256_SIZE_64] = {0};
|
||
|
|
||
|
// Create seed_expanders for public key and secret key
|
||
|
randombytes(sk_seed, SEED_BYTES);
|
||
|
seedexpander_init(&sk_seedexpander, sk_seed, sk_seed + 32, SEEDEXPANDER_MAX_LENGTH);
|
||
|
|
||
|
randombytes(pk_seed, SEED_BYTES);
|
||
|
seedexpander_init(&pk_seedexpander, pk_seed, pk_seed + 32, SEEDEXPANDER_MAX_LENGTH);
|
||
|
|
||
|
// Compute secret key
|
||
|
PQCLEAN_HQC256_AVX2_vect_set_random_fixed_weight(&sk_seedexpander, x, PARAM_OMEGA);
|
||
|
PQCLEAN_HQC256_AVX2_vect_set_random_fixed_weight(&sk_seedexpander, y, PARAM_OMEGA);
|
||
|
|
||
|
// Compute public key
|
||
|
PQCLEAN_HQC256_AVX2_vect_set_random(&pk_seedexpander, h);
|
||
|
PQCLEAN_HQC256_AVX2_vect_mul(s, y, h);
|
||
|
PQCLEAN_HQC256_AVX2_vect_add(s, x, s, VEC_N_256_SIZE_64);
|
||
|
|
||
|
// Parse keys to string
|
||
|
PQCLEAN_HQC256_AVX2_hqc_public_key_to_string(pk, pk_seed, s);
|
||
|
PQCLEAN_HQC256_AVX2_hqc_secret_key_to_string(sk, sk_seed, pk);
|
||
|
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
/**
|
||
|
* @brief Encryption of the HQC_PKE IND_CPA scheme
|
||
|
*
|
||
|
* The cihertext is composed of vectors <b>u</b> and <b>v</b>.
|
||
|
*
|
||
|
* @param[out] u Vector u (first part of the ciphertext)
|
||
|
* @param[out] v Vector v (second part of the ciphertext)
|
||
|
* @param[in] m Vector representing the message to encrypt
|
||
|
* @param[in] theta Seed used to derive randomness required for encryption
|
||
|
* @param[in] pk String containing the public key
|
||
|
*/
|
||
|
void PQCLEAN_HQC256_AVX2_hqc_pke_encrypt(uint64_t *u, uint64_t *v, uint64_t *m, unsigned char *theta, const unsigned char *pk) {
|
||
|
AES_XOF_struct seedexpander;
|
||
|
uint64_t h[VEC_N_256_SIZE_64] = {0};
|
||
|
uint64_t s[VEC_N_256_SIZE_64] = {0};
|
||
|
uint64_t r1[VEC_N_256_SIZE_64] = {0};
|
||
|
uint64_t r2[VEC_N_256_SIZE_64] = {0};
|
||
|
uint64_t e[VEC_N_256_SIZE_64] = {0};
|
||
|
uint64_t tmp1[VEC_N_256_SIZE_64] = {0};
|
||
|
uint64_t tmp2[VEC_N_256_SIZE_64] = {0};
|
||
|
|
||
|
// Create seed_expander from theta
|
||
|
seedexpander_init(&seedexpander, theta, theta + 32, SEEDEXPANDER_MAX_LENGTH);
|
||
|
|
||
|
// Retrieve h and s from public key
|
||
|
PQCLEAN_HQC256_AVX2_hqc_public_key_from_string(h, s, pk);
|
||
|
|
||
|
// Generate r1, r2 and e
|
||
|
PQCLEAN_HQC256_AVX2_vect_set_random_fixed_weight(&seedexpander, r1, PARAM_OMEGA_R);
|
||
|
PQCLEAN_HQC256_AVX2_vect_set_random_fixed_weight(&seedexpander, r2, PARAM_OMEGA_R);
|
||
|
PQCLEAN_HQC256_AVX2_vect_set_random_fixed_weight(&seedexpander, e, PARAM_OMEGA_E);
|
||
|
|
||
|
// Compute u = r1 + r2.h
|
||
|
PQCLEAN_HQC256_AVX2_vect_mul(u, r2, h);
|
||
|
PQCLEAN_HQC256_AVX2_vect_add(u, r1, u, VEC_N_256_SIZE_64);
|
||
|
|
||
|
// Compute v = m.G by encoding the message
|
||
|
PQCLEAN_HQC256_AVX2_code_encode(v, m);
|
||
|
PQCLEAN_HQC256_AVX2_vect_resize(tmp1, PARAM_N, v, PARAM_N1N2);
|
||
|
|
||
|
// Compute v = m.G + s.r2 + e
|
||
|
PQCLEAN_HQC256_AVX2_vect_mul(tmp2, r2, s);
|
||
|
PQCLEAN_HQC256_AVX2_vect_add(tmp2, e, tmp2, VEC_N_256_SIZE_64);
|
||
|
PQCLEAN_HQC256_AVX2_vect_add(tmp2, tmp1, tmp2, VEC_N_256_SIZE_64);
|
||
|
PQCLEAN_HQC256_AVX2_vect_resize(v, PARAM_N1N2, tmp2, PARAM_N);
|
||
|
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
/**
|
||
|
* @brief Decryption of the HQC_PKE IND_CPA scheme
|
||
|
*
|
||
|
* @param[out] m Vector representing the decrypted message
|
||
|
* @param[in] u Vector u (first part of the ciphertext)
|
||
|
* @param[in] v Vector v (second part of the ciphertext)
|
||
|
* @param[in] sk String containing the secret key
|
||
|
*/
|
||
|
void PQCLEAN_HQC256_AVX2_hqc_pke_decrypt(uint64_t *m, const uint64_t *u, const uint64_t *v, const unsigned char *sk) {
|
||
|
uint64_t x[VEC_N_256_SIZE_64] = {0};
|
||
|
uint64_t y[VEC_N_256_SIZE_64] = {0};
|
||
|
uint8_t pk[PUBLIC_KEY_BYTES] = {0};
|
||
|
uint64_t tmp1[VEC_N_256_SIZE_64] = {0};
|
||
|
uint64_t tmp2[VEC_N_256_SIZE_64] = {0};
|
||
|
|
||
|
// Retrieve x, y, pk from secret key
|
||
|
PQCLEAN_HQC256_AVX2_hqc_secret_key_from_string(x, y, pk, sk);
|
||
|
|
||
|
// Compute v - u.y
|
||
|
PQCLEAN_HQC256_AVX2_vect_resize(tmp1, PARAM_N, v, PARAM_N1N2);
|
||
|
PQCLEAN_HQC256_AVX2_vect_mul(tmp2, y, u);
|
||
|
PQCLEAN_HQC256_AVX2_vect_add(tmp2, tmp1, tmp2, VEC_N_256_SIZE_64);
|
||
|
|
||
|
|
||
|
// Compute m by decoding v - u.y
|
||
|
PQCLEAN_HQC256_AVX2_code_decode(m, tmp2);
|
||
|
}
|