mirror of
https://github.com/henrydcase/pqc.git
synced 2024-11-27 09:51:30 +00:00
155 lines
3.7 KiB
C
155 lines
3.7 KiB
C
|
/*
|
||
|
This file is for public-key generation
|
||
|
*/
|
||
|
|
||
|
#include <assert.h>
|
||
|
#include <stdint.h>
|
||
|
#include <stdio.h>
|
||
|
#include <string.h>
|
||
|
|
||
|
#include "controlbits.h"
|
||
|
#include "benes.h"
|
||
|
#include "params.h"
|
||
|
#include "pk_gen.h"
|
||
|
#include "root.h"
|
||
|
#include "util.h"
|
||
|
|
||
|
/* input: secret key sk */
|
||
|
/* output: public key pk */
|
||
|
int PQCLEAN_MCELIECE6960119_CLEAN_pk_gen(uint8_t *pk, uint32_t *perm, const uint8_t *sk) {
|
||
|
unsigned char *pk_ptr = pk;
|
||
|
|
||
|
int i, j, k;
|
||
|
int row, c, tail;
|
||
|
|
||
|
uint64_t buf[ 1 << GFBITS ];
|
||
|
|
||
|
unsigned char mat[ GFBITS * SYS_T ][ SYS_N / 8 ];
|
||
|
unsigned char mask;
|
||
|
unsigned char b;
|
||
|
|
||
|
gf g[ SYS_T + 1 ]; // Goppa polynomial
|
||
|
gf L[ SYS_N ]; // support
|
||
|
gf inv[ SYS_N ];
|
||
|
|
||
|
//
|
||
|
|
||
|
g[ SYS_T ] = 1;
|
||
|
|
||
|
for (i = 0; i < SYS_T; i++) {
|
||
|
g[i] = PQCLEAN_MCELIECE6960119_CLEAN_load2(sk);
|
||
|
g[i] &= GFMASK;
|
||
|
sk += 2;
|
||
|
}
|
||
|
|
||
|
for (i = 0; i < (1 << GFBITS); i++) {
|
||
|
buf[i] = perm[i];
|
||
|
buf[i] <<= 31;
|
||
|
buf[i] |= i;
|
||
|
}
|
||
|
|
||
|
PQCLEAN_MCELIECE6960119_CLEAN_sort_63b(1 << GFBITS, buf);
|
||
|
|
||
|
for (i = 0; i < (1 << GFBITS); i++) {
|
||
|
perm[i] = buf[i] & GFMASK;
|
||
|
}
|
||
|
for (i = 0; i < SYS_N; i++) {
|
||
|
L[i] = PQCLEAN_MCELIECE6960119_CLEAN_bitrev((gf)perm[i]);
|
||
|
}
|
||
|
|
||
|
// filling the matrix
|
||
|
|
||
|
PQCLEAN_MCELIECE6960119_CLEAN_root(inv, g, L);
|
||
|
|
||
|
for (i = 0; i < SYS_N; i++) {
|
||
|
inv[i] = PQCLEAN_MCELIECE6960119_CLEAN_gf_inv(inv[i]);
|
||
|
}
|
||
|
|
||
|
for (i = 0; i < PK_NROWS; i++) {
|
||
|
for (j = 0; j < SYS_N / 8; j++) {
|
||
|
mat[i][j] = 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
for (i = 0; i < SYS_T; i++) {
|
||
|
for (j = 0; j < SYS_N; j += 8) {
|
||
|
for (k = 0; k < GFBITS; k++) {
|
||
|
b = (inv[j + 7] >> k) & 1;
|
||
|
b <<= 1;
|
||
|
b |= (inv[j + 6] >> k) & 1;
|
||
|
b <<= 1;
|
||
|
b |= (inv[j + 5] >> k) & 1;
|
||
|
b <<= 1;
|
||
|
b |= (inv[j + 4] >> k) & 1;
|
||
|
b <<= 1;
|
||
|
b |= (inv[j + 3] >> k) & 1;
|
||
|
b <<= 1;
|
||
|
b |= (inv[j + 2] >> k) & 1;
|
||
|
b <<= 1;
|
||
|
b |= (inv[j + 1] >> k) & 1;
|
||
|
b <<= 1;
|
||
|
b |= (inv[j + 0] >> k) & 1;
|
||
|
|
||
|
mat[ i * GFBITS + k ][ j / 8 ] = b;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
for (j = 0; j < SYS_N; j++) {
|
||
|
inv[j] = PQCLEAN_MCELIECE6960119_CLEAN_gf_mul(inv[j], L[j]);
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
// gaussian elimination
|
||
|
|
||
|
for (i = 0; i < (GFBITS * SYS_T + 7) / 8; i++) {
|
||
|
for (j = 0; j < 8; j++) {
|
||
|
row = i * 8 + j;
|
||
|
|
||
|
if (row >= GFBITS * SYS_T) {
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
for (k = row + 1; k < GFBITS * SYS_T; k++) {
|
||
|
mask = mat[ row ][ i ] ^ mat[ k ][ i ];
|
||
|
mask >>= j;
|
||
|
mask &= 1;
|
||
|
mask = -mask;
|
||
|
|
||
|
for (c = 0; c < SYS_N / 8; c++) {
|
||
|
mat[ row ][ c ] ^= mat[ k ][ c ] & mask;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if ( ((mat[ row ][ i ] >> j) & 1) == 0 ) { // return if not systematic
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
for (k = 0; k < GFBITS * SYS_T; k++) {
|
||
|
if (k != row) {
|
||
|
mask = mat[ k ][ i ] >> j;
|
||
|
mask &= 1;
|
||
|
mask = -mask;
|
||
|
|
||
|
for (c = 0; c < SYS_N / 8; c++) {
|
||
|
mat[ k ][ c ] ^= mat[ row ][ c ] & mask;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
tail = (GFBITS * SYS_T) % 8;
|
||
|
|
||
|
for (i = 0; i < GFBITS * SYS_T; i++) {
|
||
|
for (j = (GFBITS * SYS_T - 1) / 8; j < SYS_N / 8 - 1; j++) {
|
||
|
*pk_ptr++ = (mat[i][j] >> tail) | (mat[i][j + 1] << (8 - tail));
|
||
|
}
|
||
|
|
||
|
*pk_ptr++ = (mat[i][j] >> tail);
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|