1
1
mirror of https://github.com/henrydcase/pqc.git synced 2024-11-27 01:41:40 +00:00
pqcrypto/crypto_kem/hqc-192-2-cca2/leaktime/gf2x.c

124 lines
4.0 KiB
C
Raw Normal View History

/**
* \file gf2x.c
* \brief Implementation of multiplication of two polynomials
*/
#include "gf2x.h"
#include "parameters.h"
#include "util.h"
#include <stdint.h>
#include <string.h>
#define WORD_TYPE uint64_t
#define WORD_TYPE_BITS (sizeof(WORD_TYPE) * 8)
#define UTILS_VECTOR_ARRAY_SIZE CEIL_DIVIDE(PARAM_N, WORD_TYPE_BITS)
static int vect_mul_precompute_rows(WORD_TYPE *o, const WORD_TYPE *v);
/**
* @brief A subroutine used in the function sparse_dense_mul()
*
* @param[out] o Pointer to an array
* @param[in] v Pointer to an array
* @return 0 if precomputation is successful, -1 otherwise
*/
static int vect_mul_precompute_rows(WORD_TYPE *o, const WORD_TYPE *v) {
int8_t var;
for (size_t i = 0; i < PARAM_N; ++i) {
var = 0;
// All the bits that we need are in the same block
if (((i % WORD_TYPE_BITS) == 0) && (i != PARAM_N - (PARAM_N % WORD_TYPE_BITS))) {
var = 1;
}
// Cases where the bits are in before the last block, the last block and the first block
if (i > PARAM_N - WORD_TYPE_BITS) {
if (i >= PARAM_N - (PARAM_N % WORD_TYPE_BITS)) {
var = 2;
} else {
var = 3;
}
}
switch (var) {
case 0:
// Take bits in the last block and the first one
o[i] = 0;
o[i] += v[i / WORD_TYPE_BITS] >> (i % WORD_TYPE_BITS);
o[i] += v[(i / WORD_TYPE_BITS) + 1] << (WORD_TYPE_BITS - (i % WORD_TYPE_BITS));
break;
case 1:
o[i] = v[i / WORD_TYPE_BITS];
break;
case 2:
o[i] = 0;
o[i] += v[i / WORD_TYPE_BITS] >> (i % WORD_TYPE_BITS);
o[i] += v[0] << ((PARAM_N - i) % WORD_TYPE_BITS);
break;
case 3:
o[i] = 0;
o[i] += v[i / WORD_TYPE_BITS] >> (i % WORD_TYPE_BITS);
o[i] += v[(i / WORD_TYPE_BITS) + 1] << (WORD_TYPE_BITS - (i % WORD_TYPE_BITS));
o[i] += v[0] << ((WORD_TYPE_BITS - i + (PARAM_N % WORD_TYPE_BITS)) % WORD_TYPE_BITS);
break;
default:
return -1;
}
}
return 0;
}
/**
* @brief Multiplies two vectors
*
* This function multiplies two vectors: a sparse vector of Hamming weight equal to <b>weight</b> and a dense (random) vector.
* The vector <b>a1</b> is the sparse vector and <b>a2</b> is the dense vector.
* We notice that the idea is explained using vector of 32 bits elements instead of 64 (the algorithm works in booth cases).
*
* @param[out] o Pointer to a vector that is the result of the multiplication
* @param[in] a1 Pointer to the sparse vector stored by position
* @param[in] a2 Pointer to the dense vector
* @param[in] weight Integer that is the weight of the sparse vector
*/
void PQCLEAN_HQC1922CCA2_LEAKTIME_vect_mul(uint8_t *o, const uint32_t *a1, const uint8_t *a2, uint16_t weight) {
WORD_TYPE v1[UTILS_VECTOR_ARRAY_SIZE] = {0};
WORD_TYPE res[UTILS_VECTOR_ARRAY_SIZE] = {0};
WORD_TYPE precomputation_array [PARAM_N] = {0};
WORD_TYPE row [UTILS_VECTOR_ARRAY_SIZE] = {0};
uint32_t index;
PQCLEAN_HQC1922CCA2_LEAKTIME_load8_arr(v1, UTILS_VECTOR_ARRAY_SIZE, a2, VEC_N_SIZE_BYTES);
vect_mul_precompute_rows(precomputation_array, v1);
for (size_t i = 0; i < weight; ++i) {
int32_t k = UTILS_VECTOR_ARRAY_SIZE;
for (size_t j = 0; j < UTILS_VECTOR_ARRAY_SIZE - 1; ++j) {
index = WORD_TYPE_BITS * (uint32_t)j - a1[i];
if (index > PARAM_N) {
index += PARAM_N;
}
row[j] = precomputation_array[index];
}
index = WORD_TYPE_BITS * (UTILS_VECTOR_ARRAY_SIZE - 1) - a1[i];
row[UTILS_VECTOR_ARRAY_SIZE - 1] = precomputation_array[(index < PARAM_N ? index : index + PARAM_N)] & BITMASK(PARAM_N, WORD_TYPE_BITS);
while (k--) {
res[k] ^= row[k];
}
}
PQCLEAN_HQC1922CCA2_LEAKTIME_store8_arr(o, VEC_N_SIZE_BYTES, res, UTILS_VECTOR_ARRAY_SIZE);
}