1
1
mirror of https://github.com/henrydcase/pqc.git synced 2024-12-04 21:34:01 +00:00
pqcrypto/crypto_kem/kyber768-90s/clean/ntt.c

156 lines
6.0 KiB
C
Raw Normal View History

2019-09-17 13:02:01 +01:00
#include "ntt.h"
#include "params.h"
#include "reduce.h"
#include <stddef.h>
#include <stdint.h>
/* Code to generate zetas and zetas_inv used in the number-theoretic transform:
#define KYBER_ROOT_OF_UNITY 17
static const uint16_t tree[128] = {
0, 64, 32, 96, 16, 80, 48, 112, 8, 72, 40, 104, 24, 88, 56, 120,
4, 68, 36, 100, 20, 84, 52, 116, 12, 76, 44, 108, 28, 92, 60, 124,
2, 66, 34, 98, 18, 82, 50, 114, 10, 74, 42, 106, 26, 90, 58, 122,
6, 70, 38, 102, 22, 86, 54, 118, 14, 78, 46, 110, 30, 94, 62, 126,
1, 65, 33, 97, 17, 81, 49, 113, 9, 73, 41, 105, 25, 89, 57, 121,
5, 69, 37, 101, 21, 85, 53, 117, 13, 77, 45, 109, 29, 93, 61, 125,
3, 67, 35, 99, 19, 83, 51, 115, 11, 75, 43, 107, 27, 91, 59, 123,
7, 71, 39, 103, 23, 87, 55, 119, 15, 79, 47, 111, 31, 95, 63, 127};
static int16_t fqmul(int16_t a, int16_t b) {
return montgomery_reduce((int32_t)a*b);
}
void init_ntt() {
unsigned int i, j, k;
int16_t tmp[128];
tmp[0] = MONT;
for(i = 1; i < 128; ++i)
tmp[i] = fqmul(tmp[i-1], KYBER_ROOT_OF_UNITY*MONT % KYBER_Q);
for(i = 0; i < 128; ++i)
zetas[i] = tmp[tree[i]];
k = 0;
for(i = 64; i >= 1; i >>= 1)
for(j = i; j < 2*i; ++j)
zetas_inv[k++] = -tmp[128 - tree[j]];
zetas_inv[127] = MONT * (MONT * (KYBER_Q - 1) * ((KYBER_Q - 1)/128) % KYBER_Q) % KYBER_Q;
}
*/
const int16_t PQCLEAN_KYBER76890S_CLEAN_zetas[128] = {
2285, 2571, 2970, 1812, 1493, 1422, 287, 202, 3158, 622, 1577, 182, 962, 2127, 1855, 1468,
573, 2004, 264, 383, 2500, 1458, 1727, 3199, 2648, 1017, 732, 608, 1787, 411, 3124, 1758,
1223, 652, 2777, 1015, 2036, 1491, 3047, 1785, 516, 3321, 3009, 2663, 1711, 2167, 126, 1469,
2476, 3239, 3058, 830, 107, 1908, 3082, 2378, 2931, 961, 1821, 2604, 448, 2264, 677, 2054,
2226, 430, 555, 843, 2078, 871, 1550, 105, 422, 587, 177, 3094, 3038, 2869, 1574, 1653,
3083, 778, 1159, 3182, 2552, 1483, 2727, 1119, 1739, 644, 2457, 349, 418, 329, 3173, 3254,
817, 1097, 603, 610, 1322, 2044, 1864, 384, 2114, 3193, 1218, 1994, 2455, 220, 2142, 1670,
2144, 1799, 2051, 794, 1819, 2475, 2459, 478, 3221, 3021, 996, 991, 958, 1869, 1522, 1628
};
const int16_t PQCLEAN_KYBER76890S_CLEAN_zetas_inv[128] = {
1701, 1807, 1460, 2371, 2338, 2333, 308, 108, 2851, 870, 854, 1510, 2535, 1278, 1530, 1185,
1659, 1187, 3109, 874, 1335, 2111, 136, 1215, 2945, 1465, 1285, 2007, 2719, 2726, 2232, 2512,
75, 156, 3000, 2911, 2980, 872, 2685, 1590, 2210, 602, 1846, 777, 147, 2170, 2551, 246,
1676, 1755, 460, 291, 235, 3152, 2742, 2907, 3224, 1779, 2458, 1251, 2486, 2774, 2899, 1103,
1275, 2652, 1065, 2881, 725, 1508, 2368, 398, 951, 247, 1421, 3222, 2499, 271, 90, 853,
1860, 3203, 1162, 1618, 666, 320, 8, 2813, 1544, 282, 1838, 1293, 2314, 552, 2677, 2106,
1571, 205, 2918, 1542, 2721, 2597, 2312, 681, 130, 1602, 1871, 829, 2946, 3065, 1325, 2756,
1861, 1474, 1202, 2367, 3147, 1752, 2707, 171, 3127, 3042, 1907, 1836, 1517, 359, 758, 1441
};
/*************************************************
* Name: fqmul
*
* Description: Multiplication followed by Montgomery reduction
*
* Arguments: - int16_t a: first factor
* - int16_t b: second factor
*
* Returns 16-bit integer congruent to a*b*R^{-1} mod q
**************************************************/
static int16_t fqmul(int16_t a, int16_t b) {
return PQCLEAN_KYBER76890S_CLEAN_montgomery_reduce((int32_t)a * b);
}
/*************************************************
* Name: ntt
*
* Description: Inplace number-theoretic transform (NTT) in Rq
* input is in standard order, output is in bitreversed order
*
* Arguments: - int16_t poly[256]: pointer to input/output vector of elements of Zq
**************************************************/
void PQCLEAN_KYBER76890S_CLEAN_ntt(int16_t poly[256]) {
size_t j, k = 1;
int16_t t, zeta;
for (size_t len = 128; len >= 2; len >>= 1) {
for (size_t start = 0; start < 256; start = j + len) {
zeta = PQCLEAN_KYBER76890S_CLEAN_zetas[k++];
for (j = start; j < start + len; ++j) {
t = fqmul(zeta, poly[j + len]);
poly[j + len] = poly[j] - t;
poly[j] = poly[j] + t;
}
}
}
}
/*************************************************
* Name: invntt
*
* Description: Inplace inverse number-theoretic transform in Rq
* input is in bitreversed order, output is in standard order
*
* Arguments: - int16_t poly[256]: pointer to input/output vector of elements of Zq
**************************************************/
void PQCLEAN_KYBER76890S_CLEAN_invntt(int16_t poly[256]) {
size_t j, k = 0;
int16_t t, zeta;
for (size_t len = 2; len <= 128; len <<= 1) {
for (size_t start = 0; start < 256; start = j + len) {
zeta = PQCLEAN_KYBER76890S_CLEAN_zetas_inv[k++];
for (j = start; j < start + len; ++j) {
t = poly[j];
poly[j] = PQCLEAN_KYBER76890S_CLEAN_barrett_reduce(t + poly[j + len]);
poly[j + len] = t - poly[j + len];
poly[j + len] = fqmul(zeta, poly[j + len]);
}
}
}
for (j = 0; j < 256; ++j) {
poly[j] = fqmul(poly[j], PQCLEAN_KYBER76890S_CLEAN_zetas_inv[127]);
}
}
/*************************************************
* Name: basemul
*
* Description: Multiplication of polynomials in Zq[X]/((X^2-zeta))
* used for multiplication of elements in Rq in NTT domain
*
* Arguments: - int16_t r[2]: pointer to the output polynomial
* - const int16_t a[2]: pointer to the first factor
* - const int16_t b[2]: pointer to the second factor
* - int16_t zeta: integer defining the reduction polynomial
**************************************************/
void PQCLEAN_KYBER76890S_CLEAN_basemul(int16_t r[2], const int16_t a[2], const int16_t b[2], int16_t zeta) {
r[0] = fqmul(a[1], b[1]);
r[0] = fqmul(r[0], zeta);
r[0] += fqmul(a[0], b[0]);
r[1] = fqmul(a[0], b[1]);
r[1] += fqmul(a[1], b[0]);
}