1
1
mirror of https://github.com/henrydcase/pqc.git synced 2024-12-04 21:34:01 +00:00
pqcrypto/crypto_kem/papabear-ephem/clean/melas_fec.c

88 lines
2.3 KiB
C
Raw Normal View History

2020-01-04 16:49:42 +00:00
/* Melas forward error correction, reference code (as implemented in the paper) */
#include "melas_fec.h"
/* Return s/2^n mod R */
static fec_gf_t step(size_t n, fec_gf_t R, fec_gf_t s) {
for (; n; n--) {
s = (s ^ ((s & 1) * R)) >> 1;
}
return s;
}
/* Compute syndrome(data), where data has length len */
#define syndrome18(data,len) s18update(0,data,len)
static fec_gf_t s18update(fec_gf_t r, const uint8_t *data, size_t len) {
for (size_t i = 0; i < len; i++) {
r = step(8, 0x46231, r ^ data[i]);
}
return r;
}
/* Append 3 bytes of FEC(data) to data, so that the FEC becomes 0 */
void PQCLEAN_PAPABEAREPHEM_CLEAN_melas_fec_set(
uint8_t out[MELAS_FEC_BYTES],
const uint8_t *data,
size_t len
) {
fec_gf_t fec = syndrome18(data, len);
for (size_t i = 0; i < MELAS_FEC_BYTES; i++, fec >>= 8) {
out[i] = (uint8_t)fec;
}
}
/* Return a*b mod Q */
static fec_gf_t mul(fec_gf_t a, fec_gf_t b) {
fec_gf_t r = 0;
for (size_t i = 0; i < 9; i++) {
r ^= ((b >> (8 - i)) & 1) * a;
a = step(1, Q, a);
}
return r;
}
/* Reverse an 18-bit number x */
static fec_gf_t reverse18(fec_gf_t x) {
fec_gf_t ret = 0;
for (size_t i = 0; i < 18; i++) {
ret ^= ((x >> i) & 1) << (17 - i);
}
return ret;
}
/* Correct data to have the given FEC */
void PQCLEAN_PAPABEAREPHEM_CLEAN_melas_fec_correct (
uint8_t *data,
size_t len,
const uint8_t fec[MELAS_FEC_BYTES]
) {
fec_gf_t a = s18update(syndrome18(data, len), fec, MELAS_FEC_BYTES);
fec_gf_t c, r, htr;
size_t i;
const uint8_t table[9] = {36, 10, 43, 215, 52, 11, 116, 244, 0};
fec_gf_t e0, e1;
/* Form a quadratic equation from the syndrome */
c = mul(step(9, Q, a), step(9, Q, reverse18(a)));
for (i = 0, r = 0x100; i < 510; i++) {
r = mul(r, c);
}
r = step(17, Q, r);
a = step(511 - (len + MELAS_FEC_BYTES) * 8, Q, a);
/* Solve using the half trace */
for (i = 0, htr = 0; i < 9; i++) {
htr ^= ((r >> i) & 1) * table[i];
}
e0 = mul(a, htr);
e1 = e0 ^ a;
/* Correct the errors using the locators */
for (i = 0; i < len; i++) {
data[i] ^= (uint8_t)(e0 & (((e0 & (e0 - 1)) - 1) >> 9));
data[i] ^= (uint8_t)(e1 & (((e1 & (e1 - 1)) - 1) >> 9));
e0 = step(8, Q, e0);
e1 = step(8, Q, e1);
}
}