1
1
mirror of https://github.com/henrydcase/pqc.git synced 2024-11-22 15:39:07 +00:00
pqcrypto/3rd/jitterentropy/jitterentropy-base.c

758 lines
21 KiB
C
Raw Normal View History

2023-01-27 22:49:21 +00:00
/*
* Non-physical true random number generator based on timing jitter.
*
* Copyright Stephan Mueller <smueller@chronox.de>, 2014 - 2022
*
* Design
* ======
*
* See documentation in doc/ folder.
*
* Interface
* =========
*
* See documentation in jitterentropy(3) man page.
*
* License: see LICENSE file in root directory
*
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
* WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
* OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
* USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
* DAMAGE.
*/
#include "jitterentropy.h"
#include "jitterentropy-base.h"
#include "jitterentropy-gcd.h"
#include "jitterentropy-health.h"
#include "jitterentropy-noise.h"
#include "jitterentropy-timer.h"
#include "jitterentropy-sha3.h"
#define MAJVERSION 3 /* API / ABI incompatible changes, functional changes that
* require consumer to be updated (as long as this number
* is zero, the API is not considered stable and can
* change without a bump of the major version) */
#define MINVERSION 4 /* API compatible, ABI may change, functional
* enhancements only, consumer can be left unchanged if
* enhancements are not considered */
#define PATCHLEVEL 1 /* API / ABI compatible, no functional changes, no
* enhancements, bug fixes only */
/***************************************************************************
* Jitter RNG Static Definitions
*
* None of the following should be altered
***************************************************************************/
#ifdef __OPTIMIZE__
#error "The CPU Jitter random number generator must not be compiled with optimizations. See documentation. Use the compiler switch -O0 for compiling jitterentropy.c."
#endif
/*
* JENT_POWERUP_TESTLOOPCOUNT needs some loops to identify edge
* systems. 100 is definitely too little.
*
* SP800-90B requires at least 1024 initial test cycles.
*/
#define JENT_POWERUP_TESTLOOPCOUNT 1024
/**
* jent_version() - Return machine-usable version number of jent library
*
* The function returns a version number that is monotonic increasing
* for newer versions. The version numbers are multiples of 100. For example,
* version 1.2.3 is converted to 1020300 -- the last two digits are reserved
* for future use.
*
* The result of this function can be used in comparing the version number
* in a calling program if version-specific calls need to be make.
*
* @return Version number of jitterentropy library
*/
JENT_PRIVATE_STATIC
unsigned int jent_version(void)
{
unsigned int version = 0;
version = MAJVERSION * 1000000;
version += MINVERSION * 10000;
version += PATCHLEVEL * 100;
return version;
}
/***************************************************************************
* Helper
***************************************************************************/
/* Calculate log2 of given value assuming that the value is a power of 2 */
static inline unsigned int jent_log2_simple(unsigned int val)
{
unsigned int idx = 0;
while (val >>= 1)
idx++;
return idx;
}
/* Increase the memory size by one step */
static inline unsigned int jent_update_memsize(unsigned int flags)
{
unsigned int global_max = JENT_FLAGS_TO_MAX_MEMSIZE(
JENT_MAX_MEMSIZE_MAX);
unsigned int max;
max = JENT_FLAGS_TO_MAX_MEMSIZE(flags);
if (!max) {
/*
* The safe starting value is the amount of memory we allocated
* last round.
*/
max = jent_log2_simple(JENT_MEMORY_SIZE);
/* Adjust offset */
max = (max > JENT_MAX_MEMSIZE_OFFSET) ?
max - JENT_MAX_MEMSIZE_OFFSET : 0;
} else {
max++;
}
max = (max > global_max) ? global_max : max;
/* Clear out the max size */
flags &= ~JENT_MAX_MEMSIZE_MASK;
/* Set the freshly calculated max size */
flags |= JENT_MAX_MEMSIZE_TO_FLAGS(max);
return flags;
}
/***************************************************************************
* Random Number Generation
***************************************************************************/
/**
* Entry function: Obtain entropy for the caller.
*
* This function invokes the entropy gathering logic as often to generate
* as many bytes as requested by the caller. The entropy gathering logic
* creates 64 bit per invocation.
*
* This function truncates the last 64 bit entropy value output to the exact
* size specified by the caller.
*
* @ec [in] Reference to entropy collector
* @data [out] pointer to buffer for storing random data -- buffer must
* already exist
* @len [in] size of the buffer, specifying also the requested number of random
* in bytes
*
* @return number of bytes returned when request is fulfilled or an error
*
* The following error codes can occur:
* -1 entropy_collector is NULL
* -2 RCT failed
* -3 APT test failed
* -4 The timer cannot be initialized
* -5 LAG failure
*/
JENT_PRIVATE_STATIC
ssize_t jent_read_entropy(struct rand_data *ec, char *data, size_t len)
{
char *p = data;
size_t orig_len = len;
int ret = 0;
if (NULL == ec)
return -1;
if (jent_notime_settick(ec))
return -4;
while (len > 0) {
size_t tocopy;
unsigned int health_test_result;
jent_random_data(ec);
if ((health_test_result = jent_health_failure(ec))) {
if (health_test_result & JENT_RCT_FAILURE)
ret = -2;
else if (health_test_result & JENT_APT_FAILURE)
ret = -3;
else
ret = -5;
goto err;
}
if ((DATA_SIZE_BITS / 8) < len)
tocopy = (DATA_SIZE_BITS / 8);
else
tocopy = len;
jent_read_random_block(ec, p, tocopy);
len -= tocopy;
p += tocopy;
}
/*
* Enhanced backtracking support: At this point, the hash state
* contains the digest of the previous Jitter RNG collection round
* which is inserted there by jent_read_random_block with the SHA
* update operation. At the current code location we completed
* one request for a caller and we do not know how long it will
* take until a new request is sent to us. To guarantee enhanced
* backtracking resistance at this point (i.e. ensure that an attacker
* cannot obtain information about prior random numbers we generated),
* but still stirring the hash state with old data the Jitter RNG
* obtains a new message digest from its state and re-inserts it.
* After this operation, the Jitter RNG state is still stirred with
* the old data, but an attacker who gets access to the memory after
* this point cannot deduce the random numbers produced by the
* Jitter RNG prior to this point.
*/
/*
* If we use secured memory, where backtracking support may not be
* needed because the state is protected in a different method,
* it is permissible to drop this support. But strongly weigh the
* pros and cons considering that the SHA3 operation is not that
* expensive.
*/
#ifndef CONFIG_CRYPTO_CPU_JITTERENTROPY_SECURE_MEMORY
jent_read_random_block(ec, NULL, 0);
#endif
err:
jent_notime_unsettick(ec);
return ret ? ret : (ssize_t)orig_len;
}
static struct rand_data *_jent_entropy_collector_alloc(unsigned int osr,
unsigned int flags);
/**
* Entry function: Obtain entropy for the caller.
*
* This is a service function to jent_read_entropy() with the difference
* that it automatically re-allocates the entropy collector if a health
* test failure is observed. Before reallocation, a new power-on health test
* is performed. The allocation of the new entropy collector automatically
* increases the OSR by one. This is done based on the idea that a health
* test failure indicates that the assumed entropy rate is too high.
*
* Note the function returns with an health test error if the OSR is
* getting too large. If an error is returned by this function, the Jitter RNG
* is not safe to be used on the current system.
*
* @ec [in] Reference to entropy collector - this is a double pointer as
* The entropy collector may be freed and reallocated.
* @data [out] pointer to buffer for storing random data -- buffer must
* already exist
* @len [in] size of the buffer, specifying also the requested number of random
* in bytes
*
* @return see jent_read_entropy()
*/
JENT_PRIVATE_STATIC
ssize_t jent_read_entropy_safe(struct rand_data **ec, char *data, size_t len)
{
char *p = data;
size_t orig_len = len;
ssize_t ret = 0;
if (!ec)
return -1;
while (len > 0) {
unsigned int osr, flags, max_mem_set;
ret = jent_read_entropy(*ec, p, len);
switch (ret) {
case -1:
case -4:
return ret;
case -2:
case -3:
case -5:
osr = (*ec)->osr + 1;
flags = (*ec)->flags;
max_mem_set = (*ec)->max_mem_set;
/* generic arbitrary cutoff */
if (osr > 20)
return ret;
/*
* If the caller did not set any specific maximum value
* let the Jitter RNG increase the maximum memory by
* one step.
*/
if (!max_mem_set)
flags = jent_update_memsize(flags);
/*
* re-allocate entropy collector with higher OSR and
* memory size
*/
jent_entropy_collector_free(*ec);
/* Perform new health test with updated OSR */
if (jent_entropy_init_ex(osr, flags))
return -1;
*ec = _jent_entropy_collector_alloc(osr, flags);
if (!*ec)
return -1;
/* Remember whether caller configured memory size */
(*ec)->max_mem_set = !!max_mem_set;
break;
default:
len -= (size_t)ret;
p += (size_t)ret;
}
}
return (ssize_t)orig_len;
}
/***************************************************************************
* Initialization logic
***************************************************************************/
/*
* Obtain memory size to allocate for memory access variations.
*
* The maximum variations we can get from the memory access is when we allocate
* a bit more memory than we have as data cache. But allocating as much
* memory as we have as data cache might strain the resources on the system
* more than necessary.
*
* On a lot of systems it is not necessary to need so much memory as the
* variations coming from the general Jitter RNG execution commonly provide
* large amount of variations.
*
* Thus, the default is:
*
* min(JENT_MEMORY_SIZE, data cache size)
*
* In case the data cache size cannot be obtained, use JENT_MEMORY_SIZE.
*
* If the caller provides a maximum memory size, use
* min(provided max memory, data cache size).
*/
static inline uint32_t jent_memsize(unsigned int flags)
{
uint32_t memsize, max_memsize;
max_memsize = JENT_FLAGS_TO_MAX_MEMSIZE(flags);
if (max_memsize == 0) {
max_memsize = JENT_MEMORY_SIZE;
} else {
max_memsize = UINT32_C(1) << (max_memsize +
JENT_MAX_MEMSIZE_OFFSET);
}
/* Allocate memory for adding variations based on memory access */
memsize = jent_cache_size_roundup();
/* Limit the memory as defined by caller */
memsize = (memsize > max_memsize) ? max_memsize : memsize;
/* Set a value if none was found */
if (!memsize)
memsize = JENT_MEMORY_SIZE;
return memsize;
}
static int jent_selftest_run = 0;
static struct rand_data
*jent_entropy_collector_alloc_internal(unsigned int osr, unsigned int flags)
{
struct rand_data *entropy_collector;
uint32_t memsize = 0;
/*
* Requesting disabling and forcing of internal timer
* makes no sense.
*/
if ((flags & JENT_DISABLE_INTERNAL_TIMER) &&
(flags & JENT_FORCE_INTERNAL_TIMER))
return NULL;
/* Force the self test to be run */
if (!jent_selftest_run && jent_entropy_init_ex(osr, flags))
return NULL;
/*
* If the initial test code concludes to force the internal timer
* and the user requests it not to be used, do not allocate
* the Jitter RNG instance.
*/
if (jent_notime_forced() && (flags & JENT_DISABLE_INTERNAL_TIMER))
return NULL;
entropy_collector = jent_zalloc(sizeof(struct rand_data));
if (NULL == entropy_collector)
return NULL;
if (!(flags & JENT_DISABLE_MEMORY_ACCESS)) {
memsize = jent_memsize(flags);
entropy_collector->mem = (unsigned char *)jent_zalloc(memsize);
#ifdef JENT_RANDOM_MEMACCESS
/*
* Transform the size into a mask - it is assumed that size is
* a power of 2.
*/
entropy_collector->memmask = memsize - 1;
#else /* JENT_RANDOM_MEMACCESS */
entropy_collector->memblocksize = memsize / JENT_MEMORY_BLOCKS;
entropy_collector->memblocks = JENT_MEMORY_BLOCKS;
/* sanity check */
if (entropy_collector->memblocksize *
entropy_collector->memblocks != memsize)
goto err;
#endif /* JENT_RANDOM_MEMACCESS */
if (entropy_collector->mem == NULL)
goto err;
entropy_collector->memaccessloops = JENT_MEMORY_ACCESSLOOPS;
}
if (sha3_alloc(&entropy_collector->hash_state))
goto err;
/* Initialize the hash state */
sha3_256_init(entropy_collector->hash_state);
/* verify and set the oversampling rate */
if (osr < JENT_MIN_OSR)
osr = JENT_MIN_OSR;
entropy_collector->osr = osr;
entropy_collector->flags = flags;
if ((flags & JENT_FORCE_FIPS) || jent_fips_enabled())
entropy_collector->fips_enabled = 1;
/* Initialize the APT */
jent_apt_init(entropy_collector, osr);
/* Initialize the Lag Predictor Test */
jent_lag_init(entropy_collector, osr);
/* Was jent_entropy_init run (establishing the common GCD)? */
if (jent_gcd_get(&entropy_collector->jent_common_timer_gcd)) {
/*
* It was not. This should probably be an error, but this
* behavior breaks the test code. Set the gcd to a value that
* won't hurt anything.
*/
entropy_collector->jent_common_timer_gcd = 1;
}
/*
* Use timer-less noise source - note, OSR must be set in
* entropy_collector!
*/
if (!(flags & JENT_DISABLE_INTERNAL_TIMER)) {
if (jent_notime_enable(entropy_collector, flags))
goto err;
}
return entropy_collector;
err:
if (entropy_collector->mem != NULL)
jent_zfree(entropy_collector->mem, memsize);
jent_zfree(entropy_collector, sizeof(struct rand_data));
return NULL;
}
static struct rand_data *_jent_entropy_collector_alloc(unsigned int osr,
unsigned int flags)
{
struct rand_data *ec = jent_entropy_collector_alloc_internal(osr,
flags);
if (!ec)
return ec;
/* fill the data pad with non-zero values */
if (jent_notime_settick(ec)) {
jent_entropy_collector_free(ec);
return NULL;
}
jent_random_data(ec);
jent_notime_unsettick(ec);
return ec;
}
JENT_PRIVATE_STATIC
struct rand_data *jent_entropy_collector_alloc(unsigned int osr,
unsigned int flags)
{
struct rand_data *ec = _jent_entropy_collector_alloc(osr, flags);
/* Remember that the caller provided a maximum size flag */
if (ec)
ec->max_mem_set = !!JENT_FLAGS_TO_MAX_MEMSIZE(flags);
return ec;
}
JENT_PRIVATE_STATIC
void jent_entropy_collector_free(struct rand_data *entropy_collector)
{
if (entropy_collector != NULL) {
sha3_dealloc(entropy_collector->hash_state);
jent_notime_disable(entropy_collector);
if (entropy_collector->mem != NULL) {
jent_zfree(entropy_collector->mem,
jent_memsize(entropy_collector->flags));
entropy_collector->mem = NULL;
}
jent_zfree(entropy_collector, sizeof(struct rand_data));
}
}
int jent_time_entropy_init(unsigned int osr, unsigned int flags)
{
struct rand_data *ec;
uint64_t *delta_history;
int i, time_backwards = 0, count_stuck = 0, ret = 0;
unsigned int health_test_result;
delta_history = jent_gcd_init(JENT_POWERUP_TESTLOOPCOUNT);
if (!delta_history)
return EMEM;
if (flags & JENT_FORCE_INTERNAL_TIMER)
jent_notime_force();
else
flags |= JENT_DISABLE_INTERNAL_TIMER;
/*
* If the start-up health tests (including the APT and RCT) are not
* run, then the entropy source is not 90B compliant. We could test if
* fips_enabled should be set using the jent_fips_enabled() function,
* but this can be overridden using the JENT_FORCE_FIPS flag, which
* isn't passed in yet. It is better to run the tests on the small
* amount of data that we have, which should not fail unless things
* are really bad.
*/
flags |= JENT_FORCE_FIPS;
ec = jent_entropy_collector_alloc_internal(osr, flags);
if (!ec) {
ret = EMEM;
goto out;
}
if (jent_notime_settick(ec)) {
ret = EMEM;
goto out;
}
/* To initialize the prior time. */
jent_measure_jitter(ec, 0, NULL);
/* We could perform statistical tests here, but the problem is
* that we only have a few loop counts to do testing. These
* loop counts may show some slight skew leading to false positives.
*/
/*
* We could add a check for system capabilities such as clock_getres or
* check for CONFIG_X86_TSC, but it does not make much sense as the
* following sanity checks verify that we have a high-resolution
* timer.
*/
#define CLEARCACHE 100
for (i = -CLEARCACHE; i < JENT_POWERUP_TESTLOOPCOUNT; i++) {
uint64_t start_time = 0, end_time = 0, delta = 0;
unsigned int stuck;
/* Invoke core entropy collection logic */
stuck = jent_measure_jitter(ec, 0, &delta);
end_time = ec->prev_time;
start_time = ec->prev_time - delta;
/* test whether timer works */
if (!start_time || !end_time) {
ret = ENOTIME;
goto out;
}
/*
* test whether timer is fine grained enough to provide
* delta even when called shortly after each other -- this
* implies that we also have a high resolution timer
*/
if (!delta || (end_time == start_time)) {
ret = ECOARSETIME;
goto out;
}
/*
* up to here we did not modify any variable that will be
* evaluated later, but we already performed some work. Thus we
* already have had an impact on the caches, branch prediction,
* etc. with the goal to clear it to get the worst case
* measurements.
*/
if (i < 0)
continue;
if (stuck)
count_stuck++;
/* test whether we have an increasing timer */
if (!(end_time > start_time))
time_backwards++;
/* Watch for common adjacent GCD values */
jent_gcd_add_value(delta_history, delta, i);
}
/*
* we allow up to three times the time running backwards.
* CLOCK_REALTIME is affected by adjtime and NTP operations. Thus,
* if such an operation just happens to interfere with our test, it
* should not fail. The value of 3 should cover the NTP case being
* performed during our test run.
*/
if (time_backwards > 3) {
ret = ENOMONOTONIC;
goto out;
}
/* First, did we encounter a health test failure? */
if ((health_test_result = jent_health_failure(ec))) {
ret = (health_test_result & JENT_RCT_FAILURE) ? ERCT : EHEALTH;
goto out;
}
ret = jent_gcd_analyze(delta_history, JENT_POWERUP_TESTLOOPCOUNT);
if (ret)
goto out;
/*
* If we have more than 90% stuck results, then this Jitter RNG is
* likely to not work well.
*/
if (JENT_STUCK_INIT_THRES(JENT_POWERUP_TESTLOOPCOUNT) < count_stuck)
ret = ESTUCK;
out:
jent_gcd_fini(delta_history, JENT_POWERUP_TESTLOOPCOUNT);
if ((flags & JENT_FORCE_INTERNAL_TIMER) && ec)
jent_notime_unsettick(ec);
jent_entropy_collector_free(ec);
return ret;
}
static inline int jent_entropy_init_common_pre(void)
{
int ret;
jent_notime_block_switch();
jent_health_cb_block_switch();
if (sha3_tester())
return EHASH;
ret = jent_gcd_selftest();
jent_selftest_run = 1;
return ret;
}
static inline int jent_entropy_init_common_post(int ret)
{
/* Unmark the execution of the self tests if they failed. */
if (ret)
jent_selftest_run = 0;
return ret;
}
JENT_PRIVATE_STATIC
int jent_entropy_init(void)
{
int ret = jent_entropy_init_common_pre();
if (ret)
return ret;
ret = jent_time_entropy_init(0, JENT_DISABLE_INTERNAL_TIMER);
#ifdef JENT_CONF_ENABLE_INTERNAL_TIMER
if (ret)
ret = jent_time_entropy_init(0, JENT_FORCE_INTERNAL_TIMER);
#endif /* JENT_CONF_ENABLE_INTERNAL_TIMER */
return jent_entropy_init_common_post(ret);
}
JENT_PRIVATE_STATIC
int jent_entropy_init_ex(unsigned int osr, unsigned int flags)
{
int ret = jent_entropy_init_common_pre();
if (ret)
return ret;
ret = ENOTIME;
/* Test without internal timer unless caller does not want it */
if (!(flags & JENT_FORCE_INTERNAL_TIMER))
ret = jent_time_entropy_init(osr,
flags | JENT_DISABLE_INTERNAL_TIMER);
#ifdef JENT_CONF_ENABLE_INTERNAL_TIMER
/* Test with internal timer unless caller does not want it */
if (ret && !(flags & JENT_DISABLE_INTERNAL_TIMER))
ret = jent_time_entropy_init(osr,
flags | JENT_FORCE_INTERNAL_TIMER);
#endif /* JENT_CONF_ENABLE_INTERNAL_TIMER */
return jent_entropy_init_common_post(ret);
}
JENT_PRIVATE_STATIC
int jent_entropy_switch_notime_impl(struct jent_notime_thread *new_thread)
{
return jent_notime_switch(new_thread);
}
JENT_PRIVATE_STATIC
int jent_set_fips_failure_callback(jent_fips_failure_cb cb)
{
return jent_set_fips_failure_callback_internal(cb);
}