1
1
miroir de https://github.com/henrydcase/pqc.git synchronisé 2024-11-22 15:39:07 +00:00
pqcrypto/3rd/jitterentropy/jitterentropy-sha3.c

404 lignes
11 KiB
C
Brut Vue normale Historique

2023-01-27 22:49:21 +00:00
/* Jitter RNG: SHA-3 Implementation
*
* Copyright (C) 2021 - 2022, Stephan Mueller <smueller@chronox.de>
*
* License: see LICENSE file in root directory
*
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
* WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
* OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
* USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
* DAMAGE.
*/
#include "jitterentropy-sha3.h"
#include "jitterentropy.h"
/***************************************************************************
* Message Digest Implementation
***************************************************************************/
/*
* Conversion of Little-Endian representations in byte streams - the data
* representation in the integer values is the host representation.
*/
static inline uint32_t ptr_to_le32(const uint8_t *p)
{
return (uint32_t)p[0] | (uint32_t)p[1] << 8 |
(uint32_t)p[2] << 16 | (uint32_t)p[3] << 24;
}
static inline uint64_t ptr_to_le64(const uint8_t *p)
{
return (uint64_t)ptr_to_le32(p) | (uint64_t)ptr_to_le32(p + 4) << 32;
}
static inline void le32_to_ptr(uint8_t *p, const uint32_t value)
{
p[0] = (uint8_t)(value);
p[1] = (uint8_t)(value >> 8);
p[2] = (uint8_t)(value >> 16);
p[3] = (uint8_t)(value >> 24);
}
static inline void le64_to_ptr(uint8_t *p, const uint64_t value)
{
le32_to_ptr(p + 4, (uint32_t)(value >> 32));
le32_to_ptr(p, (uint32_t)(value));
}
/*********************************** Keccak ***********************************/
/* state[x + y*5] */
#define A(x, y) (x + 5 * y)
static inline void keccakp_theta(uint64_t s[25])
{
uint64_t C[5], D[5];
/* Step 1 */
C[0] = s[A(0, 0)] ^ s[A(0, 1)] ^ s[A(0, 2)] ^ s[A(0, 3)] ^ s[A(0, 4)];
C[1] = s[A(1, 0)] ^ s[A(1, 1)] ^ s[A(1, 2)] ^ s[A(1, 3)] ^ s[A(1, 4)];
C[2] = s[A(2, 0)] ^ s[A(2, 1)] ^ s[A(2, 2)] ^ s[A(2, 3)] ^ s[A(2, 4)];
C[3] = s[A(3, 0)] ^ s[A(3, 1)] ^ s[A(3, 2)] ^ s[A(3, 3)] ^ s[A(3, 4)];
C[4] = s[A(4, 0)] ^ s[A(4, 1)] ^ s[A(4, 2)] ^ s[A(4, 3)] ^ s[A(4, 4)];
/* Step 2 */
D[0] = C[4] ^ rol64(C[1], 1);
D[1] = C[0] ^ rol64(C[2], 1);
D[2] = C[1] ^ rol64(C[3], 1);
D[3] = C[2] ^ rol64(C[4], 1);
D[4] = C[3] ^ rol64(C[0], 1);
/* Step 3 */
s[A(0, 0)] ^= D[0];
s[A(1, 0)] ^= D[1];
s[A(2, 0)] ^= D[2];
s[A(3, 0)] ^= D[3];
s[A(4, 0)] ^= D[4];
s[A(0, 1)] ^= D[0];
s[A(1, 1)] ^= D[1];
s[A(2, 1)] ^= D[2];
s[A(3, 1)] ^= D[3];
s[A(4, 1)] ^= D[4];
s[A(0, 2)] ^= D[0];
s[A(1, 2)] ^= D[1];
s[A(2, 2)] ^= D[2];
s[A(3, 2)] ^= D[3];
s[A(4, 2)] ^= D[4];
s[A(0, 3)] ^= D[0];
s[A(1, 3)] ^= D[1];
s[A(2, 3)] ^= D[2];
s[A(3, 3)] ^= D[3];
s[A(4, 3)] ^= D[4];
s[A(0, 4)] ^= D[0];
s[A(1, 4)] ^= D[1];
s[A(2, 4)] ^= D[2];
s[A(3, 4)] ^= D[3];
s[A(4, 4)] ^= D[4];
}
static inline void keccakp_rho(uint64_t s[25])
{
/* Step 1 */
/* s[A(0, 0)] = s[A(0, 0)]; */
#define RHO_ROL(t) (((t + 1) * (t + 2) / 2) % 64)
/* Step 3 */
s[A(1, 0)] = rol64(s[A(1, 0)], RHO_ROL(0));
s[A(0, 2)] = rol64(s[A(0, 2)], RHO_ROL(1));
s[A(2, 1)] = rol64(s[A(2, 1)], RHO_ROL(2));
s[A(1, 2)] = rol64(s[A(1, 2)], RHO_ROL(3));
s[A(2, 3)] = rol64(s[A(2, 3)], RHO_ROL(4));
s[A(3, 3)] = rol64(s[A(3, 3)], RHO_ROL(5));
s[A(3, 0)] = rol64(s[A(3, 0)], RHO_ROL(6));
s[A(0, 1)] = rol64(s[A(0, 1)], RHO_ROL(7));
s[A(1, 3)] = rol64(s[A(1, 3)], RHO_ROL(8));
s[A(3, 1)] = rol64(s[A(3, 1)], RHO_ROL(9));
s[A(1, 4)] = rol64(s[A(1, 4)], RHO_ROL(10));
s[A(4, 4)] = rol64(s[A(4, 4)], RHO_ROL(11));
s[A(4, 0)] = rol64(s[A(4, 0)], RHO_ROL(12));
s[A(0, 3)] = rol64(s[A(0, 3)], RHO_ROL(13));
s[A(3, 4)] = rol64(s[A(3, 4)], RHO_ROL(14));
s[A(4, 3)] = rol64(s[A(4, 3)], RHO_ROL(15));
s[A(3, 2)] = rol64(s[A(3, 2)], RHO_ROL(16));
s[A(2, 2)] = rol64(s[A(2, 2)], RHO_ROL(17));
s[A(2, 0)] = rol64(s[A(2, 0)], RHO_ROL(18));
s[A(0, 4)] = rol64(s[A(0, 4)], RHO_ROL(19));
s[A(4, 2)] = rol64(s[A(4, 2)], RHO_ROL(20));
s[A(2, 4)] = rol64(s[A(2, 4)], RHO_ROL(21));
s[A(4, 1)] = rol64(s[A(4, 1)], RHO_ROL(22));
s[A(1, 1)] = rol64(s[A(1, 1)], RHO_ROL(23));
}
static inline void keccakp_pi(uint64_t s[25])
{
uint64_t t = s[A(4, 4)];
/* Step 1 */
/* s[A(0, 0)] = s[A(0, 0)]; */
s[A(4, 4)] = s[A(1, 4)];
s[A(1, 4)] = s[A(3, 1)];
s[A(3, 1)] = s[A(1, 3)];
s[A(1, 3)] = s[A(0, 1)];
s[A(0, 1)] = s[A(3, 0)];
s[A(3, 0)] = s[A(3, 3)];
s[A(3, 3)] = s[A(2, 3)];
s[A(2, 3)] = s[A(1, 2)];
s[A(1, 2)] = s[A(2, 1)];
s[A(2, 1)] = s[A(0, 2)];
s[A(0, 2)] = s[A(1, 0)];
s[A(1, 0)] = s[A(1, 1)];
s[A(1, 1)] = s[A(4, 1)];
s[A(4, 1)] = s[A(2, 4)];
s[A(2, 4)] = s[A(4, 2)];
s[A(4, 2)] = s[A(0, 4)];
s[A(0, 4)] = s[A(2, 0)];
s[A(2, 0)] = s[A(2, 2)];
s[A(2, 2)] = s[A(3, 2)];
s[A(3, 2)] = s[A(4, 3)];
s[A(4, 3)] = s[A(3, 4)];
s[A(3, 4)] = s[A(0, 3)];
s[A(0, 3)] = s[A(4, 0)];
s[A(4, 0)] = t;
}
static inline void keccakp_chi(uint64_t s[25])
{
uint64_t t0[5], t1[5];
t0[0] = s[A(0, 0)];
t0[1] = s[A(0, 1)];
t0[2] = s[A(0, 2)];
t0[3] = s[A(0, 3)];
t0[4] = s[A(0, 4)];
t1[0] = s[A(1, 0)];
t1[1] = s[A(1, 1)];
t1[2] = s[A(1, 2)];
t1[3] = s[A(1, 3)];
t1[4] = s[A(1, 4)];
s[A(0, 0)] ^= ~s[A(1, 0)] & s[A(2, 0)];
s[A(0, 1)] ^= ~s[A(1, 1)] & s[A(2, 1)];
s[A(0, 2)] ^= ~s[A(1, 2)] & s[A(2, 2)];
s[A(0, 3)] ^= ~s[A(1, 3)] & s[A(2, 3)];
s[A(0, 4)] ^= ~s[A(1, 4)] & s[A(2, 4)];
s[A(1, 0)] ^= ~s[A(2, 0)] & s[A(3, 0)];
s[A(1, 1)] ^= ~s[A(2, 1)] & s[A(3, 1)];
s[A(1, 2)] ^= ~s[A(2, 2)] & s[A(3, 2)];
s[A(1, 3)] ^= ~s[A(2, 3)] & s[A(3, 3)];
s[A(1, 4)] ^= ~s[A(2, 4)] & s[A(3, 4)];
s[A(2, 0)] ^= ~s[A(3, 0)] & s[A(4, 0)];
s[A(2, 1)] ^= ~s[A(3, 1)] & s[A(4, 1)];
s[A(2, 2)] ^= ~s[A(3, 2)] & s[A(4, 2)];
s[A(2, 3)] ^= ~s[A(3, 3)] & s[A(4, 3)];
s[A(2, 4)] ^= ~s[A(3, 4)] & s[A(4, 4)];
s[A(3, 0)] ^= ~s[A(4, 0)] & t0[0];
s[A(3, 1)] ^= ~s[A(4, 1)] & t0[1];
s[A(3, 2)] ^= ~s[A(4, 2)] & t0[2];
s[A(3, 3)] ^= ~s[A(4, 3)] & t0[3];
s[A(3, 4)] ^= ~s[A(4, 4)] & t0[4];
s[A(4, 0)] ^= ~t0[0] & t1[0];
s[A(4, 1)] ^= ~t0[1] & t1[1];
s[A(4, 2)] ^= ~t0[2] & t1[2];
s[A(4, 3)] ^= ~t0[3] & t1[3];
s[A(4, 4)] ^= ~t0[4] & t1[4];
}
static const uint64_t keccakp_iota_vals[] = {
0x0000000000000001ULL, 0x0000000000008082ULL, 0x800000000000808aULL,
0x8000000080008000ULL, 0x000000000000808bULL, 0x0000000080000001ULL,
0x8000000080008081ULL, 0x8000000000008009ULL, 0x000000000000008aULL,
0x0000000000000088ULL, 0x0000000080008009ULL, 0x000000008000000aULL,
0x000000008000808bULL, 0x800000000000008bULL, 0x8000000000008089ULL,
0x8000000000008003ULL, 0x8000000000008002ULL, 0x8000000000000080ULL,
0x000000000000800aULL, 0x800000008000000aULL, 0x8000000080008081ULL,
0x8000000000008080ULL, 0x0000000080000001ULL, 0x8000000080008008ULL
};
static inline void keccakp_iota(uint64_t s[25], unsigned int round)
{
s[0] ^= keccakp_iota_vals[round];
}
static inline void keccakp_1600(uint64_t s[25])
{
unsigned int round;
for (round = 0; round < 24; round++) {
keccakp_theta(s);
keccakp_rho(s);
keccakp_pi(s);
keccakp_chi(s);
keccakp_iota(s, round);
}
}
/*********************************** SHA-3 ************************************/
static inline void sha3_init(struct sha_ctx *ctx)
{
unsigned int i;
for (i = 0; i < 25; i++)
ctx->state[i] = 0;
ctx->msg_len = 0;
}
void sha3_256_init(struct sha_ctx *ctx)
{
sha3_init(ctx);
ctx->r = SHA3_256_SIZE_BLOCK;
ctx->rword = SHA3_256_SIZE_BLOCK / sizeof(uint64_t);
ctx->digestsize = SHA3_256_SIZE_DIGEST;
}
static inline void sha3_fill_state(struct sha_ctx *ctx, const uint8_t *in)
{
unsigned int i;
for (i = 0; i < ctx->rword; i++) {
ctx->state[i] ^= ptr_to_le64(in);
in += 8;
}
}
void sha3_update(struct sha_ctx *ctx, const uint8_t *in, size_t inlen)
{
size_t partial = ctx->msg_len % ctx->r;
ctx->msg_len += inlen;
/* Sponge absorbing phase */
/* Check if we have a partial block stored */
if (partial) {
size_t todo = ctx->r - partial;
/*
* If the provided data is small enough to fit in the partial
* buffer, copy it and leave it unprocessed.
*/
if (inlen < todo) {
memcpy(ctx->partial + partial, in, inlen);
return;
}
/*
* The input data is large enough to fill the entire partial
* block buffer. Thus, we fill it and transform it.
*/
memcpy(ctx->partial + partial, in, todo);
inlen -= todo;
in += todo;
sha3_fill_state(ctx, ctx->partial);
keccakp_1600(ctx->state);
}
/* Perform a transformation of full block-size messages */
for (; inlen >= ctx->r; inlen -= ctx->r, in += ctx->r) {
sha3_fill_state(ctx, in);
keccakp_1600(ctx->state);
}
/* If we have data left, copy it into the partial block buffer */
memcpy(ctx->partial, in, inlen);
}
void sha3_final(struct sha_ctx *ctx, uint8_t *digest)
{
size_t partial = ctx->msg_len % ctx->r;
unsigned int i;
/* Final round in sponge absorbing phase */
/* Fill the unused part of the partial buffer with zeros */
memset(ctx->partial + partial, 0, ctx->r - partial);
/*
* Add the leading and trailing bit as well as the 01 bits for the
* SHA-3 suffix.
*/
ctx->partial[partial] = 0x06;
ctx->partial[ctx->r - 1] |= 0x80;
/* Final transformation */
sha3_fill_state(ctx, ctx->partial);
keccakp_1600(ctx->state);
/*
* Sponge squeeze phase - the digest size is always smaller as the
* state size r which implies we only have one squeeze round.
*/
for (i = 0; i < ctx->digestsize / 8; i++, digest += 8)
le64_to_ptr(digest, ctx->state[i]);
/* Add remaining 4 bytes if we use SHA3-224 */
if (ctx->digestsize % 8)
le32_to_ptr(digest, (uint32_t)(ctx->state[i]));
memset(ctx->partial, 0, ctx->r);
sha3_init(ctx);
}
int sha3_tester(void)
{
HASH_CTX_ON_STACK(ctx);
static const uint8_t msg_256[] = { 0x5E, 0x5E, 0xD6 };
static const uint8_t exp_256[] = { 0xF1, 0x6E, 0x66, 0xC0, 0x43, 0x72,
0xB4, 0xA3, 0xE1, 0xE3, 0x2E, 0x07,
0xC4, 0x1C, 0x03, 0x40, 0x8A, 0xD5,
0x43, 0x86, 0x8C, 0xC4, 0x0E, 0xC5,
0x5E, 0x00, 0xBB, 0xBB, 0xBD, 0xF5,
0x91, 0x1E };
uint8_t act[SHA3_256_SIZE_DIGEST] = { 0 };
unsigned int i;
sha3_256_init(&ctx);
sha3_update(&ctx, msg_256, 3);
sha3_final(&ctx, act);
for (i = 0; i < SHA3_256_SIZE_DIGEST; i++) {
if (exp_256[i] != act[i])
return 1;
}
return 0;
}
int sha3_alloc(void **hash_state)
{
struct sha_ctx *tmp;
tmp = jent_zalloc(SHA_MAX_CTX_SIZE);
if (!tmp)
return 1;
*hash_state = tmp;
return 0;
}
void sha3_dealloc(void *hash_state)
{
struct sha_ctx *ctx = (struct sha_ctx *)hash_state;
jent_zfree(ctx, SHA_MAX_CTX_SIZE);
}