@@ -19,6 +19,7 @@ | |||
static void compute_fft_betas(uint16_t *betas); | |||
static void compute_subset_sums(uint16_t *subset_sums, const uint16_t *set, size_t set_size); | |||
static void radix(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f); | |||
static void radix_big(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f); | |||
static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32_t m_f, const uint16_t *betas); | |||
@@ -28,7 +29,8 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 | |||
* @param[out] betas Array of size PARAM_M-1 | |||
*/ | |||
static void compute_fft_betas(uint16_t *betas) { | |||
for (size_t i = 0 ; i < PARAM_M - 1 ; ++i) { | |||
size_t i; | |||
for (i = 0 ; i < PARAM_M - 1 ; ++i) { | |||
betas[i] = 1 << (PARAM_M - 1 - i); | |||
} | |||
} | |||
@@ -46,10 +48,11 @@ static void compute_fft_betas(uint16_t *betas) { | |||
* @param[in] set_size Size of the array set | |||
*/ | |||
static void compute_subset_sums(uint16_t *subset_sums, const uint16_t *set, size_t set_size) { | |||
size_t i, j; | |||
subset_sums[0] = 0; | |||
for (size_t i = 0 ; i < set_size ; ++i) { | |||
for (size_t j = 0 ; j < (1U << i) ; ++j) { | |||
for (i = 0 ; i < set_size ; ++i) { | |||
for (j = 0 ; j < (1U << i) ; ++j) { | |||
subset_sums[(1 << i) + j] = set[i] ^ subset_sums[j]; | |||
} | |||
} | |||
@@ -89,7 +92,7 @@ static void radix(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f) { | |||
f1[2] = f[3] ^ f1[1] ^ f0[3]; | |||
f0[1] = f[2] ^ f0[2] ^ f1[1]; | |||
f1[0] = f[1] ^ f0[1]; | |||
return; | |||
break; | |||
case 3: | |||
f0[0] = f[0]; | |||
@@ -100,49 +103,54 @@ static void radix(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f) { | |||
f1[3] = f[7]; | |||
f0[1] = f[2] ^ f0[2] ^ f1[1]; | |||
f1[0] = f[1] ^ f0[1]; | |||
return; | |||
break; | |||
case 2: | |||
f0[0] = f[0]; | |||
f0[1] = f[2] ^ f[3]; | |||
f1[0] = f[1] ^ f0[1]; | |||
f1[1] = f[3]; | |||
return; | |||
break; | |||
case 1: | |||
f0[0] = f[0]; | |||
f1[0] = f[1]; | |||
return; | |||
break; | |||
default: | |||
; | |||
size_t n = 1 << (m_f - 2); | |||
radix_big(f0, f1, f, m_f); | |||
break; | |||
} | |||
} | |||
uint16_t Q[2 * (1 << (PARAM_FFT - 2))]; | |||
uint16_t R[2 * (1 << (PARAM_FFT - 2))]; | |||
static void radix_big(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f) { | |||
uint16_t Q[2 * (1 << (PARAM_FFT - 2))] = {0}; | |||
uint16_t R[2 * (1 << (PARAM_FFT - 2))] = {0}; | |||
uint16_t Q0[1 << (PARAM_FFT - 2)]; | |||
uint16_t Q1[1 << (PARAM_FFT - 2)]; | |||
uint16_t R0[1 << (PARAM_FFT - 2)]; | |||
uint16_t R1[1 << (PARAM_FFT - 2)]; | |||
uint16_t Q0[1 << (PARAM_FFT - 2)] = {0}; | |||
uint16_t Q1[1 << (PARAM_FFT - 2)] = {0}; | |||
uint16_t R0[1 << (PARAM_FFT - 2)] = {0}; | |||
uint16_t R1[1 << (PARAM_FFT - 2)] = {0}; | |||
memcpy(Q, f + 3 * n, 2 * n); | |||
memcpy(Q + n, f + 3 * n, 2 * n); | |||
memcpy(R, f, 4 * n); | |||
size_t i, n; | |||
for (size_t i = 0 ; i < n ; ++i) { | |||
Q[i] ^= f[2 * n + i]; | |||
R[n + i] ^= Q[i]; | |||
} | |||
n = 1 << (m_f - 2); | |||
memcpy(Q, f + 3 * n, 2 * n); | |||
memcpy(Q + n, f + 3 * n, 2 * n); | |||
memcpy(R, f, 4 * n); | |||
radix(Q0, Q1, Q, m_f - 1); | |||
radix(R0, R1, R, m_f - 1); | |||
memcpy(f0, R0, 2 * n); | |||
memcpy(f0 + n, Q0, 2 * n); | |||
memcpy(f1, R1, 2 * n); | |||
memcpy(f1 + n, Q1, 2 * n); | |||
for (i = 0 ; i < n ; ++i) { | |||
Q[i] ^= f[2 * n + i]; | |||
R[n + i] ^= Q[i]; | |||
} | |||
radix(Q0, Q1, Q, m_f - 1); | |||
radix(R0, R1, R, m_f - 1); | |||
memcpy(f0, R0, 2 * n); | |||
memcpy(f0 + n, Q0, 2 * n); | |||
memcpy(f1, R1, 2 * n); | |||
memcpy(f1 + n, Q1, 2 * n); | |||
} | |||
@@ -160,25 +168,27 @@ static void radix(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f) { | |||
* @param[in] betas FFT constants | |||
*/ | |||
static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32_t m_f, const uint16_t *betas) { | |||
uint16_t f0[1 << (PARAM_FFT - 2)]; | |||
uint16_t f1[1 << (PARAM_FFT - 2)]; | |||
uint16_t gammas[PARAM_M - 2]; | |||
uint16_t deltas[PARAM_M - 2]; | |||
size_t k = 1 << (m - 1); | |||
uint16_t gammas_sums[1 << (PARAM_M - 2)]; | |||
uint16_t f0[1 << (PARAM_FFT - 2)] = {0}; | |||
uint16_t f1[1 << (PARAM_FFT - 2)] = {0}; | |||
uint16_t gammas[PARAM_M - 2] = {0}; | |||
uint16_t deltas[PARAM_M - 2] = {0}; | |||
uint16_t gammas_sums[1 << (PARAM_M - 2)] = {0}; | |||
uint16_t u[1 << (PARAM_M - 2)] = {0}; | |||
uint16_t v[1 << (PARAM_M - 2)] = {0}; | |||
uint16_t tmp[PARAM_M - (PARAM_FFT - 1)] = {0}; | |||
uint16_t beta_m_pow; | |||
size_t i, j, k; | |||
// Step 1 | |||
if (m_f == 1) { | |||
uint16_t tmp[PARAM_M - (PARAM_FFT - 1)]; | |||
for (size_t i = 0 ; i < m ; ++i) { | |||
for (i = 0 ; i < m ; ++i) { | |||
tmp[i] = PQCLEAN_HQC128_AVX2_gf_mul(betas[i], f[1]); | |||
} | |||
w[0] = f[0]; | |||
for (size_t j = 0 ; j < m ; ++j) { | |||
for (size_t k = 0 ; k < (1U << j) ; ++k) { | |||
for (j = 0 ; j < m ; ++j) { | |||
for (k = 0 ; k < (1U << j) ; ++k) { | |||
w[(1 << j) + k] = w[k] ^ tmp[j]; | |||
} | |||
} | |||
@@ -188,8 +198,8 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 | |||
// Step 2: compute g | |||
if (betas[m - 1] != 1) { | |||
uint16_t beta_m_pow = 1; | |||
for (size_t i = 1 ; i < (1U << m_f) ; ++i) { | |||
beta_m_pow = 1; | |||
for (i = 1 ; i < (1U << m_f) ; ++i) { | |||
beta_m_pow = PQCLEAN_HQC128_AVX2_gf_mul(beta_m_pow, betas[m - 1]); | |||
f[i] = PQCLEAN_HQC128_AVX2_gf_mul(beta_m_pow, f[i]); | |||
} | |||
@@ -199,7 +209,7 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 | |||
radix(f0, f1, f, m_f); | |||
// Step 4: compute gammas and deltas | |||
for (uint8_t i = 0 ; i < m - 1 ; ++i) { | |||
for (i = 0 ; i + 1 < m ; ++i) { | |||
gammas[i] = PQCLEAN_HQC128_AVX2_gf_mul(betas[i], PQCLEAN_HQC128_AVX2_gf_inverse(betas[m - 1])); | |||
deltas[i] = PQCLEAN_HQC128_AVX2_gf_square(gammas[i]) ^ gammas[i]; | |||
} | |||
@@ -210,10 +220,11 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 | |||
// Step 5 | |||
fft_rec(u, f0, (f_coeffs + 1) / 2, m - 1, m_f - 1, deltas); | |||
k = 1 << ((m - 1) & 0xf); // &0xf is to let the compiler know that m-1 is small. | |||
if (f_coeffs <= 3) { // 3-coefficient polynomial f case: f1 is constant | |||
w[0] = u[0]; | |||
w[k] = u[0] ^ f1[0]; | |||
for (size_t i = 1 ; i < k ; ++i) { | |||
for (i = 1 ; i < k ; ++i) { | |||
w[i] = u[i] ^ PQCLEAN_HQC128_AVX2_gf_mul(gammas_sums[i], f1[0]); | |||
w[k + i] = w[i] ^ f1[0]; | |||
} | |||
@@ -224,7 +235,7 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 | |||
memcpy(w + k, v, 2 * k); | |||
w[0] = u[0]; | |||
w[k] ^= u[0]; | |||
for (size_t i = 1 ; i < k ; ++i) { | |||
for (i = 1 ; i < k ; ++i) { | |||
w[i] = u[i] ^ PQCLEAN_HQC128_AVX2_gf_mul(gammas_sums[i], v[i]); | |||
w[k + i] ^= w[i]; | |||
} | |||
@@ -253,14 +264,15 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 | |||
* @param[in] f_coeffs Number coefficients of f (i.e. deg(f)+1) | |||
*/ | |||
void PQCLEAN_HQC128_AVX2_fft(uint16_t *w, const uint16_t *f, size_t f_coeffs) { | |||
uint16_t betas[PARAM_M - 1]; | |||
uint16_t betas_sums[1 << (PARAM_M - 1)]; | |||
uint16_t f0[1 << (PARAM_FFT - 1)]; | |||
uint16_t f1[1 << (PARAM_FFT - 1)]; | |||
uint16_t deltas[PARAM_M - 1]; | |||
size_t k = 1 << (PARAM_M - 1); | |||
uint16_t u[1 << (PARAM_M - 1)]; | |||
uint16_t v[1 << (PARAM_M - 1)]; | |||
uint16_t betas[PARAM_M - 1] = {0}; | |||
uint16_t betas_sums[1 << (PARAM_M - 1)] = {0}; | |||
uint16_t f0[1 << (PARAM_FFT - 1)] = {0}; | |||
uint16_t f1[1 << (PARAM_FFT - 1)] = {0}; | |||
uint16_t deltas[PARAM_M - 1] = {0}; | |||
uint16_t u[1 << (PARAM_M - 1)] = {0}; | |||
uint16_t v[1 << (PARAM_M - 1)] = {0}; | |||
size_t i, k; | |||
// Follows Gao and Mateer algorithm | |||
compute_fft_betas(betas); | |||
@@ -276,7 +288,7 @@ void PQCLEAN_HQC128_AVX2_fft(uint16_t *w, const uint16_t *f, size_t f_coeffs) { | |||
radix(f0, f1, f, PARAM_FFT); | |||
// Step 4: Compute deltas | |||
for (size_t i = 0 ; i < PARAM_M - 1 ; ++i) { | |||
for (i = 0 ; i < PARAM_M - 1 ; ++i) { | |||
deltas[i] = PQCLEAN_HQC128_AVX2_gf_square(betas[i]) ^ betas[i]; | |||
} | |||
@@ -284,6 +296,7 @@ void PQCLEAN_HQC128_AVX2_fft(uint16_t *w, const uint16_t *f, size_t f_coeffs) { | |||
fft_rec(u, f0, (f_coeffs + 1) / 2, PARAM_M - 1, PARAM_FFT - 1, deltas); | |||
fft_rec(v, f1, f_coeffs / 2, PARAM_M - 1, PARAM_FFT - 1, deltas); | |||
k = 1 << (PARAM_M - 1); | |||
// Step 6, 7 and error polynomial computation | |||
memcpy(w + k, v, 2 * k); | |||
@@ -294,7 +307,7 @@ void PQCLEAN_HQC128_AVX2_fft(uint16_t *w, const uint16_t *f, size_t f_coeffs) { | |||
w[k] ^= u[0]; | |||
// Find other roots | |||
for (size_t i = 1 ; i < k ; ++i) { | |||
for (i = 1 ; i < k ; ++i) { | |||
w[i] = u[i] ^ PQCLEAN_HQC128_AVX2_gf_mul(betas_sums[i], v[i]); | |||
w[k + i] ^= w[i]; | |||
} | |||
@@ -309,25 +322,28 @@ void PQCLEAN_HQC128_AVX2_fft(uint16_t *w, const uint16_t *f, size_t f_coeffs) { | |||
* @param[in] w Array of size 2^PARAM_M | |||
*/ | |||
void PQCLEAN_HQC128_AVX2_fft_retrieve_bch_error_poly(uint64_t *error, const uint16_t *w) { | |||
uint16_t gammas[PARAM_M - 1]; | |||
uint16_t gammas_sums[1 << (PARAM_M - 1)]; | |||
size_t k = 1 << (PARAM_M - 1); | |||
size_t index = PARAM_GF_MUL_ORDER; | |||
uint16_t gammas[PARAM_M - 1] = {0}; | |||
uint16_t gammas_sums[1 << (PARAM_M - 1)] = {0}; | |||
uint64_t bit; | |||
size_t i, k, index; | |||
compute_fft_betas(gammas); | |||
compute_subset_sums(gammas_sums, gammas, PARAM_M - 1); | |||
error[0] ^= ((uint64_t) 1) ^ ((uint16_t) - w[0] >> 15); | |||
uint64_t bit = ((uint64_t) 1) ^ ((uint16_t) - w[k] >> 15); | |||
error[0] ^= 1 ^ ((uint16_t) - w[0] >> 15); | |||
k = 1 << (PARAM_M - 1); | |||
index = PARAM_GF_MUL_ORDER; | |||
bit = 1 ^ ((uint16_t) - w[k] >> 15); | |||
error[index / 8] ^= bit << (index % 64); | |||
for (size_t i = 1 ; i < k ; ++i) { | |||
for (i = 1 ; i < k ; ++i) { | |||
index = PARAM_GF_MUL_ORDER - PQCLEAN_HQC128_AVX2_gf_log(gammas_sums[i]); | |||
bit = ((uint64_t) 1) ^ ((uint16_t) - w[i] >> 15); | |||
bit = 1 ^ ((uint16_t) - w[i] >> 15); | |||
error[index / 64] ^= bit << (index % 64); | |||
index = PARAM_GF_MUL_ORDER - PQCLEAN_HQC128_AVX2_gf_log(gammas_sums[i] ^ 1); | |||
bit = ((uint64_t) 1) ^ ((uint16_t) - w[k + i] >> 15); | |||
bit = 1 ^ ((uint16_t) - w[k + i] >> 15); | |||
error[index / 64] ^= bit << (index % 64); | |||
} | |||
} |
@@ -328,9 +328,7 @@ static void TOOM3Mult(__m256i *Out, const uint64_t *A, const uint64_t *B) { | |||
static __m256i W0[2 * (T_TM3_3W_256)], W1[2 * (T_TM3_3W_256)], W2[2 * (T_TM3_3W_256)], W3[2 * (T_TM3_3W_256)], W4[2 * (T_TM3_3W_256)]; | |||
static __m256i tmp[2 * (T_TM3_3W_256)]; | |||
static __m256i ro256[6 * (T_TM3_3W_256)]; | |||
const __m256i zero = (__m256i) { | |||
0ul, 0ul, 0ul, 0ul | |||
}; | |||
const __m256i zero = _mm256_setzero_si256(); | |||
int32_t T2 = T_TM3_3W_64 << 1; | |||
for (int32_t i = 0 ; i < T_TM3_3W_256 - 1 ; i++) { | |||
@@ -347,24 +345,12 @@ static void TOOM3Mult(__m256i *Out, const uint64_t *A, const uint64_t *B) { | |||
for (int32_t i = T_TM3_3W_256 - 1 ; i < T_TM3_3W_256 ; i++) { | |||
int32_t i4 = i << 2; | |||
int32_t i41 = i4 + 1; | |||
U0[i] = (__m256i) { | |||
A[i4], A[i41], 0x0ul, 0x0ul | |||
}; | |||
V0[i] = (__m256i) { | |||
B[i4], B[i41], 0x0ul, 0x0ul | |||
}; | |||
U1[i] = (__m256i) { | |||
A[i4 + T_TM3_3W_64 - 2], A[i41 + T_TM3_3W_64 - 2], 0x0ul, 0x0ul | |||
}; | |||
V1[i] = (__m256i) { | |||
B[i4 + T_TM3_3W_64 - 2], B[i41 + T_TM3_3W_64 - 2], 0x0ul, 0x0ul | |||
}; | |||
U2[i] = (__m256i) { | |||
A[i4 - 4 + T2], A[i4 - 3 + T2], 0x0ul, 0x0ul | |||
}; | |||
V2[i] = (__m256i) { | |||
B[i4 - 4 + T2], B[i4 - 3 + T2], 0x0ul, 0x0ul | |||
}; | |||
U0[i] = _mm256_set_epi64x(0, 0, A[i41], A[i4]); | |||
V0[i] = _mm256_set_epi64x(0, 0, B[i41], B[i4]); | |||
U1[i] = _mm256_set_epi64x(0, 0, A[i41 + T_TM3_3W_64 - 2], A[i4 + T_TM3_3W_64 - 2]); | |||
V1[i] = _mm256_set_epi64x(0, 0, B[i41 + T_TM3_3W_64 - 2], B[i4 + T_TM3_3W_64 - 2]); | |||
U2[i] = _mm256_set_epi64x(0, 0, A[i4 - 3 + T2], A[i4 - 4 + T2]); | |||
V2[i] = _mm256_set_epi64x(0, 0, B[i4 - 3 + T2], B[i4 - 4 + T2]); | |||
} | |||
// Evaluation phase : x= X^64 | |||
@@ -452,9 +438,7 @@ static void TOOM3Mult(__m256i *Out, const uint64_t *A, const uint64_t *B) { | |||
//W2 =(W2 + W3 + W4*(x^3+1))/(x+1) | |||
U1_64 = ((int64_t *) W4); | |||
__m256i *U1_256 = (__m256i *) (U1_64 + 1); | |||
tmp[0] = W2[0] ^ W3[0] ^ W4[0] ^ (__m256i) { | |||
0x0ul, 0x0ul, 0x0ul, U1_64[0] | |||
}; | |||
tmp[0] = W2[0] ^ W3[0] ^ W4[0] ^ _mm256_set_epi64x(U1_64[0], 0, 0, 0); | |||
for (int32_t i = 1 ; i < (T_TM3_3W_256 << 1) - 1 ; i++) { | |||
tmp[i] = W2[i] ^ W3[i] ^ W4[i] ^ _mm256_lddqu_si256(&U1_256[i - 1]); | |||
@@ -19,6 +19,7 @@ | |||
static void compute_fft_betas(uint16_t *betas); | |||
static void compute_subset_sums(uint16_t *subset_sums, const uint16_t *set, size_t set_size); | |||
static void radix(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f); | |||
static void radix_big(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f); | |||
static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32_t m_f, const uint16_t *betas); | |||
@@ -28,7 +29,8 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 | |||
* @param[out] betas Array of size PARAM_M-1 | |||
*/ | |||
static void compute_fft_betas(uint16_t *betas) { | |||
for (size_t i = 0 ; i < PARAM_M - 1 ; ++i) { | |||
size_t i; | |||
for (i = 0 ; i < PARAM_M - 1 ; ++i) { | |||
betas[i] = 1 << (PARAM_M - 1 - i); | |||
} | |||
} | |||
@@ -46,10 +48,11 @@ static void compute_fft_betas(uint16_t *betas) { | |||
* @param[in] set_size Size of the array set | |||
*/ | |||
static void compute_subset_sums(uint16_t *subset_sums, const uint16_t *set, size_t set_size) { | |||
size_t i, j; | |||
subset_sums[0] = 0; | |||
for (size_t i = 0 ; i < set_size ; ++i) { | |||
for (size_t j = 0 ; j < (1U << i) ; ++j) { | |||
for (i = 0 ; i < set_size ; ++i) { | |||
for (j = 0 ; j < (1U << i) ; ++j) { | |||
subset_sums[(1 << i) + j] = set[i] ^ subset_sums[j]; | |||
} | |||
} | |||
@@ -89,7 +92,7 @@ static void radix(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f) { | |||
f1[2] = f[3] ^ f1[1] ^ f0[3]; | |||
f0[1] = f[2] ^ f0[2] ^ f1[1]; | |||
f1[0] = f[1] ^ f0[1]; | |||
return; | |||
break; | |||
case 3: | |||
f0[0] = f[0]; | |||
@@ -100,49 +103,54 @@ static void radix(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f) { | |||
f1[3] = f[7]; | |||
f0[1] = f[2] ^ f0[2] ^ f1[1]; | |||
f1[0] = f[1] ^ f0[1]; | |||
return; | |||
break; | |||
case 2: | |||
f0[0] = f[0]; | |||
f0[1] = f[2] ^ f[3]; | |||
f1[0] = f[1] ^ f0[1]; | |||
f1[1] = f[3]; | |||
return; | |||
break; | |||
case 1: | |||
f0[0] = f[0]; | |||
f1[0] = f[1]; | |||
return; | |||
break; | |||
default: | |||
; | |||
size_t n = 1 << (m_f - 2); | |||
radix_big(f0, f1, f, m_f); | |||
break; | |||
} | |||
} | |||
uint16_t Q[2 * (1 << (PARAM_FFT - 2))]; | |||
uint16_t R[2 * (1 << (PARAM_FFT - 2))]; | |||
static void radix_big(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f) { | |||
uint16_t Q[2 * (1 << (PARAM_FFT - 2))] = {0}; | |||
uint16_t R[2 * (1 << (PARAM_FFT - 2))] = {0}; | |||
uint16_t Q0[1 << (PARAM_FFT - 2)]; | |||
uint16_t Q1[1 << (PARAM_FFT - 2)]; | |||
uint16_t R0[1 << (PARAM_FFT - 2)]; | |||
uint16_t R1[1 << (PARAM_FFT - 2)]; | |||
uint16_t Q0[1 << (PARAM_FFT - 2)] = {0}; | |||
uint16_t Q1[1 << (PARAM_FFT - 2)] = {0}; | |||
uint16_t R0[1 << (PARAM_FFT - 2)] = {0}; | |||
uint16_t R1[1 << (PARAM_FFT - 2)] = {0}; | |||
memcpy(Q, f + 3 * n, 2 * n); | |||
memcpy(Q + n, f + 3 * n, 2 * n); | |||
memcpy(R, f, 4 * n); | |||
size_t i, n; | |||
for (size_t i = 0 ; i < n ; ++i) { | |||
Q[i] ^= f[2 * n + i]; | |||
R[n + i] ^= Q[i]; | |||
} | |||
n = 1 << (m_f - 2); | |||
memcpy(Q, f + 3 * n, 2 * n); | |||
memcpy(Q + n, f + 3 * n, 2 * n); | |||
memcpy(R, f, 4 * n); | |||
radix(Q0, Q1, Q, m_f - 1); | |||
radix(R0, R1, R, m_f - 1); | |||
memcpy(f0, R0, 2 * n); | |||
memcpy(f0 + n, Q0, 2 * n); | |||
memcpy(f1, R1, 2 * n); | |||
memcpy(f1 + n, Q1, 2 * n); | |||
for (i = 0 ; i < n ; ++i) { | |||
Q[i] ^= f[2 * n + i]; | |||
R[n + i] ^= Q[i]; | |||
} | |||
radix(Q0, Q1, Q, m_f - 1); | |||
radix(R0, R1, R, m_f - 1); | |||
memcpy(f0, R0, 2 * n); | |||
memcpy(f0 + n, Q0, 2 * n); | |||
memcpy(f1, R1, 2 * n); | |||
memcpy(f1 + n, Q1, 2 * n); | |||
} | |||
@@ -160,25 +168,27 @@ static void radix(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f) { | |||
* @param[in] betas FFT constants | |||
*/ | |||
static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32_t m_f, const uint16_t *betas) { | |||
uint16_t f0[1 << (PARAM_FFT - 2)]; | |||
uint16_t f1[1 << (PARAM_FFT - 2)]; | |||
uint16_t gammas[PARAM_M - 2]; | |||
uint16_t deltas[PARAM_M - 2]; | |||
size_t k = 1 << (m - 1); | |||
uint16_t gammas_sums[1 << (PARAM_M - 2)]; | |||
uint16_t f0[1 << (PARAM_FFT - 2)] = {0}; | |||
uint16_t f1[1 << (PARAM_FFT - 2)] = {0}; | |||
uint16_t gammas[PARAM_M - 2] = {0}; | |||
uint16_t deltas[PARAM_M - 2] = {0}; | |||
uint16_t gammas_sums[1 << (PARAM_M - 2)] = {0}; | |||
uint16_t u[1 << (PARAM_M - 2)] = {0}; | |||
uint16_t v[1 << (PARAM_M - 2)] = {0}; | |||
uint16_t tmp[PARAM_M - (PARAM_FFT - 1)] = {0}; | |||
uint16_t beta_m_pow; | |||
size_t i, j, k; | |||
// Step 1 | |||
if (m_f == 1) { | |||
uint16_t tmp[PARAM_M - (PARAM_FFT - 1)]; | |||
for (size_t i = 0 ; i < m ; ++i) { | |||
for (i = 0 ; i < m ; ++i) { | |||
tmp[i] = PQCLEAN_HQC192_AVX2_gf_mul(betas[i], f[1]); | |||
} | |||
w[0] = f[0]; | |||
for (size_t j = 0 ; j < m ; ++j) { | |||
for (size_t k = 0 ; k < (1U << j) ; ++k) { | |||
for (j = 0 ; j < m ; ++j) { | |||
for (k = 0 ; k < (1U << j) ; ++k) { | |||
w[(1 << j) + k] = w[k] ^ tmp[j]; | |||
} | |||
} | |||
@@ -188,8 +198,8 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 | |||
// Step 2: compute g | |||
if (betas[m - 1] != 1) { | |||
uint16_t beta_m_pow = 1; | |||
for (size_t i = 1 ; i < (1U << m_f) ; ++i) { | |||
beta_m_pow = 1; | |||
for (i = 1 ; i < (1U << m_f) ; ++i) { | |||
beta_m_pow = PQCLEAN_HQC192_AVX2_gf_mul(beta_m_pow, betas[m - 1]); | |||
f[i] = PQCLEAN_HQC192_AVX2_gf_mul(beta_m_pow, f[i]); | |||
} | |||
@@ -199,7 +209,7 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 | |||
radix(f0, f1, f, m_f); | |||
// Step 4: compute gammas and deltas | |||
for (uint8_t i = 0 ; i < m - 1 ; ++i) { | |||
for (i = 0 ; i + 1 < m ; ++i) { | |||
gammas[i] = PQCLEAN_HQC192_AVX2_gf_mul(betas[i], PQCLEAN_HQC192_AVX2_gf_inverse(betas[m - 1])); | |||
deltas[i] = PQCLEAN_HQC192_AVX2_gf_square(gammas[i]) ^ gammas[i]; | |||
} | |||
@@ -210,10 +220,11 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 | |||
// Step 5 | |||
fft_rec(u, f0, (f_coeffs + 1) / 2, m - 1, m_f - 1, deltas); | |||
k = 1 << ((m - 1) & 0xf); // &0xf is to let the compiler know that m-1 is small. | |||
if (f_coeffs <= 3) { // 3-coefficient polynomial f case: f1 is constant | |||
w[0] = u[0]; | |||
w[k] = u[0] ^ f1[0]; | |||
for (size_t i = 1 ; i < k ; ++i) { | |||
for (i = 1 ; i < k ; ++i) { | |||
w[i] = u[i] ^ PQCLEAN_HQC192_AVX2_gf_mul(gammas_sums[i], f1[0]); | |||
w[k + i] = w[i] ^ f1[0]; | |||
} | |||
@@ -224,7 +235,7 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 | |||
memcpy(w + k, v, 2 * k); | |||
w[0] = u[0]; | |||
w[k] ^= u[0]; | |||
for (size_t i = 1 ; i < k ; ++i) { | |||
for (i = 1 ; i < k ; ++i) { | |||
w[i] = u[i] ^ PQCLEAN_HQC192_AVX2_gf_mul(gammas_sums[i], v[i]); | |||
w[k + i] ^= w[i]; | |||
} | |||
@@ -253,14 +264,15 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 | |||
* @param[in] f_coeffs Number coefficients of f (i.e. deg(f)+1) | |||
*/ | |||
void PQCLEAN_HQC192_AVX2_fft(uint16_t *w, const uint16_t *f, size_t f_coeffs) { | |||
uint16_t betas[PARAM_M - 1]; | |||
uint16_t betas_sums[1 << (PARAM_M - 1)]; | |||
uint16_t f0[1 << (PARAM_FFT - 1)]; | |||
uint16_t f1[1 << (PARAM_FFT - 1)]; | |||
uint16_t deltas[PARAM_M - 1]; | |||
size_t k = 1 << (PARAM_M - 1); | |||
uint16_t u[1 << (PARAM_M - 1)]; | |||
uint16_t v[1 << (PARAM_M - 1)]; | |||
uint16_t betas[PARAM_M - 1] = {0}; | |||
uint16_t betas_sums[1 << (PARAM_M - 1)] = {0}; | |||
uint16_t f0[1 << (PARAM_FFT - 1)] = {0}; | |||
uint16_t f1[1 << (PARAM_FFT - 1)] = {0}; | |||
uint16_t deltas[PARAM_M - 1] = {0}; | |||
uint16_t u[1 << (PARAM_M - 1)] = {0}; | |||
uint16_t v[1 << (PARAM_M - 1)] = {0}; | |||
size_t i, k; | |||
// Follows Gao and Mateer algorithm | |||
compute_fft_betas(betas); | |||
@@ -276,7 +288,7 @@ void PQCLEAN_HQC192_AVX2_fft(uint16_t *w, const uint16_t *f, size_t f_coeffs) { | |||
radix(f0, f1, f, PARAM_FFT); | |||
// Step 4: Compute deltas | |||
for (size_t i = 0 ; i < PARAM_M - 1 ; ++i) { | |||
for (i = 0 ; i < PARAM_M - 1 ; ++i) { | |||
deltas[i] = PQCLEAN_HQC192_AVX2_gf_square(betas[i]) ^ betas[i]; | |||
} | |||
@@ -284,6 +296,7 @@ void PQCLEAN_HQC192_AVX2_fft(uint16_t *w, const uint16_t *f, size_t f_coeffs) { | |||
fft_rec(u, f0, (f_coeffs + 1) / 2, PARAM_M - 1, PARAM_FFT - 1, deltas); | |||
fft_rec(v, f1, f_coeffs / 2, PARAM_M - 1, PARAM_FFT - 1, deltas); | |||
k = 1 << (PARAM_M - 1); | |||
// Step 6, 7 and error polynomial computation | |||
memcpy(w + k, v, 2 * k); | |||
@@ -294,7 +307,7 @@ void PQCLEAN_HQC192_AVX2_fft(uint16_t *w, const uint16_t *f, size_t f_coeffs) { | |||
w[k] ^= u[0]; | |||
// Find other roots | |||
for (size_t i = 1 ; i < k ; ++i) { | |||
for (i = 1 ; i < k ; ++i) { | |||
w[i] = u[i] ^ PQCLEAN_HQC192_AVX2_gf_mul(betas_sums[i], v[i]); | |||
w[k + i] ^= w[i]; | |||
} | |||
@@ -309,25 +322,28 @@ void PQCLEAN_HQC192_AVX2_fft(uint16_t *w, const uint16_t *f, size_t f_coeffs) { | |||
* @param[in] w Array of size 2^PARAM_M | |||
*/ | |||
void PQCLEAN_HQC192_AVX2_fft_retrieve_bch_error_poly(uint64_t *error, const uint16_t *w) { | |||
uint16_t gammas[PARAM_M - 1]; | |||
uint16_t gammas_sums[1 << (PARAM_M - 1)]; | |||
size_t k = 1 << (PARAM_M - 1); | |||
size_t index = PARAM_GF_MUL_ORDER; | |||
uint16_t gammas[PARAM_M - 1] = {0}; | |||
uint16_t gammas_sums[1 << (PARAM_M - 1)] = {0}; | |||
uint64_t bit; | |||
size_t i, k, index; | |||
compute_fft_betas(gammas); | |||
compute_subset_sums(gammas_sums, gammas, PARAM_M - 1); | |||
error[0] ^= ((uint64_t) 1) ^ ((uint16_t) - w[0] >> 15); | |||
uint64_t bit = ((uint64_t) 1) ^ ((uint16_t) - w[k] >> 15); | |||
error[0] ^= 1 ^ ((uint16_t) - w[0] >> 15); | |||
k = 1 << (PARAM_M - 1); | |||
index = PARAM_GF_MUL_ORDER; | |||
bit = 1 ^ ((uint16_t) - w[k] >> 15); | |||
error[index / 8] ^= bit << (index % 64); | |||
for (size_t i = 1 ; i < k ; ++i) { | |||
for (i = 1 ; i < k ; ++i) { | |||
index = PARAM_GF_MUL_ORDER - PQCLEAN_HQC192_AVX2_gf_log(gammas_sums[i]); | |||
bit = ((uint64_t) 1) ^ ((uint16_t) - w[i] >> 15); | |||
bit = 1 ^ ((uint16_t) - w[i] >> 15); | |||
error[index / 64] ^= bit << (index % 64); | |||
index = PARAM_GF_MUL_ORDER - PQCLEAN_HQC192_AVX2_gf_log(gammas_sums[i] ^ 1); | |||
bit = ((uint64_t) 1) ^ ((uint16_t) - w[k + i] >> 15); | |||
bit = 1 ^ ((uint16_t) - w[k + i] >> 15); | |||
error[index / 64] ^= bit << (index % 64); | |||
} | |||
} |
@@ -368,9 +368,7 @@ static void TOOM3Mult(__m256i *Out, const uint64_t *A, const uint64_t *B) { | |||
static __m256i W0[2 * (T_TM3_3W_256)], W1[2 * (T_TM3_3W_256)], W2[2 * (T_TM3_3W_256)], W3[2 * (T_TM3_3W_256)], W4[2 * (T_TM3_3W_256)]; | |||
static __m256i tmp[2 * (T_TM3_3W_256)]; | |||
static __m256i ro256[6 * (T_TM3_3W_256)]; | |||
const __m256i zero = (__m256i) { | |||
0ul, 0ul, 0ul, 0ul | |||
}; | |||
const __m256i zero = _mm256_setzero_si256(); | |||
int32_t T2 = T_TM3_3W_64 << 1; | |||
for (int32_t i = 0 ; i < T_TM3_3W_256 - 1 ; i++) { | |||
@@ -387,24 +385,12 @@ static void TOOM3Mult(__m256i *Out, const uint64_t *A, const uint64_t *B) { | |||
for (int32_t i = T_TM3_3W_256 - 1 ; i < T_TM3_3W_256 ; i++) { | |||
int32_t i4 = i << 2; | |||
int32_t i41 = i4 + 1; | |||
U0[i] = (__m256i) { | |||
A[i4], A[i41], 0x0ul, 0x0ul | |||
}; | |||
V0[i] = (__m256i) { | |||
B[i4], B[i41], 0x0ul, 0x0ul | |||
}; | |||
U1[i] = (__m256i) { | |||
A[i4 + T_TM3_3W_64 - 2], A[i41 + T_TM3_3W_64 - 2], 0x0ul, 0x0ul | |||
}; | |||
V1[i] = (__m256i) { | |||
B[i4 + T_TM3_3W_64 - 2], B[i41 + T_TM3_3W_64 - 2], 0x0ul, 0x0ul | |||
}; | |||
U2[i] = (__m256i) { | |||
A[i4 - 4 + T2], A[i4 - 3 + T2], 0x0ul, 0x0ul | |||
}; | |||
V2[i] = (__m256i) { | |||
B[i4 - 4 + T2], B[i4 - 3 + T2], 0x0ul, 0x0ul | |||
}; | |||
U0[i] = _mm256_set_epi64x(0, 0, A[i41], A[i4]); | |||
V0[i] = _mm256_set_epi64x(0, 0, B[i41], B[i4]); | |||
U1[i] = _mm256_set_epi64x(0, 0, A[i41 + T_TM3_3W_64 - 2], A[i4 + T_TM3_3W_64 - 2]); | |||
V1[i] = _mm256_set_epi64x(0, 0, B[i41 + T_TM3_3W_64 - 2], B[i4 + T_TM3_3W_64 - 2]); | |||
U2[i] = _mm256_set_epi64x(0, 0, A[i4 - 3 + T2], A[i4 - 4 + T2]); | |||
V2[i] = _mm256_set_epi64x(0, 0, B[i4 - 3 + T2], B[i4 - 4 + T2]); | |||
} | |||
// Evaluation phase : x= X^64 | |||
@@ -492,9 +478,7 @@ static void TOOM3Mult(__m256i *Out, const uint64_t *A, const uint64_t *B) { | |||
//W2 =(W2 + W3 + W4*(x^3+1))/(x+1) | |||
U1_64 = ((int64_t *) W4); | |||
__m256i *U1_256 = (__m256i *) (U1_64 + 1); | |||
tmp[0] = W2[0] ^ W3[0] ^ W4[0] ^ (__m256i) { | |||
0x0ul, 0x0ul, 0x0ul, U1_64[0] | |||
}; | |||
tmp[0] = W2[0] ^ W3[0] ^ W4[0] ^ _mm256_set_epi64x(U1_64[0], 0, 0, 0); | |||
for (int32_t i = 1 ; i < (T_TM3_3W_256 << 1) - 1 ; i++) { | |||
tmp[i] = W2[i] ^ W3[i] ^ W4[i] ^ _mm256_lddqu_si256(&U1_256[i - 1]); | |||
@@ -19,6 +19,7 @@ | |||
static void compute_fft_betas(uint16_t *betas); | |||
static void compute_subset_sums(uint16_t *subset_sums, const uint16_t *set, size_t set_size); | |||
static void radix(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f); | |||
static void radix_big(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f); | |||
static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32_t m_f, const uint16_t *betas); | |||
@@ -28,7 +29,8 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 | |||
* @param[out] betas Array of size PARAM_M-1 | |||
*/ | |||
static void compute_fft_betas(uint16_t *betas) { | |||
for (size_t i = 0 ; i < PARAM_M - 1 ; ++i) { | |||
size_t i; | |||
for (i = 0 ; i < PARAM_M - 1 ; ++i) { | |||
betas[i] = 1 << (PARAM_M - 1 - i); | |||
} | |||
} | |||
@@ -46,10 +48,11 @@ static void compute_fft_betas(uint16_t *betas) { | |||
* @param[in] set_size Size of the array set | |||
*/ | |||
static void compute_subset_sums(uint16_t *subset_sums, const uint16_t *set, size_t set_size) { | |||
size_t i, j; | |||
subset_sums[0] = 0; | |||
for (size_t i = 0 ; i < set_size ; ++i) { | |||
for (size_t j = 0 ; j < (1U << i) ; ++j) { | |||
for (i = 0 ; i < set_size ; ++i) { | |||
for (j = 0 ; j < (1U << i) ; ++j) { | |||
subset_sums[(1 << i) + j] = set[i] ^ subset_sums[j]; | |||
} | |||
} | |||
@@ -89,7 +92,7 @@ static void radix(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f) { | |||
f1[2] = f[3] ^ f1[1] ^ f0[3]; | |||
f0[1] = f[2] ^ f0[2] ^ f1[1]; | |||
f1[0] = f[1] ^ f0[1]; | |||
return; | |||
break; | |||
case 3: | |||
f0[0] = f[0]; | |||
@@ -100,49 +103,54 @@ static void radix(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f) { | |||
f1[3] = f[7]; | |||
f0[1] = f[2] ^ f0[2] ^ f1[1]; | |||
f1[0] = f[1] ^ f0[1]; | |||
return; | |||
break; | |||
case 2: | |||
f0[0] = f[0]; | |||
f0[1] = f[2] ^ f[3]; | |||
f1[0] = f[1] ^ f0[1]; | |||
f1[1] = f[3]; | |||
return; | |||
break; | |||
case 1: | |||
f0[0] = f[0]; | |||
f1[0] = f[1]; | |||
return; | |||
break; | |||
default: | |||
; | |||
size_t n = 1 << (m_f - 2); | |||
radix_big(f0, f1, f, m_f); | |||
break; | |||
} | |||
} | |||
uint16_t Q[2 * (1 << (PARAM_FFT - 2))]; | |||
uint16_t R[2 * (1 << (PARAM_FFT - 2))]; | |||
static void radix_big(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f) { | |||
uint16_t Q[2 * (1 << (PARAM_FFT - 2))] = {0}; | |||
uint16_t R[2 * (1 << (PARAM_FFT - 2))] = {0}; | |||
uint16_t Q0[1 << (PARAM_FFT - 2)]; | |||
uint16_t Q1[1 << (PARAM_FFT - 2)]; | |||
uint16_t R0[1 << (PARAM_FFT - 2)]; | |||
uint16_t R1[1 << (PARAM_FFT - 2)]; | |||
uint16_t Q0[1 << (PARAM_FFT - 2)] = {0}; | |||
uint16_t Q1[1 << (PARAM_FFT - 2)] = {0}; | |||
uint16_t R0[1 << (PARAM_FFT - 2)] = {0}; | |||
uint16_t R1[1 << (PARAM_FFT - 2)] = {0}; | |||
memcpy(Q, f + 3 * n, 2 * n); | |||
memcpy(Q + n, f + 3 * n, 2 * n); | |||
memcpy(R, f, 4 * n); | |||
size_t i, n; | |||
for (size_t i = 0 ; i < n ; ++i) { | |||
Q[i] ^= f[2 * n + i]; | |||
R[n + i] ^= Q[i]; | |||
} | |||
n = 1 << (m_f - 2); | |||
memcpy(Q, f + 3 * n, 2 * n); | |||
memcpy(Q + n, f + 3 * n, 2 * n); | |||
memcpy(R, f, 4 * n); | |||
radix(Q0, Q1, Q, m_f - 1); | |||
radix(R0, R1, R, m_f - 1); | |||
memcpy(f0, R0, 2 * n); | |||
memcpy(f0 + n, Q0, 2 * n); | |||
memcpy(f1, R1, 2 * n); | |||
memcpy(f1 + n, Q1, 2 * n); | |||
for (i = 0 ; i < n ; ++i) { | |||
Q[i] ^= f[2 * n + i]; | |||
R[n + i] ^= Q[i]; | |||
} | |||
radix(Q0, Q1, Q, m_f - 1); | |||
radix(R0, R1, R, m_f - 1); | |||
memcpy(f0, R0, 2 * n); | |||
memcpy(f0 + n, Q0, 2 * n); | |||
memcpy(f1, R1, 2 * n); | |||
memcpy(f1 + n, Q1, 2 * n); | |||
} | |||
@@ -160,25 +168,27 @@ static void radix(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f) { | |||
* @param[in] betas FFT constants | |||
*/ | |||
static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32_t m_f, const uint16_t *betas) { | |||
uint16_t f0[1 << (PARAM_FFT - 2)]; | |||
uint16_t f1[1 << (PARAM_FFT - 2)]; | |||
uint16_t gammas[PARAM_M - 2]; | |||
uint16_t deltas[PARAM_M - 2]; | |||
size_t k = 1 << (m - 1); | |||
uint16_t gammas_sums[1 << (PARAM_M - 2)]; | |||
uint16_t f0[1 << (PARAM_FFT - 2)] = {0}; | |||
uint16_t f1[1 << (PARAM_FFT - 2)] = {0}; | |||
uint16_t gammas[PARAM_M - 2] = {0}; | |||
uint16_t deltas[PARAM_M - 2] = {0}; | |||
uint16_t gammas_sums[1 << (PARAM_M - 2)] = {0}; | |||
uint16_t u[1 << (PARAM_M - 2)] = {0}; | |||
uint16_t v[1 << (PARAM_M - 2)] = {0}; | |||
uint16_t tmp[PARAM_M - (PARAM_FFT - 1)] = {0}; | |||
uint16_t beta_m_pow; | |||
size_t i, j, k; | |||
// Step 1 | |||
if (m_f == 1) { | |||
uint16_t tmp[PARAM_M - (PARAM_FFT - 1)]; | |||
for (size_t i = 0 ; i < m ; ++i) { | |||
for (i = 0 ; i < m ; ++i) { | |||
tmp[i] = PQCLEAN_HQC256_AVX2_gf_mul(betas[i], f[1]); | |||
} | |||
w[0] = f[0]; | |||
for (size_t j = 0 ; j < m ; ++j) { | |||
for (size_t k = 0 ; k < (1U << j) ; ++k) { | |||
for (j = 0 ; j < m ; ++j) { | |||
for (k = 0 ; k < (1U << j) ; ++k) { | |||
w[(1 << j) + k] = w[k] ^ tmp[j]; | |||
} | |||
} | |||
@@ -188,8 +198,8 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 | |||
// Step 2: compute g | |||
if (betas[m - 1] != 1) { | |||
uint16_t beta_m_pow = 1; | |||
for (size_t i = 1 ; i < (1U << m_f) ; ++i) { | |||
beta_m_pow = 1; | |||
for (i = 1 ; i < (1U << m_f) ; ++i) { | |||
beta_m_pow = PQCLEAN_HQC256_AVX2_gf_mul(beta_m_pow, betas[m - 1]); | |||
f[i] = PQCLEAN_HQC256_AVX2_gf_mul(beta_m_pow, f[i]); | |||
} | |||
@@ -199,7 +209,7 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 | |||
radix(f0, f1, f, m_f); | |||
// Step 4: compute gammas and deltas | |||
for (uint8_t i = 0 ; i < m - 1 ; ++i) { | |||
for (i = 0 ; i + 1 < m ; ++i) { | |||
gammas[i] = PQCLEAN_HQC256_AVX2_gf_mul(betas[i], PQCLEAN_HQC256_AVX2_gf_inverse(betas[m - 1])); | |||
deltas[i] = PQCLEAN_HQC256_AVX2_gf_square(gammas[i]) ^ gammas[i]; | |||
} | |||
@@ -210,10 +220,11 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 | |||
// Step 5 | |||
fft_rec(u, f0, (f_coeffs + 1) / 2, m - 1, m_f - 1, deltas); | |||
k = 1 << ((m - 1) & 0xf); // &0xf is to let the compiler know that m-1 is small. | |||
if (f_coeffs <= 3) { // 3-coefficient polynomial f case: f1 is constant | |||
w[0] = u[0]; | |||
w[k] = u[0] ^ f1[0]; | |||
for (size_t i = 1 ; i < k ; ++i) { | |||
for (i = 1 ; i < k ; ++i) { | |||
w[i] = u[i] ^ PQCLEAN_HQC256_AVX2_gf_mul(gammas_sums[i], f1[0]); | |||
w[k + i] = w[i] ^ f1[0]; | |||
} | |||
@@ -224,7 +235,7 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 | |||
memcpy(w + k, v, 2 * k); | |||
w[0] = u[0]; | |||
w[k] ^= u[0]; | |||
for (size_t i = 1 ; i < k ; ++i) { | |||
for (i = 1 ; i < k ; ++i) { | |||
w[i] = u[i] ^ PQCLEAN_HQC256_AVX2_gf_mul(gammas_sums[i], v[i]); | |||
w[k + i] ^= w[i]; | |||
} | |||
@@ -253,14 +264,15 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 | |||
* @param[in] f_coeffs Number coefficients of f (i.e. deg(f)+1) | |||
*/ | |||
void PQCLEAN_HQC256_AVX2_fft(uint16_t *w, const uint16_t *f, size_t f_coeffs) { | |||
uint16_t betas[PARAM_M - 1]; | |||
uint16_t betas_sums[1 << (PARAM_M - 1)]; | |||
uint16_t f0[1 << (PARAM_FFT - 1)]; | |||
uint16_t f1[1 << (PARAM_FFT - 1)]; | |||
uint16_t deltas[PARAM_M - 1]; | |||
size_t k = 1 << (PARAM_M - 1); | |||
uint16_t u[1 << (PARAM_M - 1)]; | |||
uint16_t v[1 << (PARAM_M - 1)]; | |||
uint16_t betas[PARAM_M - 1] = {0}; | |||
uint16_t betas_sums[1 << (PARAM_M - 1)] = {0}; | |||
uint16_t f0[1 << (PARAM_FFT - 1)] = {0}; | |||
uint16_t f1[1 << (PARAM_FFT - 1)] = {0}; | |||
uint16_t deltas[PARAM_M - 1] = {0}; | |||
uint16_t u[1 << (PARAM_M - 1)] = {0}; | |||
uint16_t v[1 << (PARAM_M - 1)] = {0}; | |||
size_t i, k; | |||
// Follows Gao and Mateer algorithm | |||
compute_fft_betas(betas); | |||
@@ -276,7 +288,7 @@ void PQCLEAN_HQC256_AVX2_fft(uint16_t *w, const uint16_t *f, size_t f_coeffs) { | |||
radix(f0, f1, f, PARAM_FFT); | |||
// Step 4: Compute deltas | |||
for (size_t i = 0 ; i < PARAM_M - 1 ; ++i) { | |||
for (i = 0 ; i < PARAM_M - 1 ; ++i) { | |||
deltas[i] = PQCLEAN_HQC256_AVX2_gf_square(betas[i]) ^ betas[i]; | |||
} | |||
@@ -284,6 +296,7 @@ void PQCLEAN_HQC256_AVX2_fft(uint16_t *w, const uint16_t *f, size_t f_coeffs) { | |||
fft_rec(u, f0, (f_coeffs + 1) / 2, PARAM_M - 1, PARAM_FFT - 1, deltas); | |||
fft_rec(v, f1, f_coeffs / 2, PARAM_M - 1, PARAM_FFT - 1, deltas); | |||
k = 1 << (PARAM_M - 1); | |||
// Step 6, 7 and error polynomial computation | |||
memcpy(w + k, v, 2 * k); | |||
@@ -294,7 +307,7 @@ void PQCLEAN_HQC256_AVX2_fft(uint16_t *w, const uint16_t *f, size_t f_coeffs) { | |||
w[k] ^= u[0]; | |||
// Find other roots | |||
for (size_t i = 1 ; i < k ; ++i) { | |||
for (i = 1 ; i < k ; ++i) { | |||
w[i] = u[i] ^ PQCLEAN_HQC256_AVX2_gf_mul(betas_sums[i], v[i]); | |||
w[k + i] ^= w[i]; | |||
} | |||
@@ -309,25 +322,28 @@ void PQCLEAN_HQC256_AVX2_fft(uint16_t *w, const uint16_t *f, size_t f_coeffs) { | |||
* @param[in] w Array of size 2^PARAM_M | |||
*/ | |||
void PQCLEAN_HQC256_AVX2_fft_retrieve_bch_error_poly(uint64_t *error, const uint16_t *w) { | |||
uint16_t gammas[PARAM_M - 1]; | |||
uint16_t gammas_sums[1 << (PARAM_M - 1)]; | |||
size_t k = 1 << (PARAM_M - 1); | |||
size_t index = PARAM_GF_MUL_ORDER; | |||
uint16_t gammas[PARAM_M - 1] = {0}; | |||
uint16_t gammas_sums[1 << (PARAM_M - 1)] = {0}; | |||
uint64_t bit; | |||
size_t i, k, index; | |||
compute_fft_betas(gammas); | |||
compute_subset_sums(gammas_sums, gammas, PARAM_M - 1); | |||
error[0] ^= ((uint64_t) 1) ^ ((uint16_t) - w[0] >> 15); | |||
uint64_t bit = ((uint64_t) 1) ^ ((uint16_t) - w[k] >> 15); | |||
error[0] ^= 1 ^ ((uint16_t) - w[0] >> 15); | |||
k = 1 << (PARAM_M - 1); | |||
index = PARAM_GF_MUL_ORDER; | |||
bit = 1 ^ ((uint16_t) - w[k] >> 15); | |||
error[index / 8] ^= bit << (index % 64); | |||
for (size_t i = 1 ; i < k ; ++i) { | |||
for (i = 1 ; i < k ; ++i) { | |||
index = PARAM_GF_MUL_ORDER - PQCLEAN_HQC256_AVX2_gf_log(gammas_sums[i]); | |||
bit = ((uint64_t) 1) ^ ((uint16_t) - w[i] >> 15); | |||
bit = 1 ^ ((uint16_t) - w[i] >> 15); | |||
error[index / 64] ^= bit << (index % 64); | |||
index = PARAM_GF_MUL_ORDER - PQCLEAN_HQC256_AVX2_gf_log(gammas_sums[i] ^ 1); | |||
bit = ((uint64_t) 1) ^ ((uint16_t) - w[k + i] >> 15); | |||
bit = 1 ^ ((uint16_t) - w[k + i] >> 15); | |||
error[index / 64] ^= bit << (index % 64); | |||
} | |||
} |
@@ -335,9 +335,7 @@ static void TOOM3Mult(__m256i *Out, const uint64_t *A, const uint64_t *B) { | |||
static __m256i W0[2 * (T_TM3_3W_256)], W1[2 * (T_TM3_3W_256)], W2[2 * (T_TM3_3W_256)], W3[2 * (T_TM3_3W_256)], W4[2 * (T_TM3_3W_256)]; | |||
static __m256i tmp[2 * (T_TM3_3W_256)]; | |||
static __m256i ro256[6 * (T_TM3_3W_256)]; | |||
const __m256i zero = (__m256i) { | |||
0ul, 0ul, 0ul, 0ul | |||
}; | |||
const __m256i zero = _mm256_setzero_si256(); | |||
int32_t T2 = T_TM3_3W_64 << 1; | |||
for (int32_t i = 0 ; i < T_TM3_3W_256 - 1 ; i++) { | |||
@@ -354,24 +352,12 @@ static void TOOM3Mult(__m256i *Out, const uint64_t *A, const uint64_t *B) { | |||
for (int32_t i = T_TM3_3W_256 - 1 ; i < T_TM3_3W_256 ; i++) { | |||
int32_t i4 = i << 2; | |||
int32_t i41 = i4 + 1; | |||
U0[i] = (__m256i) { | |||
A[i4], A[i41], 0x0ul, 0x0ul | |||
}; | |||
V0[i] = (__m256i) { | |||
B[i4], B[i41], 0x0ul, 0x0ul | |||
}; | |||
U1[i] = (__m256i) { | |||
A[i4 + T_TM3_3W_64 - 2], A[i41 + T_TM3_3W_64 - 2], 0x0ul, 0x0ul | |||
}; | |||
V1[i] = (__m256i) { | |||
B[i4 + T_TM3_3W_64 - 2], B[i41 + T_TM3_3W_64 - 2], 0x0ul, 0x0ul | |||
}; | |||
U2[i] = (__m256i) { | |||
A[i4 - 4 + T2], A[i4 - 3 + T2], 0x0ul, 0x0ul | |||
}; | |||
V2[i] = (__m256i) { | |||
B[i4 - 4 + T2], B[i4 - 3 + T2], 0x0ul, 0x0ul | |||
}; | |||
U0[i] = _mm256_set_epi64x(0, 0, A[i41], A[i4]); | |||
V0[i] = _mm256_set_epi64x(0, 0, B[i41], B[i4]); | |||
U1[i] = _mm256_set_epi64x(0, 0, A[i41 + T_TM3_3W_64 - 2], A[i4 + T_TM3_3W_64 - 2]); | |||
V1[i] = _mm256_set_epi64x(0, 0, B[i41 + T_TM3_3W_64 - 2], B[i4 + T_TM3_3W_64 - 2]); | |||
U2[i] = _mm256_set_epi64x(0, 0, A[i4 - 3 + T2], A[i4 - 4 + T2]); | |||
V2[i] = _mm256_set_epi64x(0, 0, B[i4 - 3 + T2], B[i4 - 4 + T2]); | |||
} | |||
// Evaluation phase : x= X^64 | |||
@@ -459,9 +445,7 @@ static void TOOM3Mult(__m256i *Out, const uint64_t *A, const uint64_t *B) { | |||
//W2 =(W2 + W3 + W4*(x^3+1))/(x+1) | |||
U1_64 = ((int64_t *) W4); | |||
__m256i *U1_256 = (__m256i *) (U1_64 + 1); | |||
tmp[0] = W2[0] ^ W3[0] ^ W4[0] ^ (__m256i) { | |||
0x0ul, 0x0ul, 0x0ul, U1_64[0] | |||
}; | |||
tmp[0] = W2[0] ^ W3[0] ^ W4[0] ^ _mm256_set_epi64x(U1_64[0], 0, 0, 0); | |||
for (int32_t i = 1 ; i < (T_TM3_3W_256 << 1) - 1 ; i++) { | |||
tmp[i] = W2[i] ^ W3[i] ^ W4[i] ^ _mm256_lddqu_si256(&U1_256[i - 1]); | |||
@@ -555,9 +539,7 @@ static void TOOM3RecMult(__m256i *Out, const uint64_t *A, const uint64_t *B) { | |||
__m256i W0[2 * (T_TM3R_3W_256 + 2)], W1[2 * (T_TM3R_3W_256 + 2)], W2[2 * (T_TM3R_3W_256 + 2)], W3[2 * (T_TM3R_3W_256 + 2)], W4[2 * (T_TM3R_3W_256 + 2)]; | |||
__m256i tmp[2 * (T_TM3R_3W_256 + 2) + 3]; | |||
__m256i ro256[tTM3R / 2]; | |||
const __m256i zero = (__m256i) { | |||
0ul, 0ul, 0ul, 0ul | |||
}; | |||
const __m256i zero = _mm256_setzero_si256(); | |||
int32_t T2 = T_TM3R_3W_64 << 1; | |||
for (int32_t i = 0 ; i < T_TM3R_3W_256 ; i++) { | |||
@@ -18,6 +18,7 @@ | |||
static void compute_fft_betas(uint16_t *betas); | |||
static void compute_subset_sums(uint16_t *subset_sums, const uint16_t *set, size_t set_size); | |||
static void radix(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f); | |||
static void radix_big(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f); | |||
static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32_t m_f, const uint16_t *betas); | |||
@@ -27,7 +28,8 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 | |||
* @param[out] betas Array of size PARAM_M-1 | |||
*/ | |||
static void compute_fft_betas(uint16_t *betas) { | |||
for (size_t i = 0 ; i < PARAM_M - 1 ; ++i) { | |||
size_t i; | |||
for (i = 0 ; i < PARAM_M - 1 ; ++i) { | |||
betas[i] = 1 << (PARAM_M - 1 - i); | |||
} | |||
} | |||
@@ -45,10 +47,11 @@ static void compute_fft_betas(uint16_t *betas) { | |||
* @param[in] set_size Size of the array set | |||
*/ | |||
static void compute_subset_sums(uint16_t *subset_sums, const uint16_t *set, size_t set_size) { | |||
size_t i, j; | |||
subset_sums[0] = 0; | |||
for (size_t i = 0 ; i < set_size ; ++i) { | |||
for (size_t j = 0 ; j < (1U << i) ; ++j) { | |||
for (i = 0 ; i < set_size ; ++i) { | |||
for (j = 0 ; j < (1U << i) ; ++j) { | |||
subset_sums[(1 << i) + j] = set[i] ^ subset_sums[j]; | |||
} | |||
} | |||
@@ -88,7 +91,7 @@ static void radix(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f) { | |||
f1[2] = f[3] ^ f1[1] ^ f0[3]; | |||
f0[1] = f[2] ^ f0[2] ^ f1[1]; | |||
f1[0] = f[1] ^ f0[1]; | |||
return; | |||
break; | |||
case 3: | |||
f0[0] = f[0]; | |||
@@ -99,49 +102,54 @@ static void radix(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f) { | |||
f1[3] = f[7]; | |||
f0[1] = f[2] ^ f0[2] ^ f1[1]; | |||
f1[0] = f[1] ^ f0[1]; | |||
return; | |||
break; | |||
case 2: | |||
f0[0] = f[0]; | |||
f0[1] = f[2] ^ f[3]; | |||
f1[0] = f[1] ^ f0[1]; | |||
f1[1] = f[3]; | |||
return; | |||
break; | |||
case 1: | |||
f0[0] = f[0]; | |||
f1[0] = f[1]; | |||
return; | |||
break; | |||
default: | |||
; | |||
size_t n = 1 << (m_f - 2); | |||
radix_big(f0, f1, f, m_f); | |||
break; | |||
} | |||
} | |||
uint16_t Q[2 * (1 << (PARAM_FFT - 2))]; | |||
uint16_t R[2 * (1 << (PARAM_FFT - 2))]; | |||
static void radix_big(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f) { | |||
uint16_t Q[2 * (1 << (PARAM_FFT - 2))] = {0}; | |||
uint16_t R[2 * (1 << (PARAM_FFT - 2))] = {0}; | |||
uint16_t Q0[1 << (PARAM_FFT - 2)]; | |||
uint16_t Q1[1 << (PARAM_FFT - 2)]; | |||
uint16_t R0[1 << (PARAM_FFT - 2)]; | |||
uint16_t R1[1 << (PARAM_FFT - 2)]; | |||
uint16_t Q0[1 << (PARAM_FFT - 2)] = {0}; | |||
uint16_t Q1[1 << (PARAM_FFT - 2)] = {0}; | |||
uint16_t R0[1 << (PARAM_FFT - 2)] = {0}; | |||
uint16_t R1[1 << (PARAM_FFT - 2)] = {0}; | |||
memcpy(Q, f + 3 * n, 2 * n); | |||
memcpy(Q + n, f + 3 * n, 2 * n); | |||
memcpy(R, f, 4 * n); | |||
size_t i, n; | |||
for (size_t i = 0 ; i < n ; ++i) { | |||
Q[i] ^= f[2 * n + i]; | |||
R[n + i] ^= Q[i]; | |||
} | |||
n = 1 << (m_f - 2); | |||
memcpy(Q, f + 3 * n, 2 * n); | |||
memcpy(Q + n, f + 3 * n, 2 * n); | |||
memcpy(R, f, 4 * n); | |||
radix(Q0, Q1, Q, m_f - 1); | |||
radix(R0, R1, R, m_f - 1); | |||
memcpy(f0, R0, 2 * n); | |||
memcpy(f0 + n, Q0, 2 * n); | |||
memcpy(f1, R1, 2 * n); | |||
memcpy(f1 + n, Q1, 2 * n); | |||
for (i = 0 ; i < n ; ++i) { | |||
Q[i] ^= f[2 * n + i]; | |||
R[n + i] ^= Q[i]; | |||
} | |||
radix(Q0, Q1, Q, m_f - 1); | |||
radix(R0, R1, R, m_f - 1); | |||
memcpy(f0, R0, 2 * n); | |||
memcpy(f0 + n, Q0, 2 * n); | |||
memcpy(f1, R1, 2 * n); | |||
memcpy(f1 + n, Q1, 2 * n); | |||
} | |||
@@ -159,25 +167,27 @@ static void radix(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f) { | |||
* @param[in] betas FFT constants | |||
*/ | |||
static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32_t m_f, const uint16_t *betas) { | |||
uint16_t f0[1 << (PARAM_FFT - 2)]; | |||
uint16_t f1[1 << (PARAM_FFT - 2)]; | |||
uint16_t gammas[PARAM_M - 2]; | |||
uint16_t deltas[PARAM_M - 2]; | |||
size_t k = 1 << (m - 1); | |||
uint16_t gammas_sums[1 << (PARAM_M - 2)]; | |||
uint16_t f0[1 << (PARAM_FFT - 2)] = {0}; | |||
uint16_t f1[1 << (PARAM_FFT - 2)] = {0}; | |||
uint16_t gammas[PARAM_M - 2] = {0}; | |||
uint16_t deltas[PARAM_M - 2] = {0}; | |||
uint16_t gammas_sums[1 << (PARAM_M - 2)] = {0}; | |||
uint16_t u[1 << (PARAM_M - 2)] = {0}; | |||
uint16_t v[1 << (PARAM_M - 2)] = {0}; | |||
uint16_t tmp[PARAM_M - (PARAM_FFT - 1)] = {0}; | |||
uint16_t beta_m_pow; | |||
size_t i, j, k; | |||
// Step 1 | |||
if (m_f == 1) { | |||
uint16_t tmp[PARAM_M - (PARAM_FFT - 1)]; | |||
for (size_t i = 0 ; i < m ; ++i) { | |||
for (i = 0 ; i < m ; ++i) { | |||
tmp[i] = PQCLEAN_HQCRMRS128_AVX2_gf_mul(betas[i], f[1]); | |||
} | |||
w[0] = f[0]; | |||
for (size_t j = 0 ; j < m ; ++j) { | |||
for (size_t k = 0 ; k < (1U << j) ; ++k) { | |||
for (j = 0 ; j < m ; ++j) { | |||
for (k = 0 ; k < (1U << j) ; ++k) { | |||
w[(1 << j) + k] = w[k] ^ tmp[j]; | |||
} | |||
} | |||
@@ -187,8 +197,8 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 | |||
// Step 2: compute g | |||
if (betas[m - 1] != 1) { | |||
uint16_t beta_m_pow = 1; | |||
for (size_t i = 1 ; i < (1U << m_f) ; ++i) { | |||
beta_m_pow = 1; | |||
for (i = 1 ; i < (1U << m_f) ; ++i) { | |||
beta_m_pow = PQCLEAN_HQCRMRS128_AVX2_gf_mul(beta_m_pow, betas[m - 1]); | |||
f[i] = PQCLEAN_HQCRMRS128_AVX2_gf_mul(beta_m_pow, f[i]); | |||
} | |||
@@ -198,7 +208,7 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 | |||
radix(f0, f1, f, m_f); | |||
// Step 4: compute gammas and deltas | |||
for (uint8_t i = 0 ; i < m - 1 ; ++i) { | |||
for (i = 0 ; i + 1 < m ; ++i) { | |||
gammas[i] = PQCLEAN_HQCRMRS128_AVX2_gf_mul(betas[i], PQCLEAN_HQCRMRS128_AVX2_gf_inverse(betas[m - 1])); | |||
deltas[i] = PQCLEAN_HQCRMRS128_AVX2_gf_square(gammas[i]) ^ gammas[i]; | |||
} | |||
@@ -209,10 +219,11 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 | |||
// Step 5 | |||
fft_rec(u, f0, (f_coeffs + 1) / 2, m - 1, m_f - 1, deltas); | |||
k = 1 << ((m - 1) & 0xf); // &0xf is to let the compiler know that m-1 is small. | |||
if (f_coeffs <= 3) { // 3-coefficient polynomial f case: f1 is constant | |||
w[0] = u[0]; | |||
w[k] = u[0] ^ f1[0]; | |||
for (size_t i = 1 ; i < k ; ++i) { | |||
for (i = 1 ; i < k ; ++i) { | |||
w[i] = u[i] ^ PQCLEAN_HQCRMRS128_AVX2_gf_mul(gammas_sums[i], f1[0]); | |||
w[k + i] = w[i] ^ f1[0]; | |||
} | |||
@@ -223,7 +234,7 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 | |||
memcpy(w + k, v, 2 * k); | |||
w[0] = u[0]; | |||
w[k] ^= u[0]; | |||
for (size_t i = 1 ; i < k ; ++i) { | |||
for (i = 1 ; i < k ; ++i) { | |||
w[i] = u[i] ^ PQCLEAN_HQCRMRS128_AVX2_gf_mul(gammas_sums[i], v[i]); | |||
w[k + i] ^= w[i]; | |||
} | |||
@@ -252,14 +263,15 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 | |||
* @param[in] f_coeffs Number coefficients of f (i.e. deg(f)+1) | |||
*/ | |||
void PQCLEAN_HQCRMRS128_AVX2_fft(uint16_t *w, const uint16_t *f, size_t f_coeffs) { | |||
uint16_t betas[PARAM_M - 1]; | |||
uint16_t betas_sums[1 << (PARAM_M - 1)]; | |||
uint16_t f0[1 << (PARAM_FFT - 1)]; | |||
uint16_t f1[1 << (PARAM_FFT - 1)]; | |||
uint16_t deltas[PARAM_M - 1]; | |||
size_t k = 1 << (PARAM_M - 1); | |||
uint16_t u[1 << (PARAM_M - 1)]; | |||
uint16_t v[1 << (PARAM_M - 1)]; | |||
uint16_t betas[PARAM_M - 1] = {0}; | |||
uint16_t betas_sums[1 << (PARAM_M - 1)] = {0}; | |||
uint16_t f0[1 << (PARAM_FFT - 1)] = {0}; | |||
uint16_t f1[1 << (PARAM_FFT - 1)] = {0}; | |||
uint16_t deltas[PARAM_M - 1] = {0}; | |||
uint16_t u[1 << (PARAM_M - 1)] = {0}; | |||
uint16_t v[1 << (PARAM_M - 1)] = {0}; | |||
size_t i, k; | |||
// Follows Gao and Mateer algorithm | |||
compute_fft_betas(betas); | |||
@@ -275,7 +287,7 @@ void PQCLEAN_HQCRMRS128_AVX2_fft(uint16_t *w, const uint16_t *f, size_t f_coeffs | |||
radix(f0, f1, f, PARAM_FFT); | |||
// Step 4: Compute deltas | |||
for (size_t i = 0 ; i < PARAM_M - 1 ; ++i) { | |||
for (i = 0 ; i < PARAM_M - 1 ; ++i) { | |||
deltas[i] = PQCLEAN_HQCRMRS128_AVX2_gf_square(betas[i]) ^ betas[i]; | |||
} | |||
@@ -283,6 +295,7 @@ void PQCLEAN_HQCRMRS128_AVX2_fft(uint16_t *w, const uint16_t *f, size_t f_coeffs | |||
fft_rec(u, f0, (f_coeffs + 1) / 2, PARAM_M - 1, PARAM_FFT - 1, deltas); | |||
fft_rec(v, f1, f_coeffs / 2, PARAM_M - 1, PARAM_FFT - 1, deltas); | |||
k = 1 << (PARAM_M - 1); | |||
// Step 6, 7 and error polynomial computation | |||
memcpy(w + k, v, 2 * k); | |||
@@ -293,7 +306,7 @@ void PQCLEAN_HQCRMRS128_AVX2_fft(uint16_t *w, const uint16_t *f, size_t f_coeffs | |||
w[k] ^= u[0]; | |||
// Find other roots | |||
for (size_t i = 1 ; i < k ; ++i) { | |||
for (i = 1 ; i < k ; ++i) { | |||
w[i] = u[i] ^ PQCLEAN_HQCRMRS128_AVX2_gf_mul(betas_sums[i], v[i]); | |||
w[k + i] ^= w[i]; | |||
} | |||
@@ -311,17 +324,16 @@ void PQCLEAN_HQCRMRS128_AVX2_fft(uint16_t *w, const uint16_t *f, size_t f_coeffs | |||
void PQCLEAN_HQCRMRS128_AVX2_fft_retrieve_error_poly(uint8_t *error, const uint16_t *w) { | |||
uint16_t gammas[PARAM_M - 1] = {0}; | |||
uint16_t gammas_sums[1 << (PARAM_M - 1)] = {0}; | |||
size_t k = 1 << (PARAM_M - 1); | |||
size_t i, k, index; | |||
compute_fft_betas(gammas); | |||
compute_subset_sums(gammas_sums, gammas, PARAM_M - 1); | |||
k = 1 << (PARAM_M - 1); | |||
error[0] ^= 1 ^ ((uint16_t) - w[0] >> 15); | |||
error[0] ^= 1 ^ ((uint16_t) - w[k] >> 15); | |||
size_t index = PARAM_GF_MUL_ORDER; | |||
for (size_t i = 1 ; i < k ; ++i) { | |||
for (i = 1 ; i < k ; ++i) { | |||
index = PARAM_GF_MUL_ORDER - PQCLEAN_HQCRMRS128_AVX2_gf_log(gammas_sums[i]); | |||
error[index] ^= 1 ^ ((uint16_t) - w[i] >> 15); | |||
@@ -30,29 +30,28 @@ uint16_t PQCLEAN_HQCRMRS128_AVX2_gf_log(uint16_t elt) { | |||
* @param[in] deg_x The degree of polynomial x | |||
*/ | |||
static uint16_t gf_reduce(uint64_t x, size_t deg_x) { | |||
// Compute the distance between the primitive polynomial first two set bits | |||
size_t lz1 = __builtin_clz(PARAM_GF_POLY); | |||
size_t lz2 = __builtin_clz(PARAM_GF_POLY ^ 1 << PARAM_M); | |||
size_t dist = lz2 - lz1; | |||
uint16_t z1, z2, rmdr, dist; | |||
uint64_t mod; | |||
size_t steps, i, j; | |||
// Deduce the number of steps of reduction | |||
size_t steps = CEIL_DIVIDE(deg_x - (PARAM_M - 1), dist); | |||
steps = CEIL_DIVIDE(deg_x - (PARAM_M - 1), PARAM_GF_POLY_M2); | |||
// Reduce | |||
for (size_t i = 0; i < steps; ++i) { | |||
uint64_t mod = x >> PARAM_M; | |||
for (i = 0; i < steps; ++i) { | |||
mod = x >> PARAM_M; | |||
x &= (1 << PARAM_M) - 1; | |||
x ^= mod; | |||
size_t tz1 = 0; | |||
uint16_t rmdr = PARAM_GF_POLY ^ 1; | |||
for (size_t j = __builtin_popcount(PARAM_GF_POLY) - 2; j; --j) { | |||
size_t tz2 = __builtin_ctz(rmdr); | |||
size_t shift = tz2 - tz1; | |||
mod <<= shift; | |||
z1 = 0; | |||
rmdr = PARAM_GF_POLY ^ 1; | |||
for (j = PARAM_GF_POLY_WT - 2; j; --j) { | |||
z2 = __tzcnt_u16(rmdr); | |||
dist = (uint16_t) (z2 - z1); | |||
mod <<= dist; | |||
x ^= mod; | |||
rmdr ^= 1 << tz2; | |||
tz1 = tz2; | |||
rmdr ^= 1 << z2; | |||
z1 = z2; | |||
} | |||
} | |||
@@ -328,9 +328,7 @@ static void TOOM3Mult(__m256i *Out, const uint64_t *A, const uint64_t *B) { | |||
static __m256i W0[2 * (T_TM3_3W_256)], W1[2 * (T_TM3_3W_256)], W2[2 * (T_TM3_3W_256)], W3[2 * (T_TM3_3W_256)], W4[2 * (T_TM3_3W_256)]; | |||
static __m256i tmp[2 * (T_TM3_3W_256)]; | |||
static __m256i ro256[6 * (T_TM3_3W_256)]; | |||
const __m256i zero = (__m256i) { | |||
0ul, 0ul, 0ul, 0ul | |||
}; | |||
const __m256i zero = _mm256_setzero_si256(); | |||
int32_t T2 = T_TM3_3W_64 << 1; | |||
for (int32_t i = 0 ; i < T_TM3_3W_256 - 1 ; i++) { | |||
@@ -347,24 +345,12 @@ static void TOOM3Mult(__m256i *Out, const uint64_t *A, const uint64_t *B) { | |||
for (int32_t i = T_TM3_3W_256 - 1 ; i < T_TM3_3W_256 ; i++) { | |||
int32_t i4 = i << 2; | |||
int32_t i41 = i4 + 1; | |||
U0[i] = (__m256i) { | |||
A[i4], A[i41], 0x0ul, 0x0ul | |||
}; | |||
V0[i] = (__m256i) { | |||
B[i4], B[i41], 0x0ul, 0x0ul | |||
}; | |||
U1[i] = (__m256i) { | |||
A[i4 + T_TM3_3W_64 - 2], A[i41 + T_TM3_3W_64 - 2], 0x0ul, 0x0ul | |||
}; | |||
V1[i] = (__m256i) { | |||
B[i4 + T_TM3_3W_64 - 2], B[i41 + T_TM3_3W_64 - 2], 0x0ul, 0x0ul | |||
}; | |||
U2[i] = (__m256i) { | |||
A[i4 - 4 + T2], A[i4 - 3 + T2], 0x0ul, 0x0ul | |||
}; | |||
V2[i] = (__m256i) { | |||
B[i4 - 4 + T2], B[i4 - 3 + T2], 0x0ul, 0x0ul | |||
}; | |||
U0[i] = _mm256_set_epi64x(0, 0, A[i41], A[i4]); | |||
V0[i] = _mm256_set_epi64x(0, 0, B[i41], B[i4]); | |||
U1[i] = _mm256_set_epi64x(0, 0, A[i41 + T_TM3_3W_64 - 2], A[i4 + T_TM3_3W_64 - 2]); | |||
V1[i] = _mm256_set_epi64x(0, 0, B[i41 + T_TM3_3W_64 - 2], B[i4 + T_TM3_3W_64 - 2]); | |||
U2[i] = _mm256_set_epi64x(0, 0, A[i4 - 3 + T2], A[i4 - 4 + T2]); | |||
V2[i] = _mm256_set_epi64x(0, 0, B[i4 - 3 + T2], B[i4 - 4 + T2]); | |||
} | |||
// Evaluation phase : x= X^64 | |||
@@ -452,9 +438,7 @@ static void TOOM3Mult(__m256i *Out, const uint64_t *A, const uint64_t *B) { | |||
//W2 =(W2 + W3 + W4*(x^3+1))/(x+1) | |||
U1_64 = ((int64_t *) W4); | |||
__m256i *U1_256 = (__m256i *) (U1_64 + 1); | |||
tmp[0] = W2[0] ^ W3[0] ^ W4[0] ^ (__m256i) { | |||
0x0ul, 0x0ul, 0x0ul, U1_64[0] | |||
}; | |||
tmp[0] = W2[0] ^ W3[0] ^ W4[0] ^ _mm256_set_epi64x(U1_64[0], 0, 0, 0); | |||
for (int32_t i = 1 ; i < (T_TM3_3W_256 << 1) - 1 ; i++) { | |||
tmp[i] = W2[i] ^ W3[i] ^ W4[i] ^ _mm256_lddqu_si256(&U1_256[i - 1]); | |||
@@ -18,6 +18,7 @@ | |||
static void compute_fft_betas(uint16_t *betas); | |||
static void compute_subset_sums(uint16_t *subset_sums, const uint16_t *set, size_t set_size); | |||
static void radix(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f); | |||
static void radix_big(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f); | |||
static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32_t m_f, const uint16_t *betas); | |||
@@ -27,7 +28,8 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 | |||
* @param[out] betas Array of size PARAM_M-1 | |||
*/ | |||
static void compute_fft_betas(uint16_t *betas) { | |||
for (size_t i = 0 ; i < PARAM_M - 1 ; ++i) { | |||
size_t i; | |||
for (i = 0 ; i < PARAM_M - 1 ; ++i) { | |||
betas[i] = 1 << (PARAM_M - 1 - i); | |||
} | |||
} | |||
@@ -45,10 +47,11 @@ static void compute_fft_betas(uint16_t *betas) { | |||
* @param[in] set_size Size of the array set | |||
*/ | |||
static void compute_subset_sums(uint16_t *subset_sums, const uint16_t *set, size_t set_size) { | |||
size_t i, j; | |||
subset_sums[0] = 0; | |||
for (size_t i = 0 ; i < set_size ; ++i) { | |||
for (size_t j = 0 ; j < (1U << i) ; ++j) { | |||
for (i = 0 ; i < set_size ; ++i) { | |||
for (j = 0 ; j < (1U << i) ; ++j) { | |||
subset_sums[(1 << i) + j] = set[i] ^ subset_sums[j]; | |||
} | |||
} | |||
@@ -88,7 +91,7 @@ static void radix(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f) { | |||
f1[2] = f[3] ^ f1[1] ^ f0[3]; | |||
f0[1] = f[2] ^ f0[2] ^ f1[1]; | |||
f1[0] = f[1] ^ f0[1]; | |||
return; | |||
break; | |||
case 3: | |||
f0[0] = f[0]; | |||
@@ -99,49 +102,54 @@ static void radix(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f) { | |||
f1[3] = f[7]; | |||
f0[1] = f[2] ^ f0[2] ^ f1[1]; | |||
f1[0] = f[1] ^ f0[1]; | |||
return; | |||
break; | |||
case 2: | |||
f0[0] = f[0]; | |||
f0[1] = f[2] ^ f[3]; | |||
f1[0] = f[1] ^ f0[1]; | |||
f1[1] = f[3]; | |||
return; | |||
break; | |||
case 1: | |||
f0[0] = f[0]; | |||
f1[0] = f[1]; | |||
return; | |||
break; | |||
default: | |||
; | |||
size_t n = 1 << (m_f - 2); | |||
radix_big(f0, f1, f, m_f); | |||
break; | |||
} | |||
} | |||
uint16_t Q[2 * (1 << (PARAM_FFT - 2))]; | |||
uint16_t R[2 * (1 << (PARAM_FFT - 2))]; | |||
static void radix_big(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f) { | |||
uint16_t Q[2 * (1 << (PARAM_FFT - 2))] = {0}; | |||
uint16_t R[2 * (1 << (PARAM_FFT - 2))] = {0}; | |||
uint16_t Q0[1 << (PARAM_FFT - 2)]; | |||
uint16_t Q1[1 << (PARAM_FFT - 2)]; | |||
uint16_t R0[1 << (PARAM_FFT - 2)]; | |||
uint16_t R1[1 << (PARAM_FFT - 2)]; | |||
uint16_t Q0[1 << (PARAM_FFT - 2)] = {0}; | |||
uint16_t Q1[1 << (PARAM_FFT - 2)] = {0}; | |||
uint16_t R0[1 << (PARAM_FFT - 2)] = {0}; | |||
uint16_t R1[1 << (PARAM_FFT - 2)] = {0}; | |||
memcpy(Q, f + 3 * n, 2 * n); | |||
memcpy(Q + n, f + 3 * n, 2 * n); | |||
memcpy(R, f, 4 * n); | |||
size_t i, n; | |||
for (size_t i = 0 ; i < n ; ++i) { | |||
Q[i] ^= f[2 * n + i]; | |||
R[n + i] ^= Q[i]; | |||
} | |||
n = 1 << (m_f - 2); | |||
memcpy(Q, f + 3 * n, 2 * n); | |||
memcpy(Q + n, f + 3 * n, 2 * n); | |||
memcpy(R, f, 4 * n); | |||
radix(Q0, Q1, Q, m_f - 1); | |||
radix(R0, R1, R, m_f - 1); | |||
memcpy(f0, R0, 2 * n); | |||
memcpy(f0 + n, Q0, 2 * n); | |||
memcpy(f1, R1, 2 * n); | |||
memcpy(f1 + n, Q1, 2 * n); | |||
for (i = 0 ; i < n ; ++i) { | |||
Q[i] ^= f[2 * n + i]; | |||
R[n + i] ^= Q[i]; | |||
} | |||
radix(Q0, Q1, Q, m_f - 1); | |||
radix(R0, R1, R, m_f - 1); | |||
memcpy(f0, R0, 2 * n); | |||
memcpy(f0 + n, Q0, 2 * n); | |||
memcpy(f1, R1, 2 * n); | |||
memcpy(f1 + n, Q1, 2 * n); | |||
} | |||
@@ -159,25 +167,27 @@ static void radix(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f) { | |||
* @param[in] betas FFT constants | |||
*/ | |||
static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32_t m_f, const uint16_t *betas) { | |||
uint16_t f0[1 << (PARAM_FFT - 2)]; | |||
uint16_t f1[1 << (PARAM_FFT - 2)]; | |||
uint16_t gammas[PARAM_M - 2]; | |||
uint16_t deltas[PARAM_M - 2]; | |||
size_t k = 1 << (m - 1); | |||
uint16_t gammas_sums[1 << (PARAM_M - 2)]; | |||
uint16_t f0[1 << (PARAM_FFT - 2)] = {0}; | |||
uint16_t f1[1 << (PARAM_FFT - 2)] = {0}; | |||
uint16_t gammas[PARAM_M - 2] = {0}; | |||
uint16_t deltas[PARAM_M - 2] = {0}; | |||
uint16_t gammas_sums[1 << (PARAM_M - 2)] = {0}; | |||
uint16_t u[1 << (PARAM_M - 2)] = {0}; | |||
uint16_t v[1 << (PARAM_M - 2)] = {0}; | |||
uint16_t tmp[PARAM_M - (PARAM_FFT - 1)] = {0}; | |||
uint16_t beta_m_pow; | |||
size_t i, j, k; | |||
// Step 1 | |||
if (m_f == 1) { | |||
uint16_t tmp[PARAM_M - (PARAM_FFT - 1)]; | |||
for (size_t i = 0 ; i < m ; ++i) { | |||
for (i = 0 ; i < m ; ++i) { | |||
tmp[i] = PQCLEAN_HQCRMRS192_AVX2_gf_mul(betas[i], f[1]); | |||
} | |||
w[0] = f[0]; | |||
for (size_t j = 0 ; j < m ; ++j) { | |||
for (size_t k = 0 ; k < (1U << j) ; ++k) { | |||
for (j = 0 ; j < m ; ++j) { | |||
for (k = 0 ; k < (1U << j) ; ++k) { | |||
w[(1 << j) + k] = w[k] ^ tmp[j]; | |||
} | |||
} | |||
@@ -187,8 +197,8 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 | |||
// Step 2: compute g | |||
if (betas[m - 1] != 1) { | |||
uint16_t beta_m_pow = 1; | |||
for (size_t i = 1 ; i < (1U << m_f) ; ++i) { | |||
beta_m_pow = 1; | |||
for (i = 1 ; i < (1U << m_f) ; ++i) { | |||
beta_m_pow = PQCLEAN_HQCRMRS192_AVX2_gf_mul(beta_m_pow, betas[m - 1]); | |||
f[i] = PQCLEAN_HQCRMRS192_AVX2_gf_mul(beta_m_pow, f[i]); | |||
} | |||
@@ -198,7 +208,7 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 | |||
radix(f0, f1, f, m_f); | |||
// Step 4: compute gammas and deltas | |||
for (uint8_t i = 0 ; i < m - 1 ; ++i) { | |||
for (i = 0 ; i + 1 < m ; ++i) { | |||
gammas[i] = PQCLEAN_HQCRMRS192_AVX2_gf_mul(betas[i], PQCLEAN_HQCRMRS192_AVX2_gf_inverse(betas[m - 1])); | |||
deltas[i] = PQCLEAN_HQCRMRS192_AVX2_gf_square(gammas[i]) ^ gammas[i]; | |||
} | |||
@@ -209,10 +219,11 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 | |||
// Step 5 | |||
fft_rec(u, f0, (f_coeffs + 1) / 2, m - 1, m_f - 1, deltas); | |||
k = 1 << ((m - 1) & 0xf); // &0xf is to let the compiler know that m-1 is small. | |||
if (f_coeffs <= 3) { // 3-coefficient polynomial f case: f1 is constant | |||
w[0] = u[0]; | |||
w[k] = u[0] ^ f1[0]; | |||
for (size_t i = 1 ; i < k ; ++i) { | |||
for (i = 1 ; i < k ; ++i) { | |||
w[i] = u[i] ^ PQCLEAN_HQCRMRS192_AVX2_gf_mul(gammas_sums[i], f1[0]); | |||
w[k + i] = w[i] ^ f1[0]; | |||
} | |||
@@ -223,7 +234,7 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 | |||
memcpy(w + k, v, 2 * k); | |||
w[0] = u[0]; | |||
w[k] ^= u[0]; | |||
for (size_t i = 1 ; i < k ; ++i) { | |||
for (i = 1 ; i < k ; ++i) { | |||
w[i] = u[i] ^ PQCLEAN_HQCRMRS192_AVX2_gf_mul(gammas_sums[i], v[i]); | |||
w[k + i] ^= w[i]; | |||
} | |||
@@ -252,14 +263,15 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 | |||
* @param[in] f_coeffs Number coefficients of f (i.e. deg(f)+1) | |||
*/ | |||
void PQCLEAN_HQCRMRS192_AVX2_fft(uint16_t *w, const uint16_t *f, size_t f_coeffs) { | |||
uint16_t betas[PARAM_M - 1]; | |||
uint16_t betas_sums[1 << (PARAM_M - 1)]; | |||
uint16_t f0[1 << (PARAM_FFT - 1)]; | |||
uint16_t f1[1 << (PARAM_FFT - 1)]; | |||
uint16_t deltas[PARAM_M - 1]; | |||
size_t k = 1 << (PARAM_M - 1); | |||
uint16_t u[1 << (PARAM_M - 1)]; | |||
uint16_t v[1 << (PARAM_M - 1)]; | |||
uint16_t betas[PARAM_M - 1] = {0}; | |||
uint16_t betas_sums[1 << (PARAM_M - 1)] = {0}; | |||
uint16_t f0[1 << (PARAM_FFT - 1)] = {0}; | |||
uint16_t f1[1 << (PARAM_FFT - 1)] = {0}; | |||
uint16_t deltas[PARAM_M - 1] = {0}; | |||
uint16_t u[1 << (PARAM_M - 1)] = {0}; | |||
uint16_t v[1 << (PARAM_M - 1)] = {0}; | |||
size_t i, k; | |||
// Follows Gao and Mateer algorithm | |||
compute_fft_betas(betas); | |||
@@ -275,7 +287,7 @@ void PQCLEAN_HQCRMRS192_AVX2_fft(uint16_t *w, const uint16_t *f, size_t f_coeffs | |||
radix(f0, f1, f, PARAM_FFT); | |||
// Step 4: Compute deltas | |||
for (size_t i = 0 ; i < PARAM_M - 1 ; ++i) { | |||
for (i = 0 ; i < PARAM_M - 1 ; ++i) { | |||
deltas[i] = PQCLEAN_HQCRMRS192_AVX2_gf_square(betas[i]) ^ betas[i]; | |||
} | |||
@@ -283,6 +295,7 @@ void PQCLEAN_HQCRMRS192_AVX2_fft(uint16_t *w, const uint16_t *f, size_t f_coeffs | |||
fft_rec(u, f0, (f_coeffs + 1) / 2, PARAM_M - 1, PARAM_FFT - 1, deltas); | |||
fft_rec(v, f1, f_coeffs / 2, PARAM_M - 1, PARAM_FFT - 1, deltas); | |||
k = 1 << (PARAM_M - 1); | |||
// Step 6, 7 and error polynomial computation | |||
memcpy(w + k, v, 2 * k); | |||
@@ -293,7 +306,7 @@ void PQCLEAN_HQCRMRS192_AVX2_fft(uint16_t *w, const uint16_t *f, size_t f_coeffs | |||
w[k] ^= u[0]; | |||
// Find other roots | |||
for (size_t i = 1 ; i < k ; ++i) { | |||
for (i = 1 ; i < k ; ++i) { | |||
w[i] = u[i] ^ PQCLEAN_HQCRMRS192_AVX2_gf_mul(betas_sums[i], v[i]); | |||
w[k + i] ^= w[i]; | |||
} | |||
@@ -311,17 +324,16 @@ void PQCLEAN_HQCRMRS192_AVX2_fft(uint16_t *w, const uint16_t *f, size_t f_coeffs | |||
void PQCLEAN_HQCRMRS192_AVX2_fft_retrieve_error_poly(uint8_t *error, const uint16_t *w) { | |||
uint16_t gammas[PARAM_M - 1] = {0}; | |||
uint16_t gammas_sums[1 << (PARAM_M - 1)] = {0}; | |||
size_t k = 1 << (PARAM_M - 1); | |||
size_t i, k, index; | |||
compute_fft_betas(gammas); | |||
compute_subset_sums(gammas_sums, gammas, PARAM_M - 1); | |||
k = 1 << (PARAM_M - 1); | |||
error[0] ^= 1 ^ ((uint16_t) - w[0] >> 15); | |||
error[0] ^= 1 ^ ((uint16_t) - w[k] >> 15); | |||
size_t index = PARAM_GF_MUL_ORDER; | |||
for (size_t i = 1 ; i < k ; ++i) { | |||
for (i = 1 ; i < k ; ++i) { | |||
index = PARAM_GF_MUL_ORDER - PQCLEAN_HQCRMRS192_AVX2_gf_log(gammas_sums[i]); | |||
error[index] ^= 1 ^ ((uint16_t) - w[i] >> 15); | |||
@@ -30,29 +30,28 @@ uint16_t PQCLEAN_HQCRMRS192_AVX2_gf_log(uint16_t elt) { | |||
* @param[in] deg_x The degree of polynomial x | |||
*/ | |||
static uint16_t gf_reduce(uint64_t x, size_t deg_x) { | |||
// Compute the distance between the primitive polynomial first two set bits | |||
size_t lz1 = __builtin_clz(PARAM_GF_POLY); | |||
size_t lz2 = __builtin_clz(PARAM_GF_POLY ^ 1 << PARAM_M); | |||
size_t dist = lz2 - lz1; | |||
uint16_t z1, z2, rmdr, dist; | |||
uint64_t mod; | |||
size_t steps, i, j; | |||
// Deduce the number of steps of reduction | |||
size_t steps = CEIL_DIVIDE(deg_x - (PARAM_M - 1), dist); | |||
steps = CEIL_DIVIDE(deg_x - (PARAM_M - 1), PARAM_GF_POLY_M2); | |||
// Reduce | |||
for (size_t i = 0; i < steps; ++i) { | |||
uint64_t mod = x >> PARAM_M; | |||
for (i = 0; i < steps; ++i) { | |||
mod = x >> PARAM_M; | |||
x &= (1 << PARAM_M) - 1; | |||
x ^= mod; | |||
size_t tz1 = 0; | |||
uint16_t rmdr = PARAM_GF_POLY ^ 1; | |||
for (size_t j = __builtin_popcount(PARAM_GF_POLY) - 2; j; --j) { | |||
size_t tz2 = __builtin_ctz(rmdr); | |||
size_t shift = tz2 - tz1; | |||
mod <<= shift; | |||
z1 = 0; | |||
rmdr = PARAM_GF_POLY ^ 1; | |||
for (j = PARAM_GF_POLY_WT - 2; j; --j) { | |||
z2 = __tzcnt_u16(rmdr); | |||
dist = (uint16_t) (z2 - z1); | |||
mod <<= dist; | |||
x ^= mod; | |||
rmdr ^= 1 << tz2; | |||
tz1 = tz2; | |||
rmdr ^= 1 << z2; | |||
z1 = z2; | |||
} | |||
} | |||
@@ -368,9 +368,7 @@ static void TOOM3Mult(__m256i *Out, const uint64_t *A, const uint64_t *B) { | |||
static __m256i W0[2 * (T_TM3_3W_256)], W1[2 * (T_TM3_3W_256)], W2[2 * (T_TM3_3W_256)], W3[2 * (T_TM3_3W_256)], W4[2 * (T_TM3_3W_256)]; | |||
static __m256i tmp[2 * (T_TM3_3W_256)]; | |||
static __m256i ro256[6 * (T_TM3_3W_256)]; | |||
const __m256i zero = (__m256i) { | |||
0ul, 0ul, 0ul, 0ul | |||
}; | |||
const __m256i zero = _mm256_setzero_si256(); | |||
int32_t T2 = T_TM3_3W_64 << 1; | |||
for (int32_t i = 0 ; i < T_TM3_3W_256 - 1 ; i++) { | |||
@@ -387,24 +385,12 @@ static void TOOM3Mult(__m256i *Out, const uint64_t *A, const uint64_t *B) { | |||
for (int32_t i = T_TM3_3W_256 - 1 ; i < T_TM3_3W_256 ; i++) { | |||
int32_t i4 = i << 2; | |||
int32_t i41 = i4 + 1; | |||
U0[i] = (__m256i) { | |||
A[i4], A[i41], 0x0ul, 0x0ul | |||
}; | |||
V0[i] = (__m256i) { | |||
B[i4], B[i41], 0x0ul, 0x0ul | |||
}; | |||
U1[i] = (__m256i) { | |||
A[i4 + T_TM3_3W_64 - 2], A[i41 + T_TM3_3W_64 - 2], 0x0ul, 0x0ul | |||
}; | |||
V1[i] = (__m256i) { | |||
B[i4 + T_TM3_3W_64 - 2], B[i41 + T_TM3_3W_64 - 2], 0x0ul, 0x0ul | |||
}; | |||
U2[i] = (__m256i) { | |||
A[i4 - 4 + T2], A[i4 - 3 + T2], 0x0ul, 0x0ul | |||
}; | |||
V2[i] = (__m256i) { | |||
B[i4 - 4 + T2], B[i4 - 3 + T2], 0x0ul, 0x0ul | |||
}; | |||
U0[i] = _mm256_set_epi64x(0, 0, A[i41], A[i4]); | |||
V0[i] = _mm256_set_epi64x(0, 0, B[i41], B[i4]); | |||
U1[i] = _mm256_set_epi64x(0, 0, A[i41 + T_TM3_3W_64 - 2], A[i4 + T_TM3_3W_64 - 2]); | |||
V1[i] = _mm256_set_epi64x(0, 0, B[i41 + T_TM3_3W_64 - 2], B[i4 + T_TM3_3W_64 - 2]); | |||
U2[i] = _mm256_set_epi64x(0, 0, A[i4 - 3 + T2], A[i4 - 4 + T2]); | |||
V2[i] = _mm256_set_epi64x(0, 0, B[i4 - 3 + T2], B[i4 - 4 + T2]); | |||
} | |||
// Evaluation phase : x= X^64 | |||
@@ -492,9 +478,7 @@ static void TOOM3Mult(__m256i *Out, const uint64_t *A, const uint64_t *B) { | |||
//W2 =(W2 + W3 + W4*(x^3+1))/(x+1) | |||
U1_64 = ((int64_t *) W4); | |||
__m256i *U1_256 = (__m256i *) (U1_64 + 1); | |||
tmp[0] = W2[0] ^ W3[0] ^ W4[0] ^ (__m256i) { | |||
0x0ul, 0x0ul, 0x0ul, U1_64[0] | |||
}; | |||
tmp[0] = W2[0] ^ W3[0] ^ W4[0] ^ _mm256_set_epi64x(U1_64[0], 0, 0, 0); | |||
for (int32_t i = 1 ; i < (T_TM3_3W_256 << 1) - 1 ; i++) { | |||
tmp[i] = W2[i] ^ W3[i] ^ W4[i] ^ _mm256_lddqu_si256(&U1_256[i - 1]); | |||
@@ -18,6 +18,7 @@ | |||
static void compute_fft_betas(uint16_t *betas); | |||
static void compute_subset_sums(uint16_t *subset_sums, const uint16_t *set, size_t set_size); | |||
static void radix(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f); | |||
static void radix_big(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f); | |||
static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32_t m_f, const uint16_t *betas); | |||
@@ -27,7 +28,8 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 | |||
* @param[out] betas Array of size PARAM_M-1 | |||
*/ | |||
static void compute_fft_betas(uint16_t *betas) { | |||
for (size_t i = 0 ; i < PARAM_M - 1 ; ++i) { | |||
size_t i; | |||
for (i = 0 ; i < PARAM_M - 1 ; ++i) { | |||
betas[i] = 1 << (PARAM_M - 1 - i); | |||
} | |||
} | |||
@@ -45,10 +47,11 @@ static void compute_fft_betas(uint16_t *betas) { | |||
* @param[in] set_size Size of the array set | |||
*/ | |||
static void compute_subset_sums(uint16_t *subset_sums, const uint16_t *set, size_t set_size) { | |||
size_t i, j; | |||
subset_sums[0] = 0; | |||
for (size_t i = 0 ; i < set_size ; ++i) { | |||
for (size_t j = 0 ; j < (1U << i) ; ++j) { | |||
for (i = 0 ; i < set_size ; ++i) { | |||
for (j = 0 ; j < (1U << i) ; ++j) { | |||
subset_sums[(1 << i) + j] = set[i] ^ subset_sums[j]; | |||
} | |||
} | |||
@@ -88,7 +91,7 @@ static void radix(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f) { | |||
f1[2] = f[3] ^ f1[1] ^ f0[3]; | |||
f0[1] = f[2] ^ f0[2] ^ f1[1]; | |||
f1[0] = f[1] ^ f0[1]; | |||
return; | |||
break; | |||
case 3: | |||
f0[0] = f[0]; | |||
@@ -99,49 +102,54 @@ static void radix(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f) { | |||
f1[3] = f[7]; | |||
f0[1] = f[2] ^ f0[2] ^ f1[1]; | |||
f1[0] = f[1] ^ f0[1]; | |||
return; | |||
break; | |||
case 2: | |||
f0[0] = f[0]; | |||
f0[1] = f[2] ^ f[3]; | |||
f1[0] = f[1] ^ f0[1]; | |||
f1[1] = f[3]; | |||
return; | |||
break; | |||
case 1: | |||
f0[0] = f[0]; | |||
f1[0] = f[1]; | |||
return; | |||
break; | |||
default: | |||
; | |||
size_t n = 1 << (m_f - 2); | |||
radix_big(f0, f1, f, m_f); | |||
break; | |||
} | |||
} | |||
uint16_t Q[2 * (1 << (PARAM_FFT - 2))]; | |||
uint16_t R[2 * (1 << (PARAM_FFT - 2))]; | |||
static void radix_big(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f) { | |||
uint16_t Q[2 * (1 << (PARAM_FFT - 2))] = {0}; | |||
uint16_t R[2 * (1 << (PARAM_FFT - 2))] = {0}; | |||
uint16_t Q0[1 << (PARAM_FFT - 2)]; | |||
uint16_t Q1[1 << (PARAM_FFT - 2)]; | |||
uint16_t R0[1 << (PARAM_FFT - 2)]; | |||
uint16_t R1[1 << (PARAM_FFT - 2)]; | |||
uint16_t Q0[1 << (PARAM_FFT - 2)] = {0}; | |||
uint16_t Q1[1 << (PARAM_FFT - 2)] = {0}; | |||
uint16_t R0[1 << (PARAM_FFT - 2)] = {0}; | |||
uint16_t R1[1 << (PARAM_FFT - 2)] = {0}; | |||
memcpy(Q, f + 3 * n, 2 * n); | |||
memcpy(Q + n, f + 3 * n, 2 * n); | |||
memcpy(R, f, 4 * n); | |||
size_t i, n; | |||
for (size_t i = 0 ; i < n ; ++i) { | |||
Q[i] ^= f[2 * n + i]; | |||
R[n + i] ^= Q[i]; | |||
} | |||
n = 1 << (m_f - 2); | |||
memcpy(Q, f + 3 * n, 2 * n); | |||
memcpy(Q + n, f + 3 * n, 2 * n); | |||
memcpy(R, f, 4 * n); | |||
radix(Q0, Q1, Q, m_f - 1); | |||
radix(R0, R1, R, m_f - 1); | |||
memcpy(f0, R0, 2 * n); | |||
memcpy(f0 + n, Q0, 2 * n); | |||
memcpy(f1, R1, 2 * n); | |||
memcpy(f1 + n, Q1, 2 * n); | |||
for (i = 0 ; i < n ; ++i) { | |||
Q[i] ^= f[2 * n + i]; | |||
R[n + i] ^= Q[i]; | |||
} | |||
radix(Q0, Q1, Q, m_f - 1); | |||
radix(R0, R1, R, m_f - 1); | |||
memcpy(f0, R0, 2 * n); | |||
memcpy(f0 + n, Q0, 2 * n); | |||
memcpy(f1, R1, 2 * n); | |||
memcpy(f1 + n, Q1, 2 * n); | |||
} | |||
@@ -159,25 +167,27 @@ static void radix(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f) { | |||
* @param[in] betas FFT constants | |||
*/ | |||
static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32_t m_f, const uint16_t *betas) { | |||
uint16_t f0[1 << (PARAM_FFT - 2)]; | |||
uint16_t f1[1 << (PARAM_FFT - 2)]; | |||
uint16_t gammas[PARAM_M - 2]; | |||
uint16_t deltas[PARAM_M - 2]; | |||
size_t k = 1 << (m - 1); | |||
uint16_t gammas_sums[1 << (PARAM_M - 2)]; | |||
uint16_t f0[1 << (PARAM_FFT - 2)] = {0}; | |||
uint16_t f1[1 << (PARAM_FFT - 2)] = {0}; | |||
uint16_t gammas[PARAM_M - 2] = {0}; | |||
uint16_t deltas[PARAM_M - 2] = {0}; | |||
uint16_t gammas_sums[1 << (PARAM_M - 2)] = {0}; | |||
uint16_t u[1 << (PARAM_M - 2)] = {0}; | |||
uint16_t v[1 << (PARAM_M - 2)] = {0}; | |||
uint16_t tmp[PARAM_M - (PARAM_FFT - 1)] = {0}; | |||
uint16_t beta_m_pow; | |||
size_t i, j, k; | |||
// Step 1 | |||
if (m_f == 1) { | |||
uint16_t tmp[PARAM_M - (PARAM_FFT - 1)]; | |||
for (size_t i = 0 ; i < m ; ++i) { | |||
for (i = 0 ; i < m ; ++i) { | |||
tmp[i] = PQCLEAN_HQCRMRS256_AVX2_gf_mul(betas[i], f[1]); | |||
} | |||
w[0] = f[0]; | |||
for (size_t j = 0 ; j < m ; ++j) { | |||
for (size_t k = 0 ; k < (1U << j) ; ++k) { | |||
for (j = 0 ; j < m ; ++j) { | |||
for (k = 0 ; k < (1U << j) ; ++k) { | |||
w[(1 << j) + k] = w[k] ^ tmp[j]; | |||
} | |||
} | |||
@@ -187,8 +197,8 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 | |||
// Step 2: compute g | |||
if (betas[m - 1] != 1) { | |||
uint16_t beta_m_pow = 1; | |||
for (size_t i = 1 ; i < (1U << m_f) ; ++i) { | |||
beta_m_pow = 1; | |||
for (i = 1 ; i < (1U << m_f) ; ++i) { | |||
beta_m_pow = PQCLEAN_HQCRMRS256_AVX2_gf_mul(beta_m_pow, betas[m - 1]); | |||
f[i] = PQCLEAN_HQCRMRS256_AVX2_gf_mul(beta_m_pow, f[i]); | |||
} | |||
@@ -198,7 +208,7 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 | |||
radix(f0, f1, f, m_f); | |||
// Step 4: compute gammas and deltas | |||
for (uint8_t i = 0 ; i < m - 1 ; ++i) { | |||
for (i = 0 ; i + 1 < m ; ++i) { | |||
gammas[i] = PQCLEAN_HQCRMRS256_AVX2_gf_mul(betas[i], PQCLEAN_HQCRMRS256_AVX2_gf_inverse(betas[m - 1])); | |||
deltas[i] = PQCLEAN_HQCRMRS256_AVX2_gf_square(gammas[i]) ^ gammas[i]; | |||
} | |||
@@ -209,10 +219,11 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 | |||
// Step 5 | |||
fft_rec(u, f0, (f_coeffs + 1) / 2, m - 1, m_f - 1, deltas); | |||
k = 1 << ((m - 1) & 0xf); // &0xf is to let the compiler know that m-1 is small. | |||
if (f_coeffs <= 3) { // 3-coefficient polynomial f case: f1 is constant | |||
w[0] = u[0]; | |||
w[k] = u[0] ^ f1[0]; | |||
for (size_t i = 1 ; i < k ; ++i) { | |||
for (i = 1 ; i < k ; ++i) { | |||
w[i] = u[i] ^ PQCLEAN_HQCRMRS256_AVX2_gf_mul(gammas_sums[i], f1[0]); | |||
w[k + i] = w[i] ^ f1[0]; | |||
} | |||
@@ -223,7 +234,7 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 | |||
memcpy(w + k, v, 2 * k); | |||
w[0] = u[0]; | |||
w[k] ^= u[0]; | |||
for (size_t i = 1 ; i < k ; ++i) { | |||
for (i = 1 ; i < k ; ++i) { | |||
w[i] = u[i] ^ PQCLEAN_HQCRMRS256_AVX2_gf_mul(gammas_sums[i], v[i]); | |||
w[k + i] ^= w[i]; | |||
} | |||
@@ -252,14 +263,15 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 | |||
* @param[in] f_coeffs Number coefficients of f (i.e. deg(f)+1) | |||
*/ | |||
void PQCLEAN_HQCRMRS256_AVX2_fft(uint16_t *w, const uint16_t *f, size_t f_coeffs) { | |||
uint16_t betas[PARAM_M - 1]; | |||
uint16_t betas_sums[1 << (PARAM_M - 1)]; | |||
uint16_t f0[1 << (PARAM_FFT - 1)]; | |||
uint16_t f1[1 << (PARAM_FFT - 1)]; | |||
uint16_t deltas[PARAM_M - 1]; | |||
size_t k = 1 << (PARAM_M - 1); | |||
uint16_t u[1 << (PARAM_M - 1)]; | |||
uint16_t v[1 << (PARAM_M - 1)]; | |||
uint16_t betas[PARAM_M - 1] = {0}; | |||
uint16_t betas_sums[1 << (PARAM_M - 1)] = {0}; | |||
uint16_t f0[1 << (PARAM_FFT - 1)] = {0}; | |||
uint16_t f1[1 << (PARAM_FFT - 1)] = {0}; | |||
uint16_t deltas[PARAM_M - 1] = {0}; | |||
uint16_t u[1 << (PARAM_M - 1)] = {0}; | |||
uint16_t v[1 << (PARAM_M - 1)] = {0}; | |||
size_t i, k; | |||
// Follows Gao and Mateer algorithm | |||
compute_fft_betas(betas); | |||
@@ -275,7 +287,7 @@ void PQCLEAN_HQCRMRS256_AVX2_fft(uint16_t *w, const uint16_t *f, size_t f_coeffs | |||
radix(f0, f1, f, PARAM_FFT); | |||
// Step 4: Compute deltas | |||
for (size_t i = 0 ; i < PARAM_M - 1 ; ++i) { | |||
for (i = 0 ; i < PARAM_M - 1 ; ++i) { | |||
deltas[i] = PQCLEAN_HQCRMRS256_AVX2_gf_square(betas[i]) ^ betas[i]; | |||
} | |||
@@ -283,6 +295,7 @@ void PQCLEAN_HQCRMRS256_AVX2_fft(uint16_t *w, const uint16_t *f, size_t f_coeffs | |||
fft_rec(u, f0, (f_coeffs + 1) / 2, PARAM_M - 1, PARAM_FFT - 1, deltas); | |||
fft_rec(v, f1, f_coeffs / 2, PARAM_M - 1, PARAM_FFT - 1, deltas); | |||
k = 1 << (PARAM_M - 1); | |||
// Step 6, 7 and error polynomial computation | |||
memcpy(w + k, v, 2 * k); | |||
@@ -293,7 +306,7 @@ void PQCLEAN_HQCRMRS256_AVX2_fft(uint16_t *w, const uint16_t *f, size_t f_coeffs | |||
w[k] ^= u[0]; | |||
// Find other roots | |||
for (size_t i = 1 ; i < k ; ++i) { | |||
for (i = 1 ; i < k ; ++i) { | |||
w[i] = u[i] ^ PQCLEAN_HQCRMRS256_AVX2_gf_mul(betas_sums[i], v[i]); | |||
w[k + i] ^= w[i]; | |||
} | |||
@@ -311,17 +324,16 @@ void PQCLEAN_HQCRMRS256_AVX2_fft(uint16_t *w, const uint16_t *f, size_t f_coeffs | |||
void PQCLEAN_HQCRMRS256_AVX2_fft_retrieve_error_poly(uint8_t *error, const uint16_t *w) { | |||
uint16_t gammas[PARAM_M - 1] = {0}; | |||
uint16_t gammas_sums[1 << (PARAM_M - 1)] = {0}; | |||
size_t k = 1 << (PARAM_M - 1); | |||
size_t i, k, index; | |||
compute_fft_betas(gammas); | |||
compute_subset_sums(gammas_sums, gammas, PARAM_M - 1); | |||
k = 1 << (PARAM_M - 1); | |||
error[0] ^= 1 ^ ((uint16_t) - w[0] >> 15); | |||
error[0] ^= 1 ^ ((uint16_t) - w[k] >> 15); | |||
size_t index = PARAM_GF_MUL_ORDER; | |||
for (size_t i = 1 ; i < k ; ++i) { | |||
for (i = 1 ; i < k ; ++i) { | |||
index = PARAM_GF_MUL_ORDER - PQCLEAN_HQCRMRS256_AVX2_gf_log(gammas_sums[i]); | |||
error[index] ^= 1 ^ ((uint16_t) - w[i] >> 15); | |||
@@ -30,29 +30,28 @@ uint16_t PQCLEAN_HQCRMRS256_AVX2_gf_log(uint16_t elt) { | |||
* @param[in] deg_x The degree of polynomial x | |||
*/ | |||
static uint16_t gf_reduce(uint64_t x, size_t deg_x) { | |||
// Compute the distance between the primitive polynomial first two set bits | |||
size_t lz1 = __builtin_clz(PARAM_GF_POLY); | |||
size_t lz2 = __builtin_clz(PARAM_GF_POLY ^ 1 << PARAM_M); | |||
size_t dist = lz2 - lz1; | |||
uint16_t z1, z2, rmdr, dist; | |||
uint64_t mod; | |||
size_t steps, i, j; | |||
// Deduce the number of steps of reduction | |||
size_t steps = CEIL_DIVIDE(deg_x - (PARAM_M - 1), dist); | |||
steps = CEIL_DIVIDE(deg_x - (PARAM_M - 1), PARAM_GF_POLY_M2); | |||
// Reduce | |||
for (size_t i = 0; i < steps; ++i) { | |||
uint64_t mod = x >> PARAM_M; | |||
for (i = 0; i < steps; ++i) { | |||
mod = x >> PARAM_M; | |||
x &= (1 << PARAM_M) - 1; | |||
x ^= mod; | |||
size_t tz1 = 0; | |||
uint16_t rmdr = PARAM_GF_POLY ^ 1; | |||
for (size_t j = __builtin_popcount(PARAM_GF_POLY) - 2; j; --j) { | |||
size_t tz2 = __builtin_ctz(rmdr); | |||
size_t shift = tz2 - tz1; | |||
mod <<= shift; | |||
z1 = 0; | |||
rmdr = PARAM_GF_POLY ^ 1; | |||
for (j = PARAM_GF_POLY_WT - 2; j; --j) { | |||
z2 = __tzcnt_u16(rmdr); | |||
dist = (uint16_t) (z2 - z1); | |||
mod <<= dist; | |||
x ^= mod; | |||
rmdr ^= 1 << tz2; | |||
tz1 = tz2; | |||
rmdr ^= 1 << z2; | |||
z1 = z2; | |||
} | |||
} | |||
@@ -335,9 +335,7 @@ static void TOOM3Mult(__m256i *Out, const uint64_t *A, const uint64_t *B) { | |||
static __m256i W0[2 * (T_TM3_3W_256)], W1[2 * (T_TM3_3W_256)], W2[2 * (T_TM3_3W_256)], W3[2 * (T_TM3_3W_256)], W4[2 * (T_TM3_3W_256)]; | |||
static __m256i tmp[2 * (T_TM3_3W_256)]; | |||
static __m256i ro256[6 * (T_TM3_3W_256)]; | |||
const __m256i zero = (__m256i) { | |||
0ul, 0ul, 0ul, 0ul | |||
}; | |||
const __m256i zero = _mm256_setzero_si256(); | |||
int32_t T2 = T_TM3_3W_64 << 1; | |||
for (int32_t i = 0 ; i < T_TM3_3W_256 - 1 ; i++) { | |||
@@ -354,24 +352,12 @@ static void TOOM3Mult(__m256i *Out, const uint64_t *A, const uint64_t *B) { | |||
for (int32_t i = T_TM3_3W_256 - 1 ; i < T_TM3_3W_256 ; i++) { | |||
int32_t i4 = i << 2; | |||
int32_t i41 = i4 + 1; | |||
U0[i] = (__m256i) { | |||
A[i4], A[i41], 0x0ul, 0x0ul | |||
}; | |||
V0[i] = (__m256i) { | |||
B[i4], B[i41], 0x0ul, 0x0ul | |||
}; | |||
U1[i] = (__m256i) { | |||
A[i4 + T_TM3_3W_64 - 2], A[i41 + T_TM3_3W_64 - 2], 0x0ul, 0x0ul | |||
}; | |||
V1[i] = (__m256i) { | |||
B[i4 + T_TM3_3W_64 - 2], B[i41 + T_TM3_3W_64 - 2], 0x0ul, 0x0ul | |||
}; | |||
U2[i] = (__m256i) { | |||
A[i4 - 4 + T2], A[i4 - 3 + T2], 0x0ul, 0x0ul | |||
}; | |||
V2[i] = (__m256i) { | |||
B[i4 - 4 + T2], B[i4 - 3 + T2], 0x0ul, 0x0ul | |||
}; | |||
U0[i] = _mm256_set_epi64x(0, 0, A[i41], A[i4]); | |||
V0[i] = _mm256_set_epi64x(0, 0, B[i41], B[i4]); | |||
U1[i] = _mm256_set_epi64x(0, 0, A[i41 + T_TM3_3W_64 - 2], A[i4 + T_TM3_3W_64 - 2]); | |||
V1[i] = _mm256_set_epi64x(0, 0, B[i41 + T_TM3_3W_64 - 2], B[i4 + T_TM3_3W_64 - 2]); | |||
U2[i] = _mm256_set_epi64x(0, 0, A[i4 - 3 + T2], A[i4 - 4 + T2]); | |||
V2[i] = _mm256_set_epi64x(0, 0, B[i4 - 3 + T2], B[i4 - 4 + T2]); | |||
} | |||
// Evaluation phase : x= X^64 | |||
@@ -459,9 +445,7 @@ static void TOOM3Mult(__m256i *Out, const uint64_t *A, const uint64_t *B) { | |||
//W2 =(W2 + W3 + W4*(x^3+1))/(x+1) | |||
U1_64 = ((int64_t *) W4); | |||
__m256i *U1_256 = (__m256i *) (U1_64 + 1); | |||
tmp[0] = W2[0] ^ W3[0] ^ W4[0] ^ (__m256i) { | |||
0x0ul, 0x0ul, 0x0ul, U1_64[0] | |||
}; | |||
tmp[0] = W2[0] ^ W3[0] ^ W4[0] ^ _mm256_set_epi64x(U1_64[0], 0, 0, 0); | |||
for (int32_t i = 1 ; i < (T_TM3_3W_256 << 1) - 1 ; i++) { | |||
tmp[i] = W2[i] ^ W3[i] ^ W4[i] ^ _mm256_lddqu_si256(&U1_256[i - 1]); | |||
@@ -555,9 +539,7 @@ static void TOOM3RecMult(__m256i *Out, const uint64_t *A, const uint64_t *B) { | |||
__m256i W0[2 * (T_TM3R_3W_256 + 2)], W1[2 * (T_TM3R_3W_256 + 2)], W2[2 * (T_TM3R_3W_256 + 2)], W3[2 * (T_TM3R_3W_256 + 2)], W4[2 * (T_TM3R_3W_256 + 2)]; | |||
__m256i tmp[2 * (T_TM3R_3W_256 + 2) + 3]; | |||
__m256i ro256[tTM3R / 2]; | |||
const __m256i zero = (__m256i) { | |||
0ul, 0ul, 0ul, 0ul | |||
}; | |||
const __m256i zero = _mm256_setzero_si256(); | |||
int32_t T2 = T_TM3R_3W_64 << 1; | |||
for (int32_t i = 0 ; i < T_TM3R_3W_256 ; i++) { | |||