1
1
miroir de https://github.com/henrydcase/pqc.git synchronisé 2024-11-22 07:35:38 +00:00

trying to satisfy ms again

Cette révision appartient à :
John M. Schanck 2020-09-14 17:47:08 -04:00 révisé par Kris Kwiatkowski
Parent e49e512b06
révision 35ba6edacc
12 fichiers modifiés avec 138 ajouts et 72 suppressions

Voir le fichier

@ -31,7 +31,7 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32
static void compute_fft_betas(uint16_t *betas) {
size_t i;
for (i = 0; i < PARAM_M - 1; ++i) {
betas[i] = 1 << (PARAM_M - 1 - i);
betas[i] = (uint16_t) (1 << (PARAM_M - 1 - i));
}
}
@ -134,7 +134,8 @@ static void radix_big(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_
size_t i, n;
n = 1 << (m_f - 2);
n = 1;
n <<= m_f - 2;
memcpy(Q, f + 3 * n, 2 * n);
memcpy(Q + n, f + 3 * n, 2 * n);
memcpy(R, f, 4 * n);
@ -202,7 +203,8 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32
// Step 2: compute g
if (betas[m - 1] != 1) {
beta_m_pow = 1;
x = 1 << m_f;
x = 1;
x <<= m_f;
for (i = 1; i < x; ++i) {
beta_m_pow = PQCLEAN_HQC128_AVX2_gf_mul(beta_m_pow, betas[m - 1]);
f[i] = PQCLEAN_HQC128_AVX2_gf_mul(beta_m_pow, f[i]);
@ -224,7 +226,8 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32
// Step 5
fft_rec(u, f0, (f_coeffs + 1) / 2, m - 1, m_f - 1, deltas);
k = 1 << ((m - 1) & 0xf); // &0xf is to let the compiler know that m-1 is small.
k = 1;
k <<= ((m - 1) & 0xf); // &0xf is to let the compiler know that m-1 is small.
if (f_coeffs <= 3) { // 3-coefficient polynomial f case: f1 is constant
w[0] = u[0];
w[k] = u[0] ^ f1[0];
@ -300,7 +303,8 @@ void PQCLEAN_HQC128_AVX2_fft(uint16_t *w, const uint16_t *f, size_t f_coeffs) {
fft_rec(u, f0, (f_coeffs + 1) / 2, PARAM_M - 1, PARAM_FFT - 1, deltas);
fft_rec(v, f1, f_coeffs / 2, PARAM_M - 1, PARAM_FFT - 1, deltas);
k = 1 << (PARAM_M - 1);
k = 1;
k <<= PARAM_M - 1;
// Step 6, 7 and error polynomial computation
memcpy(w + k, v, 2 * k);
@ -337,7 +341,8 @@ void PQCLEAN_HQC128_AVX2_fft_retrieve_bch_error_poly(uint64_t *error, const uint
error[0] ^= 1 ^ ((uint16_t) - w[0] >> 15);
k = 1 << (PARAM_M - 1);
k = 1;
k <<= PARAM_M - 1;
index = PARAM_GF_MUL_ORDER;
bit = 1 ^ ((uint16_t) - w[k] >> 15);
error[index / 8] ^= bit << (index % 64);

Voir le fichier

@ -34,7 +34,7 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32
static void compute_fft_betas(uint16_t *betas) {
size_t i;
for (i = 0; i < PARAM_M - 1; ++i) {
betas[i] = 1 << (PARAM_M - 1 - i);
betas[i] = (uint16_t) (1 << (PARAM_M - 1 - i));
}
}
@ -137,7 +137,8 @@ static void radix_t_big(uint16_t *f, const uint16_t *f0, const uint16_t *f1, uin
uint16_t n;
size_t i;
n = 1 << (m_f - 2);
n = 1;
n <<= m_f - 2;
memcpy(Q0, f0 + n, 2 * n);
memcpy(Q1, f1 + n, 2 * n);
memcpy(R0, f0, 2 * n);
@ -187,7 +188,8 @@ static void fft_t_rec(uint16_t *f, const uint16_t *w, size_t f_coeffs, uint8_t m
// Step 1
if (m_f == 1) {
f[0] = 0;
x = 1 << m;
x = 1;
x <<= m;
for (i = 0; i < x; ++i) {
f[0] ^= w[i];
}
@ -221,7 +223,8 @@ static void fft_t_rec(uint16_t *f, const uint16_t *w, size_t f_coeffs, uint8_t m
* Transpose:
* u[i] = w[i] + w[k+i]
* v[i] = G[i].w[i] + (G[i]+1).w[k+i] = G[i].u[i] + w[k+i] */
k = 1 << ((m - 1) & 0xf); // &0xf is to let the compiler know that m-1 is small.
k = 1;
k <<= (m - 1) & 0xf; // &0xf is to let the compiler know that m-1 is small.
if (f_coeffs <= 3) { // 3-coefficient polynomial f case
// Step 5: Compute f0 from u and f1 from v
f1[1] = 0;
@ -252,7 +255,8 @@ static void fft_t_rec(uint16_t *f, const uint16_t *w, size_t f_coeffs, uint8_t m
// Step 2: compute f from g
if (betas[m - 1] != 1) {
beta_m_pow = 1;
x = 1 << m_f;
x = 1;
x <<= m_f;
for (i = 1; i < x; ++i) {
beta_m_pow = PQCLEAN_HQC128_CLEAN_gf_mul(beta_m_pow, betas[m - 1]);
f[i] = PQCLEAN_HQC128_CLEAN_gf_mul(beta_m_pow, f[i]);
@ -297,7 +301,8 @@ void PQCLEAN_HQC128_CLEAN_fft_t(uint16_t *f, const uint16_t *w, size_t f_coeffs)
* Transpose:
* u[i] = w[i] + w[k+i]
* v[i] = G[i].w[i] + (G[i]+1).w[k+i] = G[i].u[i] + w[k+i] */
k = 1 << (PARAM_M - 1);
k = 1;
k <<= PARAM_M - 1;
u[0] = w[0] ^ w[k];
v[0] = w[k];
for (i = 1; i < k; ++i) {
@ -396,7 +401,8 @@ static void radix_big(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_
size_t i, n;
n = 1 << (m_f - 2);
n = 1;
n <<= m_f - 2;
memcpy(Q, f + 3 * n, 2 * n);
memcpy(Q + n, f + 3 * n, 2 * n);
memcpy(R, f, 4 * n);
@ -464,7 +470,8 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32
// Step 2: compute g
if (betas[m - 1] != 1) {
beta_m_pow = 1;
x = 1 << m_f;
x = 1;
x <<= m_f;
for (i = 1; i < x; ++i) {
beta_m_pow = PQCLEAN_HQC128_CLEAN_gf_mul(beta_m_pow, betas[m - 1]);
f[i] = PQCLEAN_HQC128_CLEAN_gf_mul(beta_m_pow, f[i]);
@ -486,7 +493,8 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32
// Step 5
fft_rec(u, f0, (f_coeffs + 1) / 2, m - 1, m_f - 1, deltas);
k = 1 << ((m - 1) & 0xf); // &0xf is to let the compiler know that m-1 is small.
k = 1;
k <<= (m - 1) & 0xf; // &0xf is to let the compiler know that m-1 is small.
if (f_coeffs <= 3) { // 3-coefficient polynomial f case: f1 is constant
w[0] = u[0];
w[k] = u[0] ^ f1[0];
@ -562,7 +570,8 @@ void PQCLEAN_HQC128_CLEAN_fft(uint16_t *w, const uint16_t *f, size_t f_coeffs) {
fft_rec(u, f0, (f_coeffs + 1) / 2, PARAM_M - 1, PARAM_FFT - 1, deltas);
fft_rec(v, f1, f_coeffs / 2, PARAM_M - 1, PARAM_FFT - 1, deltas);
k = 1 << (PARAM_M - 1);
k = 1;
k <<= PARAM_M - 1;
// Step 6, 7 and error polynomial computation
memcpy(w + k, v, 2 * k);
@ -616,7 +625,8 @@ void PQCLEAN_HQC128_CLEAN_fft_t_preprocess_bch_codeword(uint16_t *w, const uint6
compute_subset_sums(gammas_sums, gammas, PARAM_M - 1);
// Twist and permute r adequately to obtain w
k = 1 << (PARAM_M - 1);
k = 1;
k <<= PARAM_M - 1;
w[0] = 0;
w[k] = -r[0] & 1;
for (i = 1; i < k; ++i) {
@ -645,7 +655,8 @@ void PQCLEAN_HQC128_CLEAN_fft_retrieve_bch_error_poly(uint64_t *error, const uin
error[0] ^= 1 ^ ((uint16_t) - w[0] >> 15);
k = 1 << (PARAM_M - 1);
k = 1;
k <<= PARAM_M - 1;
index = PARAM_GF_MUL_ORDER;
bit = 1 ^ ((uint16_t) - w[k] >> 15);
error[index / 8] ^= bit << (index % 64);

Voir le fichier

@ -31,7 +31,7 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32
static void compute_fft_betas(uint16_t *betas) {
size_t i;
for (i = 0; i < PARAM_M - 1; ++i) {
betas[i] = 1 << (PARAM_M - 1 - i);
betas[i] = (uint16_t) (1 << (PARAM_M - 1 - i));
}
}
@ -134,7 +134,8 @@ static void radix_big(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_
size_t i, n;
n = 1 << (m_f - 2);
n = 1;
n <<= m_f - 2;
memcpy(Q, f + 3 * n, 2 * n);
memcpy(Q + n, f + 3 * n, 2 * n);
memcpy(R, f, 4 * n);
@ -202,7 +203,8 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32
// Step 2: compute g
if (betas[m - 1] != 1) {
beta_m_pow = 1;
x = 1 << m_f;
x = 1;
x <<= m_f;
for (i = 1; i < x; ++i) {
beta_m_pow = PQCLEAN_HQC192_AVX2_gf_mul(beta_m_pow, betas[m - 1]);
f[i] = PQCLEAN_HQC192_AVX2_gf_mul(beta_m_pow, f[i]);
@ -224,7 +226,8 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32
// Step 5
fft_rec(u, f0, (f_coeffs + 1) / 2, m - 1, m_f - 1, deltas);
k = 1 << ((m - 1) & 0xf); // &0xf is to let the compiler know that m-1 is small.
k = 1;
k <<= ((m - 1) & 0xf); // &0xf is to let the compiler know that m-1 is small.
if (f_coeffs <= 3) { // 3-coefficient polynomial f case: f1 is constant
w[0] = u[0];
w[k] = u[0] ^ f1[0];
@ -300,7 +303,8 @@ void PQCLEAN_HQC192_AVX2_fft(uint16_t *w, const uint16_t *f, size_t f_coeffs) {
fft_rec(u, f0, (f_coeffs + 1) / 2, PARAM_M - 1, PARAM_FFT - 1, deltas);
fft_rec(v, f1, f_coeffs / 2, PARAM_M - 1, PARAM_FFT - 1, deltas);
k = 1 << (PARAM_M - 1);
k = 1;
k <<= PARAM_M - 1;
// Step 6, 7 and error polynomial computation
memcpy(w + k, v, 2 * k);
@ -337,7 +341,8 @@ void PQCLEAN_HQC192_AVX2_fft_retrieve_bch_error_poly(uint64_t *error, const uint
error[0] ^= 1 ^ ((uint16_t) - w[0] >> 15);
k = 1 << (PARAM_M - 1);
k = 1;
k <<= PARAM_M - 1;
index = PARAM_GF_MUL_ORDER;
bit = 1 ^ ((uint16_t) - w[k] >> 15);
error[index / 8] ^= bit << (index % 64);

Voir le fichier

@ -34,7 +34,7 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32
static void compute_fft_betas(uint16_t *betas) {
size_t i;
for (i = 0; i < PARAM_M - 1; ++i) {
betas[i] = 1 << (PARAM_M - 1 - i);
betas[i] = (uint16_t) (1 << (PARAM_M - 1 - i));
}
}
@ -137,7 +137,8 @@ static void radix_t_big(uint16_t *f, const uint16_t *f0, const uint16_t *f1, uin
uint16_t n;
size_t i;
n = 1 << (m_f - 2);
n = 1;
n <<= m_f - 2;
memcpy(Q0, f0 + n, 2 * n);
memcpy(Q1, f1 + n, 2 * n);
memcpy(R0, f0, 2 * n);
@ -187,7 +188,8 @@ static void fft_t_rec(uint16_t *f, const uint16_t *w, size_t f_coeffs, uint8_t m
// Step 1
if (m_f == 1) {
f[0] = 0;
x = 1 << m;
x = 1;
x <<= m;
for (i = 0; i < x; ++i) {
f[0] ^= w[i];
}
@ -221,7 +223,8 @@ static void fft_t_rec(uint16_t *f, const uint16_t *w, size_t f_coeffs, uint8_t m
* Transpose:
* u[i] = w[i] + w[k+i]
* v[i] = G[i].w[i] + (G[i]+1).w[k+i] = G[i].u[i] + w[k+i] */
k = 1 << ((m - 1) & 0xf); // &0xf is to let the compiler know that m-1 is small.
k = 1;
k <<= (m - 1) & 0xf; // &0xf is to let the compiler know that m-1 is small.
if (f_coeffs <= 3) { // 3-coefficient polynomial f case
// Step 5: Compute f0 from u and f1 from v
f1[1] = 0;
@ -252,7 +255,8 @@ static void fft_t_rec(uint16_t *f, const uint16_t *w, size_t f_coeffs, uint8_t m
// Step 2: compute f from g
if (betas[m - 1] != 1) {
beta_m_pow = 1;
x = 1 << m_f;
x = 1;
x <<= m_f;
for (i = 1; i < x; ++i) {
beta_m_pow = PQCLEAN_HQC192_CLEAN_gf_mul(beta_m_pow, betas[m - 1]);
f[i] = PQCLEAN_HQC192_CLEAN_gf_mul(beta_m_pow, f[i]);
@ -297,7 +301,8 @@ void PQCLEAN_HQC192_CLEAN_fft_t(uint16_t *f, const uint16_t *w, size_t f_coeffs)
* Transpose:
* u[i] = w[i] + w[k+i]
* v[i] = G[i].w[i] + (G[i]+1).w[k+i] = G[i].u[i] + w[k+i] */
k = 1 << (PARAM_M - 1);
k = 1;
k <<= PARAM_M - 1;
u[0] = w[0] ^ w[k];
v[0] = w[k];
for (i = 1; i < k; ++i) {
@ -396,7 +401,8 @@ static void radix_big(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_
size_t i, n;
n = 1 << (m_f - 2);
n = 1;
n <<= m_f - 2;
memcpy(Q, f + 3 * n, 2 * n);
memcpy(Q + n, f + 3 * n, 2 * n);
memcpy(R, f, 4 * n);
@ -464,7 +470,8 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32
// Step 2: compute g
if (betas[m - 1] != 1) {
beta_m_pow = 1;
x = 1 << m_f;
x = 1;
x <<= m_f;
for (i = 1; i < x; ++i) {
beta_m_pow = PQCLEAN_HQC192_CLEAN_gf_mul(beta_m_pow, betas[m - 1]);
f[i] = PQCLEAN_HQC192_CLEAN_gf_mul(beta_m_pow, f[i]);
@ -486,7 +493,8 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32
// Step 5
fft_rec(u, f0, (f_coeffs + 1) / 2, m - 1, m_f - 1, deltas);
k = 1 << ((m - 1) & 0xf); // &0xf is to let the compiler know that m-1 is small.
k = 1;
k <<= (m - 1) & 0xf; // &0xf is to let the compiler know that m-1 is small.
if (f_coeffs <= 3) { // 3-coefficient polynomial f case: f1 is constant
w[0] = u[0];
w[k] = u[0] ^ f1[0];
@ -562,7 +570,8 @@ void PQCLEAN_HQC192_CLEAN_fft(uint16_t *w, const uint16_t *f, size_t f_coeffs) {
fft_rec(u, f0, (f_coeffs + 1) / 2, PARAM_M - 1, PARAM_FFT - 1, deltas);
fft_rec(v, f1, f_coeffs / 2, PARAM_M - 1, PARAM_FFT - 1, deltas);
k = 1 << (PARAM_M - 1);
k = 1;
k <<= PARAM_M - 1;
// Step 6, 7 and error polynomial computation
memcpy(w + k, v, 2 * k);
@ -616,7 +625,8 @@ void PQCLEAN_HQC192_CLEAN_fft_t_preprocess_bch_codeword(uint16_t *w, const uint6
compute_subset_sums(gammas_sums, gammas, PARAM_M - 1);
// Twist and permute r adequately to obtain w
k = 1 << (PARAM_M - 1);
k = 1;
k <<= PARAM_M - 1;
w[0] = 0;
w[k] = -r[0] & 1;
for (i = 1; i < k; ++i) {
@ -645,7 +655,8 @@ void PQCLEAN_HQC192_CLEAN_fft_retrieve_bch_error_poly(uint64_t *error, const uin
error[0] ^= 1 ^ ((uint16_t) - w[0] >> 15);
k = 1 << (PARAM_M - 1);
k = 1;
k <<= PARAM_M - 1;
index = PARAM_GF_MUL_ORDER;
bit = 1 ^ ((uint16_t) - w[k] >> 15);
error[index / 8] ^= bit << (index % 64);

Voir le fichier

@ -31,7 +31,7 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32
static void compute_fft_betas(uint16_t *betas) {
size_t i;
for (i = 0; i < PARAM_M - 1; ++i) {
betas[i] = 1 << (PARAM_M - 1 - i);
betas[i] = (uint16_t) (1 << (PARAM_M - 1 - i));
}
}
@ -134,7 +134,8 @@ static void radix_big(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_
size_t i, n;
n = 1 << (m_f - 2);
n = 1;
n <<= m_f - 2;
memcpy(Q, f + 3 * n, 2 * n);
memcpy(Q + n, f + 3 * n, 2 * n);
memcpy(R, f, 4 * n);
@ -202,7 +203,8 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32
// Step 2: compute g
if (betas[m - 1] != 1) {
beta_m_pow = 1;
x = 1 << m_f;
x = 1;
x <<= m_f;
for (i = 1; i < x; ++i) {
beta_m_pow = PQCLEAN_HQC256_AVX2_gf_mul(beta_m_pow, betas[m - 1]);
f[i] = PQCLEAN_HQC256_AVX2_gf_mul(beta_m_pow, f[i]);
@ -224,7 +226,8 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32
// Step 5
fft_rec(u, f0, (f_coeffs + 1) / 2, m - 1, m_f - 1, deltas);
k = 1 << ((m - 1) & 0xf); // &0xf is to let the compiler know that m-1 is small.
k = 1;
k <<= ((m - 1) & 0xf); // &0xf is to let the compiler know that m-1 is small.
if (f_coeffs <= 3) { // 3-coefficient polynomial f case: f1 is constant
w[0] = u[0];
w[k] = u[0] ^ f1[0];
@ -300,7 +303,8 @@ void PQCLEAN_HQC256_AVX2_fft(uint16_t *w, const uint16_t *f, size_t f_coeffs) {
fft_rec(u, f0, (f_coeffs + 1) / 2, PARAM_M - 1, PARAM_FFT - 1, deltas);
fft_rec(v, f1, f_coeffs / 2, PARAM_M - 1, PARAM_FFT - 1, deltas);
k = 1 << (PARAM_M - 1);
k = 1;
k <<= PARAM_M - 1;
// Step 6, 7 and error polynomial computation
memcpy(w + k, v, 2 * k);
@ -337,7 +341,8 @@ void PQCLEAN_HQC256_AVX2_fft_retrieve_bch_error_poly(uint64_t *error, const uint
error[0] ^= 1 ^ ((uint16_t) - w[0] >> 15);
k = 1 << (PARAM_M - 1);
k = 1;
k <<= PARAM_M - 1;
index = PARAM_GF_MUL_ORDER;
bit = 1 ^ ((uint16_t) - w[k] >> 15);
error[index / 8] ^= bit << (index % 64);

Voir le fichier

@ -34,7 +34,7 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32
static void compute_fft_betas(uint16_t *betas) {
size_t i;
for (i = 0; i < PARAM_M - 1; ++i) {
betas[i] = 1 << (PARAM_M - 1 - i);
betas[i] = (uint16_t) (1 << (PARAM_M - 1 - i));
}
}
@ -137,7 +137,8 @@ static void radix_t_big(uint16_t *f, const uint16_t *f0, const uint16_t *f1, uin
uint16_t n;
size_t i;
n = 1 << (m_f - 2);
n = 1;
n <<= m_f - 2;
memcpy(Q0, f0 + n, 2 * n);
memcpy(Q1, f1 + n, 2 * n);
memcpy(R0, f0, 2 * n);
@ -187,7 +188,8 @@ static void fft_t_rec(uint16_t *f, const uint16_t *w, size_t f_coeffs, uint8_t m
// Step 1
if (m_f == 1) {
f[0] = 0;
x = 1 << m;
x = 1;
x <<= m;
for (i = 0; i < x; ++i) {
f[0] ^= w[i];
}
@ -221,7 +223,8 @@ static void fft_t_rec(uint16_t *f, const uint16_t *w, size_t f_coeffs, uint8_t m
* Transpose:
* u[i] = w[i] + w[k+i]
* v[i] = G[i].w[i] + (G[i]+1).w[k+i] = G[i].u[i] + w[k+i] */
k = 1 << ((m - 1) & 0xf); // &0xf is to let the compiler know that m-1 is small.
k = 1;
k <<= (m - 1) & 0xf; // &0xf is to let the compiler know that m-1 is small.
if (f_coeffs <= 3) { // 3-coefficient polynomial f case
// Step 5: Compute f0 from u and f1 from v
f1[1] = 0;
@ -252,7 +255,8 @@ static void fft_t_rec(uint16_t *f, const uint16_t *w, size_t f_coeffs, uint8_t m
// Step 2: compute f from g
if (betas[m - 1] != 1) {
beta_m_pow = 1;
x = 1 << m_f;
x = 1;
x <<= m_f;
for (i = 1; i < x; ++i) {
beta_m_pow = PQCLEAN_HQC256_CLEAN_gf_mul(beta_m_pow, betas[m - 1]);
f[i] = PQCLEAN_HQC256_CLEAN_gf_mul(beta_m_pow, f[i]);
@ -297,7 +301,8 @@ void PQCLEAN_HQC256_CLEAN_fft_t(uint16_t *f, const uint16_t *w, size_t f_coeffs)
* Transpose:
* u[i] = w[i] + w[k+i]
* v[i] = G[i].w[i] + (G[i]+1).w[k+i] = G[i].u[i] + w[k+i] */
k = 1 << (PARAM_M - 1);
k = 1;
k <<= PARAM_M - 1;
u[0] = w[0] ^ w[k];
v[0] = w[k];
for (i = 1; i < k; ++i) {
@ -396,7 +401,8 @@ static void radix_big(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_
size_t i, n;
n = 1 << (m_f - 2);
n = 1;
n <<= m_f - 2;
memcpy(Q, f + 3 * n, 2 * n);
memcpy(Q + n, f + 3 * n, 2 * n);
memcpy(R, f, 4 * n);
@ -464,7 +470,8 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32
// Step 2: compute g
if (betas[m - 1] != 1) {
beta_m_pow = 1;
x = 1 << m_f;
x = 1;
x <<= m_f;
for (i = 1; i < x; ++i) {
beta_m_pow = PQCLEAN_HQC256_CLEAN_gf_mul(beta_m_pow, betas[m - 1]);
f[i] = PQCLEAN_HQC256_CLEAN_gf_mul(beta_m_pow, f[i]);
@ -486,7 +493,8 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32
// Step 5
fft_rec(u, f0, (f_coeffs + 1) / 2, m - 1, m_f - 1, deltas);
k = 1 << ((m - 1) & 0xf); // &0xf is to let the compiler know that m-1 is small.
k = 1;
k <<= (m - 1) & 0xf; // &0xf is to let the compiler know that m-1 is small.
if (f_coeffs <= 3) { // 3-coefficient polynomial f case: f1 is constant
w[0] = u[0];
w[k] = u[0] ^ f1[0];
@ -562,7 +570,8 @@ void PQCLEAN_HQC256_CLEAN_fft(uint16_t *w, const uint16_t *f, size_t f_coeffs) {
fft_rec(u, f0, (f_coeffs + 1) / 2, PARAM_M - 1, PARAM_FFT - 1, deltas);
fft_rec(v, f1, f_coeffs / 2, PARAM_M - 1, PARAM_FFT - 1, deltas);
k = 1 << (PARAM_M - 1);
k = 1;
k <<= PARAM_M - 1;
// Step 6, 7 and error polynomial computation
memcpy(w + k, v, 2 * k);
@ -616,7 +625,8 @@ void PQCLEAN_HQC256_CLEAN_fft_t_preprocess_bch_codeword(uint16_t *w, const uint6
compute_subset_sums(gammas_sums, gammas, PARAM_M - 1);
// Twist and permute r adequately to obtain w
k = 1 << (PARAM_M - 1);
k = 1;
k <<= PARAM_M - 1;
w[0] = 0;
w[k] = -r[0] & 1;
for (i = 1; i < k; ++i) {
@ -645,7 +655,8 @@ void PQCLEAN_HQC256_CLEAN_fft_retrieve_bch_error_poly(uint64_t *error, const uin
error[0] ^= 1 ^ ((uint16_t) - w[0] >> 15);
k = 1 << (PARAM_M - 1);
k = 1;
k <<= PARAM_M - 1;
index = PARAM_GF_MUL_ORDER;
bit = 1 ^ ((uint16_t) - w[k] >> 15);
error[index / 8] ^= bit << (index % 64);

Voir le fichier

@ -133,7 +133,8 @@ static void radix_big(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_
size_t i, n;
n = 1 << (m_f - 2);
n = 1;
n <<= (m_f - 2);
memcpy(Q, f + 3 * n, 2 * n);
memcpy(Q + n, f + 3 * n, 2 * n);
memcpy(R, f, 4 * n);
@ -201,7 +202,8 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32
// Step 2: compute g
if (betas[m - 1] != 1) {
beta_m_pow = 1;
x = 1 << m_f;
x = 1;
x <<= m_f;
for (i = 1; i < x; ++i) {
beta_m_pow = PQCLEAN_HQCRMRS128_AVX2_gf_mul(beta_m_pow, betas[m - 1]);
f[i] = PQCLEAN_HQCRMRS128_AVX2_gf_mul(beta_m_pow, f[i]);
@ -223,7 +225,8 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32
// Step 5
fft_rec(u, f0, (f_coeffs + 1) / 2, m - 1, m_f - 1, deltas);
k = 1 << ((m - 1) & 0xf); // &0xf is to let the compiler know that m-1 is small.
k = 1;
k <<= ((m - 1) & 0xf); // &0xf is to let the compiler know that m-1 is small.
if (f_coeffs <= 3) { // 3-coefficient polynomial f case: f1 is constant
w[0] = u[0];
w[k] = u[0] ^ f1[0];

Voir le fichier

@ -133,7 +133,8 @@ static void radix_big(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_
size_t i, n;
n = 1 << (m_f - 2);
n = 1;
n <<= (m_f - 2);
memcpy(Q, f + 3 * n, 2 * n);
memcpy(Q + n, f + 3 * n, 2 * n);
memcpy(R, f, 4 * n);
@ -201,7 +202,8 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32
// Step 2: compute g
if (betas[m - 1] != 1) {
beta_m_pow = 1;
x = 1 << m_f;
x = 1;
x <<= m_f;
for (i = 1; i < x; ++i) {
beta_m_pow = PQCLEAN_HQCRMRS128_CLEAN_gf_mul(beta_m_pow, betas[m - 1]);
f[i] = PQCLEAN_HQCRMRS128_CLEAN_gf_mul(beta_m_pow, f[i]);
@ -223,7 +225,8 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32
// Step 5
fft_rec(u, f0, (f_coeffs + 1) / 2, m - 1, m_f - 1, deltas);
k = 1 << ((m - 1) & 0xf); // &0xf is to let the compiler know that m-1 is small.
k = 1;
k <<= ((m - 1) & 0xf); // &0xf is to let the compiler know that m-1 is small.
if (f_coeffs <= 3) { // 3-coefficient polynomial f case: f1 is constant
w[0] = u[0];
w[k] = u[0] ^ f1[0];

Voir le fichier

@ -133,7 +133,8 @@ static void radix_big(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_
size_t i, n;
n = 1 << (m_f - 2);
n = 1;
n <<= (m_f - 2);
memcpy(Q, f + 3 * n, 2 * n);
memcpy(Q + n, f + 3 * n, 2 * n);
memcpy(R, f, 4 * n);
@ -201,7 +202,8 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32
// Step 2: compute g
if (betas[m - 1] != 1) {
beta_m_pow = 1;
x = 1 << m_f;
x = 1;
x <<= m_f;
for (i = 1; i < x; ++i) {
beta_m_pow = PQCLEAN_HQCRMRS192_AVX2_gf_mul(beta_m_pow, betas[m - 1]);
f[i] = PQCLEAN_HQCRMRS192_AVX2_gf_mul(beta_m_pow, f[i]);
@ -223,7 +225,8 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32
// Step 5
fft_rec(u, f0, (f_coeffs + 1) / 2, m - 1, m_f - 1, deltas);
k = 1 << ((m - 1) & 0xf); // &0xf is to let the compiler know that m-1 is small.
k = 1;
k <<= ((m - 1) & 0xf); // &0xf is to let the compiler know that m-1 is small.
if (f_coeffs <= 3) { // 3-coefficient polynomial f case: f1 is constant
w[0] = u[0];
w[k] = u[0] ^ f1[0];

Voir le fichier

@ -133,7 +133,8 @@ static void radix_big(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_
size_t i, n;
n = 1 << (m_f - 2);
n = 1;
n <<= (m_f - 2);
memcpy(Q, f + 3 * n, 2 * n);
memcpy(Q + n, f + 3 * n, 2 * n);
memcpy(R, f, 4 * n);
@ -201,7 +202,8 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32
// Step 2: compute g
if (betas[m - 1] != 1) {
beta_m_pow = 1;
x = 1 << m_f;
x = 1;
x <<= m_f;
for (i = 1; i < x; ++i) {
beta_m_pow = PQCLEAN_HQCRMRS192_CLEAN_gf_mul(beta_m_pow, betas[m - 1]);
f[i] = PQCLEAN_HQCRMRS192_CLEAN_gf_mul(beta_m_pow, f[i]);
@ -223,7 +225,8 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32
// Step 5
fft_rec(u, f0, (f_coeffs + 1) / 2, m - 1, m_f - 1, deltas);
k = 1 << ((m - 1) & 0xf); // &0xf is to let the compiler know that m-1 is small.
k = 1;
k <<= ((m - 1) & 0xf); // &0xf is to let the compiler know that m-1 is small.
if (f_coeffs <= 3) { // 3-coefficient polynomial f case: f1 is constant
w[0] = u[0];
w[k] = u[0] ^ f1[0];

Voir le fichier

@ -133,7 +133,8 @@ static void radix_big(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_
size_t i, n;
n = 1 << (m_f - 2);
n = 1;
n <<= (m_f - 2);
memcpy(Q, f + 3 * n, 2 * n);
memcpy(Q + n, f + 3 * n, 2 * n);
memcpy(R, f, 4 * n);
@ -201,7 +202,8 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32
// Step 2: compute g
if (betas[m - 1] != 1) {
beta_m_pow = 1;
x = 1 << m_f;
x = 1;
x <<= m_f;
for (i = 1; i < x; ++i) {
beta_m_pow = PQCLEAN_HQCRMRS256_AVX2_gf_mul(beta_m_pow, betas[m - 1]);
f[i] = PQCLEAN_HQCRMRS256_AVX2_gf_mul(beta_m_pow, f[i]);
@ -223,7 +225,8 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32
// Step 5
fft_rec(u, f0, (f_coeffs + 1) / 2, m - 1, m_f - 1, deltas);
k = 1 << ((m - 1) & 0xf); // &0xf is to let the compiler know that m-1 is small.
k = 1;
k <<= ((m - 1) & 0xf); // &0xf is to let the compiler know that m-1 is small.
if (f_coeffs <= 3) { // 3-coefficient polynomial f case: f1 is constant
w[0] = u[0];
w[k] = u[0] ^ f1[0];

Voir le fichier

@ -133,7 +133,8 @@ static void radix_big(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_
size_t i, n;
n = 1 << (m_f - 2);
n = 1;
n <<= (m_f - 2);
memcpy(Q, f + 3 * n, 2 * n);
memcpy(Q + n, f + 3 * n, 2 * n);
memcpy(R, f, 4 * n);
@ -201,7 +202,8 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32
// Step 2: compute g
if (betas[m - 1] != 1) {
beta_m_pow = 1;
x = 1 << m_f;
x = 1;
x <<= m_f;
for (i = 1; i < x; ++i) {
beta_m_pow = PQCLEAN_HQCRMRS256_CLEAN_gf_mul(beta_m_pow, betas[m - 1]);
f[i] = PQCLEAN_HQCRMRS256_CLEAN_gf_mul(beta_m_pow, f[i]);
@ -223,7 +225,8 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32
// Step 5
fft_rec(u, f0, (f_coeffs + 1) / 2, m - 1, m_f - 1, deltas);
k = 1 << ((m - 1) & 0xf); // &0xf is to let the compiler know that m-1 is small.
k = 1;
k <<= ((m - 1) & 0xf); // &0xf is to let the compiler know that m-1 is small.
if (f_coeffs <= 3) { // 3-coefficient polynomial f case: f1 is constant
w[0] = u[0];
w[k] = u[0] ^ f1[0];