@@ -31,7 +31,7 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 | |||
static void compute_fft_betas(uint16_t *betas) { | |||
size_t i; | |||
for (i = 0; i < PARAM_M - 1; ++i) { | |||
betas[i] = (uint16_t) (1 << (PARAM_M - 1 - i)); | |||
betas[i] = 1 << (PARAM_M - 1 - i); | |||
} | |||
} | |||
@@ -134,7 +134,7 @@ static void radix_big(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_ | |||
size_t i, n; | |||
n = (size_t) (1 << (m_f - 2)); | |||
n = 1 << (m_f - 2); | |||
memcpy(Q, f + 3 * n, 2 * n); | |||
memcpy(Q + n, f + 3 * n, 2 * n); | |||
memcpy(R, f, 4 * n); | |||
@@ -202,7 +202,7 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 | |||
// Step 2: compute g | |||
if (betas[m - 1] != 1) { | |||
beta_m_pow = 1; | |||
x = (size_t) (1 << m_f); | |||
x = 1 << m_f; | |||
for (i = 1; i < x; ++i) { | |||
beta_m_pow = PQCLEAN_HQC128_AVX2_gf_mul(beta_m_pow, betas[m - 1]); | |||
f[i] = PQCLEAN_HQC128_AVX2_gf_mul(beta_m_pow, f[i]); | |||
@@ -224,7 +224,7 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 | |||
// Step 5 | |||
fft_rec(u, f0, (f_coeffs + 1) / 2, m - 1, m_f - 1, deltas); | |||
k = (size_t) (1 << ((m - 1) & 0xf)); // &0xf is to let the compiler know that m-1 is small. | |||
k = 1 << ((m - 1) & 0xf); // &0xf is to let the compiler know that m-1 is small. | |||
if (f_coeffs <= 3) { // 3-coefficient polynomial f case: f1 is constant | |||
w[0] = u[0]; | |||
w[k] = u[0] ^ f1[0]; | |||
@@ -300,7 +300,7 @@ void PQCLEAN_HQC128_AVX2_fft(uint16_t *w, const uint16_t *f, size_t f_coeffs) { | |||
fft_rec(u, f0, (f_coeffs + 1) / 2, PARAM_M - 1, PARAM_FFT - 1, deltas); | |||
fft_rec(v, f1, f_coeffs / 2, PARAM_M - 1, PARAM_FFT - 1, deltas); | |||
k = (size_t) (1 << (PARAM_M - 1)); | |||
k = 1 << (PARAM_M - 1); | |||
// Step 6, 7 and error polynomial computation | |||
memcpy(w + k, v, 2 * k); | |||
@@ -329,14 +329,15 @@ void PQCLEAN_HQC128_AVX2_fft_retrieve_bch_error_poly(uint64_t *error, const uint | |||
uint16_t gammas[PARAM_M - 1] = {0}; | |||
uint16_t gammas_sums[1 << (PARAM_M - 1)] = {0}; | |||
uint64_t bit; | |||
size_t i, k, index; | |||
uint16_t k; | |||
size_t i, index; | |||
compute_fft_betas(gammas); | |||
compute_subset_sums(gammas_sums, gammas, PARAM_M - 1); | |||
error[0] ^= 1 ^ ((uint16_t) - w[0] >> 15); | |||
k = (size_t) (1 << (PARAM_M - 1)); | |||
k = 1 << (PARAM_M - 1); | |||
index = PARAM_GF_MUL_ORDER; | |||
bit = 1 ^ ((uint16_t) - w[k] >> 15); | |||
error[index / 8] ^= bit << (index % 64); | |||
@@ -34,7 +34,7 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 | |||
static void compute_fft_betas(uint16_t *betas) { | |||
size_t i; | |||
for (i = 0; i < PARAM_M - 1; ++i) { | |||
betas[i] = (uint16_t) (1 << (PARAM_M - 1 - i)); | |||
betas[i] = 1 << (PARAM_M - 1 - i); | |||
} | |||
} | |||
@@ -134,9 +134,10 @@ static void radix_t_big(uint16_t *f, const uint16_t *f0, const uint16_t *f1, uin | |||
uint16_t Q[1 << 2 * (PARAM_FFT_T - 2)] = {0}; | |||
uint16_t R[1 << 2 * (PARAM_FFT_T - 2)] = {0}; | |||
size_t i, n; | |||
uint16_t n; | |||
size_t i; | |||
n = (size_t) (1 << (m_f - 2)); | |||
n = 1 << (m_f - 2); | |||
memcpy(Q0, f0 + n, 2 * n); | |||
memcpy(Q1, f1 + n, 2 * n); | |||
memcpy(R0, f0, 2 * n); | |||
@@ -186,7 +187,7 @@ static void fft_t_rec(uint16_t *f, const uint16_t *w, size_t f_coeffs, uint8_t m | |||
// Step 1 | |||
if (m_f == 1) { | |||
f[0] = 0; | |||
x = (size_t) (1 << m); | |||
x = 1 << m; | |||
for (i = 0; i < x; ++i) { | |||
f[0] ^= w[i]; | |||
} | |||
@@ -220,7 +221,7 @@ static void fft_t_rec(uint16_t *f, const uint16_t *w, size_t f_coeffs, uint8_t m | |||
* Transpose: | |||
* u[i] = w[i] + w[k+i] | |||
* v[i] = G[i].w[i] + (G[i]+1).w[k+i] = G[i].u[i] + w[k+i] */ | |||
k = (size_t) (1 << ((m - 1) & 0xf)); // &0xf is to let the compiler know that m-1 is small. | |||
k = 1 << ((m - 1) & 0xf); // &0xf is to let the compiler know that m-1 is small. | |||
if (f_coeffs <= 3) { // 3-coefficient polynomial f case | |||
// Step 5: Compute f0 from u and f1 from v | |||
f1[1] = 0; | |||
@@ -251,7 +252,7 @@ static void fft_t_rec(uint16_t *f, const uint16_t *w, size_t f_coeffs, uint8_t m | |||
// Step 2: compute f from g | |||
if (betas[m - 1] != 1) { | |||
beta_m_pow = 1; | |||
x = (size_t) (1 << m_f); | |||
x = 1 << m_f; | |||
for (i = 1; i < x; ++i) { | |||
beta_m_pow = PQCLEAN_HQC128_CLEAN_gf_mul(beta_m_pow, betas[m - 1]); | |||
f[i] = PQCLEAN_HQC128_CLEAN_gf_mul(beta_m_pow, f[i]); | |||
@@ -296,7 +297,7 @@ void PQCLEAN_HQC128_CLEAN_fft_t(uint16_t *f, const uint16_t *w, size_t f_coeffs) | |||
* Transpose: | |||
* u[i] = w[i] + w[k+i] | |||
* v[i] = G[i].w[i] + (G[i]+1).w[k+i] = G[i].u[i] + w[k+i] */ | |||
k = (size_t) (1 << (PARAM_M - 1)); | |||
k = 1 << (PARAM_M - 1); | |||
u[0] = w[0] ^ w[k]; | |||
v[0] = w[k]; | |||
for (i = 1; i < k; ++i) { | |||
@@ -395,7 +396,7 @@ static void radix_big(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_ | |||
size_t i, n; | |||
n = (size_t) (1 << (m_f - 2)); | |||
n = 1 << (m_f - 2); | |||
memcpy(Q, f + 3 * n, 2 * n); | |||
memcpy(Q + n, f + 3 * n, 2 * n); | |||
memcpy(R, f, 4 * n); | |||
@@ -463,7 +464,7 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 | |||
// Step 2: compute g | |||
if (betas[m - 1] != 1) { | |||
beta_m_pow = 1; | |||
x = (size_t) (1 << m_f); | |||
x = 1 << m_f; | |||
for (i = 1; i < x; ++i) { | |||
beta_m_pow = PQCLEAN_HQC128_CLEAN_gf_mul(beta_m_pow, betas[m - 1]); | |||
f[i] = PQCLEAN_HQC128_CLEAN_gf_mul(beta_m_pow, f[i]); | |||
@@ -485,7 +486,7 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 | |||
// Step 5 | |||
fft_rec(u, f0, (f_coeffs + 1) / 2, m - 1, m_f - 1, deltas); | |||
k = (size_t) (1 << ((m - 1) & 0xf)); // &0xf is to let the compiler know that m-1 is small. | |||
k = 1 << ((m - 1) & 0xf); // &0xf is to let the compiler know that m-1 is small. | |||
if (f_coeffs <= 3) { // 3-coefficient polynomial f case: f1 is constant | |||
w[0] = u[0]; | |||
w[k] = u[0] ^ f1[0]; | |||
@@ -561,7 +562,7 @@ void PQCLEAN_HQC128_CLEAN_fft(uint16_t *w, const uint16_t *f, size_t f_coeffs) { | |||
fft_rec(u, f0, (f_coeffs + 1) / 2, PARAM_M - 1, PARAM_FFT - 1, deltas); | |||
fft_rec(v, f1, f_coeffs / 2, PARAM_M - 1, PARAM_FFT - 1, deltas); | |||
k = (size_t) (1 << (PARAM_M - 1)); | |||
k = 1 << (PARAM_M - 1); | |||
// Step 6, 7 and error polynomial computation | |||
memcpy(w + k, v, 2 * k); | |||
@@ -636,14 +637,15 @@ void PQCLEAN_HQC128_CLEAN_fft_retrieve_bch_error_poly(uint64_t *error, const uin | |||
uint16_t gammas[PARAM_M - 1] = {0}; | |||
uint16_t gammas_sums[1 << (PARAM_M - 1)] = {0}; | |||
uint64_t bit; | |||
size_t i, k, index; | |||
uint16_t k; | |||
size_t i, index; | |||
compute_fft_betas(gammas); | |||
compute_subset_sums(gammas_sums, gammas, PARAM_M - 1); | |||
error[0] ^= 1 ^ ((uint16_t) - w[0] >> 15); | |||
k = (size_t) (1 << (PARAM_M - 1)); | |||
k = 1 << (PARAM_M - 1); | |||
index = PARAM_GF_MUL_ORDER; | |||
bit = 1 ^ ((uint16_t) - w[k] >> 15); | |||
error[index / 8] ^= bit << (index % 64); | |||
@@ -31,7 +31,7 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 | |||
static void compute_fft_betas(uint16_t *betas) { | |||
size_t i; | |||
for (i = 0; i < PARAM_M - 1; ++i) { | |||
betas[i] = (uint16_t) (1 << (PARAM_M - 1 - i)); | |||
betas[i] = 1 << (PARAM_M - 1 - i); | |||
} | |||
} | |||
@@ -134,7 +134,7 @@ static void radix_big(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_ | |||
size_t i, n; | |||
n = (size_t) (1 << (m_f - 2)); | |||
n = 1 << (m_f - 2); | |||
memcpy(Q, f + 3 * n, 2 * n); | |||
memcpy(Q + n, f + 3 * n, 2 * n); | |||
memcpy(R, f, 4 * n); | |||
@@ -202,7 +202,7 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 | |||
// Step 2: compute g | |||
if (betas[m - 1] != 1) { | |||
beta_m_pow = 1; | |||
x = (size_t) (1 << m_f); | |||
x = 1 << m_f; | |||
for (i = 1; i < x; ++i) { | |||
beta_m_pow = PQCLEAN_HQC192_AVX2_gf_mul(beta_m_pow, betas[m - 1]); | |||
f[i] = PQCLEAN_HQC192_AVX2_gf_mul(beta_m_pow, f[i]); | |||
@@ -224,7 +224,7 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 | |||
// Step 5 | |||
fft_rec(u, f0, (f_coeffs + 1) / 2, m - 1, m_f - 1, deltas); | |||
k = (size_t) (1 << ((m - 1) & 0xf)); // &0xf is to let the compiler know that m-1 is small. | |||
k = 1 << ((m - 1) & 0xf); // &0xf is to let the compiler know that m-1 is small. | |||
if (f_coeffs <= 3) { // 3-coefficient polynomial f case: f1 is constant | |||
w[0] = u[0]; | |||
w[k] = u[0] ^ f1[0]; | |||
@@ -300,7 +300,7 @@ void PQCLEAN_HQC192_AVX2_fft(uint16_t *w, const uint16_t *f, size_t f_coeffs) { | |||
fft_rec(u, f0, (f_coeffs + 1) / 2, PARAM_M - 1, PARAM_FFT - 1, deltas); | |||
fft_rec(v, f1, f_coeffs / 2, PARAM_M - 1, PARAM_FFT - 1, deltas); | |||
k = (size_t) (1 << (PARAM_M - 1)); | |||
k = 1 << (PARAM_M - 1); | |||
// Step 6, 7 and error polynomial computation | |||
memcpy(w + k, v, 2 * k); | |||
@@ -329,14 +329,15 @@ void PQCLEAN_HQC192_AVX2_fft_retrieve_bch_error_poly(uint64_t *error, const uint | |||
uint16_t gammas[PARAM_M - 1] = {0}; | |||
uint16_t gammas_sums[1 << (PARAM_M - 1)] = {0}; | |||
uint64_t bit; | |||
size_t i, k, index; | |||
uint16_t k; | |||
size_t i, index; | |||
compute_fft_betas(gammas); | |||
compute_subset_sums(gammas_sums, gammas, PARAM_M - 1); | |||
error[0] ^= 1 ^ ((uint16_t) - w[0] >> 15); | |||
k = (size_t) (1 << (PARAM_M - 1)); | |||
k = 1 << (PARAM_M - 1); | |||
index = PARAM_GF_MUL_ORDER; | |||
bit = 1 ^ ((uint16_t) - w[k] >> 15); | |||
error[index / 8] ^= bit << (index % 64); | |||
@@ -34,7 +34,7 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 | |||
static void compute_fft_betas(uint16_t *betas) { | |||
size_t i; | |||
for (i = 0; i < PARAM_M - 1; ++i) { | |||
betas[i] = (uint16_t) (1 << (PARAM_M - 1 - i)); | |||
betas[i] = 1 << (PARAM_M - 1 - i); | |||
} | |||
} | |||
@@ -134,9 +134,10 @@ static void radix_t_big(uint16_t *f, const uint16_t *f0, const uint16_t *f1, uin | |||
uint16_t Q[1 << 2 * (PARAM_FFT_T - 2)] = {0}; | |||
uint16_t R[1 << 2 * (PARAM_FFT_T - 2)] = {0}; | |||
size_t i, n; | |||
uint16_t n; | |||
size_t i; | |||
n = (size_t) (1 << (m_f - 2)); | |||
n = 1 << (m_f - 2); | |||
memcpy(Q0, f0 + n, 2 * n); | |||
memcpy(Q1, f1 + n, 2 * n); | |||
memcpy(R0, f0, 2 * n); | |||
@@ -186,7 +187,7 @@ static void fft_t_rec(uint16_t *f, const uint16_t *w, size_t f_coeffs, uint8_t m | |||
// Step 1 | |||
if (m_f == 1) { | |||
f[0] = 0; | |||
x = (size_t) (1 << m); | |||
x = 1 << m; | |||
for (i = 0; i < x; ++i) { | |||
f[0] ^= w[i]; | |||
} | |||
@@ -220,7 +221,7 @@ static void fft_t_rec(uint16_t *f, const uint16_t *w, size_t f_coeffs, uint8_t m | |||
* Transpose: | |||
* u[i] = w[i] + w[k+i] | |||
* v[i] = G[i].w[i] + (G[i]+1).w[k+i] = G[i].u[i] + w[k+i] */ | |||
k = (size_t) (1 << ((m - 1) & 0xf)); // &0xf is to let the compiler know that m-1 is small. | |||
k = 1 << ((m - 1) & 0xf); // &0xf is to let the compiler know that m-1 is small. | |||
if (f_coeffs <= 3) { // 3-coefficient polynomial f case | |||
// Step 5: Compute f0 from u and f1 from v | |||
f1[1] = 0; | |||
@@ -251,7 +252,7 @@ static void fft_t_rec(uint16_t *f, const uint16_t *w, size_t f_coeffs, uint8_t m | |||
// Step 2: compute f from g | |||
if (betas[m - 1] != 1) { | |||
beta_m_pow = 1; | |||
x = (size_t) (1 << m_f); | |||
x = 1 << m_f; | |||
for (i = 1; i < x; ++i) { | |||
beta_m_pow = PQCLEAN_HQC192_CLEAN_gf_mul(beta_m_pow, betas[m - 1]); | |||
f[i] = PQCLEAN_HQC192_CLEAN_gf_mul(beta_m_pow, f[i]); | |||
@@ -296,7 +297,7 @@ void PQCLEAN_HQC192_CLEAN_fft_t(uint16_t *f, const uint16_t *w, size_t f_coeffs) | |||
* Transpose: | |||
* u[i] = w[i] + w[k+i] | |||
* v[i] = G[i].w[i] + (G[i]+1).w[k+i] = G[i].u[i] + w[k+i] */ | |||
k = (size_t) (1 << (PARAM_M - 1)); | |||
k = 1 << (PARAM_M - 1); | |||
u[0] = w[0] ^ w[k]; | |||
v[0] = w[k]; | |||
for (i = 1; i < k; ++i) { | |||
@@ -395,7 +396,7 @@ static void radix_big(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_ | |||
size_t i, n; | |||
n = (size_t) (1 << (m_f - 2)); | |||
n = 1 << (m_f - 2); | |||
memcpy(Q, f + 3 * n, 2 * n); | |||
memcpy(Q + n, f + 3 * n, 2 * n); | |||
memcpy(R, f, 4 * n); | |||
@@ -463,7 +464,7 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 | |||
// Step 2: compute g | |||
if (betas[m - 1] != 1) { | |||
beta_m_pow = 1; | |||
x = (size_t) (1 << m_f); | |||
x = 1 << m_f; | |||
for (i = 1; i < x; ++i) { | |||
beta_m_pow = PQCLEAN_HQC192_CLEAN_gf_mul(beta_m_pow, betas[m - 1]); | |||
f[i] = PQCLEAN_HQC192_CLEAN_gf_mul(beta_m_pow, f[i]); | |||
@@ -485,7 +486,7 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 | |||
// Step 5 | |||
fft_rec(u, f0, (f_coeffs + 1) / 2, m - 1, m_f - 1, deltas); | |||
k = (size_t) (1 << ((m - 1) & 0xf)); // &0xf is to let the compiler know that m-1 is small. | |||
k = 1 << ((m - 1) & 0xf); // &0xf is to let the compiler know that m-1 is small. | |||
if (f_coeffs <= 3) { // 3-coefficient polynomial f case: f1 is constant | |||
w[0] = u[0]; | |||
w[k] = u[0] ^ f1[0]; | |||
@@ -561,7 +562,7 @@ void PQCLEAN_HQC192_CLEAN_fft(uint16_t *w, const uint16_t *f, size_t f_coeffs) { | |||
fft_rec(u, f0, (f_coeffs + 1) / 2, PARAM_M - 1, PARAM_FFT - 1, deltas); | |||
fft_rec(v, f1, f_coeffs / 2, PARAM_M - 1, PARAM_FFT - 1, deltas); | |||
k = (size_t) (1 << (PARAM_M - 1)); | |||
k = 1 << (PARAM_M - 1); | |||
// Step 6, 7 and error polynomial computation | |||
memcpy(w + k, v, 2 * k); | |||
@@ -636,14 +637,15 @@ void PQCLEAN_HQC192_CLEAN_fft_retrieve_bch_error_poly(uint64_t *error, const uin | |||
uint16_t gammas[PARAM_M - 1] = {0}; | |||
uint16_t gammas_sums[1 << (PARAM_M - 1)] = {0}; | |||
uint64_t bit; | |||
size_t i, k, index; | |||
uint16_t k; | |||
size_t i, index; | |||
compute_fft_betas(gammas); | |||
compute_subset_sums(gammas_sums, gammas, PARAM_M - 1); | |||
error[0] ^= 1 ^ ((uint16_t) - w[0] >> 15); | |||
k = (size_t) (1 << (PARAM_M - 1)); | |||
k = 1 << (PARAM_M - 1); | |||
index = PARAM_GF_MUL_ORDER; | |||
bit = 1 ^ ((uint16_t) - w[k] >> 15); | |||
error[index / 8] ^= bit << (index % 64); | |||
@@ -31,7 +31,7 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 | |||
static void compute_fft_betas(uint16_t *betas) { | |||
size_t i; | |||
for (i = 0; i < PARAM_M - 1; ++i) { | |||
betas[i] = (uint16_t) (1 << (PARAM_M - 1 - i)); | |||
betas[i] = 1 << (PARAM_M - 1 - i); | |||
} | |||
} | |||
@@ -134,7 +134,7 @@ static void radix_big(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_ | |||
size_t i, n; | |||
n = (size_t) (1 << (m_f - 2)); | |||
n = 1 << (m_f - 2); | |||
memcpy(Q, f + 3 * n, 2 * n); | |||
memcpy(Q + n, f + 3 * n, 2 * n); | |||
memcpy(R, f, 4 * n); | |||
@@ -202,7 +202,7 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 | |||
// Step 2: compute g | |||
if (betas[m - 1] != 1) { | |||
beta_m_pow = 1; | |||
x = (size_t) (1 << m_f); | |||
x = 1 << m_f; | |||
for (i = 1; i < x; ++i) { | |||
beta_m_pow = PQCLEAN_HQC256_AVX2_gf_mul(beta_m_pow, betas[m - 1]); | |||
f[i] = PQCLEAN_HQC256_AVX2_gf_mul(beta_m_pow, f[i]); | |||
@@ -224,7 +224,7 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 | |||
// Step 5 | |||
fft_rec(u, f0, (f_coeffs + 1) / 2, m - 1, m_f - 1, deltas); | |||
k = (size_t) (1 << ((m - 1) & 0xf)); // &0xf is to let the compiler know that m-1 is small. | |||
k = 1 << ((m - 1) & 0xf); // &0xf is to let the compiler know that m-1 is small. | |||
if (f_coeffs <= 3) { // 3-coefficient polynomial f case: f1 is constant | |||
w[0] = u[0]; | |||
w[k] = u[0] ^ f1[0]; | |||
@@ -300,7 +300,7 @@ void PQCLEAN_HQC256_AVX2_fft(uint16_t *w, const uint16_t *f, size_t f_coeffs) { | |||
fft_rec(u, f0, (f_coeffs + 1) / 2, PARAM_M - 1, PARAM_FFT - 1, deltas); | |||
fft_rec(v, f1, f_coeffs / 2, PARAM_M - 1, PARAM_FFT - 1, deltas); | |||
k = (size_t) (1 << (PARAM_M - 1)); | |||
k = 1 << (PARAM_M - 1); | |||
// Step 6, 7 and error polynomial computation | |||
memcpy(w + k, v, 2 * k); | |||
@@ -329,14 +329,15 @@ void PQCLEAN_HQC256_AVX2_fft_retrieve_bch_error_poly(uint64_t *error, const uint | |||
uint16_t gammas[PARAM_M - 1] = {0}; | |||
uint16_t gammas_sums[1 << (PARAM_M - 1)] = {0}; | |||
uint64_t bit; | |||
size_t i, k, index; | |||
uint16_t k; | |||
size_t i, index; | |||
compute_fft_betas(gammas); | |||
compute_subset_sums(gammas_sums, gammas, PARAM_M - 1); | |||
error[0] ^= 1 ^ ((uint16_t) - w[0] >> 15); | |||
k = (size_t) (1 << (PARAM_M - 1)); | |||
k = 1 << (PARAM_M - 1); | |||
index = PARAM_GF_MUL_ORDER; | |||
bit = 1 ^ ((uint16_t) - w[k] >> 15); | |||
error[index / 8] ^= bit << (index % 64); | |||
@@ -34,7 +34,7 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 | |||
static void compute_fft_betas(uint16_t *betas) { | |||
size_t i; | |||
for (i = 0; i < PARAM_M - 1; ++i) { | |||
betas[i] = (uint16_t) (1 << (PARAM_M - 1 - i)); | |||
betas[i] = 1 << (PARAM_M - 1 - i); | |||
} | |||
} | |||
@@ -134,9 +134,10 @@ static void radix_t_big(uint16_t *f, const uint16_t *f0, const uint16_t *f1, uin | |||
uint16_t Q[1 << 2 * (PARAM_FFT_T - 2)] = {0}; | |||
uint16_t R[1 << 2 * (PARAM_FFT_T - 2)] = {0}; | |||
size_t i, n; | |||
uint16_t n; | |||
size_t i; | |||
n = (size_t) (1 << (m_f - 2)); | |||
n = 1 << (m_f - 2); | |||
memcpy(Q0, f0 + n, 2 * n); | |||
memcpy(Q1, f1 + n, 2 * n); | |||
memcpy(R0, f0, 2 * n); | |||
@@ -186,7 +187,7 @@ static void fft_t_rec(uint16_t *f, const uint16_t *w, size_t f_coeffs, uint8_t m | |||
// Step 1 | |||
if (m_f == 1) { | |||
f[0] = 0; | |||
x = (size_t) (1 << m); | |||
x = 1 << m; | |||
for (i = 0; i < x; ++i) { | |||
f[0] ^= w[i]; | |||
} | |||
@@ -220,7 +221,7 @@ static void fft_t_rec(uint16_t *f, const uint16_t *w, size_t f_coeffs, uint8_t m | |||
* Transpose: | |||
* u[i] = w[i] + w[k+i] | |||
* v[i] = G[i].w[i] + (G[i]+1).w[k+i] = G[i].u[i] + w[k+i] */ | |||
k = (size_t) (1 << ((m - 1) & 0xf)); // &0xf is to let the compiler know that m-1 is small. | |||
k = 1 << ((m - 1) & 0xf); // &0xf is to let the compiler know that m-1 is small. | |||
if (f_coeffs <= 3) { // 3-coefficient polynomial f case | |||
// Step 5: Compute f0 from u and f1 from v | |||
f1[1] = 0; | |||
@@ -251,7 +252,7 @@ static void fft_t_rec(uint16_t *f, const uint16_t *w, size_t f_coeffs, uint8_t m | |||
// Step 2: compute f from g | |||
if (betas[m - 1] != 1) { | |||
beta_m_pow = 1; | |||
x = (size_t) (1 << m_f); | |||
x = 1 << m_f; | |||
for (i = 1; i < x; ++i) { | |||
beta_m_pow = PQCLEAN_HQC256_CLEAN_gf_mul(beta_m_pow, betas[m - 1]); | |||
f[i] = PQCLEAN_HQC256_CLEAN_gf_mul(beta_m_pow, f[i]); | |||
@@ -296,7 +297,7 @@ void PQCLEAN_HQC256_CLEAN_fft_t(uint16_t *f, const uint16_t *w, size_t f_coeffs) | |||
* Transpose: | |||
* u[i] = w[i] + w[k+i] | |||
* v[i] = G[i].w[i] + (G[i]+1).w[k+i] = G[i].u[i] + w[k+i] */ | |||
k = (size_t) (1 << (PARAM_M - 1)); | |||
k = 1 << (PARAM_M - 1); | |||
u[0] = w[0] ^ w[k]; | |||
v[0] = w[k]; | |||
for (i = 1; i < k; ++i) { | |||
@@ -395,7 +396,7 @@ static void radix_big(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_ | |||
size_t i, n; | |||
n = (size_t) (1 << (m_f - 2)); | |||
n = 1 << (m_f - 2); | |||
memcpy(Q, f + 3 * n, 2 * n); | |||
memcpy(Q + n, f + 3 * n, 2 * n); | |||
memcpy(R, f, 4 * n); | |||
@@ -463,7 +464,7 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 | |||
// Step 2: compute g | |||
if (betas[m - 1] != 1) { | |||
beta_m_pow = 1; | |||
x = (size_t) (1 << m_f); | |||
x = 1 << m_f; | |||
for (i = 1; i < x; ++i) { | |||
beta_m_pow = PQCLEAN_HQC256_CLEAN_gf_mul(beta_m_pow, betas[m - 1]); | |||
f[i] = PQCLEAN_HQC256_CLEAN_gf_mul(beta_m_pow, f[i]); | |||
@@ -485,7 +486,7 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 | |||
// Step 5 | |||
fft_rec(u, f0, (f_coeffs + 1) / 2, m - 1, m_f - 1, deltas); | |||
k = (size_t) (1 << ((m - 1) & 0xf)); // &0xf is to let the compiler know that m-1 is small. | |||
k = 1 << ((m - 1) & 0xf); // &0xf is to let the compiler know that m-1 is small. | |||
if (f_coeffs <= 3) { // 3-coefficient polynomial f case: f1 is constant | |||
w[0] = u[0]; | |||
w[k] = u[0] ^ f1[0]; | |||
@@ -561,7 +562,7 @@ void PQCLEAN_HQC256_CLEAN_fft(uint16_t *w, const uint16_t *f, size_t f_coeffs) { | |||
fft_rec(u, f0, (f_coeffs + 1) / 2, PARAM_M - 1, PARAM_FFT - 1, deltas); | |||
fft_rec(v, f1, f_coeffs / 2, PARAM_M - 1, PARAM_FFT - 1, deltas); | |||
k = (size_t) (1 << (PARAM_M - 1)); | |||
k = 1 << (PARAM_M - 1); | |||
// Step 6, 7 and error polynomial computation | |||
memcpy(w + k, v, 2 * k); | |||
@@ -636,14 +637,15 @@ void PQCLEAN_HQC256_CLEAN_fft_retrieve_bch_error_poly(uint64_t *error, const uin | |||
uint16_t gammas[PARAM_M - 1] = {0}; | |||
uint16_t gammas_sums[1 << (PARAM_M - 1)] = {0}; | |||
uint64_t bit; | |||
size_t i, k, index; | |||
uint16_t k; | |||
size_t i, index; | |||
compute_fft_betas(gammas); | |||
compute_subset_sums(gammas_sums, gammas, PARAM_M - 1); | |||
error[0] ^= 1 ^ ((uint16_t) - w[0] >> 15); | |||
k = (size_t) (1 << (PARAM_M - 1)); | |||
k = 1 << (PARAM_M - 1); | |||
index = PARAM_GF_MUL_ORDER; | |||
bit = 1 ^ ((uint16_t) - w[k] >> 15); | |||
error[index / 8] ^= bit << (index % 64); | |||
@@ -30,7 +30,7 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 | |||
static void compute_fft_betas(uint16_t *betas) { | |||
size_t i; | |||
for (i = 0; i < PARAM_M - 1; ++i) { | |||
betas[i] = (uint16_t) (1 << (PARAM_M - 1 - i)); | |||
betas[i] = 1 << (PARAM_M - 1 - i); | |||
} | |||
} | |||
@@ -133,7 +133,7 @@ static void radix_big(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_ | |||
size_t i, n; | |||
n = (size_t) (1 << (m_f - 2)); | |||
n = 1 << (m_f - 2); | |||
memcpy(Q, f + 3 * n, 2 * n); | |||
memcpy(Q + n, f + 3 * n, 2 * n); | |||
memcpy(R, f, 4 * n); | |||
@@ -201,7 +201,7 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 | |||
// Step 2: compute g | |||
if (betas[m - 1] != 1) { | |||
beta_m_pow = 1; | |||
x = (size_t) (1 << m_f); | |||
x = 1 << m_f; | |||
for (i = 1; i < x; ++i) { | |||
beta_m_pow = PQCLEAN_HQCRMRS128_AVX2_gf_mul(beta_m_pow, betas[m - 1]); | |||
f[i] = PQCLEAN_HQCRMRS128_AVX2_gf_mul(beta_m_pow, f[i]); | |||
@@ -223,7 +223,7 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 | |||
// Step 5 | |||
fft_rec(u, f0, (f_coeffs + 1) / 2, m - 1, m_f - 1, deltas); | |||
k = (size_t) (1 << ((m - 1) & 0xf)); // &0xf is to let the compiler know that m-1 is small. | |||
k = 1 << ((m - 1) & 0xf); // &0xf is to let the compiler know that m-1 is small. | |||
if (f_coeffs <= 3) { // 3-coefficient polynomial f case: f1 is constant | |||
w[0] = u[0]; | |||
w[k] = u[0] ^ f1[0]; | |||
@@ -299,7 +299,7 @@ void PQCLEAN_HQCRMRS128_AVX2_fft(uint16_t *w, const uint16_t *f, size_t f_coeffs | |||
fft_rec(u, f0, (f_coeffs + 1) / 2, PARAM_M - 1, PARAM_FFT - 1, deltas); | |||
fft_rec(v, f1, f_coeffs / 2, PARAM_M - 1, PARAM_FFT - 1, deltas); | |||
k = (size_t) (1 << (PARAM_M - 1)); | |||
k = 1 << (PARAM_M - 1); | |||
// Step 6, 7 and error polynomial computation | |||
memcpy(w + k, v, 2 * k); | |||
@@ -334,7 +334,7 @@ void PQCLEAN_HQCRMRS128_AVX2_fft_retrieve_error_poly(uint8_t *error, const uint1 | |||
compute_fft_betas(gammas); | |||
compute_subset_sums(gammas_sums, gammas, PARAM_M - 1); | |||
k = (size_t) (1 << (PARAM_M - 1)); | |||
k = 1 << (PARAM_M - 1); | |||
error[0] ^= 1 ^ ((uint16_t) - w[0] >> 15); | |||
error[0] ^= 1 ^ ((uint16_t) - w[k] >> 15); | |||
@@ -30,7 +30,7 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 | |||
static void compute_fft_betas(uint16_t *betas) { | |||
size_t i; | |||
for (i = 0; i < PARAM_M - 1; ++i) { | |||
betas[i] = (uint16_t) (1 << (PARAM_M - 1 - i)); | |||
betas[i] = 1 << (PARAM_M - 1 - i); | |||
} | |||
} | |||
@@ -133,7 +133,7 @@ static void radix_big(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_ | |||
size_t i, n; | |||
n = (size_t) (1 << (m_f - 2)); | |||
n = 1 << (m_f - 2); | |||
memcpy(Q, f + 3 * n, 2 * n); | |||
memcpy(Q + n, f + 3 * n, 2 * n); | |||
memcpy(R, f, 4 * n); | |||
@@ -201,7 +201,7 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 | |||
// Step 2: compute g | |||
if (betas[m - 1] != 1) { | |||
beta_m_pow = 1; | |||
x = (size_t) (1 << m_f); | |||
x = 1 << m_f; | |||
for (i = 1; i < x; ++i) { | |||
beta_m_pow = PQCLEAN_HQCRMRS128_CLEAN_gf_mul(beta_m_pow, betas[m - 1]); | |||
f[i] = PQCLEAN_HQCRMRS128_CLEAN_gf_mul(beta_m_pow, f[i]); | |||
@@ -223,7 +223,7 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 | |||
// Step 5 | |||
fft_rec(u, f0, (f_coeffs + 1) / 2, m - 1, m_f - 1, deltas); | |||
k = (size_t) (1 << ((m - 1) & 0xf)); // &0xf is to let the compiler know that m-1 is small. | |||
k = 1 << ((m - 1) & 0xf); // &0xf is to let the compiler know that m-1 is small. | |||
if (f_coeffs <= 3) { // 3-coefficient polynomial f case: f1 is constant | |||
w[0] = u[0]; | |||
w[k] = u[0] ^ f1[0]; | |||
@@ -299,7 +299,7 @@ void PQCLEAN_HQCRMRS128_CLEAN_fft(uint16_t *w, const uint16_t *f, size_t f_coeff | |||
fft_rec(u, f0, (f_coeffs + 1) / 2, PARAM_M - 1, PARAM_FFT - 1, deltas); | |||
fft_rec(v, f1, f_coeffs / 2, PARAM_M - 1, PARAM_FFT - 1, deltas); | |||
k = (size_t) (1 << (PARAM_M - 1)); | |||
k = 1 << (PARAM_M - 1); | |||
// Step 6, 7 and error polynomial computation | |||
memcpy(w + k, v, 2 * k); | |||
@@ -334,7 +334,7 @@ void PQCLEAN_HQCRMRS128_CLEAN_fft_retrieve_error_poly(uint8_t *error, const uint | |||
compute_fft_betas(gammas); | |||
compute_subset_sums(gammas_sums, gammas, PARAM_M - 1); | |||
k = (size_t) (1 << (PARAM_M - 1)); | |||
k = 1 << (PARAM_M - 1); | |||
error[0] ^= 1 ^ ((uint16_t) - w[0] >> 15); | |||
error[0] ^= 1 ^ ((uint16_t) - w[k] >> 15); | |||
@@ -30,7 +30,7 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 | |||
static void compute_fft_betas(uint16_t *betas) { | |||
size_t i; | |||
for (i = 0; i < PARAM_M - 1; ++i) { | |||
betas[i] = (uint16_t) (1 << (PARAM_M - 1 - i)); | |||
betas[i] = 1 << (PARAM_M - 1 - i); | |||
} | |||
} | |||
@@ -133,7 +133,7 @@ static void radix_big(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_ | |||
size_t i, n; | |||
n = (size_t) (1 << (m_f - 2)); | |||
n = 1 << (m_f - 2); | |||
memcpy(Q, f + 3 * n, 2 * n); | |||
memcpy(Q + n, f + 3 * n, 2 * n); | |||
memcpy(R, f, 4 * n); | |||
@@ -201,7 +201,7 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 | |||
// Step 2: compute g | |||
if (betas[m - 1] != 1) { | |||
beta_m_pow = 1; | |||
x = (size_t) (1 << m_f); | |||
x = 1 << m_f; | |||
for (i = 1; i < x; ++i) { | |||
beta_m_pow = PQCLEAN_HQCRMRS192_AVX2_gf_mul(beta_m_pow, betas[m - 1]); | |||
f[i] = PQCLEAN_HQCRMRS192_AVX2_gf_mul(beta_m_pow, f[i]); | |||
@@ -223,7 +223,7 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 | |||
// Step 5 | |||
fft_rec(u, f0, (f_coeffs + 1) / 2, m - 1, m_f - 1, deltas); | |||
k = (size_t) (1 << ((m - 1) & 0xf)); // &0xf is to let the compiler know that m-1 is small. | |||
k = 1 << ((m - 1) & 0xf); // &0xf is to let the compiler know that m-1 is small. | |||
if (f_coeffs <= 3) { // 3-coefficient polynomial f case: f1 is constant | |||
w[0] = u[0]; | |||
w[k] = u[0] ^ f1[0]; | |||
@@ -299,7 +299,7 @@ void PQCLEAN_HQCRMRS192_AVX2_fft(uint16_t *w, const uint16_t *f, size_t f_coeffs | |||
fft_rec(u, f0, (f_coeffs + 1) / 2, PARAM_M - 1, PARAM_FFT - 1, deltas); | |||
fft_rec(v, f1, f_coeffs / 2, PARAM_M - 1, PARAM_FFT - 1, deltas); | |||
k = (size_t) (1 << (PARAM_M - 1)); | |||
k = 1 << (PARAM_M - 1); | |||
// Step 6, 7 and error polynomial computation | |||
memcpy(w + k, v, 2 * k); | |||
@@ -334,7 +334,7 @@ void PQCLEAN_HQCRMRS192_AVX2_fft_retrieve_error_poly(uint8_t *error, const uint1 | |||
compute_fft_betas(gammas); | |||
compute_subset_sums(gammas_sums, gammas, PARAM_M - 1); | |||
k = (size_t) (1 << (PARAM_M - 1)); | |||
k = 1 << (PARAM_M - 1); | |||
error[0] ^= 1 ^ ((uint16_t) - w[0] >> 15); | |||
error[0] ^= 1 ^ ((uint16_t) - w[k] >> 15); | |||
@@ -30,7 +30,7 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 | |||
static void compute_fft_betas(uint16_t *betas) { | |||
size_t i; | |||
for (i = 0; i < PARAM_M - 1; ++i) { | |||
betas[i] = (uint16_t) (1 << (PARAM_M - 1 - i)); | |||
betas[i] = 1 << (PARAM_M - 1 - i); | |||
} | |||
} | |||
@@ -133,7 +133,7 @@ static void radix_big(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_ | |||
size_t i, n; | |||
n = (size_t) (1 << (m_f - 2)); | |||
n = 1 << (m_f - 2); | |||
memcpy(Q, f + 3 * n, 2 * n); | |||
memcpy(Q + n, f + 3 * n, 2 * n); | |||
memcpy(R, f, 4 * n); | |||
@@ -201,7 +201,7 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 | |||
// Step 2: compute g | |||
if (betas[m - 1] != 1) { | |||
beta_m_pow = 1; | |||
x = (size_t) (1 << m_f); | |||
x = 1 << m_f; | |||
for (i = 1; i < x; ++i) { | |||
beta_m_pow = PQCLEAN_HQCRMRS192_CLEAN_gf_mul(beta_m_pow, betas[m - 1]); | |||
f[i] = PQCLEAN_HQCRMRS192_CLEAN_gf_mul(beta_m_pow, f[i]); | |||
@@ -223,7 +223,7 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 | |||
// Step 5 | |||
fft_rec(u, f0, (f_coeffs + 1) / 2, m - 1, m_f - 1, deltas); | |||
k = (size_t) (1 << ((m - 1) & 0xf)); // &0xf is to let the compiler know that m-1 is small. | |||
k = 1 << ((m - 1) & 0xf); // &0xf is to let the compiler know that m-1 is small. | |||
if (f_coeffs <= 3) { // 3-coefficient polynomial f case: f1 is constant | |||
w[0] = u[0]; | |||
w[k] = u[0] ^ f1[0]; | |||
@@ -299,7 +299,7 @@ void PQCLEAN_HQCRMRS192_CLEAN_fft(uint16_t *w, const uint16_t *f, size_t f_coeff | |||
fft_rec(u, f0, (f_coeffs + 1) / 2, PARAM_M - 1, PARAM_FFT - 1, deltas); | |||
fft_rec(v, f1, f_coeffs / 2, PARAM_M - 1, PARAM_FFT - 1, deltas); | |||
k = (size_t) (1 << (PARAM_M - 1)); | |||
k = 1 << (PARAM_M - 1); | |||
// Step 6, 7 and error polynomial computation | |||
memcpy(w + k, v, 2 * k); | |||
@@ -334,7 +334,7 @@ void PQCLEAN_HQCRMRS192_CLEAN_fft_retrieve_error_poly(uint8_t *error, const uint | |||
compute_fft_betas(gammas); | |||
compute_subset_sums(gammas_sums, gammas, PARAM_M - 1); | |||
k = (size_t) (1 << (PARAM_M - 1)); | |||
k = 1 << (PARAM_M - 1); | |||
error[0] ^= 1 ^ ((uint16_t) - w[0] >> 15); | |||
error[0] ^= 1 ^ ((uint16_t) - w[k] >> 15); | |||
@@ -30,7 +30,7 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 | |||
static void compute_fft_betas(uint16_t *betas) { | |||
size_t i; | |||
for (i = 0; i < PARAM_M - 1; ++i) { | |||
betas[i] = (uint16_t) (1 << (PARAM_M - 1 - i)); | |||
betas[i] = 1 << (PARAM_M - 1 - i); | |||
} | |||
} | |||
@@ -133,7 +133,7 @@ static void radix_big(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_ | |||
size_t i, n; | |||
n = (size_t) (1 << (m_f - 2)); | |||
n = 1 << (m_f - 2); | |||
memcpy(Q, f + 3 * n, 2 * n); | |||
memcpy(Q + n, f + 3 * n, 2 * n); | |||
memcpy(R, f, 4 * n); | |||
@@ -201,7 +201,7 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 | |||
// Step 2: compute g | |||
if (betas[m - 1] != 1) { | |||
beta_m_pow = 1; | |||
x = (size_t) (1 << m_f); | |||
x = 1 << m_f; | |||
for (i = 1; i < x; ++i) { | |||
beta_m_pow = PQCLEAN_HQCRMRS256_AVX2_gf_mul(beta_m_pow, betas[m - 1]); | |||
f[i] = PQCLEAN_HQCRMRS256_AVX2_gf_mul(beta_m_pow, f[i]); | |||
@@ -223,7 +223,7 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 | |||
// Step 5 | |||
fft_rec(u, f0, (f_coeffs + 1) / 2, m - 1, m_f - 1, deltas); | |||
k = (size_t) (1 << ((m - 1) & 0xf)); // &0xf is to let the compiler know that m-1 is small. | |||
k = 1 << ((m - 1) & 0xf); // &0xf is to let the compiler know that m-1 is small. | |||
if (f_coeffs <= 3) { // 3-coefficient polynomial f case: f1 is constant | |||
w[0] = u[0]; | |||
w[k] = u[0] ^ f1[0]; | |||
@@ -299,7 +299,7 @@ void PQCLEAN_HQCRMRS256_AVX2_fft(uint16_t *w, const uint16_t *f, size_t f_coeffs | |||
fft_rec(u, f0, (f_coeffs + 1) / 2, PARAM_M - 1, PARAM_FFT - 1, deltas); | |||
fft_rec(v, f1, f_coeffs / 2, PARAM_M - 1, PARAM_FFT - 1, deltas); | |||
k = (size_t) (1 << (PARAM_M - 1)); | |||
k = 1 << (PARAM_M - 1); | |||
// Step 6, 7 and error polynomial computation | |||
memcpy(w + k, v, 2 * k); | |||
@@ -334,7 +334,7 @@ void PQCLEAN_HQCRMRS256_AVX2_fft_retrieve_error_poly(uint8_t *error, const uint1 | |||
compute_fft_betas(gammas); | |||
compute_subset_sums(gammas_sums, gammas, PARAM_M - 1); | |||
k = (size_t) (1 << (PARAM_M - 1)); | |||
k = 1 << (PARAM_M - 1); | |||
error[0] ^= 1 ^ ((uint16_t) - w[0] >> 15); | |||
error[0] ^= 1 ^ ((uint16_t) - w[k] >> 15); | |||
@@ -30,7 +30,7 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 | |||
static void compute_fft_betas(uint16_t *betas) { | |||
size_t i; | |||
for (i = 0; i < PARAM_M - 1; ++i) { | |||
betas[i] = (uint16_t) (1 << (PARAM_M - 1 - i)); | |||
betas[i] = 1 << (PARAM_M - 1 - i); | |||
} | |||
} | |||
@@ -133,7 +133,7 @@ static void radix_big(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_ | |||
size_t i, n; | |||
n = (size_t) (1 << (m_f - 2)); | |||
n = 1 << (m_f - 2); | |||
memcpy(Q, f + 3 * n, 2 * n); | |||
memcpy(Q + n, f + 3 * n, 2 * n); | |||
memcpy(R, f, 4 * n); | |||
@@ -201,7 +201,7 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 | |||
// Step 2: compute g | |||
if (betas[m - 1] != 1) { | |||
beta_m_pow = 1; | |||
x = (size_t) (1 << m_f); | |||
x = 1 << m_f; | |||
for (i = 1; i < x; ++i) { | |||
beta_m_pow = PQCLEAN_HQCRMRS256_CLEAN_gf_mul(beta_m_pow, betas[m - 1]); | |||
f[i] = PQCLEAN_HQCRMRS256_CLEAN_gf_mul(beta_m_pow, f[i]); | |||
@@ -223,7 +223,7 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 | |||
// Step 5 | |||
fft_rec(u, f0, (f_coeffs + 1) / 2, m - 1, m_f - 1, deltas); | |||
k = (size_t) (1 << ((m - 1) & 0xf)); // &0xf is to let the compiler know that m-1 is small. | |||
k = 1 << ((m - 1) & 0xf); // &0xf is to let the compiler know that m-1 is small. | |||
if (f_coeffs <= 3) { // 3-coefficient polynomial f case: f1 is constant | |||
w[0] = u[0]; | |||
w[k] = u[0] ^ f1[0]; | |||
@@ -299,7 +299,7 @@ void PQCLEAN_HQCRMRS256_CLEAN_fft(uint16_t *w, const uint16_t *f, size_t f_coeff | |||
fft_rec(u, f0, (f_coeffs + 1) / 2, PARAM_M - 1, PARAM_FFT - 1, deltas); | |||
fft_rec(v, f1, f_coeffs / 2, PARAM_M - 1, PARAM_FFT - 1, deltas); | |||
k = (size_t) (1 << (PARAM_M - 1)); | |||
k = 1 << (PARAM_M - 1); | |||
// Step 6, 7 and error polynomial computation | |||
memcpy(w + k, v, 2 * k); | |||
@@ -334,7 +334,7 @@ void PQCLEAN_HQCRMRS256_CLEAN_fft_retrieve_error_poly(uint8_t *error, const uint | |||
compute_fft_betas(gammas); | |||
compute_subset_sums(gammas_sums, gammas, PARAM_M - 1); | |||
k = (size_t) (1 << (PARAM_M - 1)); | |||
k = 1 << (PARAM_M - 1); | |||
error[0] ^= 1 ^ ((uint16_t) - w[0] >> 15); | |||
error[0] ^= 1 ^ ((uint16_t) - w[k] >> 15); | |||