@@ -7,33 +7,19 @@ | |||
* Constant time implementation of Reed-Muller code RM(1,7) | |||
*/ | |||
// setting this will help the compiler with auto vectorization | |||
#undef ALIGNVECTORS | |||
// number of repeated code words | |||
#define MULTIPLICITY CEIL_DIVIDE(PARAM_N2, 128) | |||
// codeword is 128 bits, seen multiple ways | |||
typedef union { | |||
uint8_t u8[16]; | |||
uint32_t u32[4]; | |||
} codeword | |||
; | |||
// Expanded codeword has a short for every bit, for internal calculations | |||
typedef int16_t expandedCodeword[128] | |||
; | |||
// copy bit 0 into all bits of a 32 bit value | |||
#define BIT0MASK(x) (int32_t)(-((x) & 1)) | |||
#define BIT0MASK(x) (-((x) & 1)) | |||
static void encode(codeword *word, int32_t message); | |||
static void hadamard(expandedCodeword *src, expandedCodeword *dst); | |||
static void expand_and_sum(expandedCodeword *dest, codeword src[]); | |||
static int32_t find_peaks(expandedCodeword *transform); | |||
static void encode(uint32_t *word, const uint8_t message); | |||
static void hadamard(uint16_t src[128], uint16_t dst[128]); | |||
static void expand_and_sum(uint16_t dest[128], const uint32_t src[4 * MULTIPLICITY]); | |||
static uint8_t find_peaks(const uint16_t transform[128]); | |||
@@ -54,10 +40,10 @@ static int32_t find_peaks(expandedCodeword *transform); | |||
* @param[out] word An RM(1,7) codeword | |||
* @param[in] message A message | |||
*/ | |||
static void encode(codeword *word, int32_t message) { | |||
static void encode(uint32_t *word, uint8_t message) { | |||
// the four parts of the word are identical | |||
// except for encoding bits 5 and 6 | |||
int32_t first_word; | |||
uint32_t first_word; | |||
// bit 7 flips all the bits, do that first to save work | |||
first_word = BIT0MASK(message >> 7); | |||
// bits 0, 1, 2, 3, 4 are the same for all four longs | |||
@@ -68,14 +54,14 @@ static void encode(codeword *word, int32_t message) { | |||
first_word ^= BIT0MASK(message >> 3) & 0xff00ff00; | |||
first_word ^= BIT0MASK(message >> 4) & 0xffff0000; | |||
// we can store this in the first quarter | |||
word->u32[0] = first_word; | |||
word[0] = first_word; | |||
// bit 5 flips entries 1 and 3; bit 6 flips 2 and 3 | |||
first_word ^= BIT0MASK(message >> 5); | |||
word->u32[1] = first_word; | |||
word[1] = first_word; | |||
first_word ^= BIT0MASK(message >> 6); | |||
word->u32[3] = first_word; | |||
word[3] = first_word; | |||
first_word ^= BIT0MASK(message >> 5); | |||
word->u32[2] = first_word; | |||
word[2] = first_word; | |||
} | |||
@@ -111,19 +97,20 @@ static void encode(codeword *word, int32_t message) { | |||
* @param[out] src Structure that contain the expanded codeword | |||
* @param[out] dst Structure that contain the expanded codeword | |||
*/ | |||
static void hadamard(expandedCodeword *src, expandedCodeword *dst) { | |||
static void hadamard(uint16_t src[128], uint16_t dst[128]) { | |||
// the passes move data: | |||
// src -> dst -> src -> dst -> src -> dst -> src -> dst | |||
// using p1 and p2 alternately | |||
expandedCodeword *p1 = src; | |||
expandedCodeword *p2 = dst; | |||
for (int32_t pass = 0 ; pass < 7 ; pass++) { | |||
for (int32_t i = 0 ; i < 64 ; i++) { | |||
(*p2)[i] = (*p1)[2 * i] + (*p1)[2 * i + 1]; | |||
(*p2)[i + 64] = (*p1)[2 * i] - (*p1)[2 * i + 1]; | |||
uint16_t *p1 = src; | |||
uint16_t *p2 = dst; | |||
uint16_t *p3; | |||
for (uint32_t pass = 0 ; pass < 7 ; pass++) { | |||
for (uint32_t i = 0 ; i < 64 ; i++) { | |||
p2[i] = p1[2 * i] + p1[2 * i + 1]; | |||
p2[i + 64] = p1[2 * i] - p1[2 * i + 1]; | |||
} | |||
// swap p1, p2 for next round | |||
expandedCodeword *p3 = p1; | |||
p3 = p1; | |||
p1 = p2; | |||
p2 = p3; | |||
} | |||
@@ -144,18 +131,18 @@ static void hadamard(expandedCodeword *src, expandedCodeword *dst) { | |||
* @param[out] dest Structure that contain the expanded codeword | |||
* @param[in] src Structure that contain the codeword | |||
*/ | |||
static void expand_and_sum(expandedCodeword *dest, codeword src[]) { | |||
static void expand_and_sum(uint16_t dest[128], const uint32_t src[4 * MULTIPLICITY]) { | |||
// start with the first copy | |||
for (int32_t part = 0 ; part < 4 ; part++) { | |||
for (int32_t bit = 0 ; bit < 32 ; bit++) { | |||
(*dest)[part * 32 + bit] = src[0].u32[part] >> bit & 1; | |||
for (uint32_t part = 0 ; part < 4 ; part++) { | |||
for (uint32_t bit = 0 ; bit < 32 ; bit++) { | |||
dest[part * 32 + bit] = (uint16_t) ((src[part] >> bit) & 1); | |||
} | |||
} | |||
// sum the rest of the copies | |||
for (int32_t copy = 1 ; copy < MULTIPLICITY ; copy++) { | |||
for (int32_t part = 0 ; part < 4 ; part++) { | |||
for (int32_t bit = 0 ; bit < 32 ; bit++) { | |||
(*dest)[part * 32 + bit] += src[copy].u32[part] >> bit & 1; | |||
for (uint32_t copy = 1 ; copy < MULTIPLICITY ; copy++) { | |||
for (uint32_t part = 0 ; part < 4 ; part++) { | |||
for (uint32_t bit = 0 ; bit < 32 ; bit++) { | |||
dest[part * 32 + bit] += (uint16_t) ((src[4 * copy + part] >> bit) & 1); | |||
} | |||
} | |||
} | |||
@@ -172,27 +159,26 @@ static void expand_and_sum(expandedCodeword *dest, codeword src[]) { | |||
* in the lowest 7 bits it taken | |||
* @param[in] transform Structure that contain the expanded codeword | |||
*/ | |||
static int32_t find_peaks(expandedCodeword *transform) { | |||
int32_t peak_abs_value = 0; | |||
int32_t peak_value = 0; | |||
int32_t peak_pos = 0; | |||
for (int32_t i = 0 ; i < 128 ; i++) { | |||
// get absolute value | |||
int32_t t = (*transform)[i]; | |||
int32_t pos_mask = -(t > 0); | |||
int32_t absolute = (pos_mask & t) | (~pos_mask & -t); | |||
// all compilers nowadays compile with a conditional move | |||
peak_value = absolute > peak_abs_value ? t : peak_value; | |||
peak_pos = absolute > peak_abs_value ? i : peak_pos; | |||
peak_abs_value = absolute > peak_abs_value ? absolute : peak_abs_value; | |||
static uint8_t find_peaks(const uint16_t transform[128]) { | |||
uint16_t peak_abs = 0; | |||
uint16_t peak = 0; | |||
uint16_t pos = 0; | |||
uint16_t t, abs, mask; | |||
for (uint16_t i = 0 ; i < 128 ; i++) { | |||
t = transform[i]; | |||
abs = t ^ ((-(t >> 15)) & (t ^ -t)); // t = abs(t) | |||
mask = -(((uint16_t)(peak_abs - abs)) >> 15); | |||
peak ^= mask & (peak ^ t); | |||
pos ^= mask & (pos ^ i); | |||
peak_abs ^= mask & (peak_abs ^ abs); | |||
} | |||
// set bit 7 | |||
peak_pos |= 128 * (peak_value > 0); | |||
return peak_pos; | |||
pos |= 128 & ((peak >> 15) - 1); | |||
return (uint8_t) pos; | |||
} | |||
/** | |||
* @brief Encodes the received word | |||
* | |||
@@ -204,15 +190,13 @@ static int32_t find_peaks(expandedCodeword *transform) { | |||
*/ | |||
void PQCLEAN_HQCRMRS128_CLEAN_reed_muller_encode(uint64_t *cdw, const uint64_t *msg) { | |||
uint8_t *message_array = (uint8_t *) msg; | |||
codeword *codeArray = (codeword *) cdw; | |||
uint32_t *codeArray = (uint32_t *) cdw; | |||
for (size_t i = 0 ; i < VEC_N1_SIZE_BYTES ; i++) { | |||
// fill entries i * MULTIPLICITY to (i+1) * MULTIPLICITY | |||
int32_t pos = i * MULTIPLICITY; | |||
// encode first word | |||
encode(&codeArray[pos], message_array[i]); | |||
encode(&codeArray[4 * i * MULTIPLICITY], message_array[i]); | |||
// copy to other identical codewords | |||
for (size_t copy = 1 ; copy < MULTIPLICITY ; copy++) { | |||
memcpy(&codeArray[pos + copy], &codeArray[pos], sizeof(codeword)); | |||
memcpy(&codeArray[4 * i * MULTIPLICITY + 4 * copy], &codeArray[4 * i * MULTIPLICITY], 4 * sizeof(uint32_t)); | |||
} | |||
} | |||
} | |||
@@ -230,17 +214,17 @@ void PQCLEAN_HQCRMRS128_CLEAN_reed_muller_encode(uint64_t *cdw, const uint64_t * | |||
*/ | |||
void PQCLEAN_HQCRMRS128_CLEAN_reed_muller_decode(uint64_t *msg, const uint64_t *cdw) { | |||
uint8_t *message_array = (uint8_t *) msg; | |||
codeword *codeArray = (codeword *) cdw; | |||
expandedCodeword expanded; | |||
uint32_t *codeArray = (uint32_t *) cdw; | |||
uint16_t expanded[128]; | |||
uint16_t transform[128]; | |||
for (size_t i = 0 ; i < VEC_N1_SIZE_BYTES ; i++) { | |||
// collect the codewords | |||
expand_and_sum(&expanded, &codeArray[i * MULTIPLICITY]); | |||
expand_and_sum(expanded, &codeArray[4 * i * MULTIPLICITY]); | |||
// apply hadamard transform | |||
expandedCodeword transform; | |||
hadamard(&expanded, &transform); | |||
hadamard(expanded, transform); | |||
// fix the first entry to get the half Hadamard transform | |||
transform[0] -= 64 * MULTIPLICITY; | |||
// finish the decoding | |||
message_array[i] = find_peaks(&transform); | |||
message_array[i] = find_peaks(transform); | |||
} | |||
} |
@@ -7,33 +7,19 @@ | |||
* Constant time implementation of Reed-Muller code RM(1,7) | |||
*/ | |||
// setting this will help the compiler with auto vectorization | |||
#undef ALIGNVECTORS | |||
// number of repeated code words | |||
#define MULTIPLICITY CEIL_DIVIDE(PARAM_N2, 128) | |||
// codeword is 128 bits, seen multiple ways | |||
typedef union { | |||
uint8_t u8[16]; | |||
uint32_t u32[4]; | |||
} codeword | |||
; | |||
// Expanded codeword has a short for every bit, for internal calculations | |||
typedef int16_t expandedCodeword[128] | |||
; | |||
// copy bit 0 into all bits of a 32 bit value | |||
#define BIT0MASK(x) (int32_t)(-((x) & 1)) | |||
#define BIT0MASK(x) (-((x) & 1)) | |||
static void encode(codeword *word, int32_t message); | |||
static void hadamard(expandedCodeword *src, expandedCodeword *dst); | |||
static void expand_and_sum(expandedCodeword *dest, codeword src[]); | |||
static int32_t find_peaks(expandedCodeword *transform); | |||
static void encode(uint32_t *word, const uint8_t message); | |||
static void hadamard(uint16_t src[128], uint16_t dst[128]); | |||
static void expand_and_sum(uint16_t dest[128], const uint32_t src[4 * MULTIPLICITY]); | |||
static uint8_t find_peaks(const uint16_t transform[128]); | |||
@@ -54,10 +40,10 @@ static int32_t find_peaks(expandedCodeword *transform); | |||
* @param[out] word An RM(1,7) codeword | |||
* @param[in] message A message | |||
*/ | |||
static void encode(codeword *word, int32_t message) { | |||
static void encode(uint32_t *word, uint8_t message) { | |||
// the four parts of the word are identical | |||
// except for encoding bits 5 and 6 | |||
int32_t first_word; | |||
uint32_t first_word; | |||
// bit 7 flips all the bits, do that first to save work | |||
first_word = BIT0MASK(message >> 7); | |||
// bits 0, 1, 2, 3, 4 are the same for all four longs | |||
@@ -68,14 +54,14 @@ static void encode(codeword *word, int32_t message) { | |||
first_word ^= BIT0MASK(message >> 3) & 0xff00ff00; | |||
first_word ^= BIT0MASK(message >> 4) & 0xffff0000; | |||
// we can store this in the first quarter | |||
word->u32[0] = first_word; | |||
word[0] = first_word; | |||
// bit 5 flips entries 1 and 3; bit 6 flips 2 and 3 | |||
first_word ^= BIT0MASK(message >> 5); | |||
word->u32[1] = first_word; | |||
word[1] = first_word; | |||
first_word ^= BIT0MASK(message >> 6); | |||
word->u32[3] = first_word; | |||
word[3] = first_word; | |||
first_word ^= BIT0MASK(message >> 5); | |||
word->u32[2] = first_word; | |||
word[2] = first_word; | |||
} | |||
@@ -111,19 +97,20 @@ static void encode(codeword *word, int32_t message) { | |||
* @param[out] src Structure that contain the expanded codeword | |||
* @param[out] dst Structure that contain the expanded codeword | |||
*/ | |||
static void hadamard(expandedCodeword *src, expandedCodeword *dst) { | |||
static void hadamard(uint16_t src[128], uint16_t dst[128]) { | |||
// the passes move data: | |||
// src -> dst -> src -> dst -> src -> dst -> src -> dst | |||
// using p1 and p2 alternately | |||
expandedCodeword *p1 = src; | |||
expandedCodeword *p2 = dst; | |||
for (int32_t pass = 0 ; pass < 7 ; pass++) { | |||
for (int32_t i = 0 ; i < 64 ; i++) { | |||
(*p2)[i] = (*p1)[2 * i] + (*p1)[2 * i + 1]; | |||
(*p2)[i + 64] = (*p1)[2 * i] - (*p1)[2 * i + 1]; | |||
uint16_t *p1 = src; | |||
uint16_t *p2 = dst; | |||
uint16_t *p3; | |||
for (uint32_t pass = 0 ; pass < 7 ; pass++) { | |||
for (uint32_t i = 0 ; i < 64 ; i++) { | |||
p2[i] = p1[2 * i] + p1[2 * i + 1]; | |||
p2[i + 64] = p1[2 * i] - p1[2 * i + 1]; | |||
} | |||
// swap p1, p2 for next round | |||
expandedCodeword *p3 = p1; | |||
p3 = p1; | |||
p1 = p2; | |||
p2 = p3; | |||
} | |||
@@ -144,18 +131,18 @@ static void hadamard(expandedCodeword *src, expandedCodeword *dst) { | |||
* @param[out] dest Structure that contain the expanded codeword | |||
* @param[in] src Structure that contain the codeword | |||
*/ | |||
static void expand_and_sum(expandedCodeword *dest, codeword src[]) { | |||
static void expand_and_sum(uint16_t dest[128], const uint32_t src[4 * MULTIPLICITY]) { | |||
// start with the first copy | |||
for (int32_t part = 0 ; part < 4 ; part++) { | |||
for (int32_t bit = 0 ; bit < 32 ; bit++) { | |||
(*dest)[part * 32 + bit] = src[0].u32[part] >> bit & 1; | |||
for (uint32_t part = 0 ; part < 4 ; part++) { | |||
for (uint32_t bit = 0 ; bit < 32 ; bit++) { | |||
dest[part * 32 + bit] = (uint16_t) ((src[part] >> bit) & 1); | |||
} | |||
} | |||
// sum the rest of the copies | |||
for (int32_t copy = 1 ; copy < MULTIPLICITY ; copy++) { | |||
for (int32_t part = 0 ; part < 4 ; part++) { | |||
for (int32_t bit = 0 ; bit < 32 ; bit++) { | |||
(*dest)[part * 32 + bit] += src[copy].u32[part] >> bit & 1; | |||
for (uint32_t copy = 1 ; copy < MULTIPLICITY ; copy++) { | |||
for (uint32_t part = 0 ; part < 4 ; part++) { | |||
for (uint32_t bit = 0 ; bit < 32 ; bit++) { | |||
dest[part * 32 + bit] += (uint16_t) ((src[4 * copy + part] >> bit) & 1); | |||
} | |||
} | |||
} | |||
@@ -172,27 +159,26 @@ static void expand_and_sum(expandedCodeword *dest, codeword src[]) { | |||
* in the lowest 7 bits it taken | |||
* @param[in] transform Structure that contain the expanded codeword | |||
*/ | |||
static int32_t find_peaks(expandedCodeword *transform) { | |||
int32_t peak_abs_value = 0; | |||
int32_t peak_value = 0; | |||
int32_t peak_pos = 0; | |||
for (int32_t i = 0 ; i < 128 ; i++) { | |||
// get absolute value | |||
int32_t t = (*transform)[i]; | |||
int32_t pos_mask = -(t > 0); | |||
int32_t absolute = (pos_mask & t) | (~pos_mask & -t); | |||
// all compilers nowadays compile with a conditional move | |||
peak_value = absolute > peak_abs_value ? t : peak_value; | |||
peak_pos = absolute > peak_abs_value ? i : peak_pos; | |||
peak_abs_value = absolute > peak_abs_value ? absolute : peak_abs_value; | |||
static uint8_t find_peaks(const uint16_t transform[128]) { | |||
uint16_t peak_abs = 0; | |||
uint16_t peak = 0; | |||
uint16_t pos = 0; | |||
uint16_t t, abs, mask; | |||
for (uint16_t i = 0 ; i < 128 ; i++) { | |||
t = transform[i]; | |||
abs = t ^ ((-(t >> 15)) & (t ^ -t)); // t = abs(t) | |||
mask = -(((uint16_t)(peak_abs - abs)) >> 15); | |||
peak ^= mask & (peak ^ t); | |||
pos ^= mask & (pos ^ i); | |||
peak_abs ^= mask & (peak_abs ^ abs); | |||
} | |||
// set bit 7 | |||
peak_pos |= 128 * (peak_value > 0); | |||
return peak_pos; | |||
pos |= 128 & ((peak >> 15) - 1); | |||
return (uint8_t) pos; | |||
} | |||
/** | |||
* @brief Encodes the received word | |||
* | |||
@@ -204,15 +190,13 @@ static int32_t find_peaks(expandedCodeword *transform) { | |||
*/ | |||
void PQCLEAN_HQCRMRS192_CLEAN_reed_muller_encode(uint64_t *cdw, const uint64_t *msg) { | |||
uint8_t *message_array = (uint8_t *) msg; | |||
codeword *codeArray = (codeword *) cdw; | |||
uint32_t *codeArray = (uint32_t *) cdw; | |||
for (size_t i = 0 ; i < VEC_N1_SIZE_BYTES ; i++) { | |||
// fill entries i * MULTIPLICITY to (i+1) * MULTIPLICITY | |||
int32_t pos = i * MULTIPLICITY; | |||
// encode first word | |||
encode(&codeArray[pos], message_array[i]); | |||
encode(&codeArray[4 * i * MULTIPLICITY], message_array[i]); | |||
// copy to other identical codewords | |||
for (size_t copy = 1 ; copy < MULTIPLICITY ; copy++) { | |||
memcpy(&codeArray[pos + copy], &codeArray[pos], sizeof(codeword)); | |||
memcpy(&codeArray[4 * i * MULTIPLICITY + 4 * copy], &codeArray[4 * i * MULTIPLICITY], 4 * sizeof(uint32_t)); | |||
} | |||
} | |||
} | |||
@@ -230,17 +214,17 @@ void PQCLEAN_HQCRMRS192_CLEAN_reed_muller_encode(uint64_t *cdw, const uint64_t * | |||
*/ | |||
void PQCLEAN_HQCRMRS192_CLEAN_reed_muller_decode(uint64_t *msg, const uint64_t *cdw) { | |||
uint8_t *message_array = (uint8_t *) msg; | |||
codeword *codeArray = (codeword *) cdw; | |||
expandedCodeword expanded; | |||
uint32_t *codeArray = (uint32_t *) cdw; | |||
uint16_t expanded[128]; | |||
uint16_t transform[128]; | |||
for (size_t i = 0 ; i < VEC_N1_SIZE_BYTES ; i++) { | |||
// collect the codewords | |||
expand_and_sum(&expanded, &codeArray[i * MULTIPLICITY]); | |||
expand_and_sum(expanded, &codeArray[4 * i * MULTIPLICITY]); | |||
// apply hadamard transform | |||
expandedCodeword transform; | |||
hadamard(&expanded, &transform); | |||
hadamard(expanded, transform); | |||
// fix the first entry to get the half Hadamard transform | |||
transform[0] -= 64 * MULTIPLICITY; | |||
// finish the decoding | |||
message_array[i] = find_peaks(&transform); | |||
message_array[i] = find_peaks(transform); | |||
} | |||
} |
@@ -7,33 +7,19 @@ | |||
* Constant time implementation of Reed-Muller code RM(1,7) | |||
*/ | |||
// setting this will help the compiler with auto vectorization | |||
#undef ALIGNVECTORS | |||
// number of repeated code words | |||
#define MULTIPLICITY CEIL_DIVIDE(PARAM_N2, 128) | |||
// codeword is 128 bits, seen multiple ways | |||
typedef union { | |||
uint8_t u8[16]; | |||
uint32_t u32[4]; | |||
} codeword | |||
; | |||
// Expanded codeword has a short for every bit, for internal calculations | |||
typedef int16_t expandedCodeword[128] | |||
; | |||
// copy bit 0 into all bits of a 32 bit value | |||
#define BIT0MASK(x) (int32_t)(-((x) & 1)) | |||
#define BIT0MASK(x) (-((x) & 1)) | |||
static void encode(codeword *word, int32_t message); | |||
static void hadamard(expandedCodeword *src, expandedCodeword *dst); | |||
static void expand_and_sum(expandedCodeword *dest, codeword src[]); | |||
static int32_t find_peaks(expandedCodeword *transform); | |||
static void encode(uint32_t *word, const uint8_t message); | |||
static void hadamard(uint16_t src[128], uint16_t dst[128]); | |||
static void expand_and_sum(uint16_t dest[128], const uint32_t src[4 * MULTIPLICITY]); | |||
static uint8_t find_peaks(const uint16_t transform[128]); | |||
@@ -54,10 +40,10 @@ static int32_t find_peaks(expandedCodeword *transform); | |||
* @param[out] word An RM(1,7) codeword | |||
* @param[in] message A message | |||
*/ | |||
static void encode(codeword *word, int32_t message) { | |||
static void encode(uint32_t *word, uint8_t message) { | |||
// the four parts of the word are identical | |||
// except for encoding bits 5 and 6 | |||
int32_t first_word; | |||
uint32_t first_word; | |||
// bit 7 flips all the bits, do that first to save work | |||
first_word = BIT0MASK(message >> 7); | |||
// bits 0, 1, 2, 3, 4 are the same for all four longs | |||
@@ -68,14 +54,14 @@ static void encode(codeword *word, int32_t message) { | |||
first_word ^= BIT0MASK(message >> 3) & 0xff00ff00; | |||
first_word ^= BIT0MASK(message >> 4) & 0xffff0000; | |||
// we can store this in the first quarter | |||
word->u32[0] = first_word; | |||
word[0] = first_word; | |||
// bit 5 flips entries 1 and 3; bit 6 flips 2 and 3 | |||
first_word ^= BIT0MASK(message >> 5); | |||
word->u32[1] = first_word; | |||
word[1] = first_word; | |||
first_word ^= BIT0MASK(message >> 6); | |||
word->u32[3] = first_word; | |||
word[3] = first_word; | |||
first_word ^= BIT0MASK(message >> 5); | |||
word->u32[2] = first_word; | |||
word[2] = first_word; | |||
} | |||
@@ -111,19 +97,20 @@ static void encode(codeword *word, int32_t message) { | |||
* @param[out] src Structure that contain the expanded codeword | |||
* @param[out] dst Structure that contain the expanded codeword | |||
*/ | |||
static void hadamard(expandedCodeword *src, expandedCodeword *dst) { | |||
static void hadamard(uint16_t src[128], uint16_t dst[128]) { | |||
// the passes move data: | |||
// src -> dst -> src -> dst -> src -> dst -> src -> dst | |||
// using p1 and p2 alternately | |||
expandedCodeword *p1 = src; | |||
expandedCodeword *p2 = dst; | |||
for (int32_t pass = 0 ; pass < 7 ; pass++) { | |||
for (int32_t i = 0 ; i < 64 ; i++) { | |||
(*p2)[i] = (*p1)[2 * i] + (*p1)[2 * i + 1]; | |||
(*p2)[i + 64] = (*p1)[2 * i] - (*p1)[2 * i + 1]; | |||
uint16_t *p1 = src; | |||
uint16_t *p2 = dst; | |||
uint16_t *p3; | |||
for (uint32_t pass = 0 ; pass < 7 ; pass++) { | |||
for (uint32_t i = 0 ; i < 64 ; i++) { | |||
p2[i] = p1[2 * i] + p1[2 * i + 1]; | |||
p2[i + 64] = p1[2 * i] - p1[2 * i + 1]; | |||
} | |||
// swap p1, p2 for next round | |||
expandedCodeword *p3 = p1; | |||
p3 = p1; | |||
p1 = p2; | |||
p2 = p3; | |||
} | |||
@@ -144,18 +131,18 @@ static void hadamard(expandedCodeword *src, expandedCodeword *dst) { | |||
* @param[out] dest Structure that contain the expanded codeword | |||
* @param[in] src Structure that contain the codeword | |||
*/ | |||
static void expand_and_sum(expandedCodeword *dest, codeword src[]) { | |||
static void expand_and_sum(uint16_t dest[128], const uint32_t src[4 * MULTIPLICITY]) { | |||
// start with the first copy | |||
for (int32_t part = 0 ; part < 4 ; part++) { | |||
for (int32_t bit = 0 ; bit < 32 ; bit++) { | |||
(*dest)[part * 32 + bit] = src[0].u32[part] >> bit & 1; | |||
for (uint32_t part = 0 ; part < 4 ; part++) { | |||
for (uint32_t bit = 0 ; bit < 32 ; bit++) { | |||
dest[part * 32 + bit] = (uint16_t) ((src[part] >> bit) & 1); | |||
} | |||
} | |||
// sum the rest of the copies | |||
for (int32_t copy = 1 ; copy < MULTIPLICITY ; copy++) { | |||
for (int32_t part = 0 ; part < 4 ; part++) { | |||
for (int32_t bit = 0 ; bit < 32 ; bit++) { | |||
(*dest)[part * 32 + bit] += src[copy].u32[part] >> bit & 1; | |||
for (uint32_t copy = 1 ; copy < MULTIPLICITY ; copy++) { | |||
for (uint32_t part = 0 ; part < 4 ; part++) { | |||
for (uint32_t bit = 0 ; bit < 32 ; bit++) { | |||
dest[part * 32 + bit] += (uint16_t) ((src[4 * copy + part] >> bit) & 1); | |||
} | |||
} | |||
} | |||
@@ -172,27 +159,26 @@ static void expand_and_sum(expandedCodeword *dest, codeword src[]) { | |||
* in the lowest 7 bits it taken | |||
* @param[in] transform Structure that contain the expanded codeword | |||
*/ | |||
static int32_t find_peaks(expandedCodeword *transform) { | |||
int32_t peak_abs_value = 0; | |||
int32_t peak_value = 0; | |||
int32_t peak_pos = 0; | |||
for (int32_t i = 0 ; i < 128 ; i++) { | |||
// get absolute value | |||
int32_t t = (*transform)[i]; | |||
int32_t pos_mask = -(t > 0); | |||
int32_t absolute = (pos_mask & t) | (~pos_mask & -t); | |||
// all compilers nowadays compile with a conditional move | |||
peak_value = absolute > peak_abs_value ? t : peak_value; | |||
peak_pos = absolute > peak_abs_value ? i : peak_pos; | |||
peak_abs_value = absolute > peak_abs_value ? absolute : peak_abs_value; | |||
static uint8_t find_peaks(const uint16_t transform[128]) { | |||
uint16_t peak_abs = 0; | |||
uint16_t peak = 0; | |||
uint16_t pos = 0; | |||
uint16_t t, abs, mask; | |||
for (uint16_t i = 0 ; i < 128 ; i++) { | |||
t = transform[i]; | |||
abs = t ^ ((-(t >> 15)) & (t ^ -t)); // t = abs(t) | |||
mask = -(((uint16_t)(peak_abs - abs)) >> 15); | |||
peak ^= mask & (peak ^ t); | |||
pos ^= mask & (pos ^ i); | |||
peak_abs ^= mask & (peak_abs ^ abs); | |||
} | |||
// set bit 7 | |||
peak_pos |= 128 * (peak_value > 0); | |||
return peak_pos; | |||
pos |= 128 & ((peak >> 15) - 1); | |||
return (uint8_t) pos; | |||
} | |||
/** | |||
* @brief Encodes the received word | |||
* | |||
@@ -204,15 +190,13 @@ static int32_t find_peaks(expandedCodeword *transform) { | |||
*/ | |||
void PQCLEAN_HQCRMRS256_CLEAN_reed_muller_encode(uint64_t *cdw, const uint64_t *msg) { | |||
uint8_t *message_array = (uint8_t *) msg; | |||
codeword *codeArray = (codeword *) cdw; | |||
uint32_t *codeArray = (uint32_t *) cdw; | |||
for (size_t i = 0 ; i < VEC_N1_SIZE_BYTES ; i++) { | |||
// fill entries i * MULTIPLICITY to (i+1) * MULTIPLICITY | |||
int32_t pos = i * MULTIPLICITY; | |||
// encode first word | |||
encode(&codeArray[pos], message_array[i]); | |||
encode(&codeArray[4 * i * MULTIPLICITY], message_array[i]); | |||
// copy to other identical codewords | |||
for (size_t copy = 1 ; copy < MULTIPLICITY ; copy++) { | |||
memcpy(&codeArray[pos + copy], &codeArray[pos], sizeof(codeword)); | |||
memcpy(&codeArray[4 * i * MULTIPLICITY + 4 * copy], &codeArray[4 * i * MULTIPLICITY], 4 * sizeof(uint32_t)); | |||
} | |||
} | |||
} | |||
@@ -230,17 +214,17 @@ void PQCLEAN_HQCRMRS256_CLEAN_reed_muller_encode(uint64_t *cdw, const uint64_t * | |||
*/ | |||
void PQCLEAN_HQCRMRS256_CLEAN_reed_muller_decode(uint64_t *msg, const uint64_t *cdw) { | |||
uint8_t *message_array = (uint8_t *) msg; | |||
codeword *codeArray = (codeword *) cdw; | |||
expandedCodeword expanded; | |||
uint32_t *codeArray = (uint32_t *) cdw; | |||
uint16_t expanded[128]; | |||
uint16_t transform[128]; | |||
for (size_t i = 0 ; i < VEC_N1_SIZE_BYTES ; i++) { | |||
// collect the codewords | |||
expand_and_sum(&expanded, &codeArray[i * MULTIPLICITY]); | |||
expand_and_sum(expanded, &codeArray[4 * i * MULTIPLICITY]); | |||
// apply hadamard transform | |||
expandedCodeword transform; | |||
hadamard(&expanded, &transform); | |||
hadamard(expanded, transform); | |||
// fix the first entry to get the half Hadamard transform | |||
transform[0] -= 64 * MULTIPLICITY; | |||
// finish the decoding | |||
message_array[i] = find_peaks(&transform); | |||
message_array[i] = find_peaks(transform); | |||
} | |||
} |