Browse Source

remove unused function

tags/v0.0.1
John M. Schanck 4 years ago
committed by Kris Kwiatkowski
parent
commit
94e8ef48dc
6 changed files with 0 additions and 99 deletions
  1. +0
    -30
      crypto_kem/hqc-128/avx2/bch.c
  2. +0
    -3
      crypto_kem/hqc-128/avx2/bch.h
  3. +0
    -30
      crypto_kem/hqc-192/avx2/bch.c
  4. +0
    -3
      crypto_kem/hqc-192/avx2/bch.h
  5. +0
    -30
      crypto_kem/hqc-256/avx2/bch.c
  6. +0
    -3
      crypto_kem/hqc-256/avx2/bch.h

+ 0
- 30
crypto_kem/hqc-128/avx2/bch.c View File

@@ -18,36 +18,6 @@ static void message_from_codeword(uint64_t *message, const uint64_t *codeword);
static void compute_syndromes(__m256i *syndromes, const uint64_t *rcv);
static void compute_roots(uint64_t *error, const uint16_t *sigma);

/**
* @brief Computes the values alpha^ij for decoding syndromes
*
* function to initialize a table which contains values alpha^ij for i in [0,N1[ and j in [1,2*PARAM_DELTA]
* these values are used in order to compute the syndromes of the received word v(x)=v_0+v_1x+...+v_{n1-1}x^{n1-1}
* value alpha^ij is stored in alpha_ij_table[2*PARAM_DELTA*i+j-1]
* The syndromes are equal to v(alpha^k) for k in [1,2*PARAM_DELTA]
* Size of the table is fixed to match 256 bit representation
* Useless values are filled with 0.
*
* @param[in] exp Exp look-up-table of GF
*/
void PQCLEAN_HQC128_AVX2_table_alphaij_generation(const uint16_t *exp) {
int32_t tmp_value;
int16_t *alpha_tmp;

// pre-computation of alpha^ij for i in [0, N1[ and j in [1, 2*PARAM_DELTA]
// see comment of alpha_ij_table_init() function.
for (uint16_t i = 0; i < PARAM_N1; ++i) {
tmp_value = 0;
alpha_tmp = table_alpha_ij + i * (PARAM_DELTA << 1);
for (uint16_t j = 0; j < (PARAM_DELTA << 1); j++) {
tmp_value = PQCLEAN_HQC128_AVX2_gf_mod(tmp_value + i);
alpha_tmp[j] = gf_exp[tmp_value];
}
}
}



/**
* @brief Computes the error locator polynomial (ELP) sigma
*


+ 0
- 3
crypto_kem/hqc-128/avx2/bch.h View File

@@ -15,7 +15,4 @@
void PQCLEAN_HQC128_AVX2_bch_code_decode(uint64_t *message, uint64_t *vector);


void PQCLEAN_HQC128_AVX2_table_alphaij_generation(const uint16_t *exp);


#endif

+ 0
- 30
crypto_kem/hqc-192/avx2/bch.c View File

@@ -18,36 +18,6 @@ static void message_from_codeword(uint64_t *message, const uint64_t *codeword);
static void compute_syndromes(__m256i *syndromes, const uint64_t *rcv);
static void compute_roots(uint64_t *error, const uint16_t *sigma);

/**
* @brief Computes the values alpha^ij for decoding syndromes
*
* function to initialize a table which contains values alpha^ij for i in [0,N1[ and j in [1,2*PARAM_DELTA]
* these values are used in order to compute the syndromes of the received word v(x)=v_0+v_1x+...+v_{n1-1}x^{n1-1}
* value alpha^ij is stored in alpha_ij_table[2*PARAM_DELTA*i+j-1]
* The syndromes are equal to v(alpha^k) for k in [1,2*PARAM_DELTA]
* Size of the table is fixed to match 256 bit representation
* Useless values are filled with 0.
*
* @param[in] exp Exp look-up-table of GF
*/
void PQCLEAN_HQC192_AVX2_table_alphaij_generation(const uint16_t *exp) {
int32_t tmp_value;
int16_t *alpha_tmp;

// pre-computation of alpha^ij for i in [0, N1[ and j in [1, 2*PARAM_DELTA]
// see comment of alpha_ij_table_init() function.
for (uint16_t i = 0; i < PARAM_N1; ++i) {
tmp_value = 0;
alpha_tmp = table_alpha_ij + i * (PARAM_DELTA << 1);
for (uint16_t j = 0; j < (PARAM_DELTA << 1); j++) {
tmp_value = PQCLEAN_HQC192_AVX2_gf_mod(tmp_value + i);
alpha_tmp[j] = gf_exp[tmp_value];
}
}
}



/**
* @brief Computes the error locator polynomial (ELP) sigma
*


+ 0
- 3
crypto_kem/hqc-192/avx2/bch.h View File

@@ -15,7 +15,4 @@
void PQCLEAN_HQC192_AVX2_bch_code_decode(uint64_t *message, uint64_t *vector);


void PQCLEAN_HQC192_AVX2_table_alphaij_generation(const uint16_t *exp);


#endif

+ 0
- 30
crypto_kem/hqc-256/avx2/bch.c View File

@@ -18,36 +18,6 @@ static void message_from_codeword(uint64_t *message, const uint64_t *codeword);
static void compute_syndromes(__m256i *syndromes, const uint64_t *rcv);
static void compute_roots(uint64_t *error, const uint16_t *sigma);

/**
* @brief Computes the values alpha^ij for decoding syndromes
*
* function to initialize a table which contains values alpha^ij for i in [0,N1[ and j in [1,2*PARAM_DELTA]
* these values are used in order to compute the syndromes of the received word v(x)=v_0+v_1x+...+v_{n1-1}x^{n1-1}
* value alpha^ij is stored in alpha_ij_table[2*PARAM_DELTA*i+j-1]
* The syndromes are equal to v(alpha^k) for k in [1,2*PARAM_DELTA]
* Size of the table is fixed to match 256 bit representation
* Useless values are filled with 0.
*
* @param[in] exp Exp look-up-table of GF
*/
void PQCLEAN_HQC256_AVX2_table_alphaij_generation(const uint16_t *exp) {
int32_t tmp_value;
int16_t *alpha_tmp;

// pre-computation of alpha^ij for i in [0, N1[ and j in [1, 2*PARAM_DELTA]
// see comment of alpha_ij_table_init() function.
for (uint16_t i = 0; i < PARAM_N1; ++i) {
tmp_value = 0;
alpha_tmp = table_alpha_ij + i * (PARAM_DELTA << 1);
for (uint16_t j = 0; j < (PARAM_DELTA << 1); j++) {
tmp_value = PQCLEAN_HQC256_AVX2_gf_mod(tmp_value + i);
alpha_tmp[j] = gf_exp[tmp_value];
}
}
}



/**
* @brief Computes the error locator polynomial (ELP) sigma
*


+ 0
- 3
crypto_kem/hqc-256/avx2/bch.h View File

@@ -15,7 +15,4 @@
void PQCLEAN_HQC256_AVX2_bch_code_decode(uint64_t *message, uint64_t *vector);


void PQCLEAN_HQC256_AVX2_table_alphaij_generation(const uint16_t *exp);


#endif

Loading…
Cancel
Save